
TYPE Brief Research Report

PUBLISHED 15 November 2022

DOI 10.3389/fpubh.2022.999210

OPEN ACCESS

EDITED BY

Stanca M. Ciupe,

Virginia Tech, United States

REVIEWED BY

Farid Rahimi,

Australian National University, Australia

Jean Daunizeau,

INSERM U1127 Institut du Cerveau et

de la Moelle épinière (ICM), France

*CORRESPONDENCE

Cam Bowie

cam.bowie1@gmail.com

SPECIALTY SECTION

This article was submitted to

Public Health Policy,

a section of the journal

Frontiers in Public Health

RECEIVED 20 July 2022

ACCEPTED 24 October 2022

PUBLISHED 15 November 2022

CITATION

Bowie C and Friston K (2022) A

12-month projection to September

2022 of the COVID-19 epidemic in the

UK using a dynamic causal model.

Front. Public Health 10:999210.

doi: 10.3389/fpubh.2022.999210

COPYRIGHT

© 2022 Bowie and Friston. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

A 12-month projection to
September 2022 of the
COVID-19 epidemic in the UK
using a dynamic causal model

Cam Bowie1* and Karl Friston2

1Retired, Axminster, United Kingdom, 2Wellcome Centre for Human Neuroimaging, University

College London, London, United Kingdom

Objectives: Predicting the future UK COVID-19 epidemic allows other

countries to compare their epidemic with one unfolding without public health

measures except a vaccine program.

Methods: A Dynamic Causal Model was used to estimate key model

parameters of the UK epidemic, such as vaccine e�ectiveness and increased

transmissibility of Alpha and Delta variants, the e�ectiveness of the vaccine

program roll-out and changes in contact rates. The model predicts the future

trends in infections, long-COVID, hospital admissions and deaths.

Results: Two-dose vaccination given to 66% of the UK population prevents

transmission following infection by 44%, serious illness by 86% and death

by 93%. Despite this, with no other public health measures used, cases will

increase from 37 million to 61 million, hospital admissions from 536,000

to 684,000 and deaths from 136,000 to 142,000 over 12 months. A

retrospective analysis (conducted after the original submission of this report)

allowed a comparison of these predictions of morbidity and mortality with

actual outcomes.

Conclusion: Vaccination alone will not control the epidemic. Relaxation

of mitigating public health measures carries several risks, which include

overwhelming the health services, the creation of vaccine resistant variants

and the economic cost of huge numbers of acute and chronic cases.
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Introduction

The recent abandonment of meaningful public health control measures in the UK in

August 2021 provides a natural experiment, offering a base-line control population for

other countries to assess the effects of their own public health interventions. It does so

by providing a fecund opportunity for COVID-19 to spread throughout the population

for months to come. How many people will be infected in the next year? How many will

suffer long-COVID? How many more people will die of COVID-19? How effective are

the vaccines used in the UK—BNT162b2 (38%) and ChAdOx1 (61%)? What will be the

likely re-infection rate as vaccine-induced immunity wains?
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Dynamic causal modeling is well-suited for predicting

the effects of letting the virus sweep through the population

because it combines conventional epidemiological models with

behavioral modeling at the population level (i.e., it models and

predicts both fluctuations in prevalence and contact rates) (1).

Its predictions can provide a base-line for other countries as they

monitor the effects of their public health control efforts. “If you

do nothing except vaccinate—this is what will happen.”

Methods

Dynamic causal models

An advantage of dynamic causal models is that they are

designed to continually assimilate data and update model

parameters, such as transmissibility of the virus, changes in

physical distancing and vaccine coverage—to accommodate

changes in population dynamics and virus behavior. The

September 25th, 2021 model was used to explore the effect of

increased transmission risk of the Delta variant and the likely

seasonal effect of the coming winter. Vaccine effectiveness with

Delta and the curtailment of physical distancing as well as the

potential benefit of a successful find, test, trace, isolate and

support scheme were also incorporated into the model.

General features of dynamic causal models

The model is fully described—in accord with good practice

in open science—and a weekly dashboard provides up-to-date

estimates and projections (2). The annotated software is freely

available and can be used to model datasets from other countries

(3–7). Other researchers have used this kind of state space

modeling (8–10), but not with the added features of the dynamic

causal model used in our work, which includes a form of agent-

based behavioral modeling. In other words, the conventional

SEIR model is absorbed into a larger state space model that

accounts for changes in behavior (e.g., tendency to self isolate)

and testing (e.g., availability and uptake).

As such dynamic causal modeling stands apart from most

modeling in epidemiology by predicting mitigated outcomes—

and quantifying the uncertainty associated with those outcomes.

This stands in contrast to quantitative epidemiological forecasts

that do not consider the effect of prevalence on socio-behavioral

responses. Usually, these projections are over few weeks—and

rest upon fitting curves to the recent trajectory of various data;

e.g., (11, 12). In contrast, dynamic causal modeling considers

what is most likely to happen, based upon a generative model

that best explains all the data available. This mandates a model

of socio-behavioral responses that mitigate viral transmission,

such as physical distancing, lockdown, testing and tracing. In

turn, this requires a detailed consideration of how various sorts

of data are generated. For example, it has to model fluctuations

in testing capacity and sampling bias due to people self-selecting

when symptomatic. The advantage of this kind of modeling is

that any data generated by the model can be used to inform the

model parameters that underwrite fluctuations in latent states,

such as the prevalence of infection. Latent states refer to those

states of the population that cannot be estimated directly and

have to be inferred from observable data.

Dynamic causal modeling therefore focuses—not on worst-

case scenarios but—on the most likely outcomes, given

concurrent predictions of viral transmission, responses in terms

of behavioral interventions and changes in the way that the

epidemic is measured (e.g., confirmed cases, death rates, hospital

admissions, and testing capacity). Crucially, dynamic causal

modeling brings two things to the table. The first is the use

of variational procedures to assess the quality of—or evidence

for—any given model. This means that the model adapts to the

available data; in the sense that the best model is taken to be

the model with the greatest evidence, given the current data.

As time goes on, the complexity of the model increases, in a

way that is necessary to explain the data accurately. Technically,

log evidence (a.k.a., marginal likelihood) is accuracy minus

complexity—and both are a function of the data (13). This

means there is an optimal model complexity or expressivity for

any given timeseries data.

The second advantage of dynamic causal modeling is

a proper incorporation of uncertainty in the estimation of

conditional dependencies. In other words, it allows for the

fact that uncertainty about one parameter affects uncertainty

about another. This means dynamic causal models generally

have a large number of parameters, such that the conditional

uncertainty about all the parameters is handled together. This

furnishes a model that is usually very expressive and may

appear over-parameterized. However, by optimizing the prior

probability density over the model parameters, one can optimize

the complexity (c.f., the effective number of parameters), using

Bayesian model selection (14–16). Note that the ability to pursue

this form of structure learning rests on being able to estimate

the model evidence or marginal likelihood, which is one of the

primary raisons d’être for the variational procedures used in

dynamic causal modeling (17–19).

These potential advantages can be leveraged to model a

large variety of data types, to fit an expressive model of

epidemiological trajectories and, implicitly, produce posterior

predictive densities over measurable outcomes. In other

words, parameterizing behavioral responses—such as physical

distancing—as a function of latent states, enables the model to

guess how we will respond in the future, with an appropriate

uncertainty. This is the basis of the predictions of mitigated

responses above.

Specific features of this dynamic causal model

The model includes all the standard SEIR (susceptible,

exposed, infected, removed) features of the commonly used
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models of infectious disease but in addition incorporates

the interactions between the population and COVID-19. For

example, people are more likely to stay at home if the prevalence

is high or if they have not been immunized. These dependencies

are estimated and only retained if they improve the ability of the

model to account for the data. Having optimized the model and

model parameters, one can then proceed with scenariomodeling

to evaluate the effect of interventions such as the influence of

an enhanced find, test, trace, isolate and support system on

the epidemic.

Standard SEIR models depend on the choice of parameters,

some of which are unknown empirically and must be

guessed. Dynamic causal modeling is, by comparison, relatively

assumption free. However, one must specify prior ranges for

parameters (just like for SEIR models) but the dynamic causal

model adjusts the parameters to fit the data in the most

efficient and parsimonious way possible. Not only does the

model provide estimates and projections of variables such as

the death rate, the effective reproductive number, incidence, and

prevalence but it also estimates of transmissibility, susceptibility,

latent resistance, herd immunity, expected physical distancing

behavior and vaccine effectiveness.

Two features provide insight into the way the model

describes the interaction of the population and COVID-19. The

first is the accuracy of the model in modeling the past stages of

the epidemic. The second is the ability of the model to predict

what will happen if we carry on as we have so far.

Data sources and assumptions

The latest data from Public Health England and the COVID-

19 Infection Survey of the Office of National Statistics (ONS)

(20, 21) were used. It is assumed that mitigation efforts in

schools will not take place, that lockdownwill not be re-imposed,

and that no new more virulent variant will arrive despite our

porous borders and minimal travel restrictions. IHME provides

estimates of national incidence (22). The trend in the use of

non-pharmaceutical interventions by the UK government is

measured using the Oxford Tracker stringency index (23).

The changing transmissibility of the virus—as new variants

emerge—is included in the model (modeled with a set of

temporal basis functions). For example, the Alpha variant was

estimated to be about 50% more transmissible than the original

variants and the delta variant was estimated to be about 50%

more transmissible than the Alpha variant. These estimates are

consistent with empirical estimates (24–27). The mix of vaccines

used in the UK up to September 15th, 2021 was ChAdOx1

−53%, BNT162b2 −45% and mRNA1273 (Moderna)−3% (28).

The NHS vaccine scheme by September 15th, 2021 had provided

two doses to 66% of the population (29).

Three scenarios were explored. The first (NPI1) provides

the projections with baseline parameters. The second scenario

(NPI2) improves the find, test, trace, isolate and support

system from 30 to 50% effectiveness. The third scenario (NPI3)

increases the find, test, trace, isolate and support system to

80% effectiveness.

The latest Office of National Statistics infection survey dated

September 5th, 2021 finds 831,000 people self-reporting post-

acute COVID-19 syndrome (symptoms persist more than 12

weeks after presumed COVID-19 infection) (30).

Software

The figures in Figure 1 can be reproduced using annotated

(MATLAB/Octave) code that is available as part of the free and

open-source academic software SPM. The routines are called by

a demonstration script that can be invoked by DEM_COVID,

DEM_COVID_X, DEM_COVID_T, DEM_COVID_I, or

DEM_COVID_LTLA at the MATLAB prompt. At the time of

writing, these routines are available in the development version

of the next SPM release. An archive of the relevant source code

for each publication is available from figshare.

The remaining results in this paper can be reproduced

using modified scripts found at https://www.dropbox.com/sh/

79f9xu7dkd4kjul/AACb41iy4pjgPQlnXWG_VIZAa?dl=0.

The routine data used in the manuscripts are available

from the COVID-19 Data Repository by the Center for

Systems Science and Engineering at Johns Hopkins University,

Coronavirus (COVID-19) UK Historical Data by Tom White

and GOV.UK Coronavirus (COVID-19) in the UK. The CSV

files must be available from the MATLAB path. The specific

data on vaccine effectiveness are found in the Office of National

Statistics and Public Health England publications (31, 32).

Results

The UK epidemic curve from February
2020 to September 2021

The chosen parameters adjusted by the model reproduce the

epidemic curve and infection sequelae experienced by the UK up

to the time of writing (Figure 1). The model estimates antibody

immunity induced by COVID-19 infection and/or vaccine is lost

in 284 days.

Model predictions up to September 2022

The projections illustrate the depth and persistence of the

future epidemic in the UK in terms of morbidity and mortality,

transmission characteristics, testing capacity, hospital utilization

and disruption due to acute and chronic symptoms over the

next 12 months if the government continues to withhold public

health infection control measures (Figure 2).
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FIGURE 1

Comparing the actual with expected trends in eight measures of the COVID-19 epidemic UK—February 2020 to October 2021. Thick lines or

dots are published data; thin lines and shades are Dynamic Causal Model estimates with 90% Bayesian credible intervals. GOV relates to NHS and

Department of Health published data, KCL to Covid Health Study, PHE to Public Health England, and ONS to O�ce of National Statistics.

Mobility GOV in blue; Google in orange. Hospital deaths in blue; other deaths in orange. Seropositive, vaccine coverage and deaths by age

group - blue 15–34 years, orange 35–69 years, yellow 70+ years.

Vaccine e�ectiveness

The response in the UK to a prolonged wave of COVID-

19 infections into the summer of 2022 is moderated by

the high vaccine coverage. The vaccines reduce transmission

by half compared to the original variants in circulation

and pathogenicity for serious illness by 86% and deaths by

93% (Table 1). The effect for an individual is that two-dose

vaccination reduces the risk of infection from 100 to 37%, and

death from 100 to 0.3%.
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FIGURE 2

(A–F) CI is 90% Bayesian credible intervals. R DCM is the reproductive number calculated by the Dynamic Causal Model. R SPI-M is the published

estimates of the UK government SPI-M-O committee. R0 is an estimate of the changing underlying transmissibility of the viruses in circulation.

This estimate includes seasonality e�ects and may rise to about 6 as winter approaches. 50% Delta variant = date when Delta became the

dominant variant. Scenarios: Blue—base-line predictions; Green—Find, test, trace, isolate, Support improved from 27% to 50% e�ective on 1st

October 2021; Red—improved from 30% to 80% e�ective (80% close contacts isolate within 3 days) on 1st October 2021. Post-Acute Covid-19

Syndrome (using O�ce of National Statistics definition) assumed to occur in 3.36% of incident cases (19).

The long-term consequences

The trends in morbidity illustrate the consequences of

allowing the epidemic to run in an uncontrolled manner

through the community in the UK. The model can calculate its

cumulative effect on case numbers, deaths, tests and hospital

admissions (Table 2). Tests double, cases increase by two-

thirds, hospital admissions by a quarter and deaths by 5% over

the coming 12 months. An effective find, test, trace, isolate

and support system in conjunction with the vaccine program

would more or less stop further cases, hospital admissions

and deaths.

Retrospective analysis: Comparing the
predicted and actual outcomes for
October 1st, 2022

The Dynamic Causal Model projects the past into the

future assuming conditions such as increased transmission risk,
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TABLE 1 Vaccine e�ectiveness against COVID-19 Delta variant estimated by the dynamic causal model in UK in August 2021.

Vaccine effectiveness with respect to Delta variant—

September 2021—UK

Parameter derived from published

literature

Estimated by DCMa model

Preventing exposure to infection: 75% 63.2% (CIb 61.5–64.9)

Preventing transmission following infection: 72% 44.2% (CI 40.9–47.4)

Preventing serious illness when symptomatic (age 15–34): 76% 85.5% (CI 85.0–85.9)

Preventing serious illness when symptomatic (age 35–70): 85.6% (CI 85.2–86.1)

Preventing fatality when seriously ill: 91% 93.3% (CI 92.8–93.7)

The reduction in risk from 100% after two doses of vaccine

Relative risk of infection 36.8%

Relative risk of mild illness 32.8%

Relative risk of severe illness 4.7%

Relative risk of fatality 0.3%

aDynamic causal model.
b90% Bayesian credible intervals.

TABLE 2 The cumulative e�ect of uncontrolled spread of COVID-19 in the UK—from February 1st, 2020 to October 1st, 2021 and to October 1st,

2022.

Cumulative totals since February 1st, 2020 October 1st, 2021 October 1st, 2022

Scenario assuming FTTIS systema is 25% effective

Estimated incidence 37,124,370 60,697,287

Confirmed cases by PCRb 7,643,136 16,002,831

Deaths within 28 days of a positive PCR test 136,207 142,437

Tests (both PCR and LFDc) 302,707,235 636,316,101

Hospital admissions 536,258 684,004

Post-acute COVID-19 Syndromed 831,000 1,358,661

Scenario assuming FTTIS system improves to 80% effective on October 1st, 2021

Estimated incidence 37,124,370 37,711,451

Confirmed cases by PCR 7,643,136 7,871,363

Deaths within 28 days of a positive PCR test 136,207 137,216

Tests (both PCR and LFD) 302,707,235 627,227,250

Hospital admissions 536,258 548,438

Post-acute COVID-19 syndrome 831,000 840,965

aFind test trace isolate and support.
bPolymerase chain reaction test.
cLateral flow device test.
dPost-acute COVID-19 Syndrome definition—self reported symptoms more than 12 weeks after presumed COVID-19 infection used by Office of National Statistics (33).

and the levels of testing and non-pharmaceutical interventions

remain as before. Differences between the projected and actual

numbers should be able to be explained by the features

of the epidemic that have changed over the 12 months

(Table 3). Since October last year the use of non-pharmaceutical

interventions have been abandoned as measured by the

Oxford stringency index falling from 41.2 in October 2021

to 11.1 in October 2022 (23, 34). The Omicron variant was

designated a variant of Concern on November 26th, 2021 and

became the dominant variant in the UK on December 13th,

2021 (35).

Cases

The projected total number of new COVID-19 cases was

underestimated by 43%. This is likely to be due to the arrival

of the Omicron variants and the removal of all public health

mandates such as mask wearing and other interventions in

the UK. A functioning Find, Test, Trace, Isolate and Support

system was never fully established (36). Routine contact tracing

ended on February 24th, 2022. In-person testing at test sites

and free lateral flow device tests became no longer available on

April 1st, 2022. While it was predicted that 26% of cases would

be confirmed by a PCR test, in the event only 21% were so
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TABLE 3 Predicted and actual cumulative totals of incidence, deaths, tests, hospital admissions, and long COVID between February 1st, 2020 and

October 1st, 2022 in the UK.

Cumulative totals from

February 1st, 2020 to

October 1st, 2021 October 1st, 2022 October 1st, 2022 Data source of actual

numbers for October 1st,

2021 and 2022
Scenario assuming FTTIS is

25% effective

Actual Projected in October 2021 Actual

Estimated incidence 15,153,730 60,697,287 105,678,303 IHME

Confirmed cases by PCR 7,643,136 16,002,831 22,241,311 UK Government COVID-19 dashboard

Deaths within 28 days of a positive PCR

test

136,207 142,437 177,977 UK Government COVID-19 dashboard

Tests (both PCR and LFD) 302,707,235 636,316,101 514,605,757 UK Government COVID-19 dashboard

Hospital admissions 536,258 684,004 993,657 UK Government COVID-19 dashboard

Post-acute COVID-19 syndrome 831,000 1,358,661 1,825,000 ONS Infection survey

Post-acute COVID-19 Syndrome definition—self reported symptoms more than 12 weeks after presumed C-19 infection—ONS Infection Survey September 5th, 2021 and September 3rd,

2022.

FTTIS = Find, Test, Trace, Isolate, and Support system which in between February 2020 and October 2021 was estimated to be 25% efficient; IHME, Institute of Health Metrics and

Evaluation; PCR, polymerase chain reaction test; LFD, lateral flow device test.

confirmed. This was due to policy change increasing reliance on

stand-alone LFD tests.

Deaths and hospital admissions

Deaths were underestimated by 20% due to the very

high number of cases despite a falling case fatality rate. The

number of tests carried out was overestimated by 24% due

to the discontinuation of free LFD tests. Hospital admissions

were underestimated by 31% which is higher than the

underestimation of deaths as the vaccines used in the UK protect

more people from deaths than non-fatal acute respiratory

distress syndrome requiring hospital admission.

Long COVID

Long COVID was underestimated by 21%. ONS estimated

1.29% (831,000 on September 5th, 2021) and 2.82% (1,825,000

on September 3rd, 2022) of the population had self-reported

post-acute COVID-19 syndrome of more than 12 weeks

duration (33). This is equivalent to 2.2% of cases in October

2021, which if staying at that proportion of cases would increase

to 1,359,000 by October 2022. In fact, the latest estimate

from the national COVID-19 infection survey is 1,825,000

or 1.7% of infections. So, despite a lower proportion of

infections developing long term symptoms, our underestimate

can be explained by the higher number of infections which

actually occurred.

Discussion

The UK provides a baseline of public health inactivity which

can be used to compare public health controls chosen by other

countries. The vaccines used in the UK seem to be extremely

effective at reducing morbidity and mortality although not so

effective at reducing transmission. Loss of immunity in 284 days

as estimated by the model is similar to the results (extrapolated

to 344 days) of the Office of National Statistics study (37)

(Supplementary Table S4) suggests booster doses of vaccine may

be required.

Despite these very effective vaccines, the UK can expect a

large further wave of COVID-19 infections resulting in over

half a million additional post-acute COVID-19 Syndrome cases,

150,000 hospital admissions and 300 million additional tests.

If other mitigating public health measures were employed

to support the vaccine effects this further epidemic would

be eliminated. Simply making contact tracing effective would

achieve that possibility.

The size of the projected wave of infections provides

fertile ground for new variants and the absence of border

controls will allow new variants from other countries to invade

the UK. A health service already exhausted will be rapidly

overwhelmed. The lack of effective public health resources

will be unable to respond to current or future variants. This

means that the UK government may find it has to re-introduce

restrictive lockdowns. The excellent scientific institutions in

the UK will be able to monitor such features as genomic

sequencing, vaccine efficacy, and new vaccine trials. How long

the population is prepared to be the guinea pig remains to

be seen.

One of the values of using dynamic causal modeling

is the ability to test pre-conceived ideas and allow the

epidemic itself to inform its own modeling as it unfolds.

The method also offers a factorial view of the epidemic

rather than a unidimensional view as provided by standard

SEIR models. The dynamic causal model allows an interplay
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between the various effects of behavior, epidemiology and

seasonality that are key to the control of the epidemic.

For instance, the non-mandatory response to an increase

in COVID-19 prevalence is one of the factors used in

the model. This provides insight into how individuals will

respond to surges in prevalence based upon responses to

previous fluctuations.

The Dynamic Causal Model can project the past into

the future assuming systematic changes in the infectivity of

the virus, and the levels of testing and non-pharmaceutic

interventions. Differences between the projected and actual

numbers should, in principle, be explained by the features

of the epidemic that have changed over the 12 months. Our

predictions underestimated the size of the epidemic over a

12-month period. A retrospective analysis suggests that this

underestimate is due to the emergence of the Omicron variants

and the abandonment of non-pharmaceutical interventions by

the government.

The limitations of dynamic causal modeling predictions are

non-trivial. While the model is able to factor in past behavior it

cannot predict the biological characteristics of a new COVID-

19 variant. However, the characteristics of new variants such

as increases in transmissibility, decreases in virulence, and

their response to vaccines can be included in the model—

and validated against empirical estimates. Finally, it should

always be acknowledged that uncertainty about the model

per se is often ignored in this kind of modeling. In other

words, although the model has been updated to maximize

model evidence, it is just one model and other functional

forms may, in principle, have a greater evidence and, implicitly,

predictive validity.

In summary, the lessons for other countries are clear. Do

not depend solely on vaccination. Relaxation of mitigating

public health measures carries several risks—overwhelming

the health service again, the creation of vaccine resistant

variants, and the economic cost of huge numbers of acute and

chronic cases.
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