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Distributed Model Predictive Control for
Heterogeneous Vehicle Platoon with Inter-Vehicular

Spacing Constraints
Zhiwen Qiang, Li Dai*, Boli Chen, Yuanqing Xia

Abstract—This paper proposes a distributed control scheme
for a platoon of heterogeneous vehicles based on the mechanism
of model predictive control (MPC). The platoon composes of a
group of vehicles interacting with each other via inter-vehicular
spacing constraints, to avoid collision and reduce communication
latency, and aims to make multiple vehicles driving on the same
lane safely with a close range and the same velocity. Each
vehicle is subject to both state constraints and input constraints,
communicates only with neighboring vehicles, and may not know
a priori desired setpoint. We divide the computation of control
inputs into several local optimization problems based on each
vehicle’s local information. To compute the control input of
each vehicle based on local information, a distributed computing
method must be adopted and thus the coupled constraint is
required to be decoupled. This is achieved by introducing the
reference state trajectories from neighboring vehicles for each
vehicle and by employing the interactive structure of computing
local problems of vehicles with odd indices and even indices. It
is shown that the feasibility of MPC optimization problems is
achieved at all time steps based on tailored terminal inequality
constraints, and the asymptotic stability of each vehicle to the
desired trajectory is guaranteed even under a single iteration
between vehicles at each time. Finally, a comparison simulation
is conducted to demonstrate the effectiveness of the proposed
distributed MPC method for heterogeneous vehicle control with
respect to normal and extreme scenarios.

Index Terms—Model predictive control, distributed control,
heterogenous platoon control, coupled constraints

I. INTRODUCTION
The platoon of vehicles has been developed throughout

the world for several decades for its significant potential to
benefit road transportation, including increasing the capacity
of highways, enhancing road safety and improving energy
efficiency, etc [1]–[6]. To achieve these benefits, appropriate
platoon control algorithms are required to enable a group
of vehicles to travel at the same speed while maintaining a
pre-specified constant headway between any two consecutive
vehicles [3], [7].

Early researches on vehicle control could go back to the
Program on Advanced Technology for the Highway (PATH)
in California of the USA, in the 1980s, where the basic prin-
ciples and assumptions about sensors and actuators, control
architecture, and string stability are summarized [7]. Since
then, various vehicle control approaches are proposed. The
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near future will have to meet mixed traffic scenarios with
the coexistence of human-driven vehicles and connected and
autonomous vehicles [8]. After the transition period from
human-driven vehicles to connected and autonomous vehicles,
various proposed control approaches for autonomous vehi-
cles can be adopted, e.g., Adaptive Cruise Control (ACC),
and Cooperative Adaptive Cruise Control (CACC). The ACC
functionality is capable of automatically adapting the cruise-
control velocity of a vehicle via sensory devices for measuring
the headway [9], [10], and is widespread and available in
numerous commercial vehicles [3]. However, when consid-
ering traffic throughput, energy efficiency, safety of highway
traffic while achieving a small inter-vehicular spacing, string-
unstable driving behavior may occur if employing ACC. Hence
CACC is proposed as an extension equipped with a wireless
inter-vehicular communication link based on ACC [11]–[13].
Various aspects of vehicle control focusing on CACC are
investigated, such as spacing policies [14], [15], communica-
tion topology [16]–[19], communication and dynamic delays
[20], [21], vehicle dynamics heterogeneity [22]–[24], central-
ized and distributed control [25], [26], and so on. Despite
a large volume of existing literature in CACC, state and
input constraints that exist in practice are accounted for in
rare cases. A lack of consideration of these constraints may
lead to saturated control, low performance, instability or even
catastrophic collisions.

Model predictive control (MPC), as one potential research
direction in look ahead cruise control (a research direction of
CACC), has been successfully applied in many areas over the
last decades due to its ability to explicitly deal with diverse
constraints and to account for optimization considerations [27],
[28]. Traditionally, MPC is used for a single-agent system, and
therefore is implemented in a centralized way. Nevertheless, a
centralized MPC strategy, when applied to a vehicle platoon,
may suffer from heavy communication and computational
burden due to the spatially distributed vehicles. Recently,
distributed model predictive control (DMPC) has been made a
profound study [29]–[31]. In the context of standard DMPC, a
positive definite cost function associated with the underlying
optimization problem is often used to penalize the deviation
between the state and input point of the actual system and
the predefined setpoint or the reference signal. However, in a
platoon control problem, the setpoint that embodies the posi-
tion, velocity and acceleration of the leader vehicle may not
be known to all following vehicles due to the communication
restrictions. Each vehicle only communicates with its neigh-
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boring vehicles and may not be able to exchange information
directly with the leader vehicle. Besides, vehicles in a platoon
are not identical in most cases due to diversified powertrain,
body types, etc. Given all of the above, it is difficult to apply
the existing DMPC methods to platoon control. Existing works
on heterogeneous platoon control can be categorized into two
main groups. One focuses on the implementation of DMPC
to vehicle platooning whereas the theoretical analyses are
not taken into consideration [32], [33]. The other category
presents DMPC algorithms for heterogeneous platoons with
rigorous justification of the convergence and stability proper-
ties of the DMPC controllers, which relies on terminal equality
constraints imposed on the state average of the neighboring
vehicles [34]–[36]. This kind of terminal equality constraint
is restrictive and makes it difficult to ensure the feasibility of
optimization problem in theory for the first N steps, before all
following vehicles indirectly access the position and uniform
velocity information from the leader vehicle, where N is the
number of vehicles in the platoon. The lack of feasibility
implies that a valid control solution can not be guaranteed
at each time step, which hinders the application in real-time.
Moreover, only the local input constraints are considered in
[35], [36], whereas the state-coupled inter-vehicular spacing
constraints are omitted. Therefore, collision avoidance is not
guaranteed. Although coupled state constraints are considered
in [34], the target state (position, velocity and acceleration) of
the leader vehicle has to be known for each follower, which
demands extra communication burden.

With the aim of addressing the aforementioned challenges
in terms of coupled state constraints and the feasibility for
the first N steps, this paper proposes a novel DMPC scheme
for controlling heterogeneous vehicles platoons subject to
a bidirectional topology among the follower vehicles. The
proposed method utilizes a sequential computational protocol,
which consecutively solves local MPC problems for odd and
even indexed vehicles within a sampling time interval. The
contributions of this paper are summarized as follows:

1) The recursive feasibility, especially the satisfaction of the
state constraints, of the DMPC algorithm can be com-
pletely guaranteed, including the initial N steps, under
the condition that the control targets are unknown for
a subset of the follower vehicles due to the lack of
the leader vehicle’s information. The key is to design a
local feedback control law resorting to centrally derived
tracking error invariant sets of each following vehicle.
Such a DMPC framework also ensures the asymptotic
stability of the platoon system.

2) The admissible range of velocity variability of the leader
vehicle in terms of stability of the platoon is numeri-
cally investigated. Compared to the existing method, the
proposed method permits more flexible leader velocity
changes, which turns out to be useful in practice to
accommodate traffic perturbations.

The rest of this paper is organized as follows. In Section II,
the platoon of vehicles is modelled, and the control problem is
presented. Then a DMPC algorithm is proposed in Section III,
and it details the formulation of the decoupled MPC optimiza-

tion problem for each vehicle. Section IV establishes system
theoretic properties, including recursive feasibility, constraints
satisfaction and closed-loop stability under the proposed al-
gorithm. A numerical simulation is provided in Section V
compared with an existing DMPC scheme for platoon control.
Conclusions are drawn in Section VI.

Notation: Given two sets X ,Y ⊆ Rn, the Minkowski
set addition is defined by X ⊕ Y = {x + y ∈ Rn |
x ∈ X , y ∈ Y} and the Minkowski set difference is de-
fined by X ⊖ Y = {x ∈ Rn | x ⊕ Y ⊆ X}. Given
sets A1,A2, . . . ,AM , the set A ≜ ΠM

i=1Ai is defined as
A ≜ {a = [a⊤1 , a

⊤
2 , . . . , a

⊤
M ]⊤ | ai ∈ Ai, i = 1, 2, . . . ,M}.

Given a vector x ∈ Rn and a matrix Q ∈ Rn×n, denote
∥x∥2Q ≜ x⊤Qx. Let diag(A1, A2, . . . , AN ) denote a block-
diagonal matrix with matrices A1, A2, . . . , AN on the main
diagonal and zeros everywhere else, and (tk + i|tk) denote
a prediction of a variable i steps ahead from time tk. The
modulus or remainder operation is defined as a mod b = c
for all integers. Matrix inequality A ⪯ B means that B − A
is a positive semidefinite matrix, and a matrix A is Schur if
all its eigenvalues lie in the interior of the unit circle.

II. PLATOON MODELING AND CONTROL
OBJECTIVE

This paper considers a platoon of N + 1 heterogeneous
vehicles forming a string, as shown in Fig. 1. The front vehicle
indexed by 0 is regarded as the leader, and the downstream
vehicles indexed from 1 to N are regarded as the followers.
The leader vehicle 0 only transmits information to vehicle
1 and receives no information from all follower vehicles.
The communication among all follower vehicles is enabled
between consecutive vehicles and is assumed to be undirected.

Fig. 1: Cooperative control architecture of a heterogeneous
and connected vehicle platoon.

Denote N ≜ {1, 2, . . . , N} and N+ ≜ {0, 1, . . . , N}. The
longitudinal dynamics of each vehicle i, i ∈ N+ in the platoon
is modelled by a linear discrete-time system [37]

si(tk+1) =si(tk) + vi(tk)∆t+
1

2
ai(tk)∆t2, (1)

vi(tk+1) =vi(tk) + ai(tk)∆t, (2)

ai(tk+1) =

(
1− ∆t

τi

)
ai(tk) +

∆t

τi
ui(tk), (3)

where si(tk), vi(tk) and ai(tk) denote respectively the posi-
tion, velocity and acceleration of vehicle i at time tk. ui(tk) is
the control input acting on vehicle i at time tk. ∆t symbolizes
the sampling interval. The vehicle dynamics heterogeneity
lies in τi, which characterizes the inertial time-lag of vehicle
longitudinal dynamics.
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By letting xi(tk) ≜ [si(tk), vi(tk), ai(tk)]
⊤, the longitudi-

nal dynamics (1)-(3) can be rewritten in a compact form, for
i ∈ N+, as

xi(tk+1) = Aixi(tk) +Biui(tk), (4)

where

Ai =

1 ∆t ∆t2

2
0 1 ∆t
0 0 1− ∆t

τi

 , Bi =

 0
0
∆t
τi

 .

The platoon is dynamically decoupled and is constrained
by the spatial formations and the operational limitations of all
vehicles. Constraints imposed on each vehicle i are given by

si(tk)− si−1(tk) + d̄i,i−1 ∈ ∆Si, (5a)
vi(tk) ∈ Vi, (5b)
ai(tk) ∈ Ai, (5c)
ui(tk) ∈ Ui, (5d)

where d̄i,i−1 is the desired constant position gap between
vehicles i and i − 1. The admissible set ∆Si ≜ {∆s |
∆smin

i ≤ ∆s ≤ ∆smax
i } forces vehicle i to be neither too

close to (avoid collision) nor too far away from (avoid network
latency or packet loss) the predecessor vehicle i−1. We denote
Vi ≜ {v | vmin

i ≤ v ≤ vmax
i }, Ai ≜ {a | amin

i ≤ a ≤ amax
i }

and Ui ≜ {u | umin
i ≤ u ≤ umax

i } the admissible sets of
velocity, acceleration and control input of vehicle i, respec-
tively. Sets ∆Si, Ai, Ui are assumed to contain the origin as
an interior point.

This paper focuses on cooperative longitudinal platoon con-
trol for N + 1 heterogeneous vehicles. The communication
network topology among follower vehicles is assumed to be
undirected between adjacent vehicles, that is, each vehicle
i only communicates with vehicles i − 1 and i + 1. The
leader vehicle travels at a constant velocity v0, which also
implies a0 = 0 and u0 = 0 in the steady-state condition. The
control objective is to ensure that all the following vehicles
can track the speed of the leader vehicle subject to constraints
(5a)-(5d), while keeping a small constant inter-vehicular dis-
tance between any two neighboring vehicles to improve traffic
throughput, i.e., for all i ∈ N ,

lim
tk→∞

|si(tk)− si−1(tk) + d̄i,i−1| = 0, (6a)

lim
tk→∞

|vi(tk)− v0| = 0, (6b)

lim
tk→∞

|ai(tk)| = 0. (6c)

III. DMPC ALGORITHM FOR HETEROGENEOUS
VEHICLE PLATOON

This section develops a DMPC scheme for the heteroge-
neous platoon control problem formulated in Section II.

A. Problem reformulation

Considering the position s0(tk), the uniform velocity
v0(tk) = v0 and the acceleration a0(tk) = 0 of the leader

vehicle, the desired state and input for vehicle i can be defined
as

xdes,i(tk) = [sdes,i(tk), vdes,i(tk), ades,i(tk)]
⊤, (7)

udes,i(tk) = 0, (8)

where sdes,i(tk) = s0(tk) − d̄i,0 (d̄i,j =
∑i

s=j+1 d̄s,s−1, j ≤
i − 1), vdes,i(tk) = v0 and ades,i(tk) = 0. In many previous
works [34], [38], [39], a priori known set point or trajectory
xdes,i(·) is assumed to be available for each vehicle i in order
to ensure theoretical result. This assumption implies that all
following vehicles are required to connect to the leader vehi-
cle directly or indirectly via multi-hop V2X communication,
which usually demands more communication resources and
therefore is more restrictive. In this paper, the desired state and
input are not necessary to be universally known to all followers
and each vehicle can only use information from neighbors to
make local control decisions.

Since the information from the leader vehicle is not acces-
sible to all following vehicles, a general control objective such
as xi(tk) − xdes,i(tk) → 0, as tk → ∞ cannot be adopted in
each local MPC. Instead, the gap between adjacent vehicles
is used locally. Consider di,j = [d̄i,j , 0, 0]

⊤ the desired state
gap and ei(tk) = xi(tk)−xi−1(tk)+di,i−1 the tracking error
between vehicles i and i − 1. The control objective for each
vehicle i can then be described as ei(tk)→ 0, as tk →∞.

To construct an invariant terminal set about all tracking
errors ei, i ∈ N for the design of DMPC in Section III-B,
a terminal feedback control law for vehicle i is firstly given
by ui(tk) = Ka,ixi(tk) +Kf,iei(tk). Under this control law,
the dynamics of state deviation between vehicles i and i − 1
can be described as

ei(tk+1) = Adei(tk) +Biūi(tk)−Bi−1ūi−1(tk), (9)

where ūi(tk) = Kf,iei(tk) (K⊤
f,i ∈ R3 is a gain), and

Ad =

1 ∆t ∆t2

2
0 1 ∆t
0 0 1

 ,Ka,i =
[
0 0 1

]
.

By taking all vehicles into consideration and letting
e(tk) ≜ [e⊤1 (tk), e

⊤
2 (tk), . . . , e

⊤
N (tk)]

⊤ and ū(tk) ≜
[ū1(tk), ū2(tk), . . . , ūN (tk)]

⊤, the whole dynamics of tracking
errors can be formulated as

e(tk+1) = ADe(tk) +BDū(tk), (10)

where AD = diag(Ad, Ad, . . . , Ad) ∈ R3N×3N and

BD =


B1

−B1 B2

−B2
. . .
. . . . . .

−BN−1 BN

 .

Concerning system (10), the following assumption is needed
to design all ingredients associated with the terminal condition
(i.e. terminal cost, terminal control law and terminal set) for
the MPC optimal control problem (OCP), and these termi-
nal ingredients are essential to guarantee theoretical results.
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Denote ∆S ≜ ΠN
i=1∆Si, V ≜ ΠN

i=1Vi, A ≜ ΠN
i=1Ai and

U ≜ ΠN
i=1Ui.

Assumption 3.1: There exists a terminal invariant set E ≜
{e ∈ R3N |

∑N
i=1 e

⊤
i Piei ≤ γ} and a feedback control

law ū(tk) = Kfe(tk) with a block-diagonal matrix Kf =
diag(Kf,1,Kf,2, . . . ,Kf,N ) such that:

(i) AD +BDKf is Schur;
(ii) E is an invariant set for system (10), i.e., ∀e(tk) ∈ E ,

e(tk+1) ∈ E and (IN ⊗ [1, 0, 0])e(tk) ∈ ∆S;
(iii) ∀e(tk) ∈ E , ū(tk) ∈ U ⊖A;
(iv) ∀e(tk) ∈ E ,

N∑
i=1

(
||ei(tk+1)||2Pi

− ||ei(tk)||2Pi
+ ||ei(tk)||2Qi

)
≤ 0,

where positive parameter γ and symmetric positive def-
inite matrices Pi ∈ R3×3 and Qi ∈ R3×3 are pre-
specified by the designers.

Remark 3.1: Assumption 3.1 is a standard assumption in
the field of MPC theory (see, for example, Assumption 2
in [29]). In Assumption 3.1, a terminal invariant set E and
a feedback control law ū(tk) = Kfe(tk) are required to
be designed. The purpose is to limit the behavior of each
vehicle at the end of the prediction horizon. Firstly, the pla-
toon must be controllable according to Assumption 3.1 (i).
Secondly, if the terminal tracking error e(tk+H |tk) at time tk
is constrained in the terminal invariant set E , then under the
feedback control law ū(tk+H |tk), the terminal tracking error
e(tk+1+H |tk+1) = e(tk+1+H |tk) at time tk+1 will still stay
in E by Assumption 3.1 (ii) (it also implies the satisfaction of
the state constraints (5a)-(5c)). Meanwhile, from Assumption
3.1 (iii), the feedback control law ū(tk+H |tk) will always
satisfy the input constraint (5d) for each follower vehicle i,
i ∈ N , and the platoon is asymptotically stable under the
feedback control law ū(tk+H |tk) when states xi(tk+H |tk),
i ∈ V locate in the invariant set E according to Assumption
3.1 (iv). Note that although the terminal control law Kf is
assumed on the whole dynamic system (10), it is decoupled
for each vehicle i as the feedback control law ū(tk) can be
divided into ūi(tk) = Kf,iei(tk), i ∈ N .

B. Algorithm design

Since all vehicles are coupled through inter-vehicular spac-
ing constraints (5a), in order to achieve a distributed control
in the presence of coupling constraints, the N local MPCs
are updated sequentially by following a two-step approach
at each time step. More specifically, at an arbitrary sampling
instant tk, vehicles with odd indices solve in parallel their local
control problems in the first instance and then the rest with
even indices update their control inputs. Multiple iterations
are permitted at a sampling instant and the number can be
treated as a tunable parameter to balance coordinated control
performance and computational efficiency. For the sake of
further discussion, let us consider p̄ ≥ 1 the desired number
of iterations. When p̄ = 1, the sequential DMPC algorithm is
executed in a non-iterative way, where the computational cost
is minimized. Conversely, multiple iterations (p̄ ≥ 2) tend to
show a better convergence performance at a price of increased

computational complexity. The influence of p̄ on the control
performance will be shown in Section V by simulations.

For each vehicle i, i ∈ N , as shown in Fig. 1, its local
OCP only requires the information from vehicles i − 1 and
i+1. Without loss of generality, the same length of prediction
horizon H is used in all local problems. Define Ji(·) as the
tracking error based cost function for vehicle i

Ji(tk) ≜
H−1∑
j=0

li(xi, xi−1, xi+1, tk+j |tk)

+ lf,i(xi, xi−1, xi+1, tk+H |tk),

which consists of the stage cost function li at each prediction
time step defined, for j = 0, 1, . . . ,H − 1, by

li(xi, xi−1, xi+1, tk+j |tk)
≜ hi(xi, xi−1, tk+j |tk) + hi+1(xi+1, xi, tk+j |tk),

and the terminal cost function lf,i at the end of the prediction
horizon defined by

lf,i(xi, xi−1, xi+1, tk+H |tk)
≜ hf,i(xi, xi−1, tk+H |tk) + hf,i+1(xi+1, xi, tk+H |tk),

with

hi(xi, xi−1, tk+j |tk)
≜ ||xi(tk+j |tk)− xi−1(tk+j |tk) + di,i−1||2Qi

,

and

hf,i(xi, xi−1, tk+H |tk)
≜ ||xi(tk+H |tk)− xi−1(tk+H |tk) + di,i−1||2Pi

.

We formulate the local finite-horizon OCP Pi(tk) for each
vehicle i, i ∈ N , at time tk, by

min
ui(tk|tk),...,ui(tk+H−1|tk)

Ji(tk) (11a)

s.t. for all j = 0, 1, . . . ,H − 1

xi(tk+j+1|tk) = Aixi(tk+j |tk) +Biui(tk+j |tk), (11b)
xi(tk|tk) = xi(tk), (11c)
si(tk+j+1|tk)− ŝi−1(tk+j+1|tk) + d̄i,i−1 ∈ ∆Si, (11d)
ŝi+1(tk+j+1|tk)− si(tk+j+1|tk) + d̄i+1,i ∈ ∆Si+1, (11e)
vi(tk+j+1|tk) ∈ Vi, (11f)
ai(tk+j+1|tk) ∈ Ai, (11g)
ui(tk+j |tk) ∈ Ui, (11h)
lf,i(xi, x̂i−1, x̂i+1, tk+H |tk)≤ lf,i(x̂i, x̂i−1, x̂i+1, tk+H |tk),

(11i)

where x̂i(tk) ≜ [x̂i(tk|tk), x̂i(tk+1|tk), . . . , x̂i(tk+H |tk)] with
x̂i = [ŝi, v̂i, âi]

⊤ is a reference state trajectory of vehicle i and
it will be transmitted to vehicles i− 1 and i+1 for reference
at time tk. Constraints (11d) and (11e) enforce vehicle i
to maintain the proper distance gap against the predecessor
vehicle i − 1 and the following vehicle i + 1. Constraints
(11f)-(11h) respectively limit the velocity, acceleration and
control input of vehicle i over the prediction horizon. Terminal
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inequality constraint (11i) enforces the sum of tracking errors
between vehicles i and i− 1 and between vehicles i+ 1 and
i inside the invariant set E at the terminal horizon because
the right term in (11i) is a constructed state point based on
Assumption 3.1 which stays inside the invariant set E .

After solving the local OCP Pi(tk), i ∈ N for
the p-th iteration at the sampling instant tk with p ∈
[1, p̄], vehicle i determines the optimal state trajectory
xp
i (tk) ≜ [xp

i (tk|tk), x
p
i (tk+1|tk), . . . , xp

i (tk+H |tk)] and
the corresponding optimal input trajectory up

i (tk) ≜
[up

i (tk|tk), u
p
i (tk+1|tk), . . . , up

i (tk+H−1|tk)], and then trans-
mits its reference state trajectory x̂i(tk) = xp

i (tk) to its neigh-
boring vehicles i − 1 and i + 1. After the maximum number
of iterations p̄, each vehicle i can construct a new reference
state trajectory x̂i(tk+1) for the next sampling instant tk+1,
given by

x̂i(tk+1+j |tk+1) =

{
xp̄
i (tk+1+j |tk), j = 0, 1, . . . ,H − 1,

x̂i(tk+1+H |tk+1), j = H,
(12)

and the corresponding input trajectory defined by

ûi(tk+1+j |tk+1) =

{
up̄
i (tk+1+j |tk), j = 0, 1, . . . ,H − 2,

ûi(tk+H |tk+1), j = H − 1,
(13)

where the last elements in the reference state and input se-
quences are specified by

x̂i(tk+1+H |tk+1) =Aix̂i(tk+H |tk+1) +Biûi(tk+H |tk+1),

ûi(tk+H |tk+1) =Kf,iêi(tk+H |tk+1) + âi(tk+H |tk+1),

with êi(tk+H |tk+1) = x̂i(tk+H |tk+1)− x̂i−1(tk+H |tk+1)
+ di,i−1.

Remark 3.2: For the sake of narrative convenience, the
formulation of OCP PN (tk) for vehicle N at time tk is not
rewritten though vehicle N is the last vehicle with no vehicle
following. It can be regarded as a case where a phantom
vehicle indexed by N + 1 is perfectly tracking vehicle N
such that parts of formulas li and lf,i are always zero, i.e.,
xN (tk+j |tk)−xN+1(tk+j |tk)−dN+1,N = 0, j = 0, 1, . . . ,H .
Similarly, the formulation of OCP P1(tk) for vehicle 1 at time
tk can also be easily accommodated in the presented setting.
The state information of the leader vehicle is accessible for ve-
hicle 1 since the leader vehicle runs with constant velocity v0,
that is, x̂0(tk+j |tk) = As

0x0(tk) and x0(tk) = [s0(tk), v0, 0]
⊤

in OCP P1(tk).
Denote Nodd ≜ {i ∈ N | i mod 2 = 1} and Neven ≜

{i ∈ N | i mod 2 = 0}. Now the DMPC algorithm for a
platoon of heterogeneous vehicles with inter-vehicular spacing
constraints is summerized in Algorithm 1, where the parameter
tuning mechanism is detailed in Section III-C.

C. Guidelines on parameter design

In Algorithm 1, several parameters introduced in Assump-
tion 3.1 have to be determined at the offline stage. In the
following, we provide a viable method to obtain feasible
matrices Kf , P ≜ diag(P1, P2 . . . , PN ) ∈ R3N×3N , Q ≜
diag(Q1, Q2 . . . , QN ) ∈ R3N×3N and the invariant set E in

Algorithm 1 DMPC for a Heterogeneous Vehicle Platoon with
Inter-Vehicular Spacing Constraints

Offline: Determine matrices Kf , P , Q, and set E . Set the
maximum number of iterations p̄ and the running step
number k̄. Let p = 1 and k = 0. At the beginning time
t0, each vehicle i ∈ N+ measures its state xi(t0). Choose
prediction horizon H long enough such that there exists a
reference state trajectory x̂i(t0) for each follower vehicle
i satisfying constraints (11b)-(11h) and the terminal con-
dition

∑N
i=1 ||x̂i(tH |t0)− x̂i−1(tH |t0) + di,i−1||2Pi

≤ γ.
Online: For each vehicle i ∈ N :

1: while k < k̄ do
2: Measure state xi(tk).
3: while p ≤ p̄ do
4: if i ∈ Nodd then
5: Receive x̂i−1(tk) and x̂i+1(tk).
6: Solve Pi(tk) for xp

i (tk) & up
i (tk).

7: Let x̂i(tk) = xp
i (tk).

8: Send x̂i(tk) to vehicles i− 1 and i+ 1.
9: p← p+ 1.

10: else i ∈ Neven

11: Send x̂i(tk) to vehicles i− 1 and i+ 1.
12: Receive x̂i−1(tk) and x̂i+1(tk).
13: Solve Pi(tk) for xp

i (tk) & up
i (tk).

14: Let x̂i(tk) = xp
i (tk).

15: p← p+ 1.
16: end if
17: end while
18: Apply input ui(tk) = up̄

i (tk|tk).
19: Construct x̂i(tk+1) via (12) and (13).
20: k ← k + 1 and p← 1.
21: end while

the practical implementation. First, by adjusting α, 0 < α ≤ 1,
find matrices Kf , P and Q satisfying the following inequali-
ties

(AD +BDKf )
⊤P (AD +BDKf ) ⪯ α2P, (14)

(AD +BDKf )
⊤P (AD +BDKf ) ⪯ P −Q. (15)

Then adjust the value of γ in the definition of terminal set E
such that the condition (iii) in Assumption 3.1 is valid. Mean-
while, Assumption 3.1 only involves the relative information,
i.e., the tracking errors, and the absolute information about
the velocity and acceleration of each vehicle i is required to
be taken into consideration. For each vehicle i, constraints
(5b)-(5c) have to be satisfied in the terminal set E at the
end of the prediction horizon. Since the state of the prede-
cessor vehicle i − 1 changes during the control process, it
leads to difficulties in guaranteeing constraints (5b)-(5c) via
xi = ei + xi−1 − di,i−1. For all i ∈ N , there must exist a
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constant β ≥ 1 satisfying Pi ⪯ βPj , j = 1, 2, . . . , i such that

||xi − x0 + di,0||2Pi
≤

i∑
j=1

||xj − xj−1 + dj,j−1||2Pi

≤β
i∑

j=1

||xj − xj−1 + dj,j−1||2Pj

≤β
N∑
j=1

||xj − xj−1 + dj,j−1||2Pj

≤βγ.

The last inequality holds due to the definition of E and the
condition (ii) in Assumption 3.1. Let vi − v0 ∈ ∆Vi,0 ≜
{[0, 1, 0]v | ||v||2Pi

≤ βγ, v ∈ R3} and ai − a0 = ai ∈
∆Ai,0 ≜ {[0, 0, 1]a | ||a||2Pi

≤ βγ, a ∈ R3}. For all vehicles,
constraints (5b)-(5c) can be satisfied via adjusting sets Vi, Ai,
i ∈ N+ and the value of γ, such that for any i ∈ N

V0 ⊕∆Vi,0 ⊆ Vi, (16)
∆Ai,0 ⊆ Ai. (17)

At the beginning of the actual control process, all vehicles
are tasked with their initialization. The initialization step is
performed by solving an optimization problem (11b)-(11i)
(only once) for a collection of admissible control process
x̂i(t0) and ûi(t0) satisfying relations (11b)-(11i). The ini-
tialization term is another research topic about distributed
optimization. In previous works on DMPC, the initialization
was either implemented by a centralized way or by a trial-and-
error method [29] when it was performed in the distributed
fashion.

IV. CLOSED-LOOP THEORETIC PROPERTIES OF
ALGORITHM 1

To analyze the closed-loop theoretic properties under the
proposed distributed control framework in Algorithm 1, the
standard way of proving recursive feasibility, closed-loop con-
straints satisfaction, and stability in MPC need to be adapted.
Specifically, it is necessary to account adequately for the
interaction between vehicles with odd indices and vehicles
with even indices.

Theorem 4.1: (Recursive Feasibility) Suppose Assumption
3.1 holds. If OCP Pi(tk) for each vehicle i, i ∈ N , is
feasible at the beginning time t0 with the initial reference
state x̂i(t0) and input ûi(t0) and the terminal condition∑N

i=1 ||x̂i(tH |t0) − x̂i−1(tH |t0) + di,i−1||2Pi
≤ γ is satisfied,

then OCP Pi(tk) in Algorithm 1 is recursively feasible at all
subsequent time steps for all vehicles.
Proof: Assume that, at some time tk, OCP Pi(tk) for each
vehicle i, i ∈ N , is feasible with the feasible reference
state x̂i(tk) and input ûi(tk), and the terminal condition∑N

i=1 ||x̂i(tk+H |tk) − x̂i−1(tk+H |tk) + di,i−1||2Pi
≤ γ is

satisfied. The main content in the proof of this theorem is
then broken down into two steps (or parts):
(1) prove that OCP Pi(tk) at the p-th iteration of time tk is

always feasible no matter what the number of iteration p
is;

(2) prove that the reference state trajectory x̂i(tk+1) to-
gether with the corresponding input trajectory ûi(tk+1)
constructed by (12)-(13) is a feasible solution of OCP
Pi(tk+1), i ∈ N , at time tk+1.

Next, we justify Step (1) and Step (2) in detail.
Step (1): Suppose OCP Pi(tk) for each vehicle i, i ∈ N ,

is feasible at the p-th iteration of time tk with the reference
state xp

i (tk) and input up
i (tk) and the terminal condition∑N

i=1 ||x
p
i (tk+H |tk) − xp

i−1(tk+H |tk) + di,i−1||2Pi
≤ γ is

satisfied. At the (p + 1)-th iteration, the vehicles with odd
indices compute in parallel at first followed by vehicles with
even indices compute in parallel, and thus the proof can be
divided into two sub-steps.

(i) For each vehicle with odd index i ∈ N (i mod 2 = 1)
at any (p + 1)-th iteration of time tk, information from
coupled neighboring even vehicles i ± 1 are fixed tem-
porarily, that is, vehicles i±1 temporarily do not optimize
their OCPs Pi±1(tk) and keep the reference trajectories
xp
i±1(tk) unchanged (if i = 1, it can be regarded as

the leader always keeping its solution unchanged). As
a result, OCP Pi(tk), i ∈ N at the (p + 1)-th iteration
of time tk is always feasible because at least the pre-
vious solution xp

i (tk) and up
i (tk) is a feasible solution

for OCP Pi(tk) satisfying constraints (11b)-(11i). Each
vehicle with odd index i ∈ N can therefore solve its
OCP Pi(tk) and obtain the optimal solution xp+1

i (tk)
and up+1

i (tk). Besides, from the satisfaction of (11i), the
optimal solution also satisfies

∑N
i=1 ||x

p+1
i (tk+H |tk) −

xp
i−1(tk+H |tk) + di,i−1||2Pi

≤ γ.
(ii) For each vehicle with even index i ∈ N (imod 2 = 0) at

any (p+1)-th iteration of time tk, information from cou-
pled neighboring odd vehicles i±1 are fixed temporarily.
Constraints (11b)-(11c) and (11f)-(11i) in OCP Pi(tk) are
obviously satisfied by the previous solution xp

i (tk) and
up
i (tk). Constraint (11d) in OCP Pi(tk) is equivalent to

constraint (11e) in OCP Pi−1(tk) which has been taken
into consideration for vehicle i − 1 computing its OCP
Pi−1(tk). In other words, constraint (11d) is satisfied by
xp
i (tk) and xp+1

i−1 (tk), where xp+1
i−1 (tk) is computed by

odd vehicle i − 1 before. Thus, (11d) is satisfied by the
previous solution xp

i (tk) and up
i (tk). Similarly, xp

i (tk)
and up

i (tk) can also ensure the satisfaction of (11e).
Hence, problem Pi(tk) for each vehicle with even index
i ∈ N is feasible at the (p+1)-th iteration of time tk and
can be solved for the solution xp+1

i (tk) and up+1
i (tk).

The satisfaction of (11i) further ensures the satisfaction of∑N
i=1 ||x

p+1
i (tk+H |tk)−xp+1

i−1 (tk+H |tk)+di,i−1||2Pi
≤ γ.

Consider the assumption that OCP Pi(tk) for each vehicle
i, i ∈ N , is feasible at time tk with the feasible reference
state x̂i(tk) and input ûi(tk) and the terminal condition∑N

i=1 ||x̂i(tk+H |tk) − x̂i−1(tk+H |tk) + di,i−1||2Pi
≤ γ is

satisfied, where the feasible reference state x̂i(tk) and input
ûi(tk) can be regarded as a solution at the 0-th iteration
of time tk, i.e., x0

i (tk) = x̂i(tk) and u0
i (tk) = ûi(tk). By

using mathematical induction, there always exists a solution
xp
i (tk) and up

i (tk) for OCP Pi(tk) and the terminal condition∑N
i=1 ||x

p
i (tk+H |tk) − xp

i−1(tk+H |tk) + di,i−1||2Pi
≤ γ is
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satisfied at all iteration steps p of time tk.
Step (2): From the proof of Step (1), OCP Pi(tk) for each

vehicle i, i ∈ N , is feasible at the p̄-th iteration of time tk
with the feasible reference state xp̄

i (tk) and input up̄
i (tk) and

the terminal condition
∑N

i=1 ||x
p̄
i (tk+H |tk)−xp̄

i−1(tk+H |tk)+
di,i−1||2Pi

≤ γ is satisfied. A candidate solution at time tk+1

can then be constructed as x̂i(tk+1) and ûi(tk+1) via (12) and
(13). It is obvious that x̂i(tk+1+j |tk+1), j = 0, 1, . . . ,H − 1
and ûi(tk+1+j |tk+1), j = 0, 1, . . . ,H − 2 satisfy constraints
(11b)-(11i) in OCP Pi(tk+1), i ∈ N , and constraint (11i) cer-
tainly holds with equality. In addition, since the terminal con-
dition

∑N
i=1 ||x

p̄
i (tk+H |tk)−xp̄

i−1(tk+H |tk)+di,i−1||2Pi
≤ γ at

the p̄-th iteration of time tk is satisfied, the terminal condition∑N
i=1 ||x̂i(tk+1+H |tk+1)− x̂i−1(tk+1+H |tk+1)+di,i−1||2Pi

≤
γ at time tk+1 is satisfied by Assumption 3.1 (ii). Assumption
3.1 (iii) also implies that x̂i(tk+1+H |tk+1) and ûi(tk+H |tk+1)
satisfy constraints (11b), (11d)-(11e) and (11h)-(11i). Con-
straints (16) and (17) guarantee the satisfaction of constraints
(11f)-(11g) of x̂i(tk+1+H |tk+1). Hence the candidate solution
x̂i(tk+1) and ûi(tk+1) is a feasible solution for OCP Pi(tk+1),
i ∈ N at time tk+1, and satisfies the terminal condition∑N

i=1 ||x̂i(tk+1+H |tk+1)− x̂i−1(tk+1+H |tk+1)+di,i−1||2Pi
≤

γ.
Based on Step (1) and Step (2), it can be concluded, by

induction, that if the conditions stated in the theorem hold,
OCP Pi(tk) in Algorithm 1 is recursively feasible for each
vehicle i, i ∈ N . ■

The following theorem shows that all constraints are satis-
fied in the closed-loop operation under Algorithm 1.

Theorem 4.2: (Closed-loop Constraint Satisfaction) Pro-
vided that the conditions in Theorem 4.1 hold, then the closed-
loop trajectories xi(·) and ui(·) for each vehicle i, i ∈ N under
Algorithm 1 satisfy the constraints (5a)-(5d) at all time steps.
Proof: From the online constraints (11d)-(11h) and the recur-
sive feasibility established in Theorem 4.1, the closed-loop
constraint satisfaction holds true trivially. ■

The remaining part of this section is to analyze the closed-
loop stability by using Lyapunov method through showing that
the positive definite cost function is decreasing as the time
increases. In standard MPC, the cost functions at consecutive
time instants tk and tk+1 are compared and built a relation
by introducing the cost associated with a constructed feasi-
ble solution at time tk+1. However, this idea cannot be ap-
plied straightforwardly here because of the specific distributed
mechanism in Algorithm 1.

Theorem 4.3: (Asymptotic Stability) Provided that the con-
ditions in Theorem 4.1 hold, then each vehicle i, i ∈ N is
asymptotically stable to the desired trajectory xdes,i(tk) as
tk →∞ under the application of Algorithm 1.
Proof: For the ease of presentation, the state of vehicle 0 is
denoted as xp

0(tk+1+j |tk+1) for any p instead of x0(tk+1+j).
First, define the optimal value function of Pi(tk+1) at the p-th
iteration of time tk+1, for p ≥ 1 and i ∈ Nodd, by

Jodd
i (tk+1, p) ≜

H−1∑
j=0

li(x
p
i , x

p−1
i−1 , x

p−1
i+1 , tk+1+j |tk+1)

+ lf,i(x
p
i , x

p−1
i−1 , x

p−1
i+1 , tk+1+H |tk+1), (18)

and for p ≥ 1 and i ∈ Neven, by

Jeven
i (tk+1, p) ≜

H−1∑
j=0

li(x
p
i , x

p
i−1, x

p
i+1, tk+1+j |tk+1)

+ lf,i(x
p
i , x

p
i−1, x

p
i+1, tk+1+H |tk+1). (19)

Further, denote

h∑
,i(xi, xi−1, tk) ≜

H−1∑
j=0

hi(xi, xi−1, tk+j |tk)

+ hf,i(xi, xi−1, tk+H |tk).

For p ≥ 1, define the sum of all local optimal value functions
Jodd
i (tk+1, p) over i ∈ Nodd as an auxiliary function

Jodd(tk+1, p) ≜
∑

i∈Nodd

Jodd
i (tk+1, p)

=
∑

i∈Nodd

h∑
,i(x

p
i , x

p−1
i−1 , tk+1)

+
∑

i∈Neven

h∑
,i(x

p−1
i , xp

i−1, tk+1),

and the sum of all local optimal value functions Jeven
i (tk+1, p)

over i ∈ Neven as another auxiliary function

Jeven(tk+1, p) ≜
∑

i∈Neven

Jeven
i (tk+1, p)

=

N∑
i=2

h∑
,i(x

p
i , x

p
i−1, tk+1).

After that, define a Lyapunov candidate as

J(tk+1, p) ≜ Jeven(tk+1, p) + h∑
,1(x

p
1, x

p
0, tk+1).

We will prove the theorem in two steps.

(1) prove that the Lyapunov candidate for any iteration step
p at time tk+1 is not larger than the Lyapunov candidate
at the 0-th iteration of time tk+1;

(2) prove that the Lyapunov candidate at the 0-th iteration of
time tk+1 is not larger than the Lyapunov candidate at
the p̄-th iteration of time tk.

Step (1): Denote the optimal solution at time tk by
xp̄
i (tk) and up̄

i (tk) satisfying constraints (11b)-(11i) and∑N
i=1 ||x

p̄
i (tk+H |tk)−xp̄

i−1(tk+H |tk)+di,i−1||2Pi
≤ γ. At time

tk+1, a feasible solution is first constructed as x0
i (tk+1) =

x̂i(tk+1) and u0
i (tk+1) = ûi(tk+1) corresponding to p = 0,

and J(tk+1, 0) can then be given by

J(tk+1, 0) =Jeven(tk+1, 0) + h∑
,1(x

0
1, x

0
0, tk+1)

=

N∑
i=1

h∑
,i(x

0
i , x

0
i−1, tk+1),

where

Jeven(tk+1, 0) ≜
N∑
i=2

h∑
,i(x

0
i , x

0
i−1, tk+1).



MANUSCRIPT 8

From the definitions of Jeven(tk, p), Jodd(tk, p) and
J(tk, p), it can be derived that

J(tk+1, p) =Jeven(tk+1, p) + h∑
,1(x

p
1, x

p
0, tk+1)

≤h∑
,1(x

p
1, x

p
0, tk+1)

+
∑

i∈Nodd,i̸=1

h∑
,i(x

p
i , x

p−1
i−1 , tk+1)

+
∑

i∈Neven

h∑
,i(x

p−1
i , xp

i−1, tk+1)

=
∑

i∈Nodd

h∑
,i(x

p
i , x

p−1
i−1 , tk+1)

+
∑

i∈Neven

h∑
,i(x

p−1
i , xp

i−1, tk+1)

=Jodd(tk+1, p), (20)

where the inequality comes from the optimality as the states
xp
i , i ∈ Neven are the optimal solutions of OCP Pi(tk+1),

i ∈ Neven at the p-th iteration. By the similar argument, it
yields that

Jodd(tk+1, p) =
∑

i∈Nodd

h∑
,i(x

p
i , x

p−1
i−1 , tk+1)

+
∑

i∈Neven

h∑
,i(x

p−1
i , xp

i−1, tk+1)

≤
∑

i∈Nodd

h∑
,i(x

p−1
i , xp−1

i−1 , tk+1)

+
∑

i∈Neven

h∑
,i(x

p−1
i , xp−1

i−1 , tk+1)

=Jeven(tk+1, p− 1) + h∑
,1(x

p−1
1 , xp−1

0 , tk+1)

=J(tk+1, p− 1). (21)

Inequalities (20)-(21) together imply that

J(tk+1, p) ≤ J(tk+1, p− 1). (22)

and further

J(tk+1, p̄) ≤ J(tk+1, 0). (23)

Step (2): Let ∆J(tk, tk+1) as the difference between the
Lyapunov candidate at the 0-th iteration of time tk+1 and the
Lyapunov candidate at the p̄-th iteration of time tk.

∆J(tk, tk+1)

≜J(tk+1, 0)− J(tk, p̄)

=

N∑
i=1

h∑
,i(x

0
i , x

0
i−1, tk+1)−

N∑
i=1

h∑
,i(x

p̄
i , x

p̄
i−1, tk)

Based on the definition of x̂i(tk+1) in (12), ∆J(tk, tk+1)
can be rewirren as

∆J(tk, tk+1)

=

N∑
i=1

(
hi(x̂i, x̂i−1, tk+H |tk+1)− hi(x

p̄
i , x

p̄
i−1, tk|tk)

+ hf,i(x̂i, x̂i−1, tk+1+H |tk+1)− hf,i(x
p̄
i , x

p̄
i−1, tk+H |tk)

)
=−

N∑
i=1

hi(x
p̄
i , x

p̄
i−1, tk|tk) + δh, (24)

where

δh =

N∑
i=1

(
hi(x̂i, x̂i−1, tk+H |tk+1)− hf,i(x

p̄
i , x

p̄
i−1, tk+H |tk)

+ hf,i(x̂i, x̂i−1, tk+1+H |tk+1)
)
.

From the condition (iv) in Assumption 3.1, δh in (24) is non-
positive and it holds that

∆J(tk, tk+1) ≤ −
N∑
i=1

hi(x
p̄
i , x

p̄
i−1, tk|tk) ≤ 0,

thereby having

J(tk+1, 0) ≤ J(tk, p̄). (25)

Taking (25) together with (23) implies the Lyapunov can-
didate function is decreasing, that is

J(tk+1, p̄) ≤ J(tk, p̄). (26)

From the definition of J(tk, p), it is obvious that J(tk, p) ≥ 0
for any sampling instant tk and any iterations p due to the
positive definiteness of symmetric matrices Qi and Pi, i ∈ N .
The relation (26) therefore suffices to conclude the asymptotic
stability of tracking error of each vehicle to 0 in the closed-
loop operation, that is, the closed-loop platoon control for each
vehicle i, i ∈ N is asymptotically stable under the application
of Algorithm 1, such that

xi(tk)− xi−1(tk) + di,i−1 → 0, tk →∞. (27)

Furthermore, since the desired trajectory xdes,i(tk) for vehicle
i is x0(tk)− di,0, it can be derived that

xi(tk) =xi(tk)− x0(tk) + di,0 + xdes,i(tk)

=

i∑
j=1

(
xj(tk)− xj−1(tk) + dj,j−1

)
+ xdes,i(tk)

→xdes,i(tk), tk →∞.

Hence, under Algorithm 1, the state trajectory of vehicle
i, i ∈ N , asymptotically converges to the desired trajectory
xdes,i(tk). ■

From (27), it is immediate to obtain that each individual
control objective of (6a)-(6c) is achieved.

Remark 4.1: The stability established in Theorem 4.3 will
remain true if some vehicles decide not to optimize control
inputs at a certain iteration of time tk instead using the
solution of the last iteration. For example, at time tk, when
some vehicles solve their OCPs Pi(tk), i ∈ N at the p-
th iteration, the other vehicles choose not to update control
inputs. This may be due to the temporary communication
interruption or limited computing resources. In this scenario,
each vehicle which updates its control input obtains its latest
trajectories xp

i (tk) and up
i (tk) by solving its OCP Pi(tk),

and each vehicle which does not optimize its control input
keeps its last calculated trajectories xp−1

i (tk) and up−1
i (tk),

i.e., xp
i (tk) = xp−1

i (tk) and up
i (tk) = up−1

i (tk). Choose
Lyapunov candidate function as J(tk, p). It is obvious that
inequalities (20), (21) and (25) are still valid, and thus (26),
which implies the Lyapunov function J(tk, p) is decreasing as
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tk increases. Thus, the same conclusion about the asymptotic
stability of the closed-loop state trajectory can be obtained.
Hence, the number of iterations can be arbitrary and different
for all vehicles without any effect on stability.

V. NUMERICAL EXAMPLES

To illustrate the performance of Algorithm 1, numerical
simulations are implemented on a heterogeneous vehicle pla-
toon with a leader vehicle and 7 following vehicles. The
heterogeneous engine time constants τi of all vehicles i ∈ N+

are listed in TABLE I [35], and the sampling interval is set
as ∆t = 0.1s. Based on the given platoon system parameters,

TABLE I: VEHICLE PARAMETERS IN THE PLATOON

Label 0 1 2 3 4 5 6 7
τi(s) 0.65 0.51 0.75 0.78 0.70 0.73 0.72 0.62

to satisfy Assumption 3.1, inequality (14) can be transformed
into a linear matrix inequality (LMI) problem[

−X ADX +BDL
(ADX +BDL)⊤ −α2X

]
⪯ 0,

where X ≜ P−1, L ≜ KfX and α = 1. Once we obtain
appropriate P and Kf , it is easy to compute matrix Q by
(15). The invariant set E is then designed as E ≜ {e ∈ R3N |∑N

i=1 e
⊤
i Piei ≤ γ} with γ = 252, and the constant β is set as

β = 1.082 according to design rules presented in subsection
III-C. Sets in constraints (5a)-(5d) are specified by

∆Si = {∆s | −8 ≤ ∆s ≤ 8}, ∀i ∈ N ,

V0 = {v | 2.4 ≤ v ≤ 29.6},
Vi = {v | 0 ≤ v ≤ 32}, ∀i ∈ N ,

Ai = {a | −6 ≤ a ≤ 6}, ∀i ∈ N ,

Ui = {u | −20 ≤ u ≤ 20}, ∀i ∈ N .

The prediction horizon H is set to 20 and the running
step number is set to 100, i.e., 10s. The initial state of the
leader vehicle is x0(t0) = [0, 20, 0]⊤, which means the leader
vehicle drives at the origin s0(t0) = 0m with uniform velocity
v0(t0) = 20m/s and zero acceleration a0(t0) = 0m/s2 at
time t0. The desired distance headway is given by d̄i,i−1 =
20m for all i ∈ N . It is assumed a consensus condition where
the initial state of the platoon is set as the desired state with
zero tracking error, that is

xi(t0)− xi−1(t0) + di,i−1 = 0, ∀i ∈ N .

A case as shown in Fig. 2 is adopted where the leader alters
its uniform velocity from 20m/s to 23m/s while satisfying
constraints (5a)-(5d) within 2s starting at time t0, that is,
v0(t0) = 20m/s and v0(tH+k) = 23m/s, k = 0, 1, . . ..

The following computations are all done using Yalmip
toolbox [40] and Gurobi 9.5.0 solver [41] in Matlab.

A. Platoon Control Performance

Fig. 3 demonstrates the tracking errors between vehicle
i and the leader vehicle under the control of Algorithm 1
in non-iterative mode (i.e., the maximum iterations p̄ = 1).
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Velocity change of the leader vehicle

Fig. 2: Velocity change of the leader vehicle from 20m/s to
23m/s while satisfying constraints (5a)-(5d) starting at time
t0.

The position error si(tk) − s0(tk) + d̄i,0, the velocity error
vi(tk)−v0(tk), and the acceleration error ai(tk)−a0(tk) (plot-
ted respectively in 3 subfigures from the top to the bottom) all
converge to zero. Meanwhile, it is indicated that constraints
(11b)-(11h) in problem Pi(tk) are satisfied for all vehicles.
Hence, the control objective (6a)-(6c) is achieved. In Fig. 4,
the tracking errors in iterative mode (the maximum iterations
p̄ = 3) are plotted. The platoon transient performance in
the control process is obviously improved in iterative mode
referring to the significantly reduced dynamic variation of the
tracking errors on position, velocity and acceleration compared
with the simulation result with p̄ = 1.

The tracking errors under the algorithm in [35] executed
with the predecessor following topology and the same vehicle
model parameters, coefficient matrices and initial conditions
are shown in Fig. 5. The convergence speed of the tracking
errors is slightly faster than the result under Algorithm 1 in
non-iterative mode p̄ = 1. It is natural because a strict equality
terminal constraint is utilized in [35] to ensure some theoretical
results, rather than an inequality terminal constraint used in the
proposed method, which enables the feasibility properties at
the price of slightly degraded performance. Nevertheless, com-
pared with the result shown in Fig. 4, the dynamic variation
of the tracking errors in Fig. 5 changes more.

Furthermore, the first N steps of the DMPC algorithm
in [35] can not be proved feasible, which means that the
optimization problem may have no solution and worse still
the platoon may be uncontrollable. Consider a scenario where
the leader vehicle, within 2s, speeds up to 25m/s (instead of
23m/s) from 20m/s. Fig. 6 demonstrates the tracking errors
under the control of Algorithm 1 in non-iterative mode p̄ = 1,
however the optimization problem in [35] more often than
not has no solution, which could lead to instability and even
collision of the platoon control of heterogenous vehicles.

B. Verification of recursive feasibility

Since spacing constraint (5a) is not taken into account and
handled in [35], it cannot always ensure vehicle i following
the predecessor vehicle i−1 with a suitable distance. Consider
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Fig. 3: State tracking error trajectories of all following vehicles
tracking the leader vehicle under Algorithm 1 in non-iterative
mode p̄ = 1, where the leader vehicle alters its uniform
velocity from 20m/s to 23m/s within 2s. Top: Spacing error;
Middle: Velocity error; Bottom: Acceleration error.
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Fig. 4: State tracking error trajectories of all following vehicles
tracking the leader vehicle under Algorithm 1 in iterative mode
p̄ = 3, where the leader vehicle alters its uniform velocity
from 20m/s to 23m/s within 2s. Top: Spacing error; Middle:
Velocity error; Bottom: Acceleration error.

an unconventional case, the initial state of the platoon is set
as

si(t0)− si−1(t0) + di,i−1 = ∆smax
i , ∀i ∈ N .

For brevity, only the first 2 following vehicles are considered.
Fig. 7 demonstrates the tracking errors under the control of the
algorithm in [35], where the black dotted line in the top subfig-
ure is the maximum admissible spacing error between vehicles
1 and 2. Hence at the previous 20 time steps, constraint (5a)
is violated by vehicle 2 as the red line is higher than the
black dotted line. However, under the control of Algorithm 1,
constraint (5a) can be always satisfied, and simulation example
in Fig. 8 verifies the result.
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Fig. 5: State tracking error trajectories of all following vehicles
tracking the leader vehicle under Algorithm in [35], where
the leader vehicle alters its uniform velocity from 20m/s to
23m/s within 2s. Top: Spacing error; Middle: Velocity error;
Bottom: Acceleration error.
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Fig. 6: State tracking error trajectories of all following vehicles
tracking the leader vehicle under Algorithm 1 in non-iterative
mode p̄ = 1, where the leader vehicle alters its uniform veloc-
ity from 20m/s to 25m/s within 2s, and no control solution
can be found when the algorithm in [35] is applied. Top:
Spacing error; Middle: Velocity error; Bottom: Acceleration
error.

C. Maximum allowable velocity change of leader vehicle

This case study investigates the maximum velocity change
of the leader vehicle that can be addressed by the proposed
method. Suppose in a consensus platoon case where all track-
ing errors are zero at time tk, then the leader vehicle alters its
uniform velocity from v0 to v̄0 in a horizon H . Considering
an extreme case where the leader vehicle drives with the
maximum input umax

0 until the acceleration increases up to
the maximum value amax

0 , then the leader vehicle drives with
acceleration amax

0 , and finally drives with the minimum input
umin
0 until the acceleration drops back to zero, a curve of the



MANUSCRIPT 11

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

S
p

a
c
in

g
 e

rr
o

r 
(m

) Spacing Error

V1

V2

0 10 20 30 40 50 60 70 80 90 100
-6

-4

-2

0

V
e

lo
c
it
y
 e

rr
o

r 
(m

/s
) Velocity Error

0 10 20 30 40 50 60 70 80 90 100

Time (Steps)

-10

-5

0

5

A
c
c
e

le
ra

ti
o

n
 e

rr
o

r 
(m

/s
2
)

Acceleration Error

Fig. 7: State tracking error trajectories of two following ve-
hicles tracking the leader vehicle under the algorithm in [35],
where the leader vehicle drives with uniform velocity 20m/s
and an unconventional case, in which the distance between
all adjacent vehicles is set much closer at the beginning,
is considered. Black dotted line is the maximum admissible
spacing error between vehicle 1 and 2, and thus at the first
20 time steps, constraint (5a) is violated as the red line is
higher than the black dotted line. Top: Spacing error; Middle:
Velocity error; Bottom: Acceleration error.
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Fig. 8: State tracking error trajectories of two following ve-
hicles tracking the leader vehicle under Algorithm 1 in non-
iterative mode p̄ = 1, where the leader vehicle drives with
uniform velocity 20m/s and the same unconventional case in
Fig. 7 is considered. Constraint (5a) is always satisfied. Top:
Spacing error; Middle: Velocity error; Bottom: Acceleration
error.

0 10 20 30 40 50 60 70 80 90 100
-8

-6

-4

-2

0

2

S
p

a
c
in

g
 e

rr
o

r 
(m

) Spacing Error

V1

V2

V3

V4

V5

V6

V7

0 10 20 30 40 50 60 70 80 90 100
-6

-4

-2

0

2

4

V
e

lo
c
it
y
 e

rr
o

r 
(m

/s
) Velocity Error

0 10 20 30 40 50 60 70 80 90 100

Time (Steps)

-5

0

5

A
c
c
e

le
ra

ti
o

n
 e

rr
o

r 
(m

/s
2
)

Acceleration Error

Fig. 9: State tracking error trajectories of all following vehicles
tracking the leader vehicle under Algorithm 1 in non-iterative
mode p̄ = 1, where the leader vehicle alters its uniform veloc-
ity from 20m/s to 29.6m/s within 2s, and no control solution
can be found when the algorithm in [35] is applied. Top:
Spacing error; Middle: Velocity error; Bottom: Acceleration
error.

leader vehicle’s acceleration against time steps can be plotted.
The maximum accelerated velocity ∆vmax

0 = v̄max
0 − v0 can

be obtained by the integral of the plotted curve, given by

∆vmax
0 =

(N+ + 1)N+umax
0 − (N− + 1)N−umin

0

2τ0
∆t2

+ (H −N+ −N− − 1)amax
0 ∆t,

where H ≥ N+ +N− + 2, and

amax
0 − umax

0

τ0
∆t <

umax
0

τ0
N+∆t ≤ amax

0 ,

amax
0 +

umin
0

τ0
∆t < −umin

0

τ0
N−∆t ≤ amax

0 .

By the similar argument, the maximum decelerated velocity
∆vmin

0 = v̄min
0 − v0 is

∆vmin
0 =

(M+ + 1)M+umax
0 − (M− + 1)M−umin

0

2τ0
∆t2

+ (H −M+ −M− − 1)amin
0 ∆t,

where H ≥M+ +M− + 2, and

amin
0 ≤ umin

0

τ0
M−∆t < amin

0 − umin
0

τ0
∆t

amin
0 ≤ −umax

0

τ0
M+∆t < amin

0 +
umax
0

τ0
∆t.

Denote V̄0 ≜ {v̄0 | ∆vmin
0 ≤ v̄0 − v0 ≤ ∆vmax

0 , ∥[0, v̄0 −
v0, 0]

⊤∥P1
≤ γ}. The velocity v0 of leader vehicle at time tk

can be accelerated (or decelerated) to any velocity v̄0 in set
V0 ∩ V̄0. The velocity of the leader vehicle is accelerated to
29.6m/s in Fig. 9, and simulation example verifies the result.
However no control solution can be found when the algorithm
in [35] is applied.
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VI. CONCLUSION

We have proposed a distributed MPC approach oriented
toward heterogeneous platoon control with bidirectional topol-
ogy and parallel computing tasks under the background of
CACC. The platoon is dynamically decoupled, but constrained
by both local state and input constraints and coupled inter-
vehicular spacing constraints. To achieve distributed imple-
mentation, we design a two-level iterative control architecture.
All vehicles with odd indices are located in the first level,
which are simultaneously calculated in a parallel manner
and sent the latest information to their neighboring vehicles
with even indices in the second level. Vehicles with even
indices then solve their local optimization problems in parallel
by constructing and utilizing the neighbor’s reference state
trajectories and return their solutions to the first level. All
intermediate results can be stored in memory to speed up the
data acquisition at next iteration/time step. The recursive fea-
sibility at all time steps including the first N steps is ensured
by employing a tailored terminal set for the tracking error
dynamics. The asymptotic stability of the proposed algorithm
is also proved to ensure all vehicles can drive with a desired
distance and the same velocity. Numerical simulation results
demonstrate the efficacy of the proposed distributed control
scheme and the improvement in terms of the guarantee of
recursive feasibility and the flexibility of the leader vehicle’s
velocity changes.

Further research is extending the algorithm to a distributed
robust MPC scheme for the platoon of heterogeneous vehicles
with nonlinear dynamics and uncertainties. Other potential
issues include dealing with time delay and packet loss in the
communication between vehicles.
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