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Abstract

We present a novel methodology to quantify the ‘impact’ of and ‘response’ to market shocks.
We apply shocks to a group of stocks in a part of the market, and we quantify the effects in
terms of average losses on another part of the market using a sparse probabilistic elliptical
model for the multivariate return distribution of the whole market. Sparsity is introduced
with an L0-norm regularization, which forces to zero some elements of the inverse covariance
according to a dependency structure inferred from an information filtering network. Our
study concerns the FTSE 100 and 250 markets and analyzes impact and response to shocks
both applied to and received from individual stocks and group of stocks. We observe that the
shock pattern is related to the structure of the network associated with the sparse structure
of the inverse covariance of stock returns. Central sectors appear more likely to be affected
by shocks, and stocks with a large level of underlying diversification have a larger impact
on the rest of the market when experiencing shocks. By analyzing the system during times
of crisis and comparative market calmness, we observe changes in the shock patterns with a
convergent behavior in times of crisis.

Keywords: Stress testing, Systemic risk, Elliptical conditional probability

1. Introduction

We present a novel approach to reverse stress testing of markets, which allows identi-
fication of stocks that either have the largest impact on other stocks, or show the largest
response to shocks from others. We measure stress propagation in terms of the conditional
distribution of losses, which we compute by modeling the return distributions of the entire
market in terms of a multivariate elliptical probability distribution[1].

Impact is quantified as the average losses caused by a set of stressed stocks on the rest
of the system. Conversely, response is quantified as the average losses suffered by a set of
stocks when the rest of the system is stressed. We apply this method to different states of
the FTSE 100 and 200 markets.

The estimation of the multivariate probability is made accurate by using sparse inverse
covariance estimation, where the non-zero elements are the edges of an information filtering
network. We observe that the structure of this network is related to the behaviour of the

1

http://arxiv.org/abs/2106.08778v1


system when stressed. In particular, we observe that impact and response of individual
nodes are both related to their centrality, but when we consider groups of nodes, the most
central groups have a higher response but lower impact due to the large internal effect that
the related stocks have on each other.

With a regression analysis, we investigate if the impact and response measures of industry
supersectors are affected by their centrality, and we find that the size and fraction of links
shared by the nodes of a supersector are significant for impact, but centrality is not. In
contrast, centrality is significant for response, suggesting that more central sectors are more
likely to be affected by shocks. This is in line with what reported in [2], where it was
observed that portfolios with stocks belonging to the peripheral region of information filtering
networks are less risky. However, here we quantify this risk in terms of propagation of stress
across the market, providing a tool to hedge risk and identify vulnerabilities within a reverse
stress-testing framework.

Finally, we show how the information filtering network can be used to reverse stress test
the system. More specifically, we identify the group of 10 nodes that collectively have the
largest impact on the system. We find that these nodes correspond to funds, suggesting that
stocks with a high level of underlying diversification have a higher propensity to impact the
rest of the market.

By using the sparse probabilistic model of the whole market, we extract six temporal
clusters that represent periods with different market behaviour. The different clusters are
identified from the similarity/dissimilarity in the likelihoods of the daily set of returns across
all stocks (see ICC algorithm in [3]). We observe that there are significant differences in the
different market states, with periods of crisis showing a convergence of group behavior to
the single node trend, indicating, in line with [4], convergent behavior in times of crisis.

We consider our approach to be a form of ‘reverse stress testing’ in a macroprudential
sense. A strict microprudential definition of ‘reverse stress testing’ describes it as an exercise
that involves exploring the size and nature of shocks that would render a bank’s business
model unviable, or its financial position fragile. It starts from an outcome of business failure
and identifies circumstances where this might occur [5]. For the interested reader we point
out that a summary of state-of-the-art approaches on MaPST, and roadmap for future
research, was presented by the IMF in [6].

2. Background

This paper builds upon several methodologies that have been developed in recent years,

concerning four main areas:

1. Modeling markets in terms of multivariate probability distributions;

2. Use of networks to describe the interrelations between the variables in markets;

3. Sparsification of the probabilistic models using these networks;

4. Identification of different states of the market associated with different sparse multi-

variate probability distributions.
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Hereafter, we briefly summarize the necessary state-of-the-art background in these area.

2.1. Modeling markets with multivariate elliptical distributions

The elliptical distribution family is a broad family of multivariate probability density

functions that, notably, includes the multivariate normal and the multivariate Student-t

distributions. In this paper, we model the multivariate probabilistic structure of the log-

returns for the entire market in terms of a multivariate elliptical probability distribution.

We shall see shortly that, for the measure have we chosen as quantification of stress impact,

there is no need to specify the kind of distribution within this broad family. Within this

multivariate probabilistic framework, stress is naturally modelled in terms of the multivariate

conditional probability. Specifically, the probability distribution of the stressed variables

is conditioned on the values of the stressing variables [1]. The challenge is to estimate

accurately the inference structure and the parameter values of such multivariate probability

distribution.

2.2. Information filtering networks

Information filtering networks are particularly effective for correlation-based graphs, and

it has been shown that they describe well the structure of the market and its evolution with

time [7, 8]. They have been used to characterise the spread of risk across a market [2],

and it has been shown that risk does not distribute uniformly and the central or peripheral

position of an asset in the market is an important risk factor.

It is common in the literature to find studies which link network centrality and systemic

risk[9, 10, 11, 12], and this has been exploited by policy makers in order to inform systemic

risk rankings [13]. A direct focus on centrality measures in detecting systemically important

financial institutions was applied by Kuzubaş et. al. [14], confirming ex-post that centrality

values perform well in detecting systemically important institutions in interbank markets.

More general aspects of network structure have also been considered, for instance Billo et

al. [15] show that indirect measures of firm interconnectedness based on principal component

analyses and granger-causality networks are able to indicate periods of market dislocation

and distress. In a similar vein, Diebold and Yilmaz [16] propose connectedness measures

at all levels from system-wide to pairwise, and link this to Marginal Expected Shortfall

and Conditional Value at Risk to emphasise the usefulness of these measures in a risk

measurement and management setting.
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2.3. Sparse modeling with information filtering networks

Following the approach proposed in [17] and [18], we construct sparse probabilistic models

that have the information filtering networks encoded in the structure of the inverse covariance

(i.e. partial correlations) [17]. Such a method is based on a special family of chordal networks

which are clique-forests [19]. Specifically, we use the Triangulated Maximally Filtered Graph

(TMFG) [20], which is one instance of such a family. It is a 3-clique structure made of

tetrahedra separated by triangles, and it has the advantage to be computationally very

efficient. It has been proven to be effective in identifying relevant data structures in different

contexts from finance to psychology [21, 22, 23].

These networks can be used to estimate the maximal likelihood solution of elliptical

multivariate distributions with sparse inverse covariance. This is a special solution for L0-

norm regularization, and it is a valid alternative of the popular Glasso method [24] for the

covariance selection problem. Sparsification results in a better estimate of the covariance

and overcomes issues related to the curse of dimensionality [18].

2.4. Identification of different market states

In this paper we use a recently developed time-clustering methodology (Inverse Covari-

ance Clustering, ICC, [3]) that combines the information filtering network description with

a complete probabilistic modeling of the system to identify temporal clusters well repre-

sented by the same multivariate probability distribution. This method was chosen over

other methods, as it efficient and reliable in identifying and predicting accurate and inter-

pretable structures in multivariate, non-stationary financial datasets. This is in contrast to

time series models such as TAR [25], which are often unable to identify structural breaks,

and time series clustering techniques [26, 27, 28], which are highly susceptible to the curse of

dimensionality. In [29], which considers equities traded in the US market, the method is able

to distinguish a market state associated with both the 2008 crisis period and the COVID-19

as a distinct state from the long ‘bull’ period post 2008. ICC was also applied in a recent

note in relation to the COVID-19 pandemic [29] to identify inherent market structures.

In this work, we similarly identify distinct states for the 2008 period, but for equities

making up the FTSE 100 and 250. Pharasi et. al. [30] identify market states as clusters

of similar correlation matrices applied to stocks making up the S&P 500 and Nikkei 225

indices. Similar correlation-based methods were applied by Münnix et. al.[31], who identify

points of drastic change in correlation structure, which map to occurrences of financial crises.

An alternative approach has been presented by Hendricks et al. [32], in which a maximum

likelihood approach is applied to a physical analogy of the ferromagnetic Potts model at
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thermal equilibrium to cluster temporal periods as objects based on market microstructure

feature performance.

3. Methodology

3.1. Conditional probability measure of systemic risk

From a probabilistic perspective the quantification of stress contagion between two sets

of assets is measured by the conditional probability distribution, P (Y|X = x), of the set

of the stressed variables, Y, under the condition that the set of stressing variables X is

constrained at a given value of stress x. Generally speaking, the conditioning can change

both the kind of distribution and its parameters. For the vast elliptical distribution family,

conditioning at X = x causes a shift in the expected value of the conditioned variable.

Here, we quantify stress contagion in terms of average loss in a set of assets caused by a loss

imposed on another set of assets.

Consider the losses in the two sets of assets as represented by two multivariate sets of

variables X ∈ R
pX×1 and Y ∈ R

pY×1. Assuming they belong to the multivariate elliptical

family probability distribution, then the conditional expected values are

E[Y|X = x] = µY +ΩYXΩ
−1

XX
(x− µX) (1)

Where µX and µY are the vectors of expected values of the variables X and Y respectively.

The terms ΩXX, ΩYX are the block elements of the shape matrix Ω

Ω =

(

ΩXX ΩXY

ΩYX ΩYY

)

, (2)

where ΩXX is assumed invertible.

From 1, we observe that the effect of conditioning is shifting the centroid of the variables

Y by ΩYXΩ
−1

XX
(x − µX). It has been argued in [1] that such a shift is a good measure of

systemic risk quantifying the average losses on variables Y when variables x deviate from

the mean. We measure the mean loss in variables Y when x−µX = 1X with the quantity:

LX→Y =
1

pY
1⊤

Y
ΩYXΩ

−1

XX
1X. (3)

We shall refer to this quantity as ‘impact’, meaning that it qualifies the effect on the rest of

the system (Y) of a unitary stress applied on the group of variables X. Similarly, we shall
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refer to LY→X as ‘response’, and it quantifies the effect on X of a unitary stress applied on

the rest of the system (Y).

3.2. Identification of most impactful elements

Using the above measure. we investigated the group of most impactful variables by de-

vising a simple algorithm that starts from a random group of n variables and then iteratively

tries to replace one variable in the group with an external variable not in the group if such a

replacement increases the total impact of the group. The procedure ends when it converges

to a stable cluster. This simple procedure is not deterministic, and there are instances when

the final result might change. We however verified that, in practice, in almost all cases the

same group of variables is selected. This simple procedure is not optimized for numerical

efficiency, but for the purpose of this paper, where only a few hundreds of variables are

involved, the algorithm converges in fraction of seconds on a standard laptop.

3.3. Construction of sparse inverse scale matrix using LoGo

We use the TMFG information filtering network [33] to estimate the L0-norm regular-

ized sparse inverse shape matrix Ω. Within the elliptical family of probability modeling, the

shape matrix is proportional to the covariance (here assumed to be defined), and this sparse

inverse is consequently proportional to the partial correlation. The zero entries in the sparse

inverse shape matrix are therefore associated with zero conditional correlations. Note that

however, beside normal models, such a zero conditional correlation does not imply condi-

tionally independent variables. The L0-norm regularized maximum likelihood shape matrix

for the whole system is estimated from the local estimates of the shape matrices associated

with the tetrahedral cliques in the TMFG, following the approach, called LoGo, outlined in

[17]. This provides accurate and robust estimates that overcome the issue of the curse of

commonality. Furthermore, it has been observed in [17, 34], that the off-sample likelihoods

of the LoGo estimate are larger than the one obtained with the full-matrix max-likelihood

estimation or other sparsification methods such as Glasso [24].

3.4. Identification and clustering of market states

We identify market states by clustering together days which are described by similar

multivariate probability structures. The probabilistic description uses the multivariate el-

liptical distribution with a sparse inverse scale matrix. The clustering procedure follows [3],

and is performed by starting from six samples composed of randomly gathered days. For
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each of these clusters, c = 1..., 6, we estimate the vector of means µc and the sparse inverse

covariance Jc = Ω−1

c . Then the following penalized log-likelihood is computed for each day:

ℓc,t = log |Jc| − (Xt − µc)Jc(Xt − µc)
T − γ1(Ct−1 6= c) , (4)

where Xt = (xt,1, xt,2, ..., xt,n) is the n-dimensional multivariate log-return vector for each

day t; γ is a parameter penalizing state switching and; 1(Ct−1 6= c), is a penalizer function for

cluster discontinuity that returns 1 if the cluster assignment of the observation at time t−1,

Ct−1, is different from the cluster assignment at time t. The clustering process is updated

iteratively re-assigning days to clusters in a way to maximize
∑

t,c
ℓc,t. The procedure is made

computationally efficient by using a Viterbi path. The process stops when a maximum

is reached. This process is not deterministic, and it normally ends in a local maximum.

However, the clustering structure in the different local maxima is usually rather similar. We

re-run the whole procedure described in this paper for ten times and we observed that, across

all ten runs, the final results and conclusions are consistent with those reported hereafter.

4. Data

We consider End of Day prices for stocks making up the FTSE 100 and 250 indices, from

January 2005 to August 2020. Of these stocks, 231 of the 350 were available across the whole

period analysed; those that weren’t were not considered. This time period contained two

periods of significant market stress - the 2008 financial crisis, and the initial market shocks

experienced in response to the COVID-19 pandemic. Making use of the Global Industry

Classification Standard, these stocks were classified into 11 Sectors. The number of stocks

per sector can be seen in table 1. Some stocks in the raw data were labeled with N/A as the

sector; upon inspection it was found that these were all some form of financial fund, and so

these stocks were relabelled as ‘Funds’.

5. Results

5.1. Market states

The clustering of the system into six market states associated with daily maximal like-

lihood yields the partition represented in Fig.1. The choice of six has been mostly guided

by the observation that it provides a good distinction between the various periods. The

results have been obtained using γ = 100, which provides average sizes of uninterrupted

clusters of about one month. Using different values of gamma does not change significantly
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Sector Number of stocks
Industrials 47
Funds 43

Consumer Discretionary 29
Financials 25
Real Estate 20
Materials 15

Consumer Staples 14
Communication Services 10
Information Technology 10

Utilities 7
Health Care 5

Energy 4

Table 1: Number of stocks per GICS SuperSector

the results. One can observe that the six clusters spread unevenly through the observation

window. The ordering follows their average position in time, with cluster 1 mostly present

at the early stages between 2005 and 2013 while cluster 6 is mostly present during the 2020

Covid-related market turmoil. Note that we observe days in the 2007-2009 crisis period

being also associated with cluster 6, however most of that crisis period is associated with

cluster 3. As already mentioned, this clustering method is not deterministic and different

runs can return different clustering. Therefore, for this study, the clustering was executed

ten times and all results presented in this paper were computed for each instance. Results

do not vary significantly and the conclusions are the same for all runs.

5.2. Response and impact versus network centrality

We investigate the relation between impact and response of stocks with respect to their

centrality within the information filtering network. At the level of single nodes we observe

that more central nodes have both higher impact and response. However, when we look at

groups of nodes we observe that the most central clusters have a higher response but lower

impact. Here the group centrality is simply the mean centrality of the group constituents.

This effect is most likely a consequence of the fact that central clusters are compact and

therefore have a large internal effect on each other - which is not accounted for in the impact

measure, and are less impactful on the rest of the system.

This is illustrated in figure 2, where we report impact/response as function of the cen-

trality of single nodes (blue lines) and the average impact/response vs. average centrality

for random groups of nodes with different sizes (cyan lines). These data refer to the whole
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Figure 1: Market states obtained through the clustering algorithm described in Section 3.4. The y-axis
reports the average price across the market (daily data) and the colors represent the six clusters.

period. Specifically, in the top plot in figure 2, the lines show that centrality increases the

response effect with little influence from the grouping. Conversely, the bottom plot of figure

2 demonstrates that single nodes (blue lines) are also increasing their impact with centrality

but when grouped the opposite happens and greater centrality corresponds to smaller im-

pact (cyan lines). In these figures symbols report the average impact/response vs. average

centrality for the super-sectors. We see an overall consistency with the results for random

groupings however with the sectors being overall a bit less responsive and impactful than

the random groupings. The analyses over the market states reported in Figures 3 and 4 give

similar overall results with some significant differences in different market periods. When

considering the impact scores, we see a clear increase in impact in cluster 6, both in the

single and grouped node trends. We also see this to some extent in cluster 3, but this is

limited to only some sectors. A more evident change is seen in the response scores of the

supersectors in the two periods of crisis, which are dominated by market states three and

six. In both periods of crisis, the funds sector has a lower response, with the majority of

the other sectors seeing an upward shift in response score. In all cases, the sector specific

response scores are seen to move closer to the single node and grouped node trend. Some
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Figure 2: Impact / response vs. centrality computed over the whole period. The darker blue line correspond
to single nodes, cyan lines are group of nodes form 5 to 50. Symbols represent the supersectors.

sectors are more affected in times of crises than others, for example the Utilities and Health-

care sectors show larger increases in response and centrality. We also see a large increase in

centrality on average across sectors in cluster 5.

5.3. Response and impact of supersectors

The results of section 5.2 show that, while more central nodes have both higher response

and impact, if we aggregate nodes into random groups more central groups have higher

response, but lower impact. Results are less clear when we group nodes into supersectors.

Here we take a closer look to the aggregation of firms into supersectors, and we perform

a regression analysis to understand if the impact and response measures of supersectors are

affected by their centrality.
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Figure 3: Impact vs. centrality for the 6 clusters. The blue line corresponds to single nodes, cyan lines are
group of nodes form 5 to 50. Symbols are the supersectors.

There are two apparent differences between the random groups of sections 5.2 and su-

persectors: First, random groups, associated with each of the cyan lines have all the same

size, while the size of supersectors ranges from 4 to 47. Secondly, nodes in random groups

tend to be dispersed in the network, while nodes within the same supersector tend to be

closer to each other. In order to account for this, we run a regression where, in addition to

considering centrality as an independent variable, we control for the size of the supersector

and the fraction of a supersector’s links that are shared by nodes within the supersector.

The results are reported for one realization of the network in tables 2 and 3 for impact

and response measures respectively.

variable value p-value

size 1.33 1.2× 10−12

fraction of links within supersector −1.06 7× 10−8

log centrality −0.02 0.86

Table 2: Linear regression for the measure of impact (R2 = 0.53).

We see from table 2 that the coefficients associated with size and fraction of links shared

by nodes of a supersector are statistically significant. The positive sign of the coefficient

corresponding to the size is simply due to the fact that as the size of the supersector in-
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Figure 4: Impacted vs. centrality for the 6 clusters. Blu line correspond to single nodes, cyan lines are
group of nodes form 5 to 50. Symbols are the supersectors.

variable value p-value

size −0.34 0.03
fraction of links within supersector 0.79 3× 10−5

log centrality 0.25 0.026

Table 3: Linear regression for the response measure (R2 = 0.52).

creases the shock affects a higher number of nodes. The negative sign of the fraction of links

connecting nodes within the supersector is instead due to the fact that links between nodes

that are exogenously shocked do not increase the impact, so that the more compact a su-

persector is, the less it affects the others. We also observe that the centrality of supersectors

does not appear to play a significant role here, and that the effect of the network structure

is simply accounted for by the fraction of links within supersectors.

This is not the case for the response measure. We see from table 3 that centrality remains

statistically significant (p-value 2.6%, see table 3) with a positive coefficient, signaling the

tendency of more central sectors to show a higher response. We also observe a change in the

sign of the coefficients associated with the other two variables. In particular we see that the

fraction of links shared by nodes of a supersector now has a positive coefficient, denoting the

fact that more compact supersectors tend to have a higher response. This is due to the fact
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Figure 5: The group of 10 stocks with the collective highest impact computed over the full-period.

that, at odds with the case of impact, the contribution of these links to loss propagation is

accounted for in the calculation of the response variable.

5.4. Nodes with the highest impact

Concerning the identification of the nodes with the highest impact, we find that the

most influential n = 10 nodes for the whole period are: MRC , WTA , CTY, EDI, ASL,

BRS, HSL, TMP, PLI, FSV, which all belong to the funds supersector. Their position in

the network is highlighted in figure 5. We see that these stocks don’t localise to a particular

region of the network, suggesting that they are not necessarily displaying similar behaviours

leading to this higher level of impact. Note that this is the group of 10 stocks with collective

highest impact, not the collection of single highest impacting stocks.

We observe similar results across the different market states, as summarized in table

4. Firstly, we note again that the majority these stocks belong to the funds supersector,

suggesting that stocks with a high level of diversification are likely to impact the rest of the

market the most when experiencing shocks. We also notice that there are several repetitions

in the groups of highest impact stocks across the six different periods. For instance, CTY
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
ATS CI FCI FGT SDR** ICP**
MRC ATS ATS MRC FGT MRC
WTA TEM MRC CTY MRC CTY
CTY CTY WTA TRY WTA TRY
TRY MYI CTY EDI CTY EDI
EDI JMG FEV ASL TRY ASL
ASL FEV CLD HSL EDI BRS
AGT EDI ASL TMP ASL HSL
TMP TMP IMI* PLI TMP TMP
PLI PLI LWD** FSV PLI PLI

Table 4: Groups of 10 stocks with highest impact across the six different time-clusters. *Capital Goods
Industrials, **Diversified Financials, all others Funds

appears in all six clusters and there are five other stocks (MRC, EDI, ASL, TMP, PLI) that

appear in five out of six clusters. They also all appear in the full-period group reported in

figure 5. Cluster 3 is the one with least overlap with the rest of the clusters indicating that

the risk scenario during the 2007-2009 crisis was quite special. Conversely, Cluster 6 has

similar overlaps as the other clusters suggesting that the 2020 covid-related crisis is instead

less peculiar.

6. Conclusion

In this paper, we have presented a novel method to measure the impact and response

of stocks in a market when shocks are experienced. For the first time, we associate the

structure of the information filtering network with a quantitative risk measure relating the

behavior of impact and response to the structure of the underlying inverse covariance matrix

of the stock log-returns. In the application to different market states observed from 2005 to

2020 in FTSE 100 and 250 markets, we observe that both impact and response are related

to the centrality of individual nodes in the network, but that central groups have a higher

response but lower impact due to the internal effects for these groups.

We observe markedly different behavior in different states of the market, particularly

in the 2008 and COVID-19 crises. The convergence to the single and grouped node trend

observed for response scores during periods of crisis is consistent with observations that

correlations between all stock prices are seen to increase in these periods. This is not only

consistent with our own observations but also with recent observations made by Sandoval

et. al. [4]. This tendency of ‘markets to behave as one’ in times of crisis is interesting to
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monitor from the context of response and impact scores - particularly in the case of sectors

which, in a period of comparative market stability, are seen to have a lower value according

to response than the individual/group trend. These sectors might be expected to respond

worse to the crisis period, whereas the effect on sectors closer to the trend, or above, may

see a lesser impact.

Finally, we observe that the most impactful stocks in the markets are belonging to funds.

This suggests that stocks with a high level of diversification are more likely to present a larger

knock-on effect to the rest of the market when they experience shocks.
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