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ABSTRACT: Background: Somatic α-synuclein
(SNCA) copy number variants (CNVs, specifically
gains) occur in multiple system atrophy (MSA) and
Parkinson’s disease brains.
Objective: The aim was to compare somatic SNCA
CNVs in MSA subtypes (striatonigral degeneration
[SND] and olivopontocerebellar atrophy [OPCA]) and
correlate with inclusions.
Methods: We combined fluorescent in situ hybridiza-
tion with immunofluorescence for α-synuclein and in
some cases oligodendrocyte marker tubulin polymeri-
zation promoting protein (TPPP).
Results: We analyzed one to three brain regions from
24 MSA cases (13 SND, 11 OPCA). In a region prefer-
entially affected in one subtype (putamen in SND, cer-
ebellum in OPCA), mosaicism was higher in that
subtype, and cells with CNVs were 4.2 times more
likely to have inclusions. In the substantia nigra, non-
pigmented cells with CNVs and TPPP were about six
times more likely to have inclusions.

Conclusions: The correlation between SNCA CNVs
and pathology (at a regional level) and inclusions (at a
single-cell level) suggests a role for somatic SNCA
CNVs in MSA pathogenesis. © 2022 The Authors.
Movement Disorders published by Wiley Periodicals
LLC on behalf of International Parkinson and Move-
ment Disorder Society.
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Background

Multiple system atrophy (MSA) can be classified patho-
logically into striatonigral degeneration (SND), olivoponto-
cerebellar atrophy (OPCA), and mixed.1 α-Synuclein,
encoded by SNCA, forms aggregates, and glial cytoplasmic
inclusions (GCIs) in oligodendrocytes are likely central to
pathogenesis.2 Rare inherited SNCA mutations lead to syn-
ucleinopathies, generally classified as Parkinson’s disease
(PD), often with dementia. These are most often copy num-
ber variants (CNVs), specifically gains, which increase
mRNA,3 and disease severity depends on gene dosage.4

Patients with SNCA mutations frequently also have MSA
features with GCIs,5-8 suggesting that SNCA mutations
can also affect oligodendrocytes. As MSA is a sporadic dis-
order, with heritability less than 7%,9 a major role of
mutations may appear unlikely. Mutations can, however,
also be acquired post-zygotically. These are termed
“somatic” and lead to mosaicism, the presence of cells with
genetic differences in an organism. Somatic mutations,
including CNVs, occur in brain,10 have a role in several
neuropsychiatric and neurodevelopmental conditions,11

and may also have a role in neurodegeneration,12 and the
asymmetry is often observed.13 Somatic SNCA mutations
could contribute directly to the etiopathogenesis of spo-
radic synucleinopathies.14

We previously reported that somatic SNCA CNVs
(gains) in the substantia nigra (SN) and cingulate cortex
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are more frequent in MSA and PD patients than in con-
trols using fluorescent in situ hybridization (FISH).15,16

We also used single-cell whole genome amplification and
low coverage sequencing to demonstrate somatic CNVs
in about 30% of brain cells from two MSA cases, includ-
ing a gain of SNCA.16 To further investigate the role of
somatic SNCA CNVs in MSA, we have now compared
their abundance (mosaicism level) in three different
regions between SND and OPCA and correlated their
presence with inclusions in the same cells.

Methods

Samples were provided by the UCL Queen Square
Brain Bank for Neurological Disorders (Table S1) with
informed consent for use of tissue in research and
ethics approval by the UK National Research Ethics
Service (07/MRE09/72). We analyzed 10-μm frozen
sections from MSA patient brains from the SN at the
level of the red nucleus or decussation of the superior
cerebellar peduncle, putaminal striatopallidal fibers at
the level of the anterior commissure (henceforth
referred to as “putamen”), and cerebellar white matter.
We performed FISH for SNCA copy numbers and a
reference gene (unless otherwise stated) combined with
immunofluorescence (IF) as described.17 For SNCA
FISH, we used the same probe as before (Agilent Sur-
eFISH SNCA 4q.22.1, G110997R-8) and a chromo-
some 7 probe as reference (Agilent SureFISH
G110902G-8) (Santa Clara, California, USA). IF
staining for α-synuclein (mouse monoclonal 211, Santa
Cruz, 1:200 dilution) (Dallas, Texas, USA) was per-
formed in most experiments. In the SN, we divided
cells based on neuromelanin (NM) presence into NM
+ (dopaminergic neurons) and NM– (glia and other
neurons). For oligodendrocyte detection, we used a
rabbit monoclonal antibody to tubulin polymerization
promoting protein (TPPP) (Abcam ab92305, 1:50 dilu-
tion) (Cambridge, UK), interpreting a nuclear signal as
positive and omitting the reference FISH probe to
simultaneously detect α-synuclein aggregates. Staining
was visualized using Alexa 647 goat anti-mouse for
α-synuclein and Alexa 488 goat anti-rabbit for TPPP
(Life Technologies, 1:500 dilution) (Carlsbad, califor-
nia, USA). All experiments were performed blinded to
disease subtype. Images were obtained on a Leica epi-
fluorescence microscope coupled to an ORCAII Digital
CCD camera (Hamamatsu, Shizuoka, Japan) and con-
trolled by Leica Application Suite X (Leica, Wetzlar,
Germany) as z-stacks of 16 images (separated by
0.5 μm) using appropriate fluorescence filters and
brightfield in the SN for NM. Statistical analysis was
performed using GraphPad Prism (v.9). Pairwise com-
parisons were performed using unpaired t test, two
sided, as normal distribution was confirmed using the

Kolmogorov–Smirnov test. 2 � 2 and 2 � 3 tables
were analyzed using χ2 test.

Results

We first investigated whether mosaicism level in a
given region differs based on the involvement of the
region in each MSA subtype by studying putamen,
mostly affected in SND; cerebellum, mostly affected in
OPCA; and SN, equally affected in both. We analyzed
5967 cells, derived from at least one brain region from
24 MSA cases (13 SND, 11 OPCA), including all three
from 14 (Tables S1 and S2). We calculated percentage
SNCA mosaicism as the percentage of cells containing
unique gains of SNCA (more than two SNCA copies,
two copies of reference) divided by the total number of
cells with no other detectable genomic aberration, that
is, two copies of reference and more than two copies
of SNCA, as before (Fig. 1A; all individual results are
presented in detail in Table S3). In the cerebellum,
mosaicism was significantly higher in OPCA (11.1%
vs. 8.6%), whereas in the putamen, it was significantly
higher in SND (9.9% vs. 8.5%). Furthermore, com-
paring these figures within each subtype revealed that
mosaicism in SND was significantly higher in putamen
than cerebellum (P = 0.006) and that mosaicism in
OPCA was significantly higher in cerebellum than
putamen (P = 0.003). Therefore, in a region preferen-
tially affected in one MSA subtype, mosaicism is
higher in that subtype, and in a given subtype of MSA,
mosaicism is higher in a preferentially affected rather
than a relatively spared region. In the SN it was simi-
lar in both subtypes, and this was also true when
divided into dopaminergic neurons (NM+) and other
cells (NM–), which are mostly oligodendrocytes18

(Fig. S1).
To avoid possible sectioning artifacts, and for con-

sistency with our previous work,15,16 we did not
include cells with gains of both probes, or losses of
either probe, in the main analysis. Gains of both pro-
bes could represent true gains of both SNCA and the
reference. They could also, however, be artifacts if
multiple complete or partial nuclei were counted
together, despite the care taken to avoid this. We
noted only 18 cells with gains of both probes (0.29%):
14 of which were in the SN (0.59%), 3 in the cerebel-
lum (0.16%), and 1 in the putamen (0.05%)
(P < 0.0001). Half of the SN cells with gains of both
probes had more SNCA than reference copies, consis-
tent with the excess SNCA signals observed overall
(six 4 SNCA/3 reference, one 5 SNCA/3 reference).
We also reviewed gains of the reference probe alone.
As in previous work with other reference probes,15,16

these were extremely rare (18 cells, 0.29%). Of these,
15 were in the SN (0.63%), whereas there were only

2 Movement Disorders, 2022

G A R C I A - S E G U R A E T A L

 15318257, 0, D
ow

nloaded from
 https://m

ovem
entdisorders.onlinelibrary.w

iley.com
/doi/10.1002/m

ds.29291 by U
niversity C

ollege L
ondon U

C
L

 L
ibrary Services, W

iley O
nline L

ibrary on [04/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2 in the cerebellum (0.1%) and 1 in the putamen
(0.05%) (P < 0.0001).
We next performed further analysis of experiments

where FISH had been combined with α-synuclein IF to
compare the proportion of inclusions in different
regions and subtypes and determine whether
α-synuclein inclusions occur preferentially in cells with
SNCA CNVs (Fig. 1B; 5007 cells). Inclusions were
more frequent in the cerebellum and putamen in the
subtype where each is preferentially affected (cerebel-
lum: OPCA 14.3%, SND 6.9%, P < 0.0001; putamen:
SND 10.3%, OPCA 5.5%, P = 0.0002). In the SN,
inclusion prevalence was similar (SND 7.7%, OPCA
7.4%). As previous data had suggested increased inclu-
sions in the SN in cells with CNVs, in a specific pattern
(NM+ cells in Lewy body disorders and NM– cells in
MSA-SND),16 we determined whether CNV presence is
associated with a higher risk of inclusion in the same
cell in each region and subtype (Table 1). Cells with
CNVs were 4.2 times more likely to have inclusions in

the preferentially affected region in each subtype (cere-
bellum in OPCA, putamen in SND). In the relatively
spared regions, a significant effect, but smaller (2.7
times), was observed only in SND. In the SN, NM– cells
with CNVs were about six times more likely to have
inclusions in both subtypes, but an association with
inclusions in NM+ cells was observed only in OPCA.
We conclude that CNVs are associated with inclusions
in the same cells in affected regions.
As there is significant heterogeneity of

oligodendrocytes,19 we hypothesized that the associa-
tion of CNVs and inclusions may occur only in those
with certain expression profiles. TPPP/P25α is an oligo-
dendrocyte protein that contributes to α-synuclein
aggregation.20-23 We combined SNCA FISH with IF for
TPPP and α-synuclein in SN from four additional MSA
cases (two SND, two OPCA; 473 cells, of which
382 NM–; Table S4). We found robust nuclear TPPP
staining in 53.4% of NM– cells, within which inclu-
sions were present more often in TPPP+ cells (11.8%,

FIG. 1. SNCA CNV mosaicism in SND and OPCA. (A) Comparison of regional mosaicism between SND and OPCA in the three regions tested. Mean,
SD, and P-value are shown. (B, C) Examples of FISH and α-synuclein IF. The left panel of each image shows the FISH (SNCA in red, reference in
green), and the right panel shows the IF for α-synuclein. (B) A cell with no CNV and no inclusions and (C) a cell with a CNV and an inclusion (arrowed).
Scale bars: 5 μm. CNV, copy number variant; FISH, fluorescent in situ hybridization; IF, immunofluorescence; SD, standard deviation; SND, striatonigral
degeneration. [Color figure can be viewed at wileyonlinelibrary.com]
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vs. 4.5% TPPP–, P = 0.015). In these experiments, as
no reference FISH probe was used, % SNCA mosaicism
was calculated as the proportion of cells with more
than two SNCA copies among all cells with two copies
or more. The mosaicism level did not depend on TPPP
presence, with CNVs in 10.1% of TPPP+ and 7.8% of
TPPP– cells (P = 0.5), but the association between
CNVs and inclusions was observed only in TPPP+
cells. These were six times more likely to have an inclu-
sion if they had a CNV in SND and 5.7 times in OPCA
(P = 0.017 and 0.0009, respectively; Table S4). Among
NM– cells in the SN, a cell with both a CNV and TPPP
expression may therefore be most likely to develop
inclusions.

Conclusions

We provide the first evidence in MSA, and to our knowl-
edge in any neurodegenerative disorder, that the level of a
potentially relevant somatic mutation in a brain region is
higher in the disease subtype where this region is preferen-
tially affected but similar in a region equally affected in
both subtypes. The higher prevalence of cells with genomic
instability beyond SNCA gains, that is, gains of the refer-
ence alone or of both probes, in the SN merits further
investigation. We confirm a significant association between
CNVs and inclusions in the same cells, in regions affected
in each subtype, but reduced or absent in a region rela-
tively spared. Presence of a CNV may lead to increased
SNCA mRNA, which could be of particular importance in
oligodendrocytes, where endogenous expression is low.22,24

This would lead to increased availability of α-synuclein to
aggregate locally, and mosaicism levels in different regions
could thus determine pathology subtype. We have not,
however, demonstrated increased mRNA, which cannot
presently be measured together with DNA FISH.

Furthermore, we cannot exclude the possibility that
α-synuclein aggregation causes DNA damage25 leading to
somatic mutations such as SNCA CNVs, although even in
this case a CNV may further potentiate aggregation.12

Inclusion development in an oligodendrocyte with a CNV
may be facilitated by TPPP expression, which leads to the
highly toxic MSA α-synuclein strain.23 Validation will
require larger studies, including other regions, and detailed
characterization of cells with CNVs to determine whether
all (excluding dopaminergic neurons) are oligodendrocytes.
It will also be crucial to determine the timing at which
CNVs arise and whether enhancement of DNA repair is a
valid target, for example, by augmenting nicotinamide
adenine dinucleotide, as suggested in PD.26 Overall,
our results suggest a direct role of somatic SNCA
CNVs in MSA etiopathogenesis and determination of
pathological subtype.
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