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Polygenic coronary artery disease association 
with brain atrophy in the cognitively impaired
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While a number of low-frequency genetic variants of large effect size have been shown to underlie both cardiovascular disease and 
dementia, recent studies have highlighted the importance of common genetic variants of small effect size, which, in aggregate, are em-
bodied by a polygenic risk score. We investigate the effect of polygenic risk for coronary artery disease on brain atrophy in Alzheimer’s 
disease using whole-brain volume and put our findings in context with the polygenic risk for Alzheimer’s disease and presumed small 
vessel disease as quantified by white-matter hyperintensities. We use 730 subjects from the Alzheimer’s disease neuroimaging initiative 
database to investigate polygenic risk score effects (beyond APOE) on whole-brain volumes, total and regional white-matter hyper-
intensities and amyloid beta across diagnostic groups. In a subset of these subjects (N = 602), we utilized longitudinal changes in 
whole-brain volume over 24 months using the boundary shift integral approach. Linear regression and linear mixed-effects models 
were used to investigate the effect of white-matter hyperintensities at baseline as well as Alzheimer’s disease-polygenic risk score 
and coronary artery disease-polygenic risk score on whole-brain atrophy and whole-brain atrophy acceleration, respectively. All gen-
etic associations were examined under the oligogenic (P = 1e-5) and the more variant-inclusive polygenic (P = 0.5) scenarios. Results 
suggest no evidence for a link between the polygenic risk score and markers of Alzheimer’s disease pathology at baseline (when strati-
fied by diagnostic group). However, both Alzheimer’s disease-polygenic risk score and coronary artery disease-polygenic risk score 
were associated with longitudinal decline in whole-brain volume (Alzheimer’s disease-polygenic risk score t = 3.3, PFDR = 0.007 
over 24 months in healthy controls) and surprisingly, under certain conditions, whole-brain volume atrophy is statistically more cor-
related with cardiac polygenic risk score than Alzheimer’s disease-polygenic risk score (coronary artery disease-polygenic risk score t = 
2.1, PFDR = 0.04 over 24 months in the mild cognitive impairment group). Further, in our regional analysis of white-matter hyperin-
tensities, Alzheimer’s disease-polygenic risk score beyond APOE is predictive of white-matter volume in the occipital lobe in 
Alzheimer’s disease subjects in the polygenic regime. Finally, the rate of change of brain volume (or atrophy acceleration) may be sen-
sitive to Alzheimer’s disease-polygenic risk beyond APOE in healthy individuals (t = 2, P = 0.04). For subjects with mild cognitive im-
pairment, beyond APOE, a more inclusive polygenic risk score including more variants, shows coronary artery disease-polygenic risk 
score to be more predictive of whole-brain volume atrophy, than an oligogenic approach including fewer larger effect size variants.
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Graphical Abstract

Introduction
It is estimated that more than 1 million people in the UK and 
over 44 million individuals globally1 are living with demen-
tia. Alzheimer’s disease is the most common form of demen-
tia and is usually diagnosed in the elderly (over the age of 65 
years). There are many symptoms associated with 
Alzheimer’s disease and these include changes in memory, 
language and personality.2

Beyond cognitive testing, there has been a large focus on the 
use of brain imaging to help diagnose and track the disease. In 
particular, a decrease in brain volume and the build-up of pro-
tein in the form of amyloid plaques (between neurons) and mis-
folded neurofibrillary tangles of hyperphosphorylated tau 
(within neurons) are seen in brain imaging studies and observed 
in post-mortem examinations of Alzheimer’s disease patients.3

It is thought that the amyloid and tau aggregations contribute to 
the death of neuronal cells, resulting in a reduction in regional 

grey-matter volume and neuronal connectivity.4 Surprisingly, 
years of clinical trials involving pharmacological interventions 
targeting these protein deposits have largely been unsuccessful,5

possibly because they are formed as a result of earlier patho-
logical changes. Another explanation may be that drug inter-
ventions, thus far, have all been administered too late in the 
disease life-course to be effective and that intervention earlier 
in life may be required. Current symptomatic treatments for 
Alzheimer’s disease symptoms come from acetylcholinesterase 
inhibitors and glutamate blockers, which serve, in some cases, 
to reduce disease severity, but are by no means curative.6 At 
the time of writing, the monoclonal antibody aducanumab, 
which targets beta-amyloid plaques, had just been approved 
for clinical use in the USA (see www.fda.gov).

Alzheimer’s disease is often diagnosed alongside vascular 
dementia in what is called mixed dementia.7 Vascular de-
mentia (itself the second most common form of dementia fol-
lowing Alzheimer’s disease) is probably the result of reduced 
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blood flow to brain cells, resulting in cell death.8 This can be 
caused by cerebral small vessel disease, resulting in subcor-
tical vascular dementia, which affects vessels deep in the 
brain. One imaging marker of small vessel disease is magnet-
ic resonance imaging (MRI)—visible white-matter changes, 
or, white-matter hyperintensities (WMHs). WMHs are 
known to increase with age,9,10 but are also strongly asso-
ciated with Alzheimer’s disease.11 WMHs have also been as-
sociated with a range of other pathologies, including 
amyloid angiopathy, arteriosclerosis, axonal loss, blood– 
brain barrier leakage, demyelination, gliosis, hypoperfusion, 
hypoxia, and inflammation.12

In coronary artery disease (CAD), plaques aggregate in the 
blood vessels that feed the heart oxygen and nutrients. In the 
extreme, this can lead to angina and a heart attack, but a 
smaller, prolonged reduction in cardiac function may be re-
sponsible for cerebral hypoperfusion.13 CAD has a strong 
genetic basis, being ∼50% heritable with ∼60 genetic loci 
identified.14 However, the relationship between the genetic 
contribution to heart health and Alzheimer’s disease remains 
largely unexplored.

While age is the most salient factor in Alzheimer’s disease 
risk, there is, alongside environmental and lifestyle factors,15

a genetic component underlying both Alzheimer’s disease 
and CAD. In Alzheimer’s disease, a small number of cases 
(<5%) are due to autosomal dominant early-onset 
Alzheimer’s disease, for which there are a number of rare, 
large-effect-size genetic variants that contribute to the path-
ology.16 These include mutations that result in abnormal 
protein products of amyloid precursor protein, or in the 
genes that code for the enzymes that alter the breakdown 
of amyloid precursor protein, both of which may result in 
an increase in amyloid plaques.

Most Alzheimer’s disease cases are sporadic and late-onset 
(typically found in those 65 and older), where heritability is 
estimated to be between 60 and 80%.17 There are, a number 
of identified common variants, most notably the e4 allele of 
the APOE (apolipoprotein) gene, which accounts for ∼5% 
of Alzheimer’s disease heritability, plus about 20 additional 
loci that account for up to 30% Alzheimer’s disease herit-
ability.18 It is likely that the remaining heritability is the re-
sult of the combination of a great many (1000s to 100 000s) 
common variants, each contributing a very small effect. 
Other studies19 argue that known loci account for a much 
smaller percentage of heritability and that many rare variants 
are each making small contributions, something only larger 
studies can address.

As a result of these findings, much research has been per-
formed to establish how to best capture a composite measure 
of these many common variants that individually have such a 
small effect. Polygenic risk scores (PRSs) offer a way of doing 
this and have become increasingly used following the many 
large genome-wide association studies (GWAS), which 
show associations between common genetic variants and dis-
eases. The PRS sums up the effect size20 across a selected set 
of genetic variants shared between a discovery sample (for 
example some CAD-GWAS) and target sample (some other 

genotyped cohort such as the Alzheimer’s disease neuroima-
ging initiative, ADNI), resulting in an aggregate score that re-
flects the genetic contribution to the disease phenotype in the 
target cohort. Alzheimer’s disease-PRS (AD-PRS) over vary-
ing P-value selection thresholds has effectively discriminated 
between Alzheimer’s disease cases and controls,21 been used 
as a predictor of conversion from mild cognitive impairment 
(MCI) to Alzheimer’s disease,22 been linked to inflammatory 
biomarkers,23 CSF amyloid beta levels,24 CSF tau levels,25

hippocampal volume,26 cortical thickness27 and age of onset 
of Alzheimer’s disease.28 AD-PRS-related work has been re-
cently reviewed by.29

Just as research has been devoted to investigating how 
AD-PRS affects Alzheimer’s disease phenotypes, the same 
concept can be used to investigate genetic risk for other dis-
eases on Alzheimer’s disease pathology. Here, we specifically 
investigate the role of common, small effect, cardiac-related 
genetic variants in Alzheimer’s disease. This enables us to 
elucidate the role that cardiovascular health plays in relation 
to dementia. While we focus here on the influence of under-
lying genetics upon WMHs, whole-brain atrophy and the 
changes therein, the cardiac-cerebrovascular axis is no doubt 
complex, encompassing many biological pathways. We be-
lieve, however, that a combination of genetics and imaging, 
in particular longitudinal images that capture changes over a 
disease trajectory, will provide important insights into this 
system.

Materials and methods
Data used in the preparation of this article were obtained 
from the ADNI database (adni.loni.usc.edu). The ADNI 
was launched in 2003 as a public–private partnership, led 
by Principal Investigator Michael W. Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial MRI, 
positron-emission tomography, other biological markers 
and clinical and neuropsychological assessment can be com-
bined to measure the progression of MCI and early 
Alzheimer’s disease. For up-to-date information, see www. 
adni-info.org. The R-data-package ADNIMERGE (dated 
19 May 2020) was used to access ADNI data.

Computing white-matter 
hyperintensities
Regional and total WMH values were determined using the 
Bayesian Model Selection (BaMoS) software,30 a white- 
matter lesion segmentation algorithm. BaMoS was applied 
to 932 ADNIGO and ADNI2 participants following Walsh 
et al.31 and described therein. In short, the label fusion algo-
rithm geodesic information flows32 was used to parcellate 
the T1-weighted cortical grey matter into various cortical 
and subcortical brain structures in an automated fashion. 
It additionally carries out skull stripping and generates prob-
abilistic atlases for each individual. These atlases are then in-
put to BaMoS alongside co-registered fluid attenuated 
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inversion recovery images consisting of log-transformed nor-
malized intensities. To determine white-matter lesions, 
BaMoS computes the most suitable model description of 
the data, accounting for prevailing outliers. It manages this 
by first partitioning the data into inlier and outlier portions 
and then modelling the input data in a hierarchical fashion, 
with elements then separated into one of four tissue types 
—grey matter, white matter, cerebrospinal fluid and non- 
brain. Each of these in turn is modelled via a Gaussian mix-
ture model, with the number of constituent parts determined 
using a split-and-merge strategy. An expectation- 
maximization algorithm is used for optimization with model 
selection implemented using Bayesian information criterion 
to produce probabilistic lesion maps from which measure-
ments of lesion volumes are inferred. Regional volumes in 
cubic millimetre were also computed across five lobes and 
four radial layers.

Brain atrophy
To compute changes in brain volume, we utilize the boundary 
shift integral (BSI) method.33,34 Briefly, the BSI is defined as 
the difference in brain volume (either in total brain or in a brain 
region via displacement of the boundaries), automatically com-
puted (brain mask creation is semi-automated) between a base-
line scan and a repeat scan at a later time. The KN-BSI34 is an 
extension of the classic-BSI and carries out tissue-specific inten-
sity normalization, which deals with tissue-contrast differences, 
producing a smaller standard deviation in atrophy changes than 
the classic-BSI. BSI values were obtained from the foxlabbsi ta-
ble in ADNI, comprising 2348 subjects (across ADNI1, 
ADNI2, ADNI3 and ADNIGO), where all T1-weighted scans 
included in the core data sets pertaining to BSI were obtained 
using 3T scanners. Some months had very few available scans 
due to subject availability, so these were removed to maintain 
consistency between scan interval times. MRI scans were origin-
ally made using accelerated and non-accelerated acquisitions 
and we have chosen to focus on the accelerated scans35 as 
they have been shown to result in fewer motion artefacts in pairs 
of scans resulting from patient movement. Finally, some scans 
had BSI-determined brain volume increases, which may be a re-
sult of better subject hydration or due to overall noise. Scans 
with BSI < 0 [corresponding to an increase in whole-brain vol-
ume (WBV) over time] were removed from the analysis.

ADNI genetic target data 
pre-processing
The genetic data used in this work is a combination of ADNI1, 
ADNIGO and ADNI2 participant genotypes, comprising a to-
tal of 1674 subjects.36 Details on quality control and imput-
ation (use of the haplotype reference consortium reference 
panel, the Sanger server, EAGLE2 for phasing, and positional 
burrows wheeler transform for imputation) are described in 
Scelsi et al.37 Briefly, following imputation, multi-allelic single- 
nucleotide polymorphisms (SNPs) and SNPs with INFO scores 
<0.3 were removed; then calls with < 90% posterior 

probability of the imputed genotype were set to missing. 
SNPs missing in > 10% subjects, deviating from Hardy– 
Weinberg equilibrium (P < 5e-7) and with minor allele fre-
quency <5% were all removed. These processing steps were 
carried out using PLINK v1.938 (www.cog-genomics.org/ 
plink/1.9/) and resulted in a final set of 5 082 879 autosomal 
SNPs. For ancestry determination and relatedness analysis, 
following Altmann et al. and Scelsi et al. 25,37 a HapMap 3 ref-
erence panel was utilized where individuals with >80% central 
European ancestry were held. PLINK v1.9 was then used to re-
tain common SNPs with minor allele frequency (MAF) ≥5% 
and carry out linkage disequilibrium (LD)-pruning and con-
struct a genetic relatedness matrix (threshold = 0.1) and filter 
to remove related subjects. This resulted in the exclusion of 
116 subjects, most likely due to their being genetically 
non-Central European or being related to other subjects.

For the CSF amyloid beta measurements we used 
ADNIMERGE ABETA.bl values, removed subjects with 
missing data and set values recorded as <1700 to 1700 
(positron-emission tomography CSF Ab1-42; 192 pg/ml cut- 
off value; Luminex assay; data range 203–1700 with mean = 
1024.7).

Coronary artery disease and 
Alzheimer’s disease discovery 
GWASs
To investigate the PRS contribution due to Alzheimer’s 
disease, we utilized the largest currently available 
meta-GWAS of Alzheimer’s disease, featuring 35 274 clinical 
and autopsy-documented Alzheimer’s disease cases and 
59 163 controls.39 Summary statistics were downloaded 
from the National Institute on Aging Genetics of 
Alzheimer’s Disease Data Storage Site (NIAGADS; July 
2020), comprising 11 480 633 SNPs.

In order to investigate the PRS contribution due to CAD, 
we used a meta-analysis of 60 801 CAD cases and 123 504 
controls.40 Summary statistics were downloaded from the 
CARDIoGRAMplusC4D [Coronary Artery Disease 
Genome-wide Replication and Meta-analysis plus the 
Coronary Artery Disease (C4D) Genetics] consortium 
(http://www.cardiogramplusc4d.org/data-downloads/) in 
July 2020, comprising 8 624 384 variants.

Given the very large effect size of APOE-e4 upon 
Alzheimer’s disease pathology, we removed the APOE region 
so as to explore genetic effects beyond this risk factor. The block 
removed from chromosome 19 (hg19 coordinates) comprises 
SNPs 44 400 375 (rs430308) to 46 500 052 (rs62113435).

Polygenic risk scores
The PRS is a weighted sum of allele counts, where the weights 
are odds ratios (effect sizes) from a discovery GWAS and re-
present the strength of the association between the variant 
and the trait it is associated with. PRSs were computed using 
PRSice v2.1.9.41 To ensure that loci are isolated and inde-
pendent, LD clumping was applied so that SNPs in LD with 
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one another are removed such that the SNP with the lowest 
P-value within each LD block of correlated SNPs is held for 
analysis. LD clumping was conducted with a clumping win-
dow of 250 kb on either side of the index SNP, with an r2 

threshold of 0.1 and a P-value threshold of 1.
The PRS for each subject was computed using the ‘–score 

avg’ setting in PRSice by summing up the product of each 
variant by the number of effective alleles observed divided 
by the number of alleles included for that individual. This 
last divisor makes the PRS scores more comparable between 
subjects in the presence of missing SNPs. PRS was calculated 
for each subject at two P-value cut-offs P = 1e-5 (i.e., 
genome-wide suggestive loci) capturing oligogenic effects 
and P = 0.5 capturing polygenic effects, which have been 
identified as sufficient to encompass threshold variation.21

Of note, it is imperative when working with PRS that there 
is no sample overlap between the discovery GWAS (Kunkle 
et al.39 ) and the target cohort (here the combined ADNI1, 
ADNIGO and ADNI2). We did not encounter any sample 
overlap as the discovery GWAS used the Alzheimer’s disease 
genetics consortium (ADGC) summary statistics, which only 
use healthy controls (HCs) and Alzheimer’s disease cases 
from ADNI1 comprising 1.5T scans. However, from the 
846 individuals with imaging and genetic data, we excluded 
116 subjects with non-Central European ancestry, resulting 
in a final sample size of 730 for our study. Moreover, demo-
graphic genetic differences arising from ancestral population 
structure have been found to bias PRS scores.42 This is the 
case particularly for high P-value cut-offs (e.g. P = 0.5) lead-
ing to PRS with many thousands of SNPs. To account for this 
effect, our linear regression models include the first five prin-
cipal components of population structure as covariates.

Second-order grey-matter changes
By plotting longitudinal WBV change or BSI (from baseline in 
units of cubic cm or ml, where 1 cm3 = 1 ml), for each subject 
taken at 3, 6, 12 and 24 months post-baseline, the gradient 
of the line of best fit gives a second-order change (the second de-
rivative) in WBV or the rate of change of BSI per subject. We 
term this rate of change the ‘atrophy acceleration’, which pro-
vides a measure of how fast the WBV is declining. By way of 
illustration, if, for example, there is a BSI of 6 ml between 
Months 0–24, then the gradient would be 0.25 ml/month2 

(which equals 3 ml/year2) and would have an intercept of zero.

Statistical analysis
We first investigated PRSs for AD-PRS as well as PRSs for 
CAD (CAD-PRS) and their relationship with total WBV over 
a range of time points [which are normalized by dividing by 
intracranial volume (ICV)], total WMHs (total) at baseline 
(which are log-transformed) and CSF amyloid beta measure-
ments. We used linear regressions within each diagnostic group, 
adjusting for age, sex, education, APOE-e4 burden (number of 
e4 alleles) and the first five principal components of population 
structure. In the case of the WMH (total), we also included the 

ICV as an additional covariate. Regressions provided t-values 
as well as P-values for the association between PRS and biomar-
kers; given the large number of comparisons (36 = 2 PRS 
thresholds × 2 PRS × 3 diagnoses × 3 biomarkers), we have ad-
justed P-values for multiple comparisons using a false discovery 
rate correction (rate = 5%). Given that both increasing whole- 
brain atrophy, WMHs as well as BSI values are known to 
lead to worse health outcomes, all P-values are based on one- 
tailed tests. For the regional WMH data, we carried out an iden-
tical analysis but over five lobar regions: frontal, parietal, oc-
cipital, temporal and combined basal ganglia, thalami and 
infratentorial volume. Each of these regions was normalized 
by its corresponding regional volume.

In addition, for the atrophy accelerations, we also used linear 
mixed-effects models (with subject as a random intercept and 
time since baseline, for brevity referred to as just time, as a ran-
dom slope across diagnostic groups, which allowed us to cap-
ture the non-linear effects of the disease; R library lme4) 
across both P-value and PRS thresholds. Here subject is the ran-
dom effect, so the atrophy acceleration is calculated per subject 
as above. In this way, we allow for a positive correlation among 
measurements for the same individual once the fixed effects 
have been accounted for. The number of months since the base-
line is also included as a random effect. In order to get the influ-
ence of PRS on the ‘rate of atrophy’ (atrophy acceleration) the 
model includes the PRS-by-time interaction (PRS*time). This 
is all implemented using the R library function lme4 with the de-
pendent variable being the BSI measurement and the independ-
ent variable being PRS*time or polygenic score-by-time 
interaction (where time is the months since baseline), across 
both P-value and PRS thresholds:

full model = lmer(atrophy ∼ PRS∗time +AGE+ SEX

+EDUCATION+APOE4+ PC1 . . . PC5

+ (1+ time|ID)) 

Similar covariates as used in previous linear regressions and 
with the PRS*time comprise the fixed effects. We used a likeli-
hood ratio test to compare full models and reduced models 
(without the polygenic score-by-time interaction in the reduced 
model) to compute model P-values as our hypothesis is that the 
time-by-PRS interaction is of interest:

reduced model = lmer(atrophy ∼ PRS+ time +AGE+ SEX

+EDUCATION+APOE4+ PC1 . . . PC5

+ (1+ time|ID))
anova(full model, reduced model) 

Results
Filtering core data sets
A total of 2269 unique subjects were extracted from 
ADNIMERGE, of which 2257 had available baseline diag-
noses. A subset of these subjects, with computed total and 
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regional WMH using BaMoS (see below), results in a cohort 
of 871 individuals. Further subjects were excluded following 
the addition of AD-PRS and later CAD-PRS (134 456 and 
135 584 variants, respectively) and principal components 
of population structure, leaving N = 730 subjects that com-
prise Core Data Set 1 (Fig. 1). To maximize the numbers 
per diagnostic group, the following subdiagnostic groups 
were merged: (i) control/normal (N = 129) and significant 
memory concern (N = 89) to ‘HC’ (N = 218); (ii) early 
MCI (N = 253) and late MCI (N = 137) to ‘MCI’ 
(N = 390); (iii) Alzheimer’s disease (N = 122) remaining 
unchanged.

We augmented Core Data Set 1 with available BSI data 
(ADNIMERGE foxlabbsi table) to investigate atrophy accel-
erations, i.e. changes in whole-brain volumes over time. 
Given the paucity of scans at Months 8, 18, 36, 48, 60, 72, 
84, 96, 120, 132, 144 and 156 (Supplementary Fig. 2), 
only scans from Months 3, 6, 12 and 24 were retained 
(Supplementary Fig. 3). The remaining atrophy values com-
prised 824 instances of negative total KN-BSIs (across all 
months), implying growth in WBV over time. As this is un-
likely, these scans were considered to be inaccurate and re-
moved from the sample, which resulted in the loss of 51 
subjects. This formed Core Data Set 2, which comprises 
1501 scans over N = 602 subjects (Fig. 1).

Core data set summaries
Table 1 shows the demographics of Core Data Sets 1 and 2, 
respectively. There were significant differences in age and 
years of education between the diagnostic categories. 
Supplementary Table 1 and Fig. 2 show the number of 
follow-up MRI scans available within each diagnostic group. 
The proportions match the sample size distributions. 

However, only a few scans were available at the 24-month 
mark for the Alzheimer’s disease subgroup.

White-matter lesions
WMH volume was greater in the Alzheimer’s disease group 
(Tukey multiple comparisons of means, Alzheimer’s 
disease-to-MCI:padj = 0.007, Alzheimer’s disease to HC: 
padj = 0.03) and marginally greater in the MCI group over 
the HC (Supplementary Fig. 1, a relationship, which holds 
when WMH is corrected for subject age; WMH volume 
was also greater in the Alzheimer’s disease group when bro-
ken down by sex; Supplementary Table 2). Following an ex-
ploration of regional WMH [including total frontal, parietal, 
temporal and occipital WMH volumes (results not shown)], 
the most compelling result was the combined basal ganglia 
and infratentorial WMH volumes in male subjects, which 
showed a clear difference between diagnostic groups 
(Supplementary Fig. 4).

Polygenic risk
Our linear regression analysis for an effect between AD- 
PRS or CAD-PRS (over both PRS thresholds) on baseline 
grey matter (WBV), total WMH, or CSF amyloid did not 
find any statistically significant results (PFDR > 0.05; 
Table 2). So as to explore whether AD-PRS and CAD-PRS 
effects are independent, we have rerun the model where 
both AD-PRS and CAD-PRS are predictive variables for 
WMH and WBV (corresponding parameters in 
Supplementary Table 3). This shows that in the oligogenic 
regime, both AD-PRS and CAD-PRS are statistically asso-
ciated with WBV in the MCI group. Also in this regime 
CAD-PRS and WBV are associated with HC. Finally, AD- 
PRS is correlated with WMH in the Alzheimer’s disease 

Figure 1 Illustration of the selection of subjects filtered for analysis. A total of 730 subjects comprise Core Data Set 1 and 602 subjects 
comprise Core Data Set 2.

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/4/6/fcac314/6853753 by U

niversity C
ollege London user on 12 April 2023

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac314#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac314#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac314#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac314#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac314#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac314#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac314#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac314#supplementary-data


Coronary artery disease and brain atrophy                                                                      BRAIN COMMUNICATIONS 2022: Page 7 of 14 | 7

group. This shows that in the case of AD-PRS with 
CAD-PRS as a covariate and CAD-PRS with AD-PRS as a 
covariate, certain associations are strengthened. In the 
MCI group, they seem to be driving one another, but there 
are also examples of independent association. Of note, 
there is no correlation between AD-PRS and CAD-PRS in 
the oligogenic regime (Pearson correlation coefficient = 0); 
however, in the polygenic regime, there is a small anticorre-
lation (Pearson correlation coefficient = −0.33). However, 
for individuals with an Alzheimer’s disease diagnosis, 
both AD-PRS (PFDR = 0.03) and CAD-PRS (PFDR = 0.04) 
are associated with occipital lobe WMH at the PRS thresh-
old of P = 0.5 (Table 3).

Whole-brain atrophy
Given that a snapshot of WBV at baseline may not be suffi-
ciently informative in that it represents just one instance 
along the disease-course trajectory, we investigated the effect 
of total WMH at baseline and PRS on longitudinal changes 
in WBVs. Following the baseline scan, KN-BSI increases (re-
presenting a decrease in WBV) with passing months in all 
three diagnostic groups (Fig. 2), but this is most pronounced 
in the Alzheimer’s disease cohort (see Supplementary Fig. 4

for multiple comparison P-values). Using linear regression, 
we found a statistically significant effect (PFDR < 0.05) of 
baseline WMH on WBV atrophy in all diagnostic groups 
over differing times (Table 4). This association also held in 
a corresponding regional analysis of frontal, parietal, occipi-
tal, temporal and combined basal ganglia, thalami and infra-
tentorial WMH volumes (Supplementary Table 4), with 
WBV drop being particularly correlated over Months 12 
and 24 (especially in the MCI cohort).

AD-PRS is associated with whole-brain atrophy 
(KN-BSI) in HC and MCI, but not in subjects with 
Alzheimer’s disease. Moreover, in the MCI cohort AD- 
PRS is correlated with brain atrophy at each time point 
but only for the P = 1e-5 PRS threshold. Finally, in the 
HC cohort, the KN-BSI and AD-PRS are correlated in the 
later Months 12 and 24.

There is no statistically significant correlation between 
CAD-PRS and KN-BSI in both the HC and Alzheimer’s dis-
ease diagnostic groups. However, in the MCI cohort, we see 
a correlation in the later Months 12 and 24, but only for the 
P = 0.5 threshold. So in the P = 0.5 threshold for Months 12 
and 24, the CAD-PRS is more correlated with whole-brain 
atrophy than the AD-PRS (Month 12: t = 2.2, PFDR = 0.03; 
Month 24: t = 2.1, PFDR = 0.04).

Table 1 Baseline demographics of Core Data Set 1 and Core Data Set 2

HC MCI Alzheimer’s disease Total

Core Data Set 1
N 218 (29.9%) 390 (53.4%) 122 (16.7%) 730
Female (%) 117(53.7) 171 (43.8) 51(41.8) 339 (46.4)
Age (SD) 73.4 (5.9) 71.5 (7.5) 74.8 (8.0) 72.6 (7.2)
Education (SD) 16.7 (2.5) 16.3 (2.6) 15.7 (2.7) 16.3 (2.6)
Core Data Set 2
N 172 (28.6%) 336 (55.8%) 94 (15.6%) 602
Female (%) 91 (52.9) 151 (44.9) 37 (39.4) 279 (46.3)
Age (SD) 73.7 (6.1) 71.7 (7.3) 75.1 (7.5) 72.8 (7.1)
Education (SD) 16.6 (2.5) 16.4 (2.6) 15.8 (2.7) 16.3 (2.6)

For Core Data Set 1 more than half of the subjects fall in the MCI diagnostic category, almost a third HC and less than a fifth Alzheimer’s disease. The HC group has a higher fraction of 
females and as expected the Alzheimer’s disease participants are slightly older on average and there is a slight decrease in time spent in education for the Alzheimer’s disease subset 
(one-way ANOVA—age: P = 1.49e-05; education: P = 0.0064). In Core Data Set 2, we see a similar breakdown of sample sizes, sex, age and education by diagnostic group one-way 
ANOVA—age: P = 2.51e-05; education: P = 0.06). SD, standard deviation.

Table 2 Results from Core Data Set 1 using the low P-cut-off 1e-05 and the high P-cut-off 0.5

HC MCI Alzheimer’s disease

AD-PRS CAD-PRS AD-PRS CAD-PRS AD-PRS CAD-PRS

P = 1e-05 WBV 0.61 (0.30) 1.9 (0.27) −2.2 (0.07) 1.8 (0.34) 1.0 (0.49) −0.78 (0.47)
WMH (total) 0.21 (0.44) 0.31 (0.39) −1.08 (0.34) −1.43 (0.48) 1.93 (0.09) −0.78 (0.13)
Amyloid Beta −0.89 (0.20) 2.4 (0.16) 0.1 (0.48) 1.1 (0.47) −0.35 (0.38) 0.13 (0.45)

P = 0.5 WBV −0.8 (0.30) 0.85 (0.26) −0.96 (0.31) 0.24 (0.42) 0.31 (0.49) −0.23 (0.47)
WMH (total) 0.68 (0.36) 0.48 (0.39) −0.73 (0.34) −0.12 (0.48) 1.63 (0.09) 1.35 (0.13)
Amyloid Beta −0.89 (0.20) 0.13 (0.48) −0.46 (0.48) −0.49 (0.47) −1.2 (0.20) 1.8 (0.12)

t-values (P-values, one-tailed false discovery rate-corrected) to 2 decimal points following linear regression with confounders for age, sex, education, APOE-e4 burden and first five 
principal components of population structure (additional ICV confounder for log-transformed WMH regression) across diagnostic groups for AD-PRS and coronary artery 
disease-PRS; WBV normalized by ICV; AD-PRS and coronary artery disease-PRS both exclude APOE region. For amyloid beta, subjects with missing data were removed from the linear 
model (n = 665).
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Whole-brain atrophy acceleration
To probe the rate of change of WBV over longitudinal scans 
per subject with respect to the underlying genetics, we enu-
merate the ‘atrophy acceleration’ in Table 5, top. Atrophy 
acceleration is significantly greater in the Alzheimer’s disease 
cohort compared with HC and MCI (P < 2.2e-16; Fig. 3). 
While there is no correlation between CAD-PRS and atrophy 
acceleration (Table 5, top), there is a statistically significant 
correlation between AD-PRS and atrophy acceleration for 
the P = 0.5 threshold in the HC. It is also notable that at 
the P = 1e-5 threshold, this correlation shows a statistical 
trend (PFDR = 0.06). Our mixed effect analysis (Table 5, 

bottom) showed that there is no association between longitu-
dinal changes in grey matter (quantified by the BSI) and 
time-by-CAD polygenic score interaction; however, 
time-by-Alzheimer’s disease-polygenic score interaction is 
correlated with longitudinal WBV changes in both the HC 
(PFDR = 0.01) and MCI (PFDR = 0.03) subsets at the P = 
1e-5 PRS threshold.

Discussion
In this study, we aimed to investigate possible associations 
between cardiac genetics and Alzheimer’s dementia. We 

Table 3 Regional WMH analysis from Core Data Set 1 using the low P-cut-off 1e-05 and the high P-cut-off 0.5

HC MCI Alzheimer’s disease

AD-PRS CAD-PRS AD-PRS CAD-PRS AD-PRS CAD-PRS

P = 1e-05 Frontal 0.29 (0.45) 0.24 (0.41) −0.98 (0.34) −2.0 (0.21) 1.8 (0.29) −1.2 (0.25)

Parietal −0.15 (0.49) 0.52 (0.45) −1.0 (0.49) −0.95 (0.49) 1.8 (0.12) −1.5 (0.16)

Occipital 0.66 (0.45) 0.29 (0.46) −1.1 (0.17) −1.6 (0.5) 1.4 (0.06) −0.96 (0.2)

Temporal −0.03 (0.44) 1.2 (0.31) −0.13 (0.42) −1.3 (0.45) 2.3 (0.38) −0.69 (0.28)

Basal ganglia + thalami + infratentorial 0.28 (0.46) −0.15 (0.47) −1.0 (0.11) −0.53 (0.46) 0.93 (0.49) −0.21 (0.47)

P = 0.5 Frontal 0.64 (0.38) 0.76 (0.27) −0.26 (0.34) −0.10 (0.49) 1.1 (0.29) 0.80 (0.25)

Parietal 0.52 (0.49) 0.29 (0.45) −0.47 (0.47) −0.09 (0.49) 1.5 (0.12) 1.2 (0.16)

Occipital 0.48 (0.34) 0.27 (0.46) −0.92 (0.17) 0.03 (0.5) 1.7 (0.03) 2.0 (0.04)
Temporal 0.53 (0.34) 0.69 (0.31) −1.3 (0.20) −0.31 (0.45) 2.0 (0.39) 1.3 (0.17)

Basal ganglia + thalami + infratentorial 0.71 (0.46) −0.42 (0.45) −0.71 (0.05) 0.15 (0.46) 0.76 (0.49) 0.35 (0.47)

t-values (P-values, one-tailed false discovery rate-corrected) to 2 deimal points following linear regression with confounders for age, sex, education, APOE-e4 burden and first five principal 
components of population structure and natural log of regional WMH normalized by regional volume. Statistically significant results are given in bold font.

Figure 2 Whole-brain atrophy (KN-BSI) in each diagnostic group across all time intervals. m03, m06, m12 and m24 represent 3, 6, 12 
and 24 months following baseline scan, respectively. Numbers of subjects in each group: HC (m03 = 92, m06 = 93, m12 = 105, m24 = 132); MCI 
(m03 = 171, m06 = 241, m12 = 268, m24 = 187); Alzheimer’s disease (m03 = 65, m06 = 67, m12 = 65, m24 = 15).
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focused on the genetic variants outside of the APOE locus 
that have been shown to be associated with Alzheimer’s dis-
ease and, separately, with CAD genetic variants. In particu-
lar, we looked at their impacts on white-matter lesions and 
WBV changes. We found a correlation between coronary ar-
tery genetic risk and whole-brain atrophy suggesting that 
many small-effect-size variants contribute to neuronal loss 
in MCI individuals. Surprisingly, under certain PRS thresh-
olds and at certain times in the disease course, the underlying 
polymorphisms for CAD may well have more of an impact 
than those of Alzheimer’s disease. We have also highlighted 
how whole-brain atrophy acceleration is associated with 
AD-PRS outside the APOE locus in healthy individuals. 
Further, we have shown for the first time that genetic var-
iants that contribute to both Alzheimer’s disease and CAD 
beyond APOE are a strong predictor of white-matter lesions 
in the occipital lobe in subjects already diagnosed with 
Alzheimer’s disease.

White-matter lesions were clearly higher in the Alzheimer’s 
disease group, something that is driven in part by age 
(Supplementary Fig. 5). While all linear models treated age as 
a covariate, disentangling white-matter lesion increase as a 
function of time separate to any age-related Alzheimer’s disease 
pathologies is challenging. This may well be of great import-
ance if early pharmaceutical intervention is necessary to curtail 
Alzheimer’s disease in later life, as WMH extent could be uti-
lized as a surrogate biomarker for downstream dementia.43

No associations were found between AD-PRS or CAD-PRS 
and baseline total WBV and WMH volumes across all diagnos-
tic groups, although PRSs have been shown to be predictive of 
Alzheimer’s disease risk.44 However, the analysis of AD-PRS 
with CAD-PRS as a covariate and CAD-PRS with AD-PRS as 
a covariate showed that certain associations are strengthened. 
In particular, in the MCI group the PRSs seem to be driving 
one another but there are also examples where the PRSs are in-
dependent; in most cases, there are no new associations. That 
said, AD-PRS beyond APOE is correlated with white-matter 
load in the occipital lobe in Alzheimer’s disease subjects upon 
the inclusion of many variants (polygenic P = 0.5). In fact, our 
regional analysis of WMH showed a statistically significant as-
sociation between both AD-PRS and CAD-PRS with occipital 
lobe WMH lesion volume in the Alzheimer’s disease group at 
a PRS threshold of P = 0.5. This confirms the presence of signifi-
cant WMH lesions in this lobe seen in other dementia cohorts45

and the finding that occipital WMH is correlated with reduced 
executive function.46 This may also be related to the cerebral 
amyloid angiopathy pathway. We were unable to establish 
this white-matter load association by the occipital lobe layer; 
however, this is, to our knowledge, the first confirmation of a 
genetic link with this regional WMH and a genetic link to CAD.

There are also no statistically significant correlations with 
CSF amyloid beta and CAD-PRS or AD-PRS; presumably, 
we did not find evidence for an association with AD-PRS be-
cause amyloid biomarkers are mainly influenced by the 
APOE-e4 genotype.25 Moreover, the analysis was con-
ducted within disease groups and not between disease 
groups, where stronger differences are known to exist.47T
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When it came to investigating whole-brain changes over 
time, our analysis confirmed an association between baseline 
WMH and WBV decline across all three diagnostic groups.

WMH here was derived from scans at baseline and not at 
the time of repeat scans, thus, WMH burden may indeed 
serve as an indicator of near-term or future decreases in 

Table 5 Association between atrophy acceleration and polygenic risk. Top: Atrophy acceleration, or rate of change of 
WBV (gradient from line of best fit over serial scans at months 3, 6, 12 and 24 per subject) with respect to AD-PRS 
and CAD-PRS. All PRS regression P-values are corrected for multiple testing and are one-tailed. Bottom: Atrophy 
acceleration estimated from time-by-PRS interaction in linear mixed effect models

Diagnostic group PRS cut-off CAD-PRS t-value CAD-PRS P-value AD-PRS t-value AD-PRS P-value

Gradient based
Healthy control P = 1e-5 −1.35 0.28 1.84 0.06

P = 0.5 0.58 0.35 2.06 0.04
Mild cognitive impairment P = 1e-5 −1.98 0.26 0.77 0.49

P = 0.5 −0.49 0.34 −0.16 0.49
Alzheimer’s disease P = 1e-5 0.35 0.47 −1.21 0.49

P = 0.5 −0.3 0.47 0.03 0.49

Mixed Effect Model

Healthy control P = 1e-5 0.46 0.01
P = 0.5 0.51 0.05

Mild cognitive impairment P = 1e-5 0.27 0.03
P = 0.5 0.58 0.16

Alzheimer’s disease P = 1e-5 0.31 0.97
P = 0.5 0.86 0.72

Statistically significant results are given in bold font.

Figure 3 Median atrophy acceleration in cm3/month2 across diagnostic groups. Alzheimer’s disease subjects WBV is decreasing much 
faster than MCI, which are decreasing faster than HC. Multiple comparison Kruskal–Wallis P-values shown. Kruskal–Wallis chi-squared = 256.55, 
d.f. = 2, P-value < 2.2e-16.
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WBV. The strength of these associations was driven by sam-
ple size and time between baseline and follow-up WBV 
measure. These results confirm earlier studies45,48 that 
showed higher white-matter lesion load is correlated with 
decreasing WBV, albeit using cross-sectional WBV mea-
sures. Earlier studies investigating longitudinal WBV 
change only found an association with WMH in HC49 or 
hippocampal atrophy in MCI subjects,50 in contrast to 
our analysis which extends this correlation to participants 
with Alzheimer’s disease.

In the matter of whether PRS are predictive of longitudinal 
decline in WBV, our analysis showed correlations between 
AD-PRS and WBV decline in the HC group (later months) 
and MCI group (all months), but not the Alzheimer’s disease 
group. The decline in the HC group reflects regional WBV 
decline with respect to AD-PRS observed previously.51 The 
lack of a polygenic effect in the Alzheimer’s disease group, 
may originate from either limited statistical power (a power 
analysis using the ‘pwr’ R library shows a correlation coeffi-
cient of r = 0.16 can be detected at 80% power in the 
Alzheimer’s disease sample), the overall extent of WBV dam-
age in Alzheimer’s disease or that while Alzheimer’s disease 
is advanced, WBV volume decrease is driven by other factors 
beyond Alzheimer’s disease–risk variants. As in the HC 
group, the AD-PRS, like baseline WMH, is correlated with 
WBV decrease in later Months 12 and 24, which raises the 
question as to whether genetic effects become more influen-
tial with time. Before this can be answered, we would have to 
account for there being more samples in Months 12 and 24 
and the fact that picking up changes in WBV volumes over 
Months 3 and 6 will be more difficult as they will likely be 
more subtle. Interestingly, the AD-PRS correlation with 
WBV atrophy in the MCI group was significant at all time 
points for the oligogenic (P = 1e-5) PRS threshold but not 
the polygenic (P = 0.5) PRS threshold. This suggests that 
there are some larger effect sizes, common variants (i.e. the 
peaks in the Manhattan plot outside the APOE locus) that 
are predictive of brain atrophy in persons that already dis-
play some cognitive impairment. This result supports the hy-
pothesis that a small number of Alzheimer’s disease-SNPs 
allow maximal predictive power in Alzheimer’s disease–re-
lated subjects.52 MCI, however, is a heterogeneous group 
of which only a subset exhibit MCI due to an underlying 
Alzheimer’s disease pathology. This is also the most bimodal 
group in terms of whether they have Alzheimer’s disease 
(progressors vs. not progressors). Thus, the AD-PRS may 
correctly predict WBV decline in subjects who have MCI 
due to Alzheimer’s disease.

The motivation for this study was an exploration of 
the genetic effects of CAD on Alzheimer’s disease. The 
CAD-PRS was only correlated with WBV decline in the 
MCI group reflecting incidence-based relationships seen in 
other studies.53 Again, the PRS-WBV atrophy association 
was strongest in the later Months 12 and 24 but showed a 
statistical trend in the earlier Months 3 and 6. In the MCI 
group, CAD-PRS is significantly correlated with WBV atro-
phy for polygenic effects (P = 0.5 thresholds) but AD-PRS is 

significantly correlated with WBV atrophy for oligogenic ef-
fects (P = 1e-5 threshold). One interpretation might be that 
the more genetic variants included, the more important the 
role of cardiac genetics over Alzheimer’s disease genetics in 
individuals with MCI. Another interpretation may be that 
AD-PRS is contributing to individuals with MCI due to de-
veloping Alzheimer’s disease dementia, whereas CAD-PRS 
is bestowing subjects with a more vascular component to 
their cognitive loss. It is also important to highlight here 
that while we investigated the CAD-PRS effects, we did not 
investigate the contribution of cardiometabolic health itself.

Recent work54 investigating the genetic architecture of 
Alzheimer’s disease with regards to PRS thresholds argues 
that the polygenic threshold is optimal. Their work shows 
that studies using an oligogenic threshold ignore the 
fact that there will be fewer APOE-e4 carrying individuals 
in the older category, biasing results against high P-value 
threshold variants. In our study, we removed the APOE locus 
so as to explore genetic changes outside this genetic region; 
however, all linear regressions include APOE-e4 burden as 
a confounding variable. Investigators have shown that 
APOE’s effect on Alzheimer’s disease is greater in older co-
horts and suggest that variants outside of APOE could con-
tribute to Alzheimer’s disease in older persons.55 As APOE 
has been considered a target for both the treatment of coron-
ary heart disease and Alzheimer’s disease, these two patholo-
gies may both be affected by similar pathways. We examined 
regression models with and without the APOE-e4 covariate 
using ANOVA. The inclusion of the APOE-e4 burden im-
proved all models significantly (padj < 0.01) with the excep-
tion of WBV volume decline in Months 3 (padj = 0.8) and 6 
(padj = 0.1) in the HC group (results not shown).

Brain volume is decreasing faster in Alzheimer’s disease 
subjects than in MCI subjects, where it is decreasing faster 
than in healthy individuals (Fig. 3). The study of polygenic 
risk suggests that many small effect size Alzheimer’s disease 
variants beyond APOE are a predictor of atrophy acceler-
ation in healthy individuals (and perhaps also MCI subjects). 
This is in many ways a surprising result as one would expect 
the Alzheimer’s disease cohort (and perhaps the MCI cohort) 
to be comprised of persons whose WBV decrease is acceler-
ating as the pathology develops. Some caution is warranted 
here given that Alzheimer’s disease cohort subjects have few-
er longitudinal scans, thereby biasing the computed gradient. 
That said, the HC correlation may indicate that genetic ef-
fects modulate the speed at which brain cells atrophy during 
healthy stages. What we do not know is whether a larger at-
rophy acceleration while healthy makes Alzheimer’s disease 
inevitable, more likely or in no way indicative of down-
stream pathology. However, it is reassuring that the AD- 
PRS in HC is corroborated in the mixed-effects models, 
which are more flexible, embodying both random intercepts 
and random slopes so as to more realistically capture the 
subject-level heterogeneity.

The BSI data available through ADNI are not mid-point 
symmetric: WBV change going from Scan A-to-C is not the 
same as adding WBV volume changes in Scan A-to-B and 
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Scan B-to-C. The implication is that one has to be cautious 
about saying anything about the time-varying nature of these 
non-symmetric BSIs. We investigated this effect using sym-
metric BSI data56 for the same ADNIGO and ADNI2 subjects 
(n = 572; 3T, accelerated, identical scanner protocol, remov-
ing BSI < 0, only Months 3, 6, 12 and 24 post-baseline). 
Repeated analysis of this symmetric BSI data resulted in the 
same statistically significant outcomes as described in this 
work (results not shown). The only exception to this is that 
the correlation between baseline WMH and WBV atrophy 
in the HC group was no longer replicated. We are also cau-
tious about overinterpreting our results: while the BSI does 
measure changes at the border of the brain, it does not 
mean that the change has actually occurred there. Some tissue 
may have been lost from the middle of the white matter, with 
this change being measured at the edge of the brain.

Given that both whole-brain atrophy and whole-brain at-
rophy acceleration are both shown to be correlated with 
polygenic scores, it may be that utilizing such genetic sum-
mary information (perhaps alongside other routinely col-
lected health measures) can 1 day be used at birth (or 
middle age) as a predictor of late-life cognitive problems.57

If so, and if such risk is driven in part by cardiac health, it 
may be that this risk can be reduced through wellness and be-
haviour changes in, early to mid-life.58 Of course, this does 
depend on whether healthy individuals with such brain 
changes go on to develop dementia, something only larger 
longitudinal studies over many years can answer.

Conclusions
The link between CAD and Alzheimer’s disease is gaining 
more attention, with one recent study identifying 23 brain re-
gions associated with both cardiovascular disease and 
Alzheimer’s dementia.59 WMH loads have been linked to 
hypertension, hypercholesterolaemia and body mass index 
in middle-aged subjects, all of which also contribute to car-
diac health.60 While our work offers some support for the 
importance of genetic variants known to affect coronary 
heart disease also being involved in cognitive decline in the 
elderly, more data are needed to validate these findings. 
Similarly, the usefulness of WMHs and atrophy accelera-
tions needs to be investigated further. In particular, serial 
WMH measures alongside WBV changes would be a more 
realistic guide to cerebral changes. Further understanding 
of this pathway from gene to brain will come from cardiac 
imaging of the heart linked to CAD genetics alongside rou-
tinely measured biomarkers over the life-course of many in-
dividuals, such as those found in large-scale, data-rich, 
longitudinal cohort studies.
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