
Research Article Journal of Optical Communications and Networking 1

An agent-based distributed protocol for resource
discovery and allocation of virtual networks over elastic
optical networks
DANILO BÓRQUEZ-PAREDES1,*, ALEJANDRA BEGHELLI2, ARIEL LEIVA3, NICOLÁS JARA4, ASTRID
LOZADA4, PATRICIA MORALES4, GABRIEL SAAVEDRA5, AND RICARDO OLIVARES4

1Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Viña del Mar, Chile
2Optical Networks Group, Department of Electronic and Electrical Engineering, University College London, UK
3School of Electrical Engineering, Pontificia Universidad Católica de Valparaíso, Chile
4Department of Electronic Engineering, Universidad Técnica Federico Santa Maria, Valparaiso, Chile
5Department of Electronic Engineering,Universidad de Concepcion, Chile
*danilo.borquez.p@uai.cl

Compiled November 30, 2022

Network virtualisation is a key enabling technology for "Infrastructure as a Service" provisioning, increas-
ing the flexibility and cost savings offered to customers. By extending the concept of server virtualisation to
the network infrastructure, the allocation of different, independent virtual networks over a single physical
network is carried out on demand. A fundamental challenge in network virtualisation systems is to choose
which physical nodes and links to use for hosting virtual networks into the physical infrastructure, known
as the “virtual network allocation” problem.
All virtual network allocation proposals on elastic optical networks assume a centralised operation,
deploying a single node with access to the network state global information and assigning resources
accordingly. However, such configuration might exhibit the inherent problems of centralised systems:
survivability and scalability.
In this paper we present a distributed protocol for resource discovery, mapping and allocation of network
virtualisation systems. The distributed protocol is generic enough as to be used with different substrate
networks. However, in this article it has been adapted to work over an elastic optical network infrastructure,
where further considerations regarding the spectrum continuity and contiguity constraints must also be
taken into account.
The distributed protocol is based on the concept of alliances: upon the arrival of a virtual network request,
agents located in the physical network nodes compete to form the first alliance able to host the virtual
network. Because the first alliances to be formed are also the ones composed by nearby nodes, a good
network resource usage is achieved. The feasibility of the distributed protocol was studied by evaluating
its ability to successfully establish virtual networks within acceptable time and with low bandwidth
consumption from the coordination messages.
© 2022 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Network virtualisation consists of several virtual networks co-
existing over a common physical substrate. It is a crucial tech-

nology to implement the idea of “Infrastructure as a Service”
(IaaS) [1]. In IaaS systems, customers (also known as tenants)
pay for computing and network infrastructure as they need them
and the infrastructure provider is in charge of maintaining such

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Research Article Journal of Optical Communications and Networking 2

physical resources. Tenants can pay for simple services as a
single virtual machine with specific computing capacity or more
complex ones as an entire virtual network, where an arbitrary
topology must interconnect a set of nodes. Tenants are unaware
of the location and the specific hardware/software characteris-
tics of the resources being used [2] and have the flexibility of
requesting an increase or decrease of resources according to the
dynamics of their needs [3].

Initially, the idea of network virtualisation was proposed as
a way to face Internet ossification [4, 5], testing new network
protocols in real production settings rather than small testbeds.
However, the application of virtual networks has now expanded
to new directions, such as wireless networks (including mod-
ern 5G networks), fiber-wireless (FiWi) access networks, and
optical data center networks (ODCN) [6, 7]. A commercial net-
work virtualisation platform is presented in [8], with a set of
implementation strategies and features.

In a nutshell, network virtualisation systems are composed
of two main parts: a physical substrate and a set of independent
virtual networks established and released on demand over the
physical network. The physical substrate, in charge of the actual
data processing and transmission, is made of nodes intercon-
nected by bidirectional links. Virtual networks are also made of
nodes and links embedded in the physical nodes and links. Each
virtual node must be allocated to a physical node with enough
capacity to host it. Each every virtual link must be mapped into
a physical path.

In virtual networks, the specific meaning of node and link ca-
pacities depends on the characteristics of the substrate network
considered. In the context of optical networks, some previous
works assume physical nodes are optical switches in charge of di-
recting optical signals from one input port to a given output port.
In this case, the capacity of nodes can be measured in terms of
the number of switching matrices or ports/transceivers, as done
in [9–11]. In other cases, where a pair optical switch-electronic
node is considered (for example, cloud sites connected by the op-
tical transport network), the node capacity usually refers to the
processing capacity or memory storage of the electronic node,
as in [12, 13]. Analogously, depending on whether the substrate
network is a fixed-grid or a elastic optical network, link capacity
might refer to the number of wavelengths [9] or number of
spectrum slots [10, 12, 13]. In this paper, we will refer to the
node capacity as cloud capacity. That is, processing capacity or
memory storage. Please, notice that the concept could also be
used in generic terms, since the structure of the virtual network
allocation algorithm proposed here does not change with the
type of node considered. In terms of link capacity, constraints
associated to the capacity of links vary depending on the sub-
strate network. For example, fixed-grid optical networks need to
meet the continuity constraint and elastic optical networks need
to meet the continuity and contiguity constraints. In any case,
the resource allocation must check the suitability of a candidate
path, considering the relevant constraints.

Figure 1 shows a schematic of a network virtualisation system
over an elastic optical network. Elastic optical networks divide
the spectrum of optical communications in frequency slots of
12.5 GHz or 6.25 GHz [14](represented by the squares next to
the physical substrate links in the figure) and efficiently allocate
spectrum according to the bitrate of connections. By doing so,
they can significantly improve the bandwidth utilisation of the
optical substrate compared to fixed-grid optical networks [14–
16]. Given the ever-increasing data traffic exhibited by current
networks, elastic optical networks are thus considered one of the

Fig. 1. Virtual network allocation

best alternatives for future optical networks. Thus, in this work,
we assumed an elastic optical substrate network considering the
continuity and contiguity constraints into the resource allocation
process.

Figure 1 illustrates the mapping of two virtual networks over
an elastic optical physical substrate made of five nodes and five
bidirectional links. Each physical link has a capacity equal to
8 frequency slot units (FSUs). The upper section shows two
virtual networks established in the physical substrate: a 4-node
ring and a 3-node bus. It is assumed that the amount of FSUs
required by each virtual link of the ring and the bus topologies
is equal to 2 and 3 FSUs, respectively. The dotted lines represent
the allocation of virtual links to physical links, considering the
continuity and contiguity constraints of elastic optical networks.
Each virtual link has been mapped to a physical link, except for
one virtual link in the 4-node ring that has been mapped to a
physical path (a sequence of physical links), because the corre-
sponding virtual nodes have been mapped into non-adjacent
nodes in the physical substrate. Both virtual networks can have
virtual links established in the same physical link (as long as
there is enough capacity in the physical link to serve both virtual
links). For the sake of clarity, the mapping of virtual nodes is not
made explicit in the figure, but it can be deduced by identifying
the physical nodes at the extremes of the physical links hosting
the corresponding virtual links.

A critical challenge in implementing network virtualisation
systems is that of resource discovery, mapping and allocation
of resources to the different virtual networks. That is, deciding
which physical node/link will host a specific virtual node/link,
considering the network state and the constraints imposed by
the physical network. To date, most proposals considering an
optical substrate assume global network knowledge through
a centralised implementation [9, 10, 12, 17–20] which is pre-
ferred in small networks. For instance, considering a Software-
Defined Network (SDN) architecture or hybrid models relying
on GMPLS RSVP-TE and OSPF-TE protocols. [10, 20]. However,
centralised systems do not scale well and exhibit survivability
problems at the control plane level [7, 21].

Regarding scalability, the request processing capacity of a
centralised system is limited by the computer architecture of
the central node and the computational complexity of the cen-
tralised resource allocation algorithm. The simplest centralised
algorithms [17] grow linearly with the number of physical and

Research Article Journal of Optical Communications and Networking 3

virtual nodes, the number of virtual links and the physical link
capacity (number of slots). Hence, big size substrate networks
with increased spectrum capacity (something very probable with
the emergence of multiband elastic optical networks [22]) deal-
ing with big virtual network topologies will naturally require
longer running times. This scenario combined with a highly
dynamic environment, where virtual network requests arrive
faster than the central node request processing speed, will lead
to requests being blocked due to central node overload rather
than due to lack of network capacity. In terms of survivability,
a failure in the central node in charge of the resource allocation
task renders the entire network inoperative. Usually, the solu-
tion to this failure situation consists on adding a backup central
node. Under normal conditions, such backup node might also
be used as a second processing unit, to also improve scalabil-
ity. However, this adds to the cost of the system. Additionally,
centralised systems may not react fast enough to recover from
network components failures.

Distributed approaches overcome the scalability and control
plane survivability issues of centralised systems. In terms of
scalability, by distributing the request processing among the net-
work nodes, a faster overall request processing can be achieved.
On one side, nodes execute computationally simpler tasks than
those executed by a central node. On the other, different requests
can be processed on different parts of the network. Regarding
survivability, a failure in any of the network nodes in charge of
the resource allocation task only affects the participation of that
node and its adjacent links in the allocation task, without stop-
ping the whole allocation process from progressing in other parts
of the network. Additionally, failures are quickly detected (and
eventually recovered) by local nodes. However, a distributed
approach might become unfeasible because of the time required
to coordinate the discovery and allocation processes, the obso-
lescence of information, and the amount of bandwidth used to
exchange coordination messages.

This paper presents a distributed protocol for resource discov-
ery and allocation in a network virtualisation system over elastic
optical networks. To the best of the authors’ knowledge, this is
the first time that a distributed protocol is proposed for this type
of substrate. Although there are a few previous works presenting
distributed approaches in generic substrates, for example [23–
27], they are either not fully distributed (relying on delegation
nodes to perform the virtual network allocation task [24, 27]),
concentrate on just one aspect of the allocation process (as [26],
that focuses only in the virtual link mapping stage), assume un-
limited capacity in the substrate network [23] or use strategies
that result in virtual nodes being mapped in far away physical
nodes [24, 25, 27], with the consequent inefficient use of link
capacity. In contrast, our proposal is fully distributed, covers
the 3 stages of discovery, mapping and allocation of resources,
considers the limited capacity of physical resources and use a
cooperative strategy that leads to virtual nodes being mapped
in neighbour nodes.

We study the feasibility of the proposed protocol in terms
of its ability to establish virtual networks, the time it takes to
do so and the amount of messages exchanged to perform the
discovery, mapping and allocation tasks. Its performance is also
compared to that of a centralised approach.

The rest of this paper is structured as follows: Section 2
presents the network models and the problem statement. Sec-
tion 3 presents an overview of the distributed protocol, whilst
Section 4 describes the behaviour of the agents. Section 5
presents the performance evaluation of the protocol in terms

of its ability to establish virtual networks and the time and num-
ber of messages required to discover and allocate resources.
Section 6 concludes the paper.

2. NETWORK MODELS AND PROBLEM STATEMENT

A. Physical network model
A physical network is modelled as a graph P =
(NP, LP, CPn, CPl), where NP and LP represent the set of
physical nodes and links, respectively; CPn and CPl represent
the capacity of each physical node and link, respectively. The
capacity of a physical node can correspond to different hardware
components, depending on what type of node is considered.
Given that the algorithm proposed here is easily adaptable to
any of those situations, we will use the term “node capacity” in
a generic way from now on. Link capacity is expressed in terms
of frequency slot units.

B. Virtual network model
A virtual network is modelled as a graph V =
(NV, LV, CVn, CVl), where NV and LV represent the set
of virtual nodes and links, respectively. CVn and CVl represent
the capacity required by each virtual node and link, respectively.

C. The virtual network allocation problem
The virtual allocation task consists on finding a set of physical
nodes and links where the current virtual network request can be
served. Each virtual node must be hosted by a different physical
node. Each virtual link must be transformed to an optical path
connecting the physical nodes where the virtual nodes at the
extreme of the virtual link have been hosted.

A virtual network establishment request is defined by the
tuple (VNID, CVl , A, CVn), where VNID is the virtual network
ID, CVl is the number of slots to be allocated to each virtual
link, A is the adjacency matrix describing the topology of the
virtual network, and CVn is a number representing the capacity
required by each virtual node, such as the processing capacity
or memory required.

The objective of the virtual network task is maximising the
number of virtual networks established, subject to the node and
link capacity constraints described by Equations 1 and 2 below.

CPn ≥ ∑
∀j|VNj∈Bn

CV j
n , ∀n ∈ NP (1)

CPl ≥ ∑
∀j|VNj∈Dl

CV j
l , ∀l ∈ LP (2)

where CPn and CPl represent the capacity of a physical node and
a physical link, respectively, CV j

n and CV j
l are the node capacity

and the link capacity of the j-th active virtual network, and Bn
and Dl are the set of active virtual networks using capacity of
physical node n and physical link l.

In the case of an elastic optical network, the contiguity and
continuity constraints must also be met. That is, the frequency
slots must be contiguous and occupy the same spectral position
in each link of the path.

D. Virtual network release
In fully dynamic environments, virtual networks have a limited
holding time. In that case, a virtual network release request is
defined only by the VNID. Upon receiving a release request,
allocated resources must be freed.

Research Article Journal of Optical Communications and Networking 4

In the following section, a distributed protocol that solves the
problem stated above is presented.

3. THE DISTRIBUTED PROTOCOL: AN OVERVIEW

The protocol proposed here is based on an Agent-Based Model
(ABM) [28], composed of autonomous individuals (agents) in-
teracting with each other and following local rules to achieve
a common goal. Such a common goal is to successfully estab-
lish virtual networks, satisfying the capacity and continuity and
contiguity constraints of the elastic optical substrate while effi-
ciently using physical resources. The interaction between agents
is carried out by exchanging control plane messages, similar to
what RSVP-TE or any other signalisation protocol envisaged for
elastic optical networks does [18].

In this work, each agent resides in a physical node and has
unique ID (a number between 1 and N, the number of physical
network nodes) associated with it. The agent stores the capacity
of its physical node, the spectrum availability of the links di-
rectly connected to its corresponding physical node, and several
state variables needed for the resource discovery, allocation, and
release processes.

In one of the physical nodes there is a majordomo-like process
in charge of receiving virtual network requests, adding them a
unique ID and distributing them to all the network nodes. In
a SDN-based infrastructure, such majordomo process would
be analogous to a SDN Controller, although with diminished
capabilities since its task is reduced to send requests to nodes.
To do so, it could use, for example, the OpenFlow protocol.

Figure 2 shows a high-level representation of the main ac-
tions taken by the distributed protocol when a virtual network
establishment request is sent by the majordomo-process to all
agents. Agents are in idle state, unless they are activated by
either receiving a virtual network establishment request or a
virtual network release request from the majordomo. Figure 2a
shows a virtual network request arriving to the physical network.
The thick arrow represents the request being distributed to all
agents. Immediately after receiving a establishment request,
agents transit from an idle state to an active state and check their
node capacity. Agents residing in a node without enough capac-
ity, disqualify themselves from the allocation process (Figure 2b).
Next, each agent with enough capacity aims to form alliances
with neighbouring agents to host the virtual network. This is
done by exchanging messages between neighbouring agents, as
shown in Figure 2c. By coordinating the building of an alliance
with neighbouring agents (instead of agents located in distant
nodes), the chances of using the minimum possible amount of
resources are increased. As agents agree on being allies, alliances
are enlarged, as shown in Figure 2d. When an alliance has a
high enough number of physical nodes, the allocation process is
performed. If successful, the virtual network is allocated (Figure
2e) and agents transit to the idle state again (Figure 2f).

When receiving a virtual network release request (not shown
in Figure 2), each agent hosting a node of such virtual network
updates the state of its allocated resources to signal that the
released resources are now available for future establishment
requests.

In the following section, a detailed description of the steps
taken by each agent when receiving a request is given.

4. THE DISTRIBUTED PROTOCOL: AGENTS BE-
HAVIOUR

The distributed protocol works by the coordinated action of each
agent in the network. Figure 3 describes the local computation
performed by each agent after receiving a virtual network estab-
lishment request. It can be seen that each agent first goes through
a discovery stage (where neighbours are detected and eventually
included in the alliance) followed by an allocation stage (where
the node mapping and slot allocation is performed). Each agent
has access to their own set of state variables, described in Table 1.
The meaning of the state variables will be explained in the fol-
lowing paragraphs, where each agent state evolution during the
discovery, allocation, and release processes is described. Thus,
the order used to list the state variables in Table 1 is the order
they appear in the following paragraphs of this section.

A. Resource discovery stage
During the stage, the agent transits through the states Begin,
Vote, Proposing alliance and Synchronisation, described below.

Begin: This is the starting state, where all agents are idle.
This is the state they are found when they are not discovering,
allocating or releasing resources.

In this state, every agent is the only member of its own al-
liance, its state variable Confirmed_allies only contains the ID of
the agent itself and, all other state variables are either empty or
equal to zero.

When a new virtual network request is received (Figure 2a),
each agent compares the available capacity of its physical node
with the capacity required by the nodes of the virtual network
(indicated by the parameter CVn in the request). The available
capacity is obtained by subtracting the amount of capacity al-
ready used (stored in the state variable Allocated_nodes) from the
physical node capacity. If the physical node has enough capacity
to host a virtual node, then the agent changes its status to “Vote”.
Otherwise, it remains in the “Begin” state (Figure 2b).

Vote: Immediately after transiting to the “Vote” state, the
agents select a leader for their alliance. The leader is simply the
node with the lowest ID and is in charge of coordinating the
process of alliance building. Since all agents have a list of their
allies in the state variable Confirmed_allies, the selection of the
alliance leader does not need any message exchange.

Once the leader is selected, each ally (an agent that is an
alliance member) starts a resource discovery process focused on
finding new nodes to join the alliance. That is, the ally selects an
adjacent node as a candidate to join its alliance. Adjacent nodes
whose IDs are included in the state variable Forbidden_allies are
not considered in this search. The one connected to the link
with the best fitness function value is selected among all allowed
adjacent nodes. Such function can be any function that takes
into account aspects like the link spectrum utilisation and length.
The agent then stores the ID of its candidate node in its state
variable Best_candidate and sends a [vote] message to the alliance
leader.

Figure 4a shows the format of a [vote] message, that is a 9-
byte message made of the following fields: the first byte is an
8-bit value used to identify the type of message (00000000, for
[vote] messages), the second 4 bytes are used to store an integer
number corresponding to the ID of the node connected to the
best candidate node and the next 4 bytes are used to store the
integer value of the fitness function associated to the candidate
node.

If the agent does not find a suitable adjacent node to join

Research Article Journal of Optical Communications and Networking 5

(a) Agents in idle state (b) Agents without enough capacity
discard themselves from the process

ally
?

−−→
ally?←−−

ally?
←
−−
−−→

ally?
(c) Agents start building alliances

(f) Agents in idle state

sto
p

←−−

(e) Successful alliance built. Virtual
network allocated. Distributed pro-
cess ends

ally
?

−−→
ally?−−→←−−ally?

(d) Agents becoming allies

Fig. 2. Overview of the processing of a virtual network establishment request by the distributed protocol

Synchronization Proposing
alliance

Vote

Allocation

Begin

Local process
finished

Wait

Alliance process
finished

Allocation stage

Discovery stage

Virtual network request

Fig. 3. Agent state diagram

07

Message type

Source (ID)

Fitness

(a) Vote message

07

Message type

(b) Chosen, Negative
1-4 and Explore mes-
sages

07

Message type

Source (ID)

(c) Proposal and
Local finished mes-
sages

07

Message type

Number of allies

Ally 1 (ID)

.

.

.

Ally N (ID)

(d) Affirmative response and
Synch messages

07

Message type

Source (ID)

Timestamp

(e) Alliance finished message

Fig. 4. Protocol messages format

Research Article Journal of Optical Communications and Networking 6

State variable name Description

Confirmed_allies List of physical nodes IDs that are al-
ready part of the alliance.

Allocated_nodes List of 2-element vectors. Every duple
contains the ID of a virtual network
that has successfully established a vir-
tual node in the node the agent resides
and the node capacity allocated to that
virtual node.

Forbidden_allies List of IDs of physical nodes that can-
not be selected to be part of the al-
liance.

Best_candidate Integer variable that stores the identi-
fication of the physical node selected
to be part of the alliance.

Votes_received Integer variable that stores the num-
ber of votes received.

Chosen Boolean variable that indicates if the
ally has been chosen to make the con-
nection with the new ally.

Node_finished Boolean variable that indicates if the
node has finished its process.

Allocating_link Boolean variable. Equal to True if the
node is in the process of allocating link
resources.

Wait_time Integer variable that stores a random
value corresponding to the time that
the node must wait in case of dead-
lock.

Alliance_finished Boolean variable that indicates if the
alliance has finished its allocation pro-
cess.

Allocated_links List of 4-element vectors. Every 4-
tuple contains the ID of a virtual net-
work, the ID of a link, the first slot
of the link allocated to the virtual net-
work, and the number of slots allo-
cated.

Table 1. State variables of each router

the alliance (this happens when all adjacent nodes are already
members of this alliance or in the states “Local process finished”,
“Allocation”, “Wait” or “Alliance process finished”), it sends a
null [vote] message (all fields equal to zero) to the leader.

As the leader receives the [vote] messages, its state variable
Votes_received increases accordingly. Once all [vote] messages
are received, the leader selects the candidate node with the
best fitness value and sends a [chosen] message to the ally that
proposed that candidate node. Then, the leader resets its state
variable Votes_received to 0. Figure 4b shows the format of a
[chosen] message: just a 1-byte field to store the message ID
(equal to 00000001 for a [chosen] message). Upon receiving a
[chosen] message, the ally changes its state variable Chosen to 1
and transits to the “Proposing Alliance” state, where it sends a
[proposal] message to its candidate node to propose it to join the
alliance (Figure 2c). Figure 4c shows the format of a [proposal]
message: a 5-byte message with two fields. A 1-byte field storing
the message ID (equal to 00000010 for a [proposal] message) and
a 4-byte field to store an integer number corresponding to the ID
of the node sending the message. The allies that are not chosen to
send the [proposal] message remain in the “Vote” state, waiting
for a [synch] message.

Depending on the response message received from its candi-
date node, the ally can transit to different states:

• The reception of a [negative 1] message results in the ally
remaining in the “Proposing Alliance” state, where it keeps
on sending a [proposal] message and waits for an eventual
acceptance due to eventual changes in the candidate node
state. As shown in Fig. 4b, a [negative 1] message is a 1-byte
message storing the message ID (equal to 00000011 for a
[negative 1] message).

• The reception of a [negative 2] message means the candidate
node will not join this alliance at any point of the allocation
process (e.g., because of capacity exhaustion). As shown
in Fig. 4b, a [negative 2] message is a 1-byte message stor-
ing the message ID (equal to 0000000100 for a [negative 2]
message). The reception of a [negative 2] message leads the
ally to include the ID of the candidate node to the list For-
bidden_allies and then transit to the “Vote” state, where the
whole process of selecting a new candidate node is started
again.

• The reception of an [affirmative] message makes the ally
and the candidate node change their state to “Synchronisa-
tion”. An [affirmative] message can only be received from a
node that has been, in turn, sending [proposal] messages to
the ally. As shown in Fig. 4d, an [affirmative] message is a
4N+1-byte message (N: number of physical nodes) made of
the following fields: a 1-byte field used to identify the type
of message (equal to 00000101 for an [affirmative] message)
and 4N bytes to store the ID of the current members of the
alliance.

Figure 5 shows an example of two incomplete alliances ex-
ecuting the resource discovery process. In Alliance 2, agent 1
(Node ID 1 in the figure) is chosen to send a proposal to agent 4
in Alliance 1 to merge both alliances. When agent 4 receives the
proposal, it executes its own discovery process to find its best
candidate to join Alliance 1. Thus, it replies with a [negative 1]
message, and thus, agent 1 keeps sending [proposal] messages.
When agent 4 finishes its discovery process, it sends its [vote]
message (Node with ID 1) to its alliance leader (agent 3, the node

Research Article Journal of Optical Communications and Networking 7

Node ID: 3 Node ID: 4 Node ID: 1

[vote]

[chosen]

[proposal]

[affirmative]

[synch]

[synch]

[proposal]

[negative 1]

[proposal]

[negative 1]

[proposal]

[affirmative]

Alliance 1 Alliance 2

Choose
best
candidate

Choose
candidate

Fig. 5. Discovery sequence diagram

with the lowest ID in Alliance 1). Agent 3 processes the votes
and selects the best candidate node to join the alliance. Such
node is Node with ID 1. Thus, agent 3 sends a [chosen] message
to agent 4. Finally, agent 4 sends a proposal to the best candidate,
receiving an affirmative response.

Synchronisation: In the “Synchronisation” state the ally and
its candidate node exchange information about the members of
their alliances and these alliances are merged (Figure 2d). To
do so, the node with the lowest ID between them (agent 1 from
Alliance 2 in the example of Figure 5) sends a [synch] message to
all members of the new alliance with a list of the new members.
As shown in Fig. 4d, a [synch] message is a 4N+1-byte message
(N: number of physical nodes) made of the following fields: a 1-
byte field used to identify the type of message (equal to 00000110
for a [synch] message) and 4N bytes to store the ID of all the
members in the alliance. Upon receiving this message, every
ally updates its state variable Confirmed_allies to include the new
members.

Once an alliance has a number of allies greater than or equal
to the number of virtual nodes required by the virtual node
request, all allies change their status to “Allocation”. Otherwise,
all allies transit to “Vote” again.

B. Resource allocation stage
During this stage, the agents of an alliance with enough physi-
cal nodes perform the node mapping and spectrum allocation
(states Allocation and Wait). On successful achievement of these
tasks, they transit to Local process finished and Alliance process
finished.

Allocation:In this state, each ally rejects any [proposal] mes-
sage with a [negative 2] response, as the alliance has now a high
enough number of nodes. Additionally, each ally attempts to al-
locate the resources required by the virtual network (processing
units in the physical node and number of contiguous slots in the
corresponding physical links).

First, each ally sorts the ID of its alliance members (including
itself) from lowest to largest. Next, it identifies its position in
the ordered ID list. The physical node in the i-th position will
be hosting the i-th virtual node included in the virtual network
request. Thus, the state variable Allocated_nodes is updated by
adding a 2-vector storing the ID of the virtual network and the
capacity allocated to it in this node. If the alliance has more
nodes than the number required by the virtual network request,
the nodes not being assigned to a virtual node change their
status to “Local process finished”, update their state variable

Node_finished to True, and send a [local finished] message to
its leader. As shown in Fig. 4c, a [local finished] message is a
2-byte message storing the message ID (equal to 00001010 for a
[local finished] message) and a 4-byte integer field to store the
ID of the node. Once the agent knows what virtual node will
be allocated to its physical node, the process of allocating the
spectrum resources required by its adjacent virtual links start
by changing the state variable Allocating_link to 1. The agent
obtains the information of what nodes need to be connected
from the adjacency matrix A contained in the request.

To avoid replicated allocation of spectrum resources by the
virtual nodes at the extremes of the same virtual link, only the
node with the lowest ID among them can start the link allo-
cation process. The node with the highest ID sends a [local
finished] message to the alliance leader and does not participate
in the link allocation process. The lowest ID node sends an [ex-
plore] message to the destination node (connected at the other
extreme of the virtual link) using a pre-computed path. Upon
receiving the [explore] message, each physical node along such
pre-computed path changes its state variable Allocating_link to
True and updates the link slot availability information. If there
are not enough slots in one of the links, a [negative 3] message
is sent back to the ally, and the state variable Allocating_link is
changed back to False in every node receiving the [negative
3] message along the backward route. As shown in Fig. 4b, a
[negative 3] message is a 1-byte message storing the message ID
(equal to 00000111 for a [negative 3] message).

If the [explore] message arrives successfully at the destina-
tion node, the agent in this node sends an [affirmative] message
back to the agent in the source node. Upon receiving the [af-
firmative] message, every agent along the route allocates the
corresponding spectrum resources and changes its state variable
Allocating_nodes to False.

When the agent state variable Allocating_link is equal to True,
the agent rejects any [explore] message asking it to initiate an-
other link allocation process (to establish another virtual link)
by sending a [negative 4] message back. As shown in Fig. 4b,
a [negative 4] message is a 1-byte message storing the message
ID (equal to 00001000 for a [negative 4] message). The phys-
ical node receiving the [negative 4] message changes its state
to “Wait”, where it waits for a random number of clock ticks –
stored in the state variable Wait_time - before transiting again
to the “Allocation” state for a new resource allocation attempt.
When a physical node successfully terminates the resource allo-
cation process, it changes its status to “Local process finished”
and sends its leader a [local finished] message.

Once the leader receives as many different [local finished]
messages as the number of nodes on its alliance, it sends
an [alliance finished] message to all the physical network
nodes to announce that the alliance has successfully allocated
the resources required by the virtual network. As shown in
Figure 4e, an [alliance finished] message is made of a 1-byte
field used to identify the type of message (equal to 00001100
for an [alliance finished] message), a 4-byte integer to store the
ID of the leader sending the message, and an 8-byte integer
to store the timestamp representing the moment when the
[alliance finished] message was sent. Upon receiving the
[alliance finished] message, all the members of the successful
alliance change the state variable Alliance_finished to 1, and the
members of the remaining alliances release eventually allocated
resources. After this, all physical network nodes transit to
the “Begin” state, signalising they are ready to start a new
discovery/allocation process or a release process. For the sake

Research Article Journal of Optical Communications and Networking 8

of clarity, this transition from any state to the “Begin”state is not
depicted in Fig. 3.

Wait: To avoid two agents attempting simultaneous alloca-
tion of link resources, when an [explore] message arrives at a
node that is already in the allocation process (state variable Allo-
cating_link equal to True, a [negative 4] message is returned to
the sending node. Upon receiving a [negative 4] message, the
node changes its status to “Wait”. In this state, the sending node
waits a random time between 1 and 20 ticks before sending again
an [explore] message, thus continuing its assignment. This way
of solving the problem is inspired by the IEEE 802.3 standard for
Ethernet networks [29].

Node ID: 1 Node ID: 4 Node ID: 3

[explore]

[affirmative]

[explore]

[affirmative]

[local finished] [local finished]

[alliance finished]

[alliance finished]

Alliance 2

[alliance
finished]

Fig. 6. Allocation sequence diagram

Figure 6 shows an example of the link allocation process of an
alliance made of 3 nodes (nodes 1, 3, and 4). Let us assume that
a virtual link must be established between the node pairs 1-3
and another between 1-4. Each agent starts the link allocation
process: agent 1 (that is also the leader of the alliance) sends an
[explore] message to nodes agents 3 and 4, and receives an [af-
firmative] message from them. After receiving the [affirmative]
messages, agent 1 allocates resources on both links connected
to agents 3 and 4. Meanwhile, since agents 3 and 4 do not have
any virtual link to allocate, they send a [local finished] message
to the alliance leader (agent 1), and transit to the “Local process
finished state”. When the leader receives all its allies’ [local
finished] messages, it sends an [alliance finished] message to all
the network nodes.

Local process finished: An agent transits to this state after
sending a [local finished] message to the leader of its alliance.
When the leader receives several [local finished] messages equal
to the number of allies, it transits to the Alliance process finished
state.

Alliance process finished: Only alliance leaders transits to
this state. At this state, the leaders sends an [alliance finished]
message to all the network agents and the majordomo. After
sending the [alliance finished], the leader transits to the Begin
state.

When an agent receives an [alliance finished] message, it
will carry out the following steps (depending on whether the
message is received from its own leader or not and its state):

• If the [alliance finished] message is received from the leader
of the agent’s alliance, then the agent transits to the Begin
state.

• If the [alliance finished] message is received from the leader
of another alliance and the agent is the leader with a times-
tamp greater than the timestamp in the [alliance finished]
message, it sends a release request to all its allies (after re-
leasing the resources, these allies transit to the Begin state).

• If the [alliance finished] message is received from the leader
of another alliance and the agent is not the leader of its
alliance, then this agent does nothing.

If, after the arrival of the virtual network request, To ticks
have been elapsed without a message Alliance_finished being
sent to the majordomo, the virtual network request is rejected.
Such timeout-based control is used (instead of an explicit control
mechanism that would need additional messages exchange) to
avoid further complexity.

C. Resource release
Figure 7 describes the behaviour of each agent after receiving a
virtual network release request from the majordomo process.

Begin Release

Virtual network release

Fig. 7. Agent state release diagram

When an agent receives such a release request, it transits
to the Release state. A release request stores the ID of the
virtual network to be released. Thus, each agent checks whether
such ID is in the list of their state variables Allocated nodes and
Allocated links. If so, the corresponding resources are released
by deleting those elements from the lists. After this, the agent
transits to the Begin state.

Please notice that, although the distributed algorithm has
been described in the context of elastic optical networks, it can
be easily modified to be applied to different physical substrates.
This can be done by changing 3 modules. First, the module in
charge of detecting if physical nodes have enough capacity to
host a virtual node (action taken in the Begin state) must be
adapted to the specific nodes considered. Second, the module
responsible for selecting the next ally (using a suitable fitness
function in the Vote state). Finally, the module performing the
allocation of link resources (Allocation state).

5. CASE OF STUDY

To demonstrate the feasibility of the distributed protocol here
proposed, we implemented it using the multi-agent simulation
environment Netlogo [30]. In Netlogo, the following configura-
tion was used:

• Physical substrate. The physical substrate is an elastic op-
tical network. The network topology used was NSFNet,
composed of 14 nodes and 21 bidirectional links. This topol-
ogy is the most commonly used in the literature [17]. All
physical nodes are equipped with the same capacity (10, 20,
30, 40, or 50 units), and each physical link is equipped with
100 slots. In each physical node, there is an agent governed
by the rules described in the previous sections.

Research Article Journal of Optical Communications and Networking 9

Fig. 8. NSFNet topology

• Virtual networks. Each virtual network is defined by its
adjacency matrix A (virtual nodes connected by virtual
links) and capacity requirements for virtual nodes and vir-
tual links (number of slots). Analogously to previous work
where a limited set of topologies is considered (e.g. [31–
33] and [34]), for this case of study, two virtual topologies
were considered: buses and rings. Virtual nodes require
1 capacity unit. Virtual links require 2 or 3 spectrum slots
that correspond to a bitrate of 40 and 100 Gbps using 8-
QAM [35]. Each simulation experiment was executed using
the same virtual network topology (e.g., rings of 5 nodes),
requesting the same number of slots per virtual link (e.g.,
2 slots) and the same capacity in each node (e.g., 1 unit of
capacity).

• Traffic generation. Incremental traffic is assumed. That
is, once a virtual network is established on the physical
substrate, it remains established indefinitely (i.e., virtual
networks never request a release of the allocated resources).
A new virtual network establishment request is generated
by the majordomo only after the previous request has been
processed. Requests sent by the majordomo are assumed
to be transmitted instantaneously to all the nodes in the
network. In this way, all nodes start the execution of the
distributed algorithm simultaneously.

• Fitness function. The best candidate to join the alliance is
the neighbour node connected to the link with the highest
spectrum availability, measured as:

Al = CPl − ∑
∀s∈l

as (3)

where Al is the number of slots available in link l, CPl is
the total number of slots of link l (in this case of study, this
is equal to 100 for all network links) and as is equal to 1 if
slot s is used and 0 if not. If two links have the same slot
availability, the shortest one is chosen as the best candidate.

• Agent allocation information. The agent has access to a
list of pre-computed routes (one for each other node), used
together with the first fit algorithm. In addition a single
modulation format was available for every connection. All
routes are assumed to be under the optical reach determined
by the modulation format.

• Simulation time. A simulation experiment ends immedi-
ately after the first request reject. That is, when 5000 clock
ticks have passed without the system establishing a virtual
network. As a reference, the longest time elapsed for a vir-
tual network to be established was approximately equal to
500 ticks in the simulation runs.

• Simulation experiments. For each simulation configuration
(defined by the virtual topology, number of capacity units
required by virtual nodes and number of slots required by
virtual links), 20 different simulation experiments were run.

The performance of the protocol was evaluated in terms of:

• The number of virtual networks successfully allocated as
a function of the physical network capacity and virtual
network requirements

• The time required to establish a virtual network (resource
discovery plus resource allocation time) as a function of
the physical network capacity and virtual network require-
ments

• The number of coordination messages sent by the network
nodes as a function of the physical network capacity and
virtual network requirements

Algorithm 1. Centralised algorithm

Require: NP, type, |NV|.
1: ranking = list()
2: Nc = NP− Nnc
3: for {n ∈ Nc} do
4: d = nodal_degree(n)
5: Ln = get_links(n)
6: for {l ∈ Ln} do
7: used_slots+ = get_used_slots(l)
8: length+ = get_length(l)
9: n.utilisation = used_slots/d

10: n.length = length/d
11: ranking.add(n)
12: sort_by_utilisation(ranking)
13: chosen_nodes = top(|NV|)
14: for {i ∈ Z : i < len(chosen_nodes)− 1} do
15: if slots_available(path(chosen_nodesi, chosen_nodesi−1))

then
16: connect(chosen_nodesi, chosen_nodesi−1)
17: elsereturn Non-successful
18: if type = “ring′′ then
19: if slots_available(path(chosen_nodes f irst, chosen_nodeslast))

then
20: connect(chosen_nodes f irst, chosen_nodeslast)
21: elsereturn Non-successful

return Successful

By way of comparison, a centralised algorithm, shown in
Algorithm 1, was also evaluated. The algorithm receives the
set of physical nodes (NP), the type of virtual network (ring or
bus) and the number of virtual nodes (|NV|) as input arguments
and performs 3 steps. First, it ranks the physical nodes (lines
1-12) with enough capacity (the set of nodes without enough
capacity, Nnc are discarded from further consideration in line
2). For a fair comparison with the distributed protocol, nodes

Research Article Journal of Optical Communications and Networking 10

2S
 3N
 R

2S
 4N
 R

2S
 5N
 R

2S
 6N
 R

2S
 7N
 R

2S
 3N
 B

2S
 4N
 B

2S
 5N
 B

2S
 6N
 B

2S
 7N
 B

3S
 3N
 R

3S
 4N
 R

3S
 5N
 R

3S
 6N
 R

3S
 7N
 R

3S
 3N
 B

3S
 4N
 B

3S
 5N
 B

3S
 6N
 B

3S
 7N
 B

Virtual network

0

20

40

60

80

100

120

140

Vi
rtu
al
 n
et
wo
rk
s a
llo
ca
te
d

Virtual networks allocated
Distributed 50 c.u.
Distributed 40 c.u.
Distributed 30 c.u.
Distributed 20 c.u.
Distributed 10 c.u.
Centralised 50 c.u.
Centralised 40 c.u.
Centralised 30 c.u.
Centralised 20 c.u.
Centralised 10 c.u.

Fig. 9. Virtual networks allocated to physical network

are ranked from highest to lowest slot availability of its adjacent
links. Ties are broken considering the length of the links (shorter
links preferred). Second, the nodes selected to map the virtual
nodes are the first |NV| nodes in the ranking, where |NV| is the
number of virtual nodes (line 13). Finally, lines (14-21) are in
charge of connecting the physical nodes using the shortest path.

This algorithm has a computational complexity of
O(|NP|*d+|NP|*log(|NP|)+|NV|+|LV|*S), where |NP|, d,
|NV|, |LV| and S are the number of physical nodes, network
nodal degree, number of virtual nodes, number of virtual links
and number of slots, respectively. The centralised algorithm
was implemented using the C++ library Flex Net Sim [36]. The
code for the distributed protocol and the centralised algorithm
is available in [37].

Figure 9 shows the number of virtual networks allocated
during the execution of the distributed protocol and the cen-
tralised algorithm. The number of virtual networks successfully
established is one of the critical performance measures of the
algorithm, as it impacts the revenue of the network operator
and client satisfaction. Each point in the curve corresponds to
the average of 20 simulation experiments. Each name in the
horizontal axis represents a different virtual network topology.
The first two characters correspond to the number of slots used
by the virtual network: 2 or 3 slots. The second two characters
refer to the number of virtual nodes: 3N, 4N, 5N, 6N, and 7N.
Finally, the last character indicates the type of virtual topology:
“B” corresponds to a bus topology and “R” to a ring topology.
Each line represents a different capacity for the physical nodes:
10 , 20 , 30 , 40, and 50 units.

It can be seen that - for the centralised and the distributed
approaches - the number of allocated virtual networks increases
with the capacity of the physical nodes, as more virtual nodes

can be accommodated in the physical nodes. The difference
between the distributed curves decreases for 40 and 50 capacity
units because the number of virtual networks successfully allo-
cated at these capacities is limited by the physical link utilisation
instead of the capacity of the nodes.

The centralised algorithm achieves better performance in low-
capacity scenarios, but its performance quickly deteriorates in
scenarios with higher node capacities, where it is outperformed
by the distributed approach. As more virtual networks are
established, the centralised algorithm is becoming affected by
its inability to establish the virtual networks using physical
nodes in close proximity. As a result, virtual links must be
established using longer paths, leading to higher usage of slots
per virtual network. This, in turn, leads to a lower number of
virtual networks being established.

On the contrary, the distributed protocol works by proximity,
as agents attempt to be allies with the near nodes. As a result,
nodes form alliances with their neighbours, allocating virtual
networks in compact sectors of the physical network. This leads
to a lower bandwidth consumption per virtual network and
thus, to a higher number of them being established.

A theoretical upper limit for the number of virtual networks
allocated avoiding the constraints of finite link capacity is given
by the expression ⌊ |NV|

|NV| ⌋ · ⌊
CPn
CVn
⌋. In this expression, |NV| and

|NV| are the number of physical and virtual nodes, respec-
tively; CPn is the number of capacity units each physical node is
equipped with, and CVn is the number of capacity units required
by each virtual node. For a low node capacity (10 units), where
the finite capacity of links does not significantly impact the allo-
cation process, the maximum number of virtual networks given
by this expression is equal to 40, 30, 20, 20, and 20 for a number
of virtual nodes equal to 3, 4, 5, 6 and 7, respectively. From

Research Article Journal of Optical Communications and Networking 11

Figure 9 it can be seen that this limit is very close to the actual
performance of the distributed allocation algorithm, confirming
its correct operation. As the capacity of physical nodes increases,
the actual performance diverges from the upper limit, as the
finite capacity of links starts to impact the allocation process.

As the number of virtual network nodes increases, fewer
virtual networks can be successfully allocated due to the faster
resource depletion in physical nodes, as confirmed by the upper
limit just discussed. In terms of the number of slots required by
the virtual networks, a significant difference in the number of
allocated virtual networks is not observed in this study.

Finally, in terms of topology, as buses require one link less per
virtual network request, the number of established bus-topology
virtual networks is higher than ring-topology ones. The differ-
ence between both topologies is higher at high node capacities,
where the rejection of a new virtual network is influenced by the
link utilisation rather than enough node capacity.

2S
 3N

 R
2S
 4N

 R
2S
 5N

 R
2S
 6N

 R
2S
 7N

 R
2S
 3N

 B
2S
 4N

 B
2S
 5N

 B
2S
 6N

 B
2S
 7N

 B
3S
 3N

 R
3S
 4N

 R
3S
 5N

 R
3S
 6N

 R
3S
 7N

 R
3S
 3N

 B
3S
 4N

 B
3S
 5N

 B
3S
 6N

 B
3S
 7N

 B

Virtual network

100

200

300

400

500

600

Ti
m
e
(ti
ck
s)

Alliance construction
and resources allocation time

50 c.u.
40 c.u.
30 c.u.
20 c.u.
10 c.u.

Fig. 10. Virtual network establishment time

A second metric studied was the time required to establish a
virtual network, as it impacts the service offered to the customers.
The vertical axis of the graph in Figure 10 corresponds to the
average number of clock ticks required to establish a functional
alliance. The horizontal axis corresponds to the different virtual
networks studied, following the nomenclature of the previous
figure.

A linear increase of time with the number of physical nodes
can be observed. This is consistent with the protocol operation:
During the virtual request processing, the number of messages
sent by each agent is O(1). As a result, the total number of
messages exchanged by the protocol is O(|NP|), that is, linear
with the number of physical nodes. In the studied cases, the
maximum time to establish a virtual network is about 500 clock
ticks. This number was obtained by dividing the time the light
takes to travel a given distance in fiber by the number of time
units elapsed in Netlogo to simulate light propagation through
the same distance. This time is determined by the message ex-
change process only, not by the local computation performed
by the agents. Whether the total time is faster than the time
required by the centralised approach it is difficult to say. The
centralised approach performs minimum message exchange
(from the majordomo to the agents to start the allocation pro-
cess), and from that point of view is certainly faster than the
distributed algorithm that performs several rounds of message
exchanges. However, the computational complexity of the cen-
tralised is higher than that of the distributed protocol. Whether

this establishment time in the order of 0.1 seconds achieved by
the distributed approach is fast enough depends on the dynamic
of the virtual network arrival process. Due to the emergence of
this type of service, no studies regarding this aspect have been
published yet.

Unlike the number of virtual networks, the capacity of physi-
cal nodes does not significantly impact the time required to es-
tablish a virtual network. As a result, all curves are very similar.
This behaviour is expected since the only effect of the physical
node capacity occurs at the beginning of the algorithm, when
the node eventually discards itself from the resource allocation
process if it does not have sufficient capacity. After that decision,
the node’s capacity does not affect the algorithm’s execution
time.

In terms of the number of virtual network nodes, the higher
this number, the longer it takes to establish a virtual network
since more interactions between physical nodes are required to
complete the alliance. Regarding the number of slots required by
the virtual networks, a significant impact on the time required
to establish a virtual network is not observed since checking
the status of 2 or 3 slots in a link requires the same number of
operations.

Finally, in terms of the topology of the virtual network, as
the number of nodes increases, the bus topology takes slightly
longer than the ring topology to be successfully established (10%
longer in the case of 7-node virtual topologies). This result is
unexpected, as the impact of the 1-link difference between both
topologies should not be significant in terms of time (virtual
links are established in a parallel manner). To find out the reason
behind this behaviour, we studied the number of messages sent
during the algorithm’s execution. More messages will lead to
longer allocation times.

2S
 3N

 R
2S
 4N

 R
2S
 5N

 R
2S
 6N

 R
2S
 7N

 R
2S
 3N

 B
2S
 4N

 B
2S
 5N

 B
2S
 6N

 B
2S
 7N

 B
3S
 3N

 R
3S
 4N

 R
3S
 5N

 R
3S
 6N

 R
3S
 7N

 R
3S
 3N

 B
3S
 4N

 B
3S
 5N

 B
3S
 6N

 B
3S
 7N

 B
Virtual network

200

250

300

350

400

450

500

M
es
sa
ge

s s
en

t

Messages sent by nodes
50 c.u.
40 c.u.
30 c.u.
20 c.u.
10 c.u.

Fig. 11. Messages sent by nodes

Figure 11 shows the average number of messages sent by
the physical nodes during the allocation of a virtual network.
The horizontal axis corresponds to the different virtual networks
studied. Each name of the horizontal axis follows the same
nomenclature used in previous figures.

The total number of messages in the studied cases never ex-
ceeds a few hundred, and it grows with the number of virtual
nodes, as expected: more virtual nodes require more synchroni-
sation messages to enlarge the alliances.

In terms of virtual topologies, in line with the behaviour
observed in Figure 10, as the number of physical nodes increases,
the bus topologies exhibit a slightly higher number of messages

Research Article Journal of Optical Communications and Networking 12

than ring topologies. After observing the visual behaviour of
the allocation process in Netlogo, we can report that virtual
networks with bus topologies generate more nodes in the state
"Proposing alliance" that receive a [negative 2] response than
ring topologies for several virtual nodes higher than 4. As a
result, more messages are exchanged, and more time is taken
to enlarge the alliance. This situation depends on the particular
physical and virtual topologies and the way the virtual links
are selected. Further research should study such behaviour in
greater detail.

6. CONCLUSIONS

In this paper, a multi-agent distributed protocol for virtual net-
work allocation over elastic optical networks was proposed for
the first time and evaluated employing an agent-based simula-
tion.

Due to the distributed nature of the protocol, its feasibility
was proved by implementing it in an agent-based simulator. The
protocol was programmed in Netlogo, where each node of the
physical network corresponds to an agent. The protocol was
evaluated in incremental traffic scenarios, using the NSFNet
as the physical elastic optical network. Physical nodes were
simulated with 10, 20, 30, 40, and 50 capacity units. Virtual
networks with ring and bus topologies, with several virtual
nodes ranging from 3 to 7 nodes and virtual links requiring 2 or
3 slots were used to study the algorithm.

Simulation results showed that the algorithm effectively al-
locates virtual networks, achieving a performance very close
to the upper limit in terms of the number of virtual networks
allocated when the finite capacity of links does not significantly
affect the algorithm performance. As expected, the number of
virtual networks successfully allocated increased with the net-
work capacity and decreased with the number of virtual nodes.
Regarding the time required to establish the virtual networks, it
increased with the number of virtual nodes, and it was slightly
higher in buses than rings for networks with 5 or more virtual
nodes. In the worst case, the time was in the order of 0.1 seconds.

Future research should extend this work along the following
lines of research: to evaluate the impact of the physical topol-
ogy on the performance of the algorithm (including regular and
mesh topologies) as well as the impact of the connectivity of
the virtual networks (maintaining the number of nodes and in-
creasing the number of virtual links from a bus to a clique); to
explore different fitness functions; to evaluate the impact of fully
dynamic traffic on the performance of the resource allocation
process; to improve ways of assigning virtual nodes to physical
nodes; extending the distributed protocol to include routes dif-
ferent from the shortest path to establish the virtual links as well
as the effect of different modulation formats on the optical reach
of routes; and studying the impact of using an explicit control
mechanism instead of a timeout-based scheme to determine the
rejection of a request.

FUNDING

Agencia Nacional de Investigación y Desarrollo (FONDECYT
Iniciación 11220650, FONDECYT Iniciación 11190710, FONDE-
CYT Iniciación 11201024, Doctorado Nacional/2021-21211075,
Doctorado Nacional/2020-21200588, FOVI210082); Universidad
Técnica Federico Santa María (PI_LII_2020_74, PIIC 018/2022,
PIIC 007/2022); Pontificia Universidad Católica de Valparaíso
(DI-PUCV 39.437/2020 and 039.382/2021).

REFERENCES

1. S. S. Manvi and G. Krishna Shyam, “Resource management for in-
frastructure as a service (iaas) in cloud computing: A survey,” J. Netw.
Comput. Appl. 41, 424 – 440 (2014).

2. M. Gharbaoui, B. Martini, and P. Castoldi, “Anycast-based optimiza-
tions for inter-data-center interconnections [invited],” Opt. Commun.
Networking, IEEE/OSA J. 4, B168–B178 (2012).

3. O. Michel, E. Keller, and F. M. V. Ramos, “Network defragmentation
in virtualized data centers,” in 2019 Sixth International Conference on
Software Defined Systems (SDS), (2019), pp. 17–24.

4. H. Cao, S. Wu, G. S. Aujla, Q. Wang, L. Yang, and H. Zhu, “Dynamic
embedding and quality of service-driven adjustment for cloud networks,”
IEEE Transactions on Ind. Informatics 16, 1406–1416 (2020).

5. M. Zangiabady, A. Garcia-Robledo, C. Aguilar-Fuster, and J. Rubio-
Loyola, “A holistic framework for virtual network migration to enhance
embedding ratios in network virtualization environments,” J. Netw. Syst.
Manag. 28, 502–552 (2020).

6. Y. Zong, C. Feng, Y. Guan, Y. Liu, and L. Guo, “Virtual network em-
bedding for multi-domain heterogeneous converged optical networks:
Issues and challenges,” Sensors. 20 (2020).

7. H. Halabian, “Distributed resource allocation optimization in 5g virtual-
ized networks,” IEEE J. on Sel. Areas Commun. 37, 627–642 (2019).

8. “White paper: Where network virtualization fits into data center initia-
tives,” Tech. Rep. 16VM066, VMware, Inc, 3401 Hillview Avenue Palo
Alto CA 94304 USA (2016).

9. B. Mukherjee, I. Tomkos, M. Tornatore, P. Winzer, and Y. Zhao, Hand-
book of Optical Networks (Springer, 2020).

10. T. Portela, M. E. Monteiro, J. R. A. Cavalcante, J. Celestino Jr, and
A. Patel, “An extended software defined optical networks slicing archi-
tecture,” Comput. Standards & Interfaces 70, 103428 (2020).

11. J. Zhang, B. Mukherjee, J. Zhang, and Y. Zhao, “Dynamic virtual
network embedding scheme based on network element slicing for
elastic optical networks,” in 39th European Conference and Exhibition
on Optical Communication (ECOC 2013), (2013), pp. 1–3.

12. W. Fan, F. Xiao, X. Chen, L. Cui, and S. Yu, “Efficient virtual network
embedding of cloud-based data center networks into optical networks,”
IEEE Transactions on Parallel Distributed Syst. 32, 2793–2808 (2021).

13. Y. Wang, Z. McNulty, and H. Nguyen, “Network virtualization in spec-
trum sliced elastic optical path networks,” J. Light. Technol. 35, 1962–
1970 (2017).

14. O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical net-
working: a new dawn for the optical layer?” IEEE Commun. Mag. 50,
s12–s20 (2012).

15. P. Layec, A. Morea, F. Vacondio, O. Rival, and J. Antona, “Elastic
optical networks: The global evolution to software configurable optical
networks,” Bell Labs Tech. J. 18, 133–151 (2013).

16. B. Chatterjee and E. Oki, Elastic Optical Networks: Fundamentals,
Design, Control, and Management (CRC Press, 2020).

17. D. Bórquez-Paredes, A. Beghelli, and A. Leiva, “Network virtualization
over elastic optical networks: A survey of allocation algorithms,” in
Optical Fiber and Wireless Communications, R. Roka, ed. (IntechOpen,
Rijeka, 2017), chap. 2.

18. A. Rezaee, O. Akbari Sheikhabad, and L. Beygi, “Quality of
transmission-aware control plane performance analysis for elastic opti-
cal networks,” Comput. Networks 187, 107755 (2021).

19. H. Cao, J. Du, H. Zhao, D. X. Luo, N. Kumar, L. Yang, and F. R. Yu,
“Towards tailored resource allocation of slices in 6g networks with soft-
warization and virtualization,” IEEE Internet Things J. pp. 1–1 (2021).

20. M. Siqueira, J. Oliveira, G. Curiel, A. Hirata, F. van’t Hooft, M. Nasci-
mento, J. Oliveira, and C. E. Rothenberg, “An optical sdn controller
for transport network virtualization and autonomic operation,” in 2013
IEEE Globecom Workshops (GC Wkshps), (2013), pp. 1198–1203.

21. D. King, A. Farrel, E. Nishida King, R. Casellas, L. Velasco, R. Nejabati,
and A. Lord, “The dichotomy of distributed and centralized control:
Metro-haul, when control planes collide for 5g networks,” Opt. Switch.
Netw. 33, 49–55 (2019).

22. R. K. Jana, A. Mitra, A. Pradhan, K. Grattan, A. Srivastava, B. Mukher-
jee, and A. Lord, “When is operation over C + L bands more eco-

Research Article Journal of Optical Communications and Networking 13

nomical than multifiber for capacity upgrade of an optical backbone
network?” in 2020 European Conference on Optical Communications
(ECOC), (2020), pp. 1–4.

23. I. Houidi, W. Louati, and D. Zeghlache, “A distributed virtual network
mapping algorithm,” in 2008 IEEE International Conference on Com-
munications, (2008), pp. 5634–5640.

24. M. T. Beck, A. Fischer, J. F. Botero, C. Linnhoff-Popien, and H. de
Meer, “Distributed and scalable embedding of virtual networks,” J.
Netw. Comput. Appl. 56, 124–136 (2015).

25. F. Esposito, D. Di Paola, and I. Matta, “On distributed virtual network
embedding with guarantees,” IEEE/ACM Transactions on Netw. 24,
569–582 (2016).

26. K. T. Nguyen and C. Huang, “An intelligent parallel algorithm for online
virtual network embedding,” in 2019 International Conference on Com-
puter, Information and Telecommunication Systems (CITS), (2019), pp.
1–5.

27. A. Song, W.-N. Chen, T. Gu, H. Yuan, S. Kwong, and J. Zhang, “Dis-
tributed virtual network embedding system with historical archives and
set-based particle swarm optimization,” IEEE Transactions on Syst.
Man, Cybern. Syst. 51, 927–942 (2021).

28. S. F. Railsback and V. Grimm, Agent-Based and Individual-Based
Modeling: A Practical Introduction (Princeton University Press, 2011).

29. “IEEE Standard for Ethernet,” IEEE Std. 802.3-2008 (2012).
30. U. Wilensky, “Netlogo,” http://ccl.northwestern.edu/netlogo/, Center for

Connected Learning and Computer-Based Modeling, Northwestern
University, Evanston, IL (1999).

31. H. Ballani, T. Karagiannis, A. Rowstron, and P. Costa, “Towards pre-
dictable datacenter networks,” in The ACM SIGCOMM Conference on
Data Communication (SIGCOMM’11), (2011).

32. C. Fuerst, S. Schmid, L. Suresh, and P. Costa, “Kraken: Online and
elastic resource reservations for multi-tenant datacenters,” in IEEE
INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications, (2016), pp. 1–9.

33. M. Rost, C. Fuerst, and S. Schmid, “Beyond the stars: Revisiting virtual
cluster embeddings,” SIGCOMM Comput. Commun. Rev. 45, 12–18
(2015).

34. C. Guo, G. Lu, S. Yang, C. Kong, P. Sun, W. Wu, Y. Zhang, H. Wang,
and G. Lv, “Secondnet: A data center network virtualization architecture
with bandwidth guarantees,” in ACM CONEXT 2010, (Association for
Computing Machinery, Inc., 2010).

35. F. I. Calderón, A. Lozada, D. Bórquez-Paredes, R. Olivares, E. J.
Davalos, G. Saavedra, N. Jara, and A. Leiva, “Ber-adaptive rmlsa algo-
rithm for wide-area flexible optical networks,” IEEE Access 8, 128018–
128031 (2020).

36. F. Falcón, G. España, and D. Bórquez-Paredes, “Flex net sim: A lightly
manual,” arXiv preprint arXiv:2105.02762 (2021).

37. D. Bórquez-Paredes, A. Beghelli, , R. Olivares, G. Saavedra, N. Jara,
A. Lozada, A. Leiva, and P. Morales, “Agent-based distributed
protocol and centralised algorithm,” https://gitlab.com/IRO-Team/
agents-optical-network-protocol (2022). Visited on 2022-07-04.

https://gitlab.com/IRO-Team/agents-optical-network-protocol
https://gitlab.com/IRO-Team/agents-optical-network-protocol

	Introduction
	NETWORK MODELS AND PROBLEM STATEMENT
	Physical network model
	Virtual network model
	The virtual network allocation problem
	Virtual network release

	The distributed protocol: An overview
	The distributed protocol: Agents behaviour
	Resource discovery stage
	Resource allocation stage
	Resource release

	Case of Study
	Conclusions

