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Abstract  
Background and objectives The C9orf72 expansion is the most common genetic cause of 
frontotemporal dementia (FTD) and/or motor neuron disease (MND). Corticospinal degeneration 
has been described in post-mortem neuropathological studies in these patients, especially in those 
with MND. We used MRI to analyze white matter (WM) volumes in presymptomatic and 
symptomatic C9orf72 expansion carriers and investigated whether its measure may be helpful in 
predicting the onset of symptoms.  
Methods We studied 102 presymptomatic C9orf72 mutation carriers, 52 symptomatic carriers: 42 
suffering from FTD and 11 from MND, and 75 non-carriers from the Genetic Frontotemporal 
dementia Initiative (GENFI). All subjects underwent T1-MRI acquisition. We used FreeSurfer to 
estimate the volume proportion of WM in the brainstem regions (midbrain, pons, and medulla 
oblongata). We calculated group differences with ANOVA tests and performed linear and non-
linear regressions to assess group-by-age interactions.  
Results A reduced WM ratio was found in all brainstem subregions in symptomatic carriers 
compared to both noncarriers and pre-symptomatic carriers. Within symptomatic carriers, MND 
patients presented a lower ratio in pons and medulla oblongata compared with FTD patients. No 
differences were found between presymptomatic carriers and non-carriers. Clinical severity was 
negatively associated with the WM ratio. C9orf72 carriers presented greater age-related WM loss 
than non-carriers, with MND patients showing significantly more atrophy in pons and medulla 
oblongata. 
Discussion We find consistent brainstem WM loss in C9orf72 symptomatic carriers with 
differences related to the clinical phenotype supporting the use of brainstem measures as 
neuroimaging biomarkers for disease tracking.  
 
 
  



Introduction 
Frontotemporal dementia (FTD) refers to a heterogeneous group of neurodegenerative disorders 
that mainly affects the frontal and temporal lobes of the brain producing behavioral and language 
impairment [1]. Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease. It 
is caused by the neurodegeneration of motor neurons and the corticospinal and corticobulbar 
tracts leading to progressive weakness and muscular atrophy [2]. Due to the scientific advances in 
the last decades, it is now recognized that FTD and ALS are part of a clinical, neuropathological, 
and genetic continuum [3–6]. 
Although frequency varies geographically, the pathological hexanucleotide expansion in the 
chromosome 9 open reading frame 72 (C9orf72) gene is the most common genetic cause of FTD, 
and ALS [7, 8]. The C9orf72 repeat expansion is inherited with an autosomal dominant pattern 
with almost full penetrance leading to disease onset at a mean age of 58 years, although a wide 
range of age of onset (20–90 s) has been described [9]. The correlation between parental age at 
onset and individual age at onset for C9orf72 expansion carriers is weak (r = 0.32), and thus, not 
useful for individual predictions [9]. In the same way, whether the symptom onset would appear 
in form of FTD, or ALS remains unpredictable. However, future disease-modifying drugs might 
be useful for both clinical phenotypes and treatments might be more useful when used in early or 
even presymptomatic phases of the disease. For that reason, there is a need for biomarkers that are 
able to provide information about the proximity of onset and track disease progression in both 
phenotypes. In this sense, cohorts of mutation carriers, such as the genetic frontotemporal 
initiative (GENFI), provide the opportunity to study the first stages of the disease and to identify 
markers of symptom onset and progression [10]. 
Previous studies have described structural changes in presymptomatic FTD subjects using brain 
MRI [11–15]. Concerning C9orf72 carriers, previous studies have shown presymptomatic brain 
changes in the thalamus, cerebellum, hippocampus, amygdala, and hypothalamus [16, 17]. Most 
of these studies have focused on grey matter. In contrast, white matter (WM) degeneration has 
received comparatively less attention but demonstrates early and widespread WM integrity loss 
in C9orf72 carriers [18]. 
The neuropathological examination of ALS patients reveals loss of motor neurons and the 
consequent degeneration of the corticospinal and corticobulbar tracts [19, 20]. This degeneration 
leads to lateral sclerosis of the spinal cord which gives the name to the disease. In addition to spinal 
cord changes, ALS patients also present relevant atrophy of the white matter areas that contain 
the corticospinal and corticobulbar tracts at the brainstem, especially the pyramids in the medulla 
oblongata. Previous work has demonstrated that changes in the spinal cord and brainstem in ALS 
can be detected in vivo using structural MRI [21, 22]. In a recent study, Querin et al. reported 
significant WM reduction in the spinal cord of presymptomatic C9orf72 carriers using cervical 
cord MRI [23]. Assessing WM changes in the brainstem presents some potential benefits from 
cervical spinal cord evaluation, as the possibility of being measured with other brain changes in 
the brain MRI. 
In this work, we investigate the utility of brainstem WM loss as a biomarker for C9orf72 patients. 
We hypothesize that symptomatic C9orf72 carriers would present more WM loss in the brainstem 
compared to non-carriers, especially in those patients with motor neuron symptoms. We also aim 
to study whether WM loss is identifiable in presymptomatic C9orf72 carriers. 
 
Materials and methods 
Participants 
Two hundred thirty-five participants’ data were obtained from the data freeze 4 (DF4) of the 
GENFI, an international multicenter study of known carriers of a pathogenic mutation or at risk 
of carrying a mutation because a first-degree relative was a known symptomatic carrier [11]. 



Symptomatic subjects were FTD or ALS patients carrying the C9orf72 pathogenic expansion. 
Presymptomatic and noncarriers subjects were all first-degree relatives of C9orf72 mutation 
carriers who consent to be tested for their genetic status. 
All participants’ imaging data were acquired at each time point using 3T on scanners from three 
different manufacturers: Philips Healthcare (Koninklijke Philips NV, Amsterdam, Netherlands), 
GE Healthcare Life Sciences (General Electric, Boston, MA, USA) and Siemens Healthcare 
Diagnostics (Siemens, Erlangen, Germany). Protocols were designed to harmonize across scanners 
and sites as much as possible [11]. Subjects were classified into four groups according to their 
genetic status (carriers or non-carriers) and their clinical diagnosis as follows: (a) non-carriers; (b) 
presymptomatic C9orf72 carriers if no diagnostic criteria were fulfilled, (c) symptomatic C9orf72 
carriers with FTD presentations in the form of behavioral variant FTD [24] or primary progressive 
aphasia [25] and (d) symptomatic C9orf72 carriers with MND presentation in form of ALS or ALS-
FTD [26, 27]. The disease stage of all participants was scored following the global and sum of boxes 
Clinical Dementia Rating adapted to FTD patients (CDR® + NACC-FTLD) rating scale [28]. The 
severity of motor neuron symptoms was scored with the ALS Functional Rating Scale-Revised 
(ALSFRS-R), a validated rating instrument for monitoring the progression of disability in ALS 
patients [29]. The ALSFRS-R obtains a final index of disability by scoring 12 different motor and 
respiratory items from 4 (no disability) to 0 (marked disability). Written informed consent was 
obtained from all participants. All procedures were approved by local ethics committees at each 
site. 
MRI acquisition and processing 
Participants underwent a 1.1-mm isotropic resolution volumetric T1 MRI imaging on a 3T scan 
using the sequences defined within the GENFI consortium. Nineteen scanners were used across 
different sites. MRIs of all subjects were downloaded from GENFI database and processed using 
FreeSurfer version 6.0 (http://surfer.nmr.mgh.harvard.edu/) in the same center.  
After the standard FreeSurfer segmentation and parcellation [30–32], we used an additional 
FreeSurfer pipeline to segment the brainstem region and its three main structures (midbrain, pons, 
and medulla oblongata) [33]. Figure 1 represents the imaging methodology to obtain the brainstem 
region segmentation. We assessed the WM parcel for the brainstem structures by multiplying each 
of the regions by the WM mask. To remove the effect of brain size, we calculated the ratio of WM 
for each of its structures (midbrain, pons, and medulla oblongata) using the total volume of the 
corresponding region (region-WM volume/region-whole volume). All images were visually 
inspected and manually corrected when needed.  
Statistical analysis  
Differences in demographic data between groups were assessed using ANOVA test for continuous 
variables and Fisher test for dichotomous data. Post-hoc studies were assessed for both cases to 
identify the pair-wise group differences, using T-tests or Fisher test accordingly. Statistical 
significance was set at p < 0.05, with corrections for multiple comparisons using the Benjamini–
Hochberg procedure.  
We used ANOVA test to study group differences in the WM ratio for the brainstem subregions. 
Age at baseline, sex and scanner were used as covariates. Then, Tukey’s HSD test was used to 
identify pairwise differences between groups with Benjamini–Hochberg corrections for multiple 
comparisons. We compared the non-carriers, the presymptomatic carriers, carriers with FTD, and 
carriers with MND with the same procedure. Differences in the WM ratio between CDR® + 
NACC-FTLD global stages were assessed using Kruskal–Wallis test for all carriers, while 
Spearman’s rank correlation coefficient was used to study the relationship between the WM ratio 
and the CDR® + NACC-FTLD sum of boxes and the ALSFRS-R. We evaluated multiple linear and 
non-linear regressions (logarithmic, polynomial to the second, third and fourth order) to test the 
association between the WM ratio (dependent variable) and the genetic status, age, and their 



interaction. For these analyses we added scanner and sex as covariates. Models were compared 
using R2 and the Akaike information criterion (AIC). R (https://www.r-project.org/) version 4.0.5 
was used for all analyses. 
 
Results 
Demographic and clinical characteristics of participants 
After the data quality assessment, the sample was reduced to 229 participants due to the 
segmentation problems identified. The final sample used in the analyses included: 102 
presymptomatic carriers, 52 symptomatic carriers (41 FTD and 11 ALS or ALS-FTD), and 75 non-
carriers (Table 1). Some of the acquisitions (N = 43 subjects) had a limited Field of View, so it was 
not possible to measure the entire medulla oblongata ROI. Thus, these images were not included 
in the sub-analyses of this region (21 presymptomatic, 7 symptomatic, and 15 non-carriers). 
We found significant differences between the four groups (non-carriers, presymptomatic, 
symptomatic-FTD, symptomatic-ALS) in sex and age. Both symptomatic groups were older than 
the non-carriers and presymptomatic groups (p < 0.0001). Therefore, these variables were included 
as covariates in all further analyses. No significant differences were found in any demographic or 
clinical variables between non-carriers and presymptomatic carriers (Table 1). 
Group differences in brainstem WM ratio 
Non-carriers showed WM ratios very close to 1 (0.96 for the midbrain, 0.99 for the pons, and 0.97 
for the medulla). No differences were found in any region between the presymptomatic and the 
non-carrier groups. The C9orf72 FTD group showed a lower WM ratio than non-carriers and 
presymptomatic carriers in all regions (p < 0.01 in the medulla, and p < 0.0001 in the midbrain and 
pons). The C9orf72 MND group showed a lower WM ratio than the non-carriers and the 
presymptomatic carriers in all regions (p < 0.0001 in all comparisons). The MND group also 
showed a lower WM ratio than the FTD group in the medulla (p < 0.0001), and pons (p < 0.0001; 
(Fig. 2).  
WM ratio across the severity of cognitive and motor symptoms 
When studying the relationship between the WM ratio with the global CDR® + NACC-FTLD 
rating scale for all carriers, we observed that higher clinical scores were significatively associated 
with lower WM ratios in all brainstem regions (Kruskal–Wallis p < 0.001 for all regions; Fig. 3A). 
Pairwise comparisons between CDR®+NACC-FTLD stages were performed for consecutive 
stages, depicting significant differences between the CDR = 0.5 and CDR = 1 stages in the midbrain 
(p < 0.05). Additionally, moderate significant negative correlations between the WM ratio and the 
CDR® + NACC FTLD sum of boxes were also found for all brainstem regions (midbrain r = − 0.57, 
pons r = − 0.49 and medulla oblongata r = − 0.45; p < 0.0001 all; Fig. 3B). 
To assess if the WM ratio was correlated to the severity of the motor neuron symptoms, we 
evaluate its relationship with the ALSFRS-R score in C9or72 carriers (Fig. 3C). We found a weak 
negative correlation in pons (r =− 0.37, p < 0.05), but a moderate negative correlation in midbrain 
(r = − 0.45; p < 0.001) and medulla (r =− 0.46, p < 0.01). 
Brainstem WM ratio and age trajectories according to the genetic status 
When comparing the relationship between the WM ratio and age, we found that carriers and non-
carriers showed similar trajectories until the 6th decade of life. After this age, carriers presented a 
greater loss of WM ratio than noncarriers, especially in the midbrain (Fig. 4A). The multiple linear 
regression comparing carriers and non-carriers showed similar results (Table 2). For both groups, 
age was related to lower WM ratios in the midbrain (p < 0.001). 
Carriers showed a greater loss of WM ratio by age than non-carriers in the midbrain (p < 0.05), 
suggesting a further loss of WM due to neurodegeneration. No other statistical differences were 
found between carriers and non-carriers. Due to the distribution of the trajectories, we also 
explored non-linear regressions, but they did not improve the linear model significatively. 



Brainstem WM ratio and age trajectories according to the clinical status 
Finally, we assessed the brainstem WM trajectories by age according to the clinical status to 
evaluate if subjects with different clinical diagnoses present different trajectories of brainstem WM 
during the disease. In that sense, the MND group showed a greater loss of WM by age in all regions 
compared to FTD patients, the medulla being the region with the highest effect of age in WM loss 
for this group of patients (Fig. 4B; Table 3). 
 
Discussion 
In the present study, we used brain MRI scans from the GENFI consortium to investigate whether 
corticospinal and corticobulbar tracts neurodegeneration is measurable in the brainstem structures 
of C9orf72 carriers. Symptomatic C9orf72 expansion carriers showed consistent alterations in 
brainstem WM that correlated with clinical severity. Subjects with motor neuron symptoms 
presented more WM loss in the brainstem than those without motor symptoms. 
Brainstem neuroimaging abnormalities have been investigated by means of semi-automated 
volumetry methods, especially in progressive supranuclear palsy [21, 34]. Concerning C9orf72 
expansion carriers, previous work found no structural volumetric gray matter (GM) impairment 
in the brainstem [16, 35]. However, the evaluation of brainstem WM in C9of72 was lacking. Here, 
we developed a measure of WM degeneration consisting of the proportion of the brainstem 
volume occupied by WM. We chose the proportion of WM instead of its whole volume to avoid 
differences due to different brain sizes. Assessed in the noncarriers as controls, this WM ratio 
showed values close to 1, reflecting that, in normal conditions, the relative GM volume in the 
brainstem is scarce. However, these high values might reflect an overestimation of the WM 
volumes. Previous neuroimaging studies have shown that small brainstem pathways might be 
artificially enlarged due to the inclusion of crossing fibers [36, 37]. Despite this limitation, our work 
found differences between groups, reflecting the utility of this measure as a neuroimaging 
biomarker. 
We found a lower brainstem WM ratio in symptomatic C9orf72 carriers compared to non-carriers 
regardless of their clinical phenotype. These differences were found in the three sub-structures 
(midbrain, pons, and medulla oblongata), suggesting widespread neurodegeneration of the 
corticospinal tracts. No differences were found between presymptomatic carriers and controls. 
This finding would suggest that the neurodegeneration of the WM tracts appears near the onset 
of the symptoms, pointing to the brainstem WM ratio as a biomarker of conversion in C9orf72 
carriers. Whether the WM neurodegeneration occurs before or after the symptom’s onset remains 
unclear. Our study did not show WM changes in the presymptomatic carriers’ group. By contrast, 
Querin et al. recently observed spinal cord WM atrophy in presymptomatic C9orf72 carriers who 
were older than 40 years [23]. This could suggest that the spinal cord would show signs of WM 
alterations before the brainstem, or it could be the result of including participants who were far 
from the estimated year of onset in our study. The observed relationship between the brainstem 
WM ratio and age sheds light on this point. Overall, all subjects showed a mild loss of WM over 
the years with both groups, carriers, and noncarriers, showing no differences until the 6th decade 
of life when C9orf72 carriers suffer a greater WM loss, especially in the midbrain. Of note, this 
decade of life coincides with the onset of symptoms reported recently by Moore et al., reinforcing 
the idea of the brainstem WM ratio as a possible biomarker of conversion [9]. 
In consonance with neuropathological studies, patients with MND showed significantly more 
atrophy in the pons and especially in the medulla oblongata compared to FTD. Similar results 
were found in the multivariate analyses, where patients presenting in form of MND suffered 
further loss of WM ratio than the other groups, particularly in the medulla oblongata (Fig. 4B). We 
hypothesize that this greater loss of WM in C9orf72 carriers is due to the neurodegeneration of the 
corticospinal and corticobulbar tracts in patients who develop motor neuron symptoms. These 



results suggest that the brainstem WM ratio, especially in the medulla oblongata, could be an 
interesting biomarker to predict motor neuron symptoms in C9orf72 carriers. This finding is 
particularly relevant because the form of onset in C9orf72 carriers is highly unpredictable, and 
patients with motor neuron symptoms have a worse overall prognosis. Moreover, most 
neuroimage biomarkers studied in C9orf72 carriers have focused on cortical atrophy, but MND 
patients may present only subtle cortical atrophy, especially in those with bulbar onset where, 
theoretically, brainstem changes were supposed to be more remarkable. 
Additionally, we evaluated if the WM ratio could monitor the disease progression. For this 
purpose, we assessed the WM ratio across the different disease stages measured with the CDR® + 
NACC-FTLD scale. Here, a biological gradient was found, with patients in more advanced stages 
showing lower WM ratios. This loss of WM was greater in the midbrain with significant 
differences between the CDR = 0.5 and the CDR = 1 stages in the region. We also found a negative 
correlation between the CDR® + NACC-FTLD sum of boxes and the WM ratio in the brainstem. 
This correlation was, again, strongest in the midbrain (r = − 0.60). We also evaluated the correlation 
between the WM ratio and the severity of the motor neuron symptoms in C9orf72 carriers. A 
negative correlation between the WM ratio and the ALSFRS-R was found in all the brainstem 
regions. However, this correlation was highly influenced by subjects without motor neuron 
symptoms. 
Our study has some limitations. First, it is important to consider that the brainstem WM 
visualization is challenging due to the small size of the pathways, the high density of their 
distributions, lower contrast, and image distortions associated with in vivo acquisitions. As 
mentioned before, brain volumetry could overestimate WM volumes. Despite this possible 
limitation, we found that our methodology is valid to find differences between groups. To support 
and complement our results, other MRI modalities such as Diffusion tensor imaging (DTI) may be 
studied in the future. Another limitation is the relatively small sample size. Even 
using data from a multicentric study, in some analyses, especially for the MND subgroup, the 
number of subjects was low, due to the low prevalence of the disease. This small number of MND 
patients did not allow us to study differences between subjects with bulbar or spinal onset. 
In conclusion, our data suggest that WM loss in the brainstem might be a marker of clinical 
conversion and disease progression monitoring in C9orf72 carriers, especially in carriers 
presenting with motor neuron symptoms. Additional studies with extended follow-up data might 
be needed to confirm these findings. 
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Figure 1 The brainstem segmentation for all the matters for two different views. Orange represents 
the midbrain region, yellow represents the pons region and blue represents the medulla oblongata 
region. In this case, this subject is a healthy control 
 

 
 
 
 
Figure 2 Boxplot of the WM ratio volume of each brainstem region at baseline. Indicates *p < 0.05, 
**p < 0.01 and ***p < 0.001, ****p < 0.0001 

 
  



Figure 3 A Boxplot of WM ratio across the CDR® + NACC-FTLD Global stages for the carriers’ 
participants. Pairwise comparisons between stages were performed only for consecutive stages, 
finding significant differences between the 0.5 and the 1 stages in the midbrain: *p < 0.05, B Scatter 
plots of WM ratio by the CDR® + NACC-FTLD Sum Of Boxes. Red lines represent the correlation 
analyses, C Scatter plots of WM ratio by the ALSFRS-R in the different regions for the carriers’ 
participants. Red lines represent the correlation analyses 
 
 
 
  



 
Figure 4 Scatter plot showing the correlation between the WM ratio and age for each of the studied 
groups: the whole brainstem, the midbrain, the pons, and the medulla oblongata 
 

 
 
  



Table 1. Baseline demographics for controls, presymptomatic and both symptomatic carriers 
groups. Brainstem subregions volumes and WM ratio. Show the group differences for the whole 
volume/WM ratio; EYO estimated years to onset, FTD frontotemporal dementia, f female, m male, MND 
motor neuron dis- ease, sd standard deviation; *Statistical differences (p < 0.05) compared with non-carriers 
and presymptomatic carriers: **Statistical differences (p < 0.0001) compared with non-carriers and 
presymptomatic carriers 
 

 Non-
carriers 

C9orf72 presymptomatic 
carriers 

C9orf72 
FTD 

carriers 

C9orf72 
MND 
carriers 

Number of participants 75 102 41 11 
Sex (f/m) 48/27 63/39 16/25* 4/7* 
Age, years 
Mean(sd) 45.2 (12.6) 44.9 (11.8) 62.8 (8.4)** 62.6 (6.4)** 

Age at onset, years Mean (sd) – – 57.2 (9.5) 59.5 (6.1) 

EYO, years Mean 
(sd) 

− 15.0 
(11.6) − 13.8 (11.9) 5.1 (6.1)** 1.4 (4.0)** 

CDR® + NACC-FTLD Global Median 
(range) – – 2 (1–3) 2 (1–3) 

CDR® + NACC-FTLD Sum of Boxes Median 
(range) 

– – 12.5 (1–22) 7.5 (1–18) 

 
 
Table 2. Multiple linear regression coefficients for comparing carriers and non-carriers 
 

 Midbrain Pons Medulla 

 β sd p β sd p β sd β 

Intercept 1.0121 0.0146 
< 

0.0001 1.0149 0.0126 
< 

0.0001 1.0284 0.0319 
< 

0.0001 

Age − 0.0010 0.0003 
< 

0.001 
− 

0.0003 
0.0002 0.183 

− 
0.0007 

0.0006 0.282 

Scanner − 0.0004 0.0004 0.257 
− 

0.0006 
0.0003 0.076 

− 
0.0010 

0.0009 0.261 

Sex  
Female vs 

male 
− 0.0056 0.0042 0.196 

− 
0.0050 

0.0037 0.177 
− 

0.0159 
0.0095 0.096 

Genetic status  
Carriers vs 
noncarriers 0.02865 0.0172 0.098 0.0194 0.0148 0.192 0.0247 0.0368 0.502 

Age × genetic 
status  

Carriers vs 
noncarriers − 0.0008 0.0004 0.019 − 0.0005 0.0003 0.080 − 0.0007 0.0007 0.342 

  



Table 3. Multiple linear regression coefficients for assessing the brainstem WM trajectories by age 
according to the clinical status. Significant group differences (p<0.05) are highlighted in bold  
 

 Midbrain Pons Medulla 

 β sd p β sd p β sd p 

Intercept 1.0110 0.0137 
< 

0.0001 
1.0110 0.0116 < 0.0001 1.0146 0.0271 < 0.0001 

Age 
− 

0.0010 
0.0003 

< 
0.001 

− 
0.0003 

0.0002 0.151 
− 

0.0006 
0.0005 0.274 

Scanner 
− 

0.0005 
0.0004 0.149 

− 
0.0003 

0.0003 0.307 
− 

0.0002 
0.0008 0.822 

Sex  

Female vs male 0.0001 0.0004 0.998 − 
0.0004 0.0034 0.895 − 

0.0033 0.0084 0.691 

Clinical group  
Presymptomatic 
vs control 

− 
0.0083 0.0176 0.638 − 

0.0056 0.0143 0.694 − 
0.0175 0.0341 0.608 

FTD vs control 
− 

0.0045 
0.0380 0.905 

− 
0.0061 

0.0308 0.841 
− 

0.1444 
0.0730 0.049 

MND 
vs 
control 

0.1992 0.0931 0.033 0.3871 0.0756 < 0.0001 0.6220 0.1735 < 0.001 

Age × 
clinical 
group 

 

Presymptomatic 
vs control 

0.0001 0.0004 0.729 0.0001 0.0003 0.773 0.0004 0.0007 0.553 

FTD vs control − 
0.0005 0.0006 0.369 0.0003 0.0005 0.500 0.0019 0.0012 0.118 

MND vs control 
− 

0.0037 
0.0015 0.013 − 

0.0070 
0.0012 < 0.0001 − 

0.0122 
0.0028 < 0.0001 
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