
RESEARCH ARTICLE

Deep reinforcement learning for optimal

experimental design in biology

Neythen J. TreloarID
1*, Nathan BraniffID

2, Brian IngallsID
2, Chris P. BarnesID

1,3*

1 Department of Cell and Developmental Biology, University College London, London, United Kingdom,

2 Department of Applied Mathematics, University of Waterloo, Waterloo, Canada, 3 UCL Genetics Institute,

University College London, London, United Kingdom

* neythen.treloar.14@ucl.ac.uk (NJT); christopher.barnes@ucl.ac.uk (CPB)

Abstract

The field of optimal experimental design uses mathematical techniques to determine experi-

ments that are maximally informative from a given experimental setup. Here we apply a

technique from artificial intelligence—reinforcement learning—to the optimal experimental

design task of maximizing confidence in estimates of model parameter values. We show

that a reinforcement learning approach performs favourably in comparison with a one-step

ahead optimisation algorithm and a model predictive controller for the inference of bacterial

growth parameters in a simulated chemostat. Further, we demonstrate the ability of rein-

forcement learning to train over a distribution of parameters, indicating that this approach is

robust to parametric uncertainty.

Author summary

Biological systems are often complex and typically exhibit non-linear behaviour, making

accurate model parametrisation difficult. Optimal experimental design tools help address

this problem by identifying experiments that are predicted to provide maximally informa-

tive data for parameter inference. In this work we use reinforcement learning, an artificial

intelligence method, to determine such experiments. Our simulation studies show that

this approach allows uncertainty in model parameterisation to be directly incorporated

into the search for optimal experiments, opening a practical avenue for training an experi-

mental controller. We present this method as complementary to existing optimisation

approaches and we anticipate that artificial intelligence has a valuable role to play in the

future of optimal experimental design.

Introduction

A key goal of systems and synthetic biology is to apply engineering principles in service of

understanding and building biological systems. Such approaches rely on inference of mecha-

nistic models and downstream model-based prediction of cellular systems. Biological systems

are typically complex, highly non-linear, and noisy, making development of accurate models a

challenging task [1–3]. Furthermore, characterisation experiments can be resource-intensive

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Treloar NJ, Braniff N, Ingalls B, Barnes CP

(2022) Deep reinforcement learning for optimal

experimental design in biology. PLoS Comput Biol

18(11): e1010695. https://doi.org/10.1371/journal.

pcbi.1010695

Editor: Mark Alber, University of California

Riverside, UNITED STATES

Received: May 9, 2022

Accepted: October 31, 2022

Published: November 21, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1010695

Copyright: © 2022 Treloar et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The code and

examples are available in the RED package

available on GitHub: https://github.com/ucl-cssb/

RED. Data to reproduce the main plots in this

manuscript are available on Zenodo: https://

https://orcid.org/0000-0002-9180-034X
https://orcid.org/0000-0002-3459-7613
https://orcid.org/0000-0003-2118-3881
https://orcid.org/0000-0002-9459-1395
https://doi.org/10.1371/journal.pcbi.1010695
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010695&domain=pdf&date_stamp=2022-11-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010695&domain=pdf&date_stamp=2022-11-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010695&domain=pdf&date_stamp=2022-11-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010695&domain=pdf&date_stamp=2022-11-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010695&domain=pdf&date_stamp=2022-11-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010695&domain=pdf&date_stamp=2022-11-21
https://doi.org/10.1371/journal.pcbi.1010695
https://doi.org/10.1371/journal.pcbi.1010695
https://doi.org/10.1371/journal.pcbi.1010695
http://creativecommons.org/licenses/by/4.0/
https://github.com/ucl-cssb/RED
https://github.com/ucl-cssb/RED
https://zenodo.org/record/6521194#.Y2D-HVLML9E

and time consuming; efficient use of experimental effort is critical. The field of optimal experi-

mental design (OED) uses mathematical techniques to identify experiments that will provide

maximally informative characterisation data within the constraints of a fixed experimental

capacity. OED tools are often used to establish accurate model-based control methods; there

are close ties between the development of OED and control theory [4–6].

Application of OED to nonlinear biological systems is challenging; techniques for efficient

OED in this context have been developed via Bayesian methods [7–11] and methods based on

optimisation of the Fisher information [12–18]. Here, we use reinforcement learning (RL), a

branch of machine learning, to develop a novel Fisher information-based OED method for

parametrisation of non-linear models of biological systems. Although we focus on an applica-

tion relevant to synthetic biology, the method is general and can be applied to any OED model

parametrisation task.

Reinforcement learning methods learn control policies from data that is generated either by

simulation or by interaction with a real system. Much of reinforcement learning research has

focused on games [19–21], but its effectiveness has also been shown in optimising chemical

reactions [22], controlling plasmas for nuclear fusion [23] and computer chip design [24].

Standard OED methods determine experiments by optimising with respect to a model of the

system. This can require complex non-linear programming or integration over posterior dis-

tributions to calculate online experimental inputs. In contrast, a reinforcement learning agent

chooses its actions based on its experience, which is generated through trial and error interac-

tion during a training process. Although a satisfactory training process can be rather lengthy,

the resulting trained agent can act as an online experimental controller, rapidly identifying

optimal experimental inputs.

Model-based optimal experimental design faces a fundamental challenge: the optimization

problem is formulated in terms of the underlying model, whose accuracy can only be guaran-

teed if the parameter values to be inferred are already known. Of course, if those parameter val-

ues are known then there’s no need to design experiments to infer them. An iterative OED

estimation approach can be employed to resolve this problem [16–18]: begin with an initial

guess for the parameter values, then iteratively apply OED, using the resulting experiments to

improve the parameter estimates. Even in this case, the performance of the resulting experi-

mental design will still be dependent on the initial guess of parameter values. Bayesian

approaches to OED incorporate robustness to this initial data by beginning with a probability

distribution of parameter estimates (a prior) rather than a single guess [25]. However, Bayesian

approaches typically involve computationally expensive integration, which can make them

unsuitable for real time online experimental design, and are restricted to specific distribution

types [7, 9]. Machine learning methods have the potential to alleviate some of these problems.

For example, Deep Adaptive Design [26] was developed to reduce the computational cost of

Bayesian approaches. This method was shown to be effective for real time experimental design,

but has limitations such as reliance on a differentiable objective function and limited ability to

explore design space. Reinforcement learning has been proposed as a method for experimental

design that avoids these limitations [27]. Here, we propose a reinforcement learning approach

to tackle the problem of limited parameter knowledge while also being capable of rapid online

experimental design for time course experiments.

In the presentation below, we develop our novel reinforcement learning OED algorithm by

iterative improvement of a baseline Fitted Q-learning (FQ-learning) approach. We begin by

outlining our proposed formulation of reinforcement learning for OED and introducing a

model of bacterial growth in a chemostat, which will be used as an application. We then apply

the FQ-learning algorithm [28], which we have previously shown to be effective in controlling

biological systems [29], to the chemostat growth model. We use this initial analysis, in which

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 2 / 24

zenodo.org/record/6521194#.Y2D-HVLML9E. All

other relevant data are within the manuscript and

its Supporting information files.

Funding: NJT and CPB received funding from the

European Research Council (ERC) under the

European Union’s Horizon 2020 research and

innovation programme (Grant No. 770835). BI and

NB were supported by a Discovery Grant from

Canada’s Natural Sciences and Engineering

Research Council (NSERC). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1010695
https://zenodo.org/record/6521194#.Y2D-HVLML9E

we unrealistically assume prior knowledge of the true parameters, to explore the baseline per-

formance of the RL-OED approach. Next, we consider an alternative formulation of the learn-

ing agent, based on a recurrent neural network. We demonstrate, using a direct measure of

value-function construction, that the corresponding algorithm has the capacity to effectively

predict the optimality of experiments independently of prior parameter estimates. However,

an assessment of OED performance reveals that this strategy yields unsatisfactory perfor-

mance. To address that issue, we again alter the learning agent formulation, this time extend-

ing its behaviour to a continuous action space, through application of the Twin Delayed Deep

Deterministic policy gradient (T3D) algorithm [30]. We call the resulting RL approach the

Recurrent T3D (RT3D) algorithm. Successful OED performance of this algorithm is demon-

strated. Finally, we demonstrate that the RT3D algorithm is robust to uncertainty by training

the agent over an ensemble of model instances drawn from a parameter distribution, resulting

in a robust controller and illustrating the algorithm’s ability to design experiments with limited

prior knowledge. Throughout, we compare the OED performance of the reinforcement learn-

ing controllers with both a one step ahead optimiser (OSAO) and a model predictive controller

(MPC).

Results

Reinforcement learning for optimal experimental design

We focus our work on Fisher information-based experimental design. D-optimal design aims

to maximise the determinant of the Fisher information matrix (FIM). For linear models with

Gaussian measurement error, this goal is equivalent to minimising the volume of the confi-

dence ellipsoid of the resulting parameter estimates [31]. This approach has been demon-

strated to be useful even for non-linear systems [12–18]. Fig 1A shows the expected outcome

from a hypothetical OED application. Input profiles for two imagined experiments are shown,

representing equivalent experimental effort. Data from the corresponding system outputs are

used to infer model parameter values, resulting in expected confidence ellipsoids of parameter

estimates. This comparison indicates that a poorly designed experiment (left panel: large confi-

dence ellipsoid and low D-optimality, defined as the logarithm of the determinant of the Fisher

information matrix) is less informative than the well designed experiment (right panel: small

confidence ellipsoid and high D-optimality).

Reinforcement learning is a branch of machine learning concerned with optimising an

agent’s behaviour within an environment. The agent responds to observations of its environ-

ment by selecting from a set of actions that, in turn, impact the environment. From a reward

structure imposed on this interaction, the agent learns an optimal behaviour policy (Fig 1B).

The training of a reinforcement learning agent is typically implemented as a collection of epi-
sodes, each of which is a temporal sequence of observations and actions, repeated until a termi-

nal state is reached. At each discrete time step, the agent receives a scalar reward that can

depend on both observation and the selected action. The cumulative reward is called the

return. The agent’s goal is to learn a behaviour policy that maximises the return. In our appli-

cation the return is the D-optimality score of a given experiment (see Methods for details).

Many reinforcement learning algorithms construct internal estimates of the expected future

return as part of their learning strategy. A value function, which maps each observation-action

pair to an expected future return, can be learned from experience. In the work presented here,

we represent the value function as a neural network. A trained agent uses this value function

to make decisions, choosing actions that maximise the value.

A key consideration in reinforcement learning is the exploration-exploitation trade-off: a

strategy must be adopted to determine when to invest in exploration of new behaviours vs.

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 3 / 24

https://doi.org/10.1371/journal.pcbi.1010695

exploiting current knowledge to adopt a ‘best’ policy. We employ an epsilon-greedy strategy for

addressing this trade-off, as follows. We define the explore rate, �, as the probability that the

agent chooses its action arbitrarily (i.e. uniformly over the range of allowed actions) as

opposed to selecting the ‘best’ action defined by its learned policy. We define a schedule for �

so that it is equal to 1 at the beginning of training (ensuring wide exploration initially) and

gradually decays to 0 by the end of training (allowing the trained agent to fully exploit the

knowledge it has gained). For this study, we first use a continuous-observation, discrete-action

reinforcement learning formulation called Neural FQ-learning [28]. We then apply a continu-

ous-space, continuous-action algorithm called Twin Delayed Deep Deterministic Policy Gra-

dient [30].

Rather than insisting that the sequence of experimental inputs be decided prior to the start

of the experiment, which would be an open-loop design, we allow the inputs to be selected

based on measurements of the system output, a closed-loop design. Reinforcement learning

algorithms learn by observing discrete time series. We thus divide an experimental time series

into T discrete time steps. Below, we use t to refer to time and τ as the index of these discrete

time steps: t ¼ 1; 2; . . . ; T . The constant input applied to the system during each time step is

determined from an experimental measurement taken at the beginning of the time step. The

time steps are thus sample-and-hold intervals. We define an experimental design as a

sequence of experimental inputs, one for each time step in the experiment. Other experimental

features such as initial conditions, environmental settings, and experiment length are

Fig 1. Reinforcement learning for optimal experimental design. A) A hypothetical example of a poorly designed experiment (left) corresponding to an increasing

sequence of input values u over time, with a resulting continual increase in the observable output Y. A corresponding confidence ellipse in p1-p2 parameter space is

depicted. The logarithm of the determinant of the Fisher information matrix, log(|I|), is low. In contrast, a hypothetical well-designed experiment (right), which

maximises the determinant of the Fisher information matrix, corresponds to non-intuitive choices of input, and a resulting dynamic response in the output. The

corresponding confidence ellipse is tight and the determinant of the Fisher information is high. B) Optimal experimental design formulated as a reinforcement learning

problem. The model dynamics, F, describe the rate of change of the state vector X in terms of model parameters θ and input u. For each time step, τ, an observation of

the system, oτ, is provided to the agent which chooses an action, aτ, to apply over that time step and receives a corresponding reward, rτ. C) Training over a parameter

distribution. 1) A distribution of parameters is chosen (shown as uniform). 2) The RL controller is trained. Each episode employs a model parametrisation θ sampled

from the distribution. 3) When acting as a feedback controller, the trained RL agent designs near optimal experiments across the parameter distribution. For example

well-designed experiments will be executed for either θ1 and θ2 (inputs u1(t) and u2(t) respectively). D) Model of an auxotrophic bacterial strain growing in a chemostat.

The nutrient inflows, Cin and C0,in, can be controlled as part of an experiment.

https://doi.org/10.1371/journal.pcbi.1010695.g001

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 4 / 24

https://doi.org/10.1371/journal.pcbi.1010695.g001
https://doi.org/10.1371/journal.pcbi.1010695

presumed fixed. In our construction the experimental inputs are determined by a reinforce-

ment learning agent. Before experiments begin, the agent undergoes training on a dynamical

model of the system of interest. In our preliminary analysis this is done assuming the true

parameters are known. We later demonstrate developments that relax this assumption and

thus yield a general and robust approach to OED. Training is carried out over a number of sin-

gle experiment simulations, called episodes. During this model-based training, the reinforce-

ment learning agent has the goal of maximising the logarithm of the determinant of the FIM

over each experiment. Once training is complete, the trained agent can act as a feedback con-

troller to provide real-time inputs to the experimental system.

To formulate an OED problem in a reinforcement learning framework, we begin by defin-

ing (i) the agent’s environment, (ii) the observations available to the agent, (iii) the actions the

agent can take, and (iv) the reward function that guides the agent towards optimal behaviour

(Fig 1B). The agent’s environment is provided by a pre-established model of the experimental

system. In our case the model is governed by a set of differential equations. At the beginning of

each time step, the agent is supplied with an observation, oτ. In our preliminary formulation,

described below, the observation consists of the index of the current time step, τ, the system

output, Yτ and an estimate of the FIM, Iτ. In subsequent developments of the algorithm, we

use an alternative observation composed of the time step index τ, system output, Yτ, and the

past trajectory of experimental observations and inputs. In the latter case the agent makes deci-

sions without knowledge of the true system parameters. The action taken by the agent at each

time step is the experimental input, uτ, to be applied for the duration of the time step. The

reward provided to the agent during training is the change in the logarithm of the determinant

of the Fisher information matrix from the previous time step rτ = log |Iτ| − log |Iτ−1|. Conse-

quently, over an experiment, the cumulative reward (i.e. the return) is the log of the determi-

nant of the accumulated Fisher information matrix, and so the agent’s optimisation objective

is equivalent to maximising the D-optimality score (see Methods).

One of the key advantages of the reinforcement learning approach is the flexibility to incor-

porate different experience during training. Below, we make use of this flexibility to develop a

reinforcement learning strategy that avoids dependence on accurate estimates of the parameter

values. In that method, training is carried out on model simulations, over a range of parametri-

sations. In each episode, the agent learns to maximise the FIM-dependent reward, which

depends on the parameter values used in the corresponding simulation. The trained agent can

then be deployed as an experimental controller, making decisions solely based on experimental

observations and assuming no specific knowledge of system parameters. Here, prior knowl-

edge of parameter values is incorporated into the distribution of parameters over which train-

ing occurs, which can be of arbitrary shape. It should be noted that this approach is still reliant

on an assumption that the model structure is accurate. This robust method of design of experi-

ments for parameter inference is summarised in Fig 1C.

Chemostat bacterial growth model

The genetic engineering of bacterial strains can have unintended and unpredictable impacts

on their growth dynamics, caused, e.g., by increased metabolic burden or by cross talk among

regulatory pathways. Consequently, determining the growth characteristics of bacterial strains

can be an important task in the field of synthetic biology. A thorough investigation of growth

dynamics can be carried out by implementing a range of nutrient conditions in a flow-through

bioreactor. Affordable tabletop bioreactors [32–35] have become widely available, so this setup

is feasible for most synthetic biology labs. Here, we consider parameter inference for a model

of auxotrophic bacterial growth in a chemostat (Fig 1D), where an auxotroph is a bacterial

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 5 / 24

https://doi.org/10.1371/journal.pcbi.1010695

strain whose growth is reliant on a specific nutrient, e.g. a specific amino acid. We suppose the

agent controls the concentration of carbon source, Cin, and auxotrophic nutrient, C0,in, in the

inflow. The bacterial population, N, is the only measured output. The concentrations C1 and

C0 are hidden state variables. The system equations are:

m ¼ mmax
C1

K1 þ C1

C0

K0 þ C0

d
dt

C0 ¼ qðC0;in � C0Þ �
1

γ0

mN

d
dt

C1 ¼ qðC1;in � C1Þ �
1

g1

mN

d
dt

N ¼ ðm � qÞN

where μmax is the maximal growth rate, K1 is the half-maximal auxotrophic nutrient concen-

tration, γ1 is the yield on this nutrient, K0 is the half-maximal concentration for the carbon

source, with corresponding yield γ0, and q is the flow-through rate.

Here we consider experimental design with the goal of inferring parameter values for this

model. We suppose that each experiment consists of a sequence of ten two-hour intervals. In

each interval the experimental inputs C1,in and C0,in are assigned constant values between the

minimum and maximum bounds of 0.01 and 1 g L−1. We suppose that the initial conditions

are fixed for each experiment as N = 20 × 109 cells L−1 and [C0, C1] = [1, 0] g L−1. Model simu-

lations were performed with parameter values as in Table 1. In previous work we found that

the parameters γ0 and γ are practically unidentifiable for this model implementation [36]. We

thus focus on designing experiments to infer the values of parameters K0, K1 and μmax.

Fitted Q-learning for optimal design of chemostat growth experiments

We begin our analysis of the chemostat model by testing the effectiveness of the FQ-learning

algorithm [28] for designing optimal experiments. We trained 10 FQ-learning agents over

50,000 episodes, where each episode constitutes a single simulated experiment (see Methods

for details), with model parameters set to their nominal values (Table 1). FQ-learning operates

over a discrete action space. As feasible actions, we chose 10 discrete values equally spaced line-

arly between the minimum and maximum bounds of 0.01 and 1 g L−1, respectively. Inputs to

the neural networks were scaled to be between 0 and 1 (see Methods). This training took

approximately 48 hours of training time on a computing cluster with 40 CPU cores and a

GeForce GTX 1080 Ti. In this preliminary analysis we assume prior knowledge of the parame-

ter values, which are used in the training simulations and calculation of the FIM to determine

the agent’s reward. Likewise, the one step ahead optimiser (OSAO) and model predictive

Table 1. Parameters for the auxotroph system. Nominal parameter values, along with minimum and maximum bounds, used for simulations of a bacterial culture.

Parameter Value Minimum Maximum Unit Source

q 0.5 h−1 Experimentally controllable

γ0 4.8 × 1011 cells g−1 [37]

γ1 5.2 × 1011 cells g−1 [38]

μmax 1 0.5 2 h−1 [39]

K0 6.8 × 10−5 10−5 10−4 g L−1 [38]

K1 4.9 × 10−4 10−4 10−3 g L−1 [38]

https://doi.org/10.1371/journal.pcbi.1010695.t001

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 6 / 24

https://doi.org/10.1371/journal.pcbi.1010695.t001
https://doi.org/10.1371/journal.pcbi.1010695

controller (MPC), which are implemented for comparison, optimise with respect to the true

parameters (see Methods for details).

Ten FQ-agents were trained. The experimental input profiles and resulting system trajecto-

ries for a human-chosen rational design, OSAO, MPC, and the best performing FQ-agent are

shown in Fig 2A–2D. Fig 2E shows the training performance of the ten FQ-agent instances

and the equivalent performance (far right) of the optimisers and rational design. The FQ-

agents successfully learn throughout the training process, as shown by the increase in optimal-

ity score as training progresses, with an average final optimality score of 16.10. The best FQ-

agent performs significantly better than the OSAO, but not as well as the MPC. As shown,

there is significant variance in the performance of the FQ-agents.

To assess the quality of the experimental designs, we compared their performance in gener-

ating parameter estimates, as follows. We simulated the model driven by each experimental

design and added noise to the corresponding observation outputs. We then determined

parameter fits to this simulated data (see Methods for details). For each method, we calculated

the normalised mean squared error (MSE) and the logarithm of the determinant of the covari-

ance matrix of independent parameter estimates. The results are shown in Table 2. The best

performing FQ-learning experiment (from Fig 2E) was used for this comparison. These results

show that a high optimality score is a good predictor of both a low determinant of the covari-

ance matrix and a low error in the inferred parameter values. As expected from the D-optimal-

ity scores, the MPC has greatly outperformed the rational design and the OSAO, while the

Fig 2. Optimal experimental design to infer the values of model parameters for an auxotrophic bacterial strain growing in a chemostat. Control inputs chosen by

(A) rational design, (B) one step ahead optimisation, (C) model predictive control, and (D) FQ-learning, along with the corresponding system trajectories. (E) Training

progress of ten independent FQ-agents over 50000 episodes, their shared explore rate, and (far-right) the scores of the MPC, OSAO and rational design. The mean FQ-

agent return is shown, along with error bars indicating one standard deviation.

https://doi.org/10.1371/journal.pcbi.1010695.g002

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 7 / 24

https://doi.org/10.1371/journal.pcbi.1010695.g002
https://doi.org/10.1371/journal.pcbi.1010695

performance of the best FQ-agent is between these extremes. The results in this section and

our preliminary investigations (Fig A in S1 Text, [36]) show that reinforcement learning has

potential for optimal experimental design. Below, we build on this potential by developing

improvements to the method.

An agent without access to a priori parameter estimates can learn from

observations of past time series

In the following sections we show that a reinforcement learning agent can accurately predict

the D-optimality score of experiments without a priori knowledge of the true parameter values.

As an initial assessment of such an agent, we consider six different formulations of the agent’s

observation and assess each variant’s ability to learn a value function. Reinforcement learning

is based on using experience to estimate a value function that maps observation-action pairs to

the expected return obtained by taking a given action after making a given observation. A

good value function will show low error in predicting returns. In our case the return of a full

experiment is equivalent to the D-optimality score. Here, all agents choose from the same set

of actions and are rewarded in the same way as in the previous section; they differ in the obser-

vations that are available to them.

• Agent Ia observes the time step index, the system measurements, and the elements of the

FIM (identical to the FQ-controller in the previous section. Agent Ib is identical but does

not observe the time step index.

• Agent IIa observes the current time step index and the system measurements. Agent IIb is

identical but does not observe the time step index.

• Agent IIIa observes the current time step index, the system measurements, and the history of

measurements and actions from the beginning of the experiment. Agent IIIb is identical but

does not observe the time step index.

Here, formulation I, which makes use of a priori knowledge of the parameter values (via the

FIM) acts as a positive control, while formulation II is a negative control which is not expected

to have sufficient information to be successful. In each case the comparison between variants

(a and b) reveals whether the agents learn to use the dynamics of the system, rather than simply

mapping a time step to a predicted return. The return is time dependent (as demonstrated in

Fig BB in S1 Text), because it is easier to gain further information about the system parameters

during the early phases of the experiment, when little or no data has been acquired.

All agents were evaluated by testing their ability to learn the value of randomly chosen

experiments undertaken on chemostat environments over a range of different parametrisa-

tions (Methods for details). Because the parameter values are different for each experiment,

the agent must learn to infer where it is in parameter space to optimally predict the value of a

given observation-action pair. The results, in terms of mean square testing error at the end of

training, are shown in Table 3. When time information is included in the observation (variant

a) all agents show relatively low error, with Agent IIIa outperforming Agent Ia, which does

Table 2. Comparison of the performance of optimal experimental designs in supporting parameter inference for the auxotroph model.

Rational OSAO FQ MPC

D-optimality 8.43 16.6 18.88 20.07

Normalised MSE 0.37 0.30 0.09 0.068

log |cov(θ)| -3.76 -5.47 -8.56 -8.72

https://doi.org/10.1371/journal.pcbi.1010695.t002

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 8 / 24

https://doi.org/10.1371/journal.pcbi.1010695.t002
https://doi.org/10.1371/journal.pcbi.1010695

better than Agent IIa. Thus, the elements of the FIM observed by Agent Ia are valuable for

learning, but improved performance can be obtained by instead observing the full experimen-

tal history. When time is omitted from the observations (variant b) Agent Ib and Agent IIIb

have minor increases in error, while Agent IIb is unable to learn a reasonable value function.

The fact that Agent III’s performance was not significantly reduced by the omission of the

time index shows that it is able to use the dynamics of the system to make its predictions, con-

sistent with it being able to use the dynamics to infer where it is in parameter space. Finally, in

assessing training error relative to the testing error, we found that there was minimal overfit-

ting for all agents as shown in Fig BA in S1 Text.

In summary, these results show that a reinforcement learning agent can use the observed

dynamics of the system to make suitable value predictions in the absence of prior knowledge

of the parameter values. Note that the reward is still dependent on the FIM, a function of the

unknown parameter values. However, calculation of the reward is required only during the

training period (when simulation parameters are known); it would not be required by the

agent when deploying a trained agent on a real system. We next assessed Agent IIIa’s OED per-

formance using the same procedure. Much like our FQ agent, this OED comparison shows

high variance between training repeats with the best repeat falling somewhere between the

OSAO and MPC (Fig CA in S1 Text). This is likely due to the large number of action options:

two experimental inputs each with 10 possible values yields 100 possible actions for which the

value function needs to be learned, over each observation. Q-learning in large discrete action

spaces is a difficult learning problem [40] and we hypothesise that this is why our RL agents

are showing high variance. As a verification, we analysed a simplified variant of the learning

problem for which the agents were given a choice of just 2 possible values for each experimen-

tal input, reducing the total number of action choices to 4. As expected, this resulted in much

more consistent performance between training repeats (Fig CB in S1 Text). This conclusion is

further is supported by previous work where we applied the same approach to a different sys-

tem with a set of 12 action options and found similarly low variation in the resulting FQ-agents

[36].

Transition to continuous action space: The recurrent T3D algorithm

To improve the RL method’s OED performance, we adopt a further refinement of the

approach by transitioning to a continuous action space, thus avoiding the problems associated

with Q-learning in large discrete action spaces.

The application of Q-learning methods in continuous action spaces is non-trivial and

requires an additional neural network which represents the agent’s policy. We developed a

recurrent version of the continuous reinforcement learning algorithm Twin Delayed Deep

Deterministic Policy Gradient (T3D) [30] (see Methods for details). We call this algorithm

Recurrent T3D (RT3D). The internal structure of the agent is shown in Fig 3A. The main com-

ponents of the agent are the memory, the value network, and the policy network. During each

Table 3. Mean square error in predicted returns for six agents with different observation formulations. The agent with access to previous observation timeseries but

no a priori knowledge of parameter values (formulation III) are able to accurately learn value estimates using the dynamics of the system. Error values are one standard

deviation over five repeats.

Agent I Agent II Agent III

o MSE o MSE o MSE

Variant a Yτ, Iτ, τ 31 ± 1.4 Yτ, τ 35 ± 0.92 Y0:τ, u0:τ−1, τ 22 ± 1.5

Variant b Yτ, Iτ 35 ± 0.80 Yτ 190 ± 1.1 Y0:τ, u0:τ−1 23 ± 1.0

https://doi.org/10.1371/journal.pcbi.1010695.t003

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 9 / 24

https://doi.org/10.1371/journal.pcbi.1010695.t003
https://doi.org/10.1371/journal.pcbi.1010695

time step, the observation, o, and reward, r, are determined from the environment and stored

in memory. The observation also acts as input for the policy network, which chooses the action

to apply. This action is also stored in memory. We define a transition as the tuple (o, a, r, o0, d)

specifying, respectively, an observation, action, reward, a subsequent observation, and an indi-

cator that is 1 if the episode terminated during this transition and otherwise is 0. Here a is the

action taken after observing o, while r and o0 are the reward and observable state of the envi-

ronment that result from taking action a. The memory contains all of the transitions observed

so far during training, where N is the number of transitions currently stored in memory. The

agent’s value and policy functions are periodically updated by training on the experience

stored in the memory (dashed arrows in Fig 3A). The value function is approximated using a

deep neural network. A GRU layer, a type of recurrent layer which excels at processing

sequences such as time series data, takes as input all system measurements, Y, and experimen-

tal inputs, u, seen so far in the current experiment. The output of the GRU is concatenated

with the current system measurements, Yτ, the index of the current time step, τ, and the cur-

rent action, uτ. These are fed into a feed forward network. The output of the value network is

an estimate of the value of the supplied experimental input, uτ, given the sequence of observ-

ables. The policy network is structured similarly, but does not take the current experimental

Fig 3. The recurrent T3D algorithm. (A) Structure of the RT3D agent (left) and the artificial neural networks used to approximate the value function (top-right) and

policy (bottom-right). (B) Control inputs chosen by the best performing Recurrent T3D instance and the corresponding system trajectory. (C) Average training progress

and shared explore rate of ten Recurrent T3D agents over 17500 episodes and the scores (far-right) of the MPC, OSAO and rational design. Error bars indicate one

standard deviation.

https://doi.org/10.1371/journal.pcbi.1010695.g003

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 10 / 24

https://doi.org/10.1371/journal.pcbi.1010695.g003
https://doi.org/10.1371/journal.pcbi.1010695

input uτ as input. The output of the policy network is the experimental input that is estimated

to have the highest value for the given observation.

Recurrent T3D can design optimal experiments for a bacterial strain

growing in a chemostat

We applied the RT3D algorithm to OED on the chemostat model. Here the RT3D agent uses

the nominal parameter values during training to generate the FIM (to determine the reward),

while the OSAO and MPC have access to the these parameter values for their optimisation cal-

culations. Ten RT3D agents were trained for 17500 simulation episodes, this amounts to about

10–15 hours of computation time (see Methods). The RT3D algorithm chooses experimental

inputs continuously between the maximum and minimum bounds. Inputs to the neural net-

works were scaled to be between 0 and 1 (see Methods). The experimental input profiles and

resulting system trajectories for the best performing RT3D agent are shown in Fig 3B. Fig 3C

shows the training performance of the ten RT3D agents and the equivalent performance of the

OSAO, MPC, best FQ-agent and rational designs. The average RT3D optimality score was

19.84. In comparison to the FQ-controllers the average optimality score has increased to a

level comparable to the MPC and the training performance is stable, with only minor differ-

ences between each of the 10 independently trained RT3D agents. The MPC reaches a slightly

higher optimality score than the mean of the RT3D controllers, but the best RT3D agent per-

forms better than the MPC. As before, we test the performance in terms of acuracy of parame-

ter estimates, summarised in Table 4. As expected, the best performing RT3D agent has

outperformed the other designs in terms of parameter covariance and parameter error. Again,

we see the correlation of high D-optimality with low parameter error and low parameter

covariance. From these results we can conclude that the recurrent RT3D controllers are per-

forming at a similar level to an MPC controller and that the RT3D algorithm has significantly

improved performance over the FQ algorithm with significantly lower training cost in terms

of the amount of data and computation time.

Recurrent T3D can be generate optimal experiments over a parameter

distribution

Finally, we demonstrate the use of RT3D to design experiments assuming minimal knowledge

of the system parameters. As shown previously, the agent is able to infer its position in parame-

ter space using the trajectory of experimental inputs and measurements to predict the optimal-

ity score of an experiment. To assess OED performance, we trained the RT3D controller over

a parameter distribution as laid out in Fig 1C. Here, each episode is initialised using a different

parameter set sampled from the uniform distribution indicated in Table 1. The training perfor-

mance in Fig 4A shows that RT3D controllers can successfully learn to optimise the objective

over the distribution of parameters.

We carried out a comparison of the RT3D OED success, using the best performing agent

from Fig 4A. We first show that this agent performs significantly better than an MPC that

designs an experiment using the mean of the given parameter distribution (Table A and Fig D

Table 4. Performance metrics for optimal experimental design on the chemostat growth model. The best performing R3TD agent is reported.

Rational OSAO FQ MPC RT3D

D-optimality 8.43 16.6 18.88 20.07 20.27

Normalised MSE 0.37 0.30 0.09 0.068 0.038

log|cov(θ)| -3.76 -5.47 -7.78 -8.72 -11.85

https://doi.org/10.1371/journal.pcbi.1010695.t004

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 11 / 24

https://doi.org/10.1371/journal.pcbi.1010695.t004
https://doi.org/10.1371/journal.pcbi.1010695

in S1 Text). In this comparison, the RT3D agent has a distinct advantage because the MPC

controller does not use the form of the distribution in its design. Next, we give the MPC con-

troller an intrinsic advantage. We compared the performance, in terms of the optimality score,

of the RT3D controller against an MPC controller that uses a priori knowledge of the sampled

parameters. (Recall that the RT3D controller has only knowledge gained by training against

the parameter distribution.) Eight samples were investigated. Four of these (S1, S2, S3, S4)

were sampled from the distribution. The remaining four were chosen specifically to reveal the

behaviour of the RT3D controller across the parameter distribution. These were (N) the nomi-

nal parameter values, (L) the lower bounds, (U) the upper bounds, and (C) the centre of the

distribution. The corresponding optimality scores are shown in Fig 4B. The parameter values

for each sample can be found in Table B in S1 Text. For every sample, the RT3D agent has

Fig 4. The RT3D algorithm trained over a parameter distribution. (A) Average training progress and shared explore rate of ten Recurrent T3D agents over 17500

episodes. For each episode the model parameters are sampled from a distribution. This was then averaged across the 10 repeats. Error bars indicate one standard

deviation. (B) The optimality score of the best performing agent in panel A compared to an MPC with a priori parameter knowledge for different parameter samples.

Four randomly sampled parametrisations, S1, S2, S3 and S4 are shown along with the lower and upper bounds of the parameter space, L and U, the nominal parameters

from literature, N, and the centre of the distribution, C. (C) The experimental designs of the RT3D controller at different parameter samples. Here the RL controller is

trained on a distribution over parameters and adapts its experimental design for different points in parameter space. For each experimental design the system is

initialised with different parameter values: L, U, N and C.

https://doi.org/10.1371/journal.pcbi.1010695.g004

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 12 / 24

https://doi.org/10.1371/journal.pcbi.1010695.g004
https://doi.org/10.1371/journal.pcbi.1010695

performed nearly as well as the MPC that has total system knowledge. From these results, we

conclude that, by training over a parameter distribution, the RT3D controller can generate

near optimal experiments across the whole distribution.

The experiments the RT3D agent designed at the L, U, C and N parameter samples and

resulting system trajectories are plotted in Fig 4C. The experimental inputs for the first three

intervals are identical. This is expected, because the agent has little information with which to

infer the system behaviour at the beginning of the experiment. After this initial stage, the

experiments diverge. The differences in the experiments are relatively minor, suggesting that

there is a ‘core’ experimental design which works well over the distribution; the agent intro-

duces slight deviates to maximise its effectiveness for different regions of parameter space.

Discussion

In this work we demonstrated a novel application of reinforcement learning to the optimal

design of biological experiments. The problem was formulated as the maximisation of the

determinant of the Fisher Information matrix (D-optimal design) and we build on previous

work that has demonstrated the applicability of Fisher information based methods to non-lin-

ear biological systems [12–18]. First the efficacy of the approach was tested using the FQ-learn-

ing algorithm to design optimal experiments in the unrealistic setting in which the method has

prior knowledge of the parameter values we seek to identify. Positive results here indicated

that this approach had the potential to design optimal experiments. We then introduced algo-

rithm refinements that focussed on eliminating the dependence on the prior knowledge of

parameter values. The dependence on the true parameter values is a limitation of other OED

works [14–18], which require ad hoc verification [14] or other workarounds [16–18]. To

decouple the RL controller from the true parameters, we used a recurrent neural network to

make decisions based on a full experimental history of past measurements and experimental

inputs. We showed that this approach produces an agent that can effectively design optimal

experiments on systems sampled from a distribution over parameters, performing similarly to

an MPC with explicit knowledge of the parameter values.

OED work has been undertaken using local sensitivity based methods via the Fisher infor-

mation, methods based on global sensitivity analysis (GSA), and Bayesian methods. Fisher

information based techniques have been limited to local analysis around a nominal parameter

guess. Like the method developed in this paper GSA and Bayesian approaches allow global

optimisation over a range of parameter values, but can be computationally expensive. OED

methods based on GSA have shown reduced parameter uncertainty compared to local meth-

ods for Michaelis-Menton enzyme kinetics [41], Lithium-ion batteries [42] and chemical syn-

thesis [43]. Bayesian approaches have been shown effective in systems biology applications [7–

9]. Thorough comparisons of these approaches and the novel approach developed here are key

directions for future work. However, GSA and Bayesian approaches often rely on evaluating

expectations using methods such as Monte Carlo simulation [7–9] or the point estimate

method [42, 43], which, for online experimental design, need to be determined during the

experiment. This can be computationally expensive, potentially limiting the speed at which

experiments can be done. Previous Bayesian work has been limited to greedily optimising over

the next time step only [7] or choosing from a limited set of experimental designs [9, 11] and

recent work has focused on alleviating these issues [44]. Here, we confirmed that training an

RL controller over samples from a parameter distribution can result in an encoding of prior

parameter knowledge and therefore optimisation globally with respect to the Fisher informa-

tion. Because querying the RL controller for experimental inputs simply means executing the

forward pass of a neural network, experimental decisions can be made in fractions of a second

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 13 / 24

https://doi.org/10.1371/journal.pcbi.1010695

(see Methods) which will enable real time, online OED. However, the price for this is a poten-

tially lengthy training process which must be completed prior to the experiment. The longest

training times in this work for our RT3D algorithm were around 12 hours of simulation time

on a computing cluster or around 15 hours on a personal laptop. Reinforcement learning has

been shown to scale to large problems in both discrete and continuous learning spaces. How-

ever, these applications can require training times and hardware that could be prohibitive for

use in a biology laboratory setting. We have shown that this approach is feasible for a simple

bacterial growth model and a realistic model of gene transcription (Figs E and F in S1 Text). A

key direction for future work will be to assess and optimise the scalability of training our

method on more complex models and for more complex design tasks, such as simultaneous

model discrimination and parameter inference. We demonstrated the capability to learn over

a uniform parameter distribution. Future work could be done to evaluate performance when

trained over more complex distributions that are, e.g. non-symmetric or multi-modal. Because

the method developed here learns by sampling the distribution, these alternatives would be

straightforward to implement. Indeed, the flexibility to learn over any distribution presents a

compelling reason to use reinforcement learning for OED.

Here, we have focussed on D-optimal design by maximising the determinant of the FIM.

D-optimal design has a number of desirable qualities, making it the most common FIM based

design metric [41]. However, other metrics, such as maximising the trace of the FIM (A-opti-

mality) or maximising the minimum eigenvalue of the FIM (E-optimality) could be used.

There are trade-offs for using different FIM based metrics [45], which has lead to investiga-

tions of modified and multicriteria objective functions. For instance, the combination of D

and E-optimality [46], incorporation of a measure of curvature to improve experimental

designs for non-linear dynamic models [47], summing the information matrices across multi-

ple experiments run in parallel [48] and parameter correlation reduction [49, 50]. Further-

more, there are Bayesian objectives such as minimising the entropy of the posterior parameter

distribution [9, 11]. Each of these alternative objectives could be incorporated into the rein-

forcement framework—a compelling direction for future work.

Overall, we have developed and demonstrated the potential for reinforcement learning to

be used for OED. As the systems we build and characterise in biology continue to increase in

complexity, automated experimental design tools will become ever more important. Further-

more the generality of this approach means it can be applied in many areas of science and

engineering.

Materials and methods

Formulation of the optimal experimental design problem

Optimal experiments will be designed on systems which can be described by a set of non-linear

differential equations:

dX
dt
¼ FðX; θ;uÞ; ð1Þ

where X is a vector of state variables, θ is a vector of parameters and u is a vector of experimen-

tal inputs. System measurements are assumed of the form Y = Xm + ϵ, where Xm are the mea-

surable state variables and ϵ is a Gaussian noise term. We consider optimal experimental

design tasks with the goal of inferring accurate estimates of the system parameters, θ. We

define our objective as the determinant of the Fisher Information matrix, |I|. This is called a D-

optimality criterion. The theory demonstrating that D-optimality corresponds to maximally

accurate parameter inferences holds only for linear systems with Gaussian errors, but previous

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 14 / 24

https://doi.org/10.1371/journal.pcbi.1010695

work has shown that this same criterion can be successfully applied to non-linear systems [12–

15]. We follow an established method [14, 15] to obtain I from the system equations (Eq 1).

First we obtain time derivatives for the sensitivity of each of the state variables with respect to

each of the parameters:

d
dt
@Xm

@yj
¼
@F
@yj
þ

@F
@Xm

@Xm

@yj
: ð2Þ

The scale of parameters can vary, which can lead to poor conditioning of the Fisher infor-

mation matrix [31]. To remedy this, the sensitivities are scaled by the parameter values, which

is equivalent to using logarithmic sensitivities. The scaled sensitivities are

�Xm
yj
¼

@Xm

@ logðyjÞ
¼ yj

@Xm

@yj
:

Writing Eq 2 in terms of the scaled sensitivities yields

d �Xm
yj

dt
¼ yj

@F
@yj
þ

@F
@Xm

�Xm
yj
:

We assume that measurement error ϵ is normally distributed with variance equal to 5% of

the measured quantity: ϵ ¼ N ð0;σ2Þ;σ2 ¼ 0:05Xm, and we assume measurements are inde-

pendent. The time derivative of the scaled FIM can be written as [33]

d
dt

Ijkðu; θ; tÞ ¼ �Xm
yj
S� 1ðtÞ�Xm

yk
;

where

SðtÞ ¼

s2
1
Xm

1

. .
.

s2
nX

m
n

2

6
6
4

3

7
7
5

is a diagonal matrix, where Xm
i and s2

i are the i-th measurable state variable and the associated

variance, respectively. The FIM can then be determined by integration over an experiment,

assuming that I(t = 0) = 0

Ijkðu; θ; 0; tf Þ ¼
R tf

0
�Xm
yj
S� 1ðtÞ�Xm

yk
dt:

For the optimisation objective we use the determinant of the FIM (the D optimality score).

Because this can vary over orders of magnitude, the optimality criterion is taken to be the loga-

rithm of the determinant of the FIM:

YDðu; θ; 0; tf Þ ¼ logðjIðu; θ; 0; tf ÞjÞ: ð3Þ

We use the shorthand Iτ = I(u, θ, 0, tf), where tf is the time at the beginning of time step τ.

The Python API of the CasADi library was used to solve all differential equations in our analy-

sis [51].

Neural fitted Q-learning algorithm

In neural FQ-learning [28], a value function is learned that maps observation-action pairs to

values, Q(o, a). This value function is represented by a neural network. We define a transition

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 15 / 24

https://doi.org/10.1371/journal.pcbi.1010695

as the tuple (o, a, r, o0, d) specifying, respectively, an observation, an action, a reward, a subse-

quent observation, and an indicator that is 1 if the episode terminated during this transition

and otherwise is 0. Here a is the action taken after observing o, while r and o0 are the reward

and the observation that result from taking action a. The state can be continuous, but the

action is limited to a discrete set of feasible values. From a sequence of these state transitions, a

sequence of Q-learning targets is generated as:

Qðo; aÞtarget ¼ r þ ð1 � dÞgmax
a

Qðo0; aÞ ð4Þ

Here the term maxa Q(o0, a), where a is an action that can be taken by the agent, gives an

estimate of the total future reward obtained after observing o0. This is weighted by γ, the dis-

count factor, which dictates how heavily the possible future rewards affect decisions. The neu-

ral network is trained on the set of inputs and targets generated from all training data seen so

far (Algorithm 1). A training iteration takes place after each episode, resulting in Algorithm 2.

We used the Adam optimiser [52] to train the neural network because of its ability to dynami-

cally adapt the learning rate, which is favourable when implementing reinforcement learning

with a neural network [53].

In this work we use an �-greedy policy in which a random action is chosen with probability

� and the action a = maxa Q(o, a) is chosen with probability 1 − �. The explore rate was initially

set to � = 1 and decayed as � ¼ clipðlog
10
ð e

AÞ; 0; 1Þ where e is the episode number, starting at 0,

and A is a constant that dictates the rate of decay. The clip function checks if its first argument

is within the interval defined by the second and third arguments and, if it is not, clips it to the

nearest edge of the interval. In this work, A was set to the total number of episodes used in a

given training simulation divided by 11. This choice ensures that the explore rate reaches 0

before the end of training. This �-greedy strategy is a widely used policy that has been proven

effective [19, 20] and is easy to implement. The inputs to the neural network are continuous.

The input layer is of size 11 if the elements of the FIM are included, otherwise it is of size 2 to

account for the single measured variable and the time step index. The neural network contains

two hidden layers with 100 neurons each, all of which use the ReLU activation function. The

linear output layer consists of 100 neurons, accounting for the discretisation of the two dimen-

sional action space into 10 bins along each axis. When a recurrent network is used two addi-

tional GRU layers were added each with 64 neurons to process the sequence of previous

observations and actions, the output of which is concatenated to the current observation

before being passed to the rest of the network. In this case, the network is structured similarly

to the value network in Fig 3A.

Algorithm 1 FQ-iteration
1: input: D ⊳ memory of transitions encountered so far
2: reinitialise Q network
3: inputs ¼ fo 8 o 2 Dg
4: targets ¼ fr þ gð1 � dÞmaxa Qiðo0Þ 8 a; r; o0; d 2 Dg
5: train Q network on (inputs, targets)!Q
6: return Q

Algorithm 2 FQ-learning
1: hyperparameter: E ⊳ number of episodes
2: hyperparameter: T ⊳ number of time steps in each episode
3: for e in 1 to E do
4: o = env.reset() ⊳ reset env and get initial o
5: for τ in 0 to T do
6: a = π(o, QN) ⊳ get action based on current policy
7: (r, o0, d) = env.step(a) ⊳ interact with env and observe

transition

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 16 / 24

https://doi.org/10.1371/journal.pcbi.1010695

8: D Dþ ðo; a; r; o0; dÞ ⊳ add transition to memory
9: o = o0 ⊳ update current observation
10: Q = FQ_iteration(D) ⊳ update agent’s policy
11: return Q

Value fitting

The process used for evaluating an agent’s ability to learn a value function is illustrated in

Fig 5. First, a training set of 10,000 experiments was generated by sampling 10,000 different

parametrisations of the chemostat model from a uniform distribution over parameters, with

maximal and minimal values as in Table 1. For each parametrisation, 10 random experimental

inputs were applied, sampled uniformly from the discrete set of actions. This procedure was

repeated to generate an independent testing set. For each experiment the return was calculated

as the sum of the rewards obtained after visiting each observation-action pair through the

experiment, Gðot; atÞ ¼
P10

i¼t ri. This results in two independent datasets consisting of N = 10,

000 × 10 data-points, where each data-point is composed of an observation, o, an action, a,

and the corresponding return, G. The value functions of each agent was fitted to the training

data set using repeated FQ-iterations (Algorithm 1), where the Q-learning targets were the

returns, G. (Note, this training scenario is distinct from the episode-based reinforcement

learning strategy.) This procedure tests an agent’s ability to learn the value function from a

random policy applied to a range of model parameterisations. Because the parameter values

are different for each experiment, the agent must learn to infer where it is in parameter space

to optimally predict the value of a given observation-action pair.

Twin delayed deep deterministic policy gradient

Twin delayed deep deterministic policy gradient (T3D) [30] is an off-policy algorithm for con-

tinuous deep reinforcement learning (Algorithm 3). It is based on a previously established

algorithm called deep deterministic policy gradient (DDPG) [54], but introduces a few modifi-

cations to improve learning stability. The DDPG algorithm is closely related to Q-learning and

can be thought of as Q-learning adapted for continuous action spaces. Like deep Q-learning,

DDPG uses a neural network to approximate and learn a Q-function Q(o, a) which maps

observation action pairs to a value. In addition, DDPG also learns a policy, a = π(o), which is

represented by a second neural network. The policy network maps states to actions and is

trained to choose the action, a, that maximises the value of the state action pair for the given

observation, o, according to the value network: a = argmaxa Q(o, a)� Q(o, π(o)).

Fig 5. Testing agents that do not have prior access to simulation parameter values. 1) A distribution of parameters was chosen (uniform distribution in this case). 2)

Data was generated on simulated chemostat models using a random policy for action selection. 3) Agents were trained to predict the observed returns.

https://doi.org/10.1371/journal.pcbi.1010695.g005

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 17 / 24

https://doi.org/10.1371/journal.pcbi.1010695.g005
https://doi.org/10.1371/journal.pcbi.1010695

The DDPG algorithm proceeds as follows. As in FQ-learning, a transition is defined as the

tuple (o, a, r, o0, d) specifying, respectively, an observation, action, reward, a subsequent obser-

vation and an indicator that is 1 if the episode terminated during this transition and otherwise

is 0. As the agent learns, it stores observed state transitions in a replay buffer, D, which can be

though of as its memory. Two tricks are used to increase stability of the learning process in

DDPG. Firstly, at each update a random sample, B, of past experience is taken from the replay

buffer to reduce the temporal correlation in the updates. Secondly, target networks Qtarg, πtarg

are used to generate the Q-learning targets. The parameters of these networks update slowly to

the parameters of Q and π by Polyak averaging, θtarg = ρθtarg + (1 − ρ)θ. This reduces the

dependence of the target on the trained parameters and further increases stability.

Three further additions to DDPG lead to the T3D algorithm. First, the policy network

updates are delayed by updating half as frequently as the Q-network. Second, to address a

common failure mode of DDPG in which the policy can exploit incorrect sharp peaks in the

Q-function, the target policy is smoothed by adding random noise to the target actions which

effectively regularises the algorithm:

a0ðo0Þ ¼ clipðptargðo
0Þ þ clipðx; � c; cÞ; alow; ahighÞ; x � N ð0; sÞ

where c is an upper bound on the absolute value of the noise, alow and ahigh are lower and

upper bounds on the target action respectively, and σ is the standard deviation of the noise.

Finally, because all Q-learning methods involve maximising over target actions, they are prone

to overestimate the Q-function. To reduce this tendency, double Q-learning is implemented in

T3D: two Q-functions, Q1 and Q2, are learned and the one that gives the smaller value is used

to calculate the Q-learning target. From a sequence of state transitions, B, sampled from the

replay buffer a sequence of Q-learning targets, y, is created according to:

yðr; o0; dÞ ¼ r þ gð1 � dÞmin
i¼1;2

Qi;targðo
0; a0Þ 8 ðo; a; r; o0; dÞ 2 B

The term (1 − d) mini = 1,2Qi,targ(o0, a0) gives an estimate of the total future reward obtained

after entering state o0. The networks Q1 and Q2 are trained on the set of inputs by regressing to

the targets with the following losses.

L1ðDÞ ¼ EB ½ðQ1ðo; aÞ � yðr; o0; dÞ2�

L2ðDÞ ¼ EB ½ðQ2ðo; aÞ � yðr; o0; dÞ2�

Then, every other update, the policy network is updated by training it to maximise Q1:

max
y
E
B
½Q1ðo; pyðoÞÞ� ð5Þ

Finally, the target networks are updated:

yQ1;targ
¼ ryQ1;targ

þ ð1 � rÞyQ1

yQ2;targ
¼ ryQ2;targ

þ ð1 � rÞyQ2

yptarg
¼ ryptarg

þ ð1 � rÞyp

We use an �-greedy policy adapted to the continuous action space; a random action is uni-

formly chosen between alow and ahigh with probability � and the action a ¼ clipðpðsÞ þ
N ð0; 0:2�Þ; alow; ahighÞ is chosen with probability 1 − �. The explore rate � was set to decay expo-

nentially as training progressed. The explore rate was initially set to � = 1 and decayed as

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 18 / 24

https://doi.org/10.1371/journal.pcbi.1010695

� ¼ clipðlog
10
ð e

AÞ; 0; 1Þ where e is the episode number and A is a constant that dictates the rate

of decay, where A is equal to the number of episodes divided by eleven. This ensures the

explore rate reaches 0 before the end of training. The Adam optimiser [52] was used to train

the neural networks, because of its ability to dynamically adapt the learning rate, which is

favourable when implementing reinforcement learning with a neural network [53].

Algorithm 3 T3D
1: hyperparameter: E ⊳ number of episodes
2: hyperparameter: T ⊳ number of time steps in each episode
3: for e in 1 to E do
4: o = env.reset() ⊳ reset env and get initial o
5: for τ in 0 to T do
6: a = π(o) ⊳ get action based on current policy
7: (r, o0, d) = env.step(a) ⊳ interact with env and observe

transition
8: D Dþ ðo; a; r; o0; dÞ ⊳ add transition to memory
9: update_count = 0
10: if t%update_frequency = 0 then
11: B � D
12: a0 ¼ clipðptargðo0Þ þ clipðx; � c; cÞ; alow; ahighÞ; x � N ð0; sÞ 8 o 2 B
13: yðr; o0; dÞ ¼ r þ ð1 � dÞgmini¼1;2Qi;targðo0; a0Þ 8 ðo; a; r; o0; dÞ 2 B
14: Train Q1, Q2 networks on y(r, o0, d)
15: if update_count % policy_delay == 0 then
16: Train π network to maxyEB½Q1ðo; pyðoÞÞ�
17: θtarg = ρθtarg + (1 − ρ)θ ⊳ update target networks
18: o = o0 ⊳ update current observation
19: return π ⊳ return trained policy

The details of our neural networks are as follows (see Fig 3A). The value network contains a

GRU cell composed of two layers each with 64 neurons. This takes as input all system measure-

ments, Y, and experimental inputs, u, seen so far in the current experiment. The GRU cell is a

type of recurrent layer which excels at processing sequences such as time series data. The out-

put of the GRU is concatenated with the current system measurements, Yτ, the current time

step, t, and the current action, uτ. These are fed into a feed forward network composed of two

hidden layers, each with 128 neurons. The output of the value network is an estimate of the

value of the supplied experimental input, uτ, given the sequence of observables. The policy net-

work contains a recurrent GRU cell composed of two layers each with 64 neurons. This takes

as input all measurements and experimental inputs seen so far in the current experiment. The

output of the GRU is concatenated with the current observation, composed of the current sys-

tem measurements and the current time step, and fed into a feed forward network composed

of two hidden layers, each with 128 neurons. The output of the policy network is the experi-

mental input that is estimated to have the highest reward value for the given sequence of obser-

vations. TensorFlow version 2.4.1 [55] was used to implement all neural networks.

Because training a RL controller takes place over a large number of independent episodes,

it is possible to gather experience from multiple episodes in parallel. We took advantage of this

by running experimental simulations in parallel using the functionality provided by the

CasADi library. This means that all of the computationally demanding aspects of the training

process are parallelised. The training of the neural networks using TensorFlow is implemented

in parallel and can be run on a GPU or a multicore CPU. The simulation of the experimental

system using CasADi is parallelised and can take advantage of a multicore CPU. Experimental

simulations were run in batches of 10 parallel simulations, but this number could be increased

to take advantage of more computing resources. The average training time for the RT3D algo-

rithm training on the chemostat system over a parameter distribution was 11.73 hours with

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 19 / 24

https://doi.org/10.1371/journal.pcbi.1010695

standard deviation 0.91 hours over 20 total training runs on a computing cluster with 40 CPU

cores and a GeForce GTX 1080 Ti. To assess the training time on a smaller scale personal com-

puter, a single RT3D agent was trained on a 13-inch MacBook pro with a 2GHz Quad core

Intel i5 processor with no GPU. The training time was 15.48hrs. Online experimental inputs

can be determined in parallel with little to no additional time cost. For instance, to determine

100 parallel experiments on the chemostat system takes approximately 0.005s on a desktop

computer with a modest GPU (NVIDA Quadro P2000) and 0.02 seconds on a MacBook Pro

with a 2GHz Quad-Core Intel Core i5 and no GPU. (Note that this time is dependent only on

the size of the neural network used and so is not directly a function of system complexity,

although more complex systems may require the use of larger neural networks.)

Scaling neural network inputs and outputs

To prevent network instability and improve convergence, inputs to neural networks are often

scaled [56]. The inputs to the neural networks for all reinforcement learning agents were scaled

to be approximately between 0 and 1. This was done by dividing each input by a scalar normal-

isation constant. At the nominal parameter values, the carrying capacity of the chemostat sys-

tem is 48 × 109 and so using a normalisation coefficient of 50 × 109 ensures that all population

measurements are between 0 and 1 before entering the network. This normalisation of the

population measurements was used in the first FQ-learning results section. The time step, τ is

known to be an index between 0 and 10 and so a normalisation constant of 10 was used for all

sections. The elements of the FIM comprising the agent’s observations present more of a chal-

lenge. To find a suitable normalisation constant for each of these, the highest value of each

FIM element during the agent’s exploration phase was found during a trial training run, where

the portion of training in which the explore rate is equal to 0 was simulated. This value was

used as the normalisation constant.

When sampling from a parameter distribution the normalisation can be more challenging.

Some regions of parameter space led to instability in the simulation output. Such simulations

were discarded. To limit the number of episodes that were discarded, a square root was applied

to the population measurement before being normalised by 1 × 105, any episodes with obser-

vations greater than 1 after normalisation were taken to be unstable and discarded. Approxi-

mately 2.5% of training episodes were discarded. The square root increases the allowable

population range while still allowing sufficient separation between different population mea-

surements for the agent to learn. (We attempted application of a log10 scaling to the population

measurements but found that led to poor performance. We hypothesise that because the

majority of episodes are stable and have populations that vary within a single of magnitude,

the agent was unable to sufficiently distinguish between different population measurements

under that logarithmic scaling.) For consistency, the output of the neural networks was also

scaled to be between 0 and 1 by dividing the Q-learning targets by 100.

Model predictive control

A model predictive controller (MPC) [57] uses a calibrated model of a system (Eq 1) to predict

optimal control inputs. Assuming that the parameter values are known, the MPC integrates

the model over a predefined time interval to optimise an objective function with respect to the

control inputs u. In this work, the objective function was the optimality score of an experiment

(Eq 3). The time horizon the MPC optimises over is a hyperparameter to be chosen. We con-

sider two variants of MPC. The first optimizes over a single time interval; we refer to this as the

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 20 / 24

https://doi.org/10.1371/journal.pcbi.1010695

one step ahead optimiser (OSAO). At time step τ the OSAO solves the optimisation problem

ut ¼ arg max
u
ðlogjItþ1j � log jItjÞ: ð6Þ

(Note, the term log|Iτ| has already been determined by the start of this interval and so does

not contribute to the optimisation task; we include it here to simplify the interpretation of the

full MPC optimality criterion below.) The second variant is a controller that optimises over the

full timeseries of N intervals simultaneously; we refer to this as the MPC. At the beginning of

the experiment the MPC uses the model to optimise over the full experiment, choosing each

input that will be applied by solving the optimisation problem:

½u0; u1; . . . ;uT � 1� ¼ arg max
½u0 ;u1 ;...;uT � 1 �

log jIT j ð7Þ

where T is the number of time steps in the experiment. To solve the optimisation problems

for both the OSAO and MPC the non-linear solver IPOPT [58] was called from the CasADi

library [51].

Parameter fitting

To confirm that our optimality scores correspond to improved parameter estimation accuracy,

we used simulated experiments to assess the correlation between high D-optimality scores and

low covariance in the resulting parameter estimates. To generate simulated data, we simulated

the model using the given experimental design and added normally distributed observation

error with a variance equal to 5% of the corresponding output. Thirty independent simulated

datasets were generated. When assuming prior knowledge of the parameter values the model

was simulated using the nominal parameter values. When a parameter distribution was used,

parameters were sampled from the distribution before each simulated experiment. The non-

linear solver IPOPT [58] was called from the CasADi library [51] to infer parameter estimates

from the simulated data.

Supporting information

S1 Text. Supporting information.

(PDF)

Author Contributions

Conceptualization: Neythen J. Treloar, Nathan Braniff, Brian Ingalls, Chris P. Barnes.

Funding acquisition: Brian Ingalls, Chris P. Barnes.

Investigation: Neythen J. Treloar.

Methodology: Neythen J. Treloar, Nathan Braniff, Brian Ingalls, Chris P. Barnes.

Software: Neythen J. Treloar.

Supervision: Brian Ingalls, Chris P. Barnes.

Visualization: Neythen J. Treloar.

Writing – original draft: Neythen J. Treloar, Nathan Braniff, Brian Ingalls, Chris P. Barnes.

Writing – review & editing: Neythen J. Treloar, Nathan Braniff, Brian Ingalls, Chris P.

Barnes.

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 21 / 24

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010695.s001
https://doi.org/10.1371/journal.pcbi.1010695

References
1. Erguler K, Stumpf MP. Practical limits for reverse engineering of dynamical systems: a statistical analy-

sis of sensitivity and parameter inferability in systems biology models. Molecular BioSystems. 2011;

7(5):1593–1602. https://doi.org/10.1039/c0mb00107d PMID: 21380410

2. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP. Universally sloppy parame-

ter sensitivities in systems biology models. PLoS computational biology. 2007; 3(10):e189. https://doi.

org/10.1371/journal.pcbi.0030189 PMID: 17922568

3. Lillacci G, Khammash M. Parameter estimation and model selection in computational biology. PLoS

computational biology. 2010; 6(3):e1000696. https://doi.org/10.1371/journal.pcbi.1000696 PMID:

20221262

4. Pronzato L. Optimal experimental design and some related control problems. Automatica. 2008;

44(2):303–325. https://doi.org/10.1016/j.automatica.2007.05.016

5. Gevers M. Identification for Control: From the Early Achievements to the Revival of Experiment

Design*. European Journal of Control. 2005; 11(4):335–352. https://doi.org/10.3166/ejc.11.335-352

6. Hjalmarsson H. From experiment design to closed-loop control. Automatica. 2005; 41(3):393–438.

https://doi.org/10.1016/j.automatica.2004.11.021

7. Pauwels E, Lajaunie C, Vert JP. A Bayesian active learning strategy for sequential experimental design

in systems biology. BMC Systems Biology. 2014; 8(1):1–11. https://doi.org/10.1186/s12918-014-0102-

6 PMID: 25256134

8. Liepe J, Kirk P, Filippi S, Toni T, Barnes CP, Stumpf MP. A framework for parameter estimation and

model selection from experimental data in systems biology using approximate Bayesian computation.

Nature protocols. 2014; 9(2):439–456. https://doi.org/10.1038/nprot.2014.025 PMID: 24457334

9. Liepe J, Filippi S, Komorowski M, Stumpf MP. Maximizing the information content of experiments in sys-

tems biology. PLoS computational biology. 2013; 9(1):e1002888. https://doi.org/10.1371/journal.pcbi.

1002888 PMID: 23382663

10. Bandiera L, Gomez Cabeza D, Balsa-Canto E, Menolascina F. Bayesian model selection in synthetic

biology: factor levels and observation functions. IFAC-PapersOnLine. 2019; 52(26):24–31. https://doi.

org/10.1016/j.ifacol.2019.12.231

11. Cabeza DG, Bandiera L, Balsa-Canto E, Menolascina F. Information content analysis reveals desirable

aspects of in vivo experiments of a synthetic circuit. In: 2019 IEEE Conference on Computational Intelli-

gence in Bioinformatics and Computational Biology (CIBCB); 2019. p. 1–8.

12. Bandara S, Schlöder JP, Eils R, Bock HG, Meyer T. Optimal experimental design for parameter estima-

tion of a cell signaling model. PLoS computational biology. 2009; 5(11):e1000558. https://doi.org/10.

1371/journal.pcbi.1000558 PMID: 19911077

13. Ruess J, Milias-Argeitis A, Lygeros J. Designing experiments to understand the variability in biochemi-

cal reaction networks. Journal of The Royal Society Interface. 2013; 10(88):20130588. https://doi.org/

10.1098/rsif.2013.0588 PMID: 23985733

14. Braniff N, Scott M, Ingalls B. Component characterization in a growth-dependent physiological context:

optimal experimental design. Processes. 2019; 7(1):52. https://doi.org/10.3390/pr7010052

15. Braniff N, Richards A, Ingalls B. Optimal experimental design for a bistable gene regulatory network.

IFAC-PapersOnLine. 2019; 52(26):255–261. https://doi.org/10.1016/j.ifacol.2019.12.267

16. Barz T, López Cárdenas DC, Arellano-Garcia H, Wozny G. Experimental evaluation of an approach to

online redesign of experiments for parameter determination. AIChE Journal. 2013; 59(6):1981–1995.

https://doi.org/10.1002/aic.13957

17. Cruz Bournazou M, Barz T, Nickel D, Lopez Cárdenas D, Glauche F, Knepper A, et al. Online optimal

experimental re-design in robotic parallel fed-batch cultivation facilities. Biotechnology and bioengineer-

ing. 2017; 114(3):610–619. https://doi.org/10.1002/bit.26192 PMID: 27696353

18. Nickel DB, Cruz-Bournazou MN, Wilms T, Neubauer P, Knepper A. Online bioprocess data generation,

analysis, and optimization for parallel fed-batch fermentations in milliliter scale. Engineering in Life Sci-

ences. 2017; 17(11):1195–1201. https://doi.org/10.1002/elsc.201600035 PMID: 32624747

19. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-level control through

deep reinforcement learning. Nature. 2015; 518(7540):529. https://doi.org/10.1038/nature14236 PMID:

25719670

20. Lample G, Chaplot DS. Playing FPS Games with Deep Reinforcement Learning. In: Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence. AAAI’17. AAAI Press; 2017. p. 2140–2146.

21. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, et al. Mastering the game of

Go with deep neural networks and tree search. nature. 2016; 529(7587):484–489. https://doi.org/10.

1038/nature16961 PMID: 26819042

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 22 / 24

https://doi.org/10.1039/c0mb00107d
http://www.ncbi.nlm.nih.gov/pubmed/21380410
https://doi.org/10.1371/journal.pcbi.0030189
https://doi.org/10.1371/journal.pcbi.0030189
http://www.ncbi.nlm.nih.gov/pubmed/17922568
https://doi.org/10.1371/journal.pcbi.1000696
http://www.ncbi.nlm.nih.gov/pubmed/20221262
https://doi.org/10.1016/j.automatica.2007.05.016
https://doi.org/10.3166/ejc.11.335-352
https://doi.org/10.1016/j.automatica.2004.11.021
https://doi.org/10.1186/s12918-014-0102-6
https://doi.org/10.1186/s12918-014-0102-6
http://www.ncbi.nlm.nih.gov/pubmed/25256134
https://doi.org/10.1038/nprot.2014.025
http://www.ncbi.nlm.nih.gov/pubmed/24457334
https://doi.org/10.1371/journal.pcbi.1002888
https://doi.org/10.1371/journal.pcbi.1002888
http://www.ncbi.nlm.nih.gov/pubmed/23382663
https://doi.org/10.1016/j.ifacol.2019.12.231
https://doi.org/10.1016/j.ifacol.2019.12.231
https://doi.org/10.1371/journal.pcbi.1000558
https://doi.org/10.1371/journal.pcbi.1000558
http://www.ncbi.nlm.nih.gov/pubmed/19911077
https://doi.org/10.1098/rsif.2013.0588
https://doi.org/10.1098/rsif.2013.0588
http://www.ncbi.nlm.nih.gov/pubmed/23985733
https://doi.org/10.3390/pr7010052
https://doi.org/10.1016/j.ifacol.2019.12.267
https://doi.org/10.1002/aic.13957
https://doi.org/10.1002/bit.26192
http://www.ncbi.nlm.nih.gov/pubmed/27696353
https://doi.org/10.1002/elsc.201600035
http://www.ncbi.nlm.nih.gov/pubmed/32624747
https://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
https://doi.org/10.1371/journal.pcbi.1010695

22. Zhou Z, Li X, Zare RN. Optimizing Chemical Reactions with Deep Reinforcement Learning. ACS Cen-

tral Science. 2017; 3(12):1337–1344. https://doi.org/10.1021/acscentsci.7b00492 PMID: 29296675

23. Degrave J, Felici F, Buchli J, Neunert M, Tracey B, Carpanese F, et al. Magnetic control of tokamak

plasmas through deep reinforcement learning. Nature. 2022; 602(7897):414–419. https://doi.org/10.

1038/s41586-021-04301-9 PMID: 35173339

24. Mirhoseini A, Goldie A, Yazgan M, Jiang JW, Songhori E, Wang S, et al. A graph placement methodol-

ogy for fast chip design. Nature. 2021; 594(7862):207–212. https://doi.org/10.1038/s41586-021-03544-

w PMID: 34108699

25. Telen D, Vercammen D, Logist F, Van Impe J. Robustifying optimal experiment design for nonlinear,

dynamic (bio) chemical systems. Computers & chemical engineering. 2014; 71:415–425. https://doi.

org/10.1016/j.compchemeng.2014.09.006

26. Foster A, Ivanova DR, Malik I, Rainforth T. Deep Adaptive Design: Amortizing Sequential Bayesian

Experimental Design; 2021. Available from: https://arxiv.org/abs/2103.02438.

27. Blau T, Bonilla EV, Chades I, Dezfouli A. Optimizing Sequential Experimental Design with Deep Rein-

forcement Learning. In: Chaudhuri K, Jegelka S, Song L, Szepesvari C, Niu G, Sabato S, editors. Pro-

ceedings of the 39th International Conference on Machine Learning. vol. 162 of Proceedings of

Machine Learning Research. PMLR; 2022. p. 2107–2128. Available from: https://proceedings.mlr.

press/v162/blau22a.html.

28. Riedmiller M. Neural fitted Q iteration–first experiences with a data efficient neural reinforcement learn-

ing method. In: European Conference on Machine Learning. Springer; 2005. p. 317–328.

29. Treloar NJ, Fedorec AJ, Ingalls B, Barnes CP. Deep reinforcement learning for the control of microbial

co-cultures in bioreactors. PLoS computational biology. 2020; 16(4):e1007783. https://doi.org/10.1371/

journal.pcbi.1007783 PMID: 32275710

30. Fujimoto S, Hoof H, Meger D. Addressing function approximation error in actor-critic methods. In: Inter-

national Conference on Machine Learning. PMLR; 2018. p. 1587–1596.

31. Atkinson A, Donev A, Tobias R. Optimum Experimental Designs, with SAS; 2007.

32. Steel H, Habgood R, Kelly C, Papachristodoulou A. Chi. Bio: An open-source automated experimental

platform for biological science research. bioRxiv. 2019; p. 796516.

33. Wong BG, Mancuso CP, Kiriakov S, Bashor CJ, Khalil AS. Precise, automated control of conditions for

high-throughput growth of yeast and bacteria with eVOLVER. Nature biotechnology. 2018; 36(7):614–

623. https://doi.org/10.1038/nbt.4151 PMID: 29889214

34. Takahashi CN, Miller AW, Ekness F, Dunham MJ, Klavins E. A low cost, customizable turbidostat for

use in synthetic circuit characterization. ACS synthetic biology. 2015; 4(1):32–38. https://doi.org/10.

1021/sb500165g PMID: 25036317

35. Hoffmann SA, Wohltat C, Müller KM, Arndt KM. A user-friendly, low-cost turbidostat with versatile

growth rate estimation based on an extended Kalman filter. PloS one. 2017; 12(7):e0181923. https://

doi.org/10.1371/journal.pone.0181923 PMID: 28746418

36. Treloar NJ. Towards the implementation of distributed systems in synthetic biology. UCL (University

College London); 2022.

37. Seto M, Alexander M. Effect of bacterial density and substrate concentration on yield coefficients. Appl

Environ Microbiol. 1985; 50(5):1132–1136. https://doi.org/10.1128/aem.50.5.1132-1136.1985 PMID:

4091549

38. Owens J, Legan J. Determination of the Monod substrate saturation constant for microbial growth.

FEMS Microbiol Rev. 1987; 3(4):419–432. https://doi.org/10.1111/j.1574-6968.1987.tb02478.x

39. Cox RA. Quantitative relationships for specific growth rates and macromolecular compositions of Myco-

bacterium tuberculosis, Streptomyces coelicolor A3 (2) and Escherichia coli B/r: an integrative theoreti-

cal approach. Microbiology. 2004; 150(5):1413–1426. https://doi.org/10.1099/mic.0.26560-0 PMID:

15133103

40. Dulac-Arnold G, Evans R, van Hasselt H, Sunehag P, Lillicrap T, Hunt J, et al. Deep reinforcement

learning in large discrete action spaces. arXiv preprint arXiv:151207679. 2015;.

41. Abt V, Barz T, Cruz-Bournazou MN, Herwig C, Kroll P, Möller J, et al. Model-based tools for optimal

experiments in bioprocess engineering. Current Opinion in Chemical Engineering. 2018; 22:244–252.

https://doi.org/10.1016/j.coche.2018.11.007

42. Pozzi A, Xie X, Raimondo DM, Schenkendorf R. Global Sensitivity Methods for Design of Experiments

in Lithium-ion Battery Context. IFAC-PapersOnLine. 2020; 53(2):7248–7255. https://doi.org/10.1016/j.

ifacol.2020.12.558

43. Schenkendorf R, Xie X, Rehbein M, Scholl S, Krewer U. The Impact of Global Sensitivities and Design

Measures in Model-Based Optimal Experimental Design. Processes. 2018; 6(4). https://doi.org/10.

3390/pr6040027

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 23 / 24

https://doi.org/10.1021/acscentsci.7b00492
http://www.ncbi.nlm.nih.gov/pubmed/29296675
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-021-04301-9
http://www.ncbi.nlm.nih.gov/pubmed/35173339
https://doi.org/10.1038/s41586-021-03544-w
https://doi.org/10.1038/s41586-021-03544-w
http://www.ncbi.nlm.nih.gov/pubmed/34108699
https://doi.org/10.1016/j.compchemeng.2014.09.006
https://doi.org/10.1016/j.compchemeng.2014.09.006
https://arxiv.org/abs/2103.02438
https://proceedings.mlr.press/v162/blau22a.html
https://proceedings.mlr.press/v162/blau22a.html
https://doi.org/10.1371/journal.pcbi.1007783
https://doi.org/10.1371/journal.pcbi.1007783
http://www.ncbi.nlm.nih.gov/pubmed/32275710
https://doi.org/10.1038/nbt.4151
http://www.ncbi.nlm.nih.gov/pubmed/29889214
https://doi.org/10.1021/sb500165g
https://doi.org/10.1021/sb500165g
http://www.ncbi.nlm.nih.gov/pubmed/25036317
https://doi.org/10.1371/journal.pone.0181923
https://doi.org/10.1371/journal.pone.0181923
http://www.ncbi.nlm.nih.gov/pubmed/28746418
https://doi.org/10.1128/aem.50.5.1132-1136.1985
http://www.ncbi.nlm.nih.gov/pubmed/4091549
https://doi.org/10.1111/j.1574-6968.1987.tb02478.x
https://doi.org/10.1099/mic.0.26560-0
http://www.ncbi.nlm.nih.gov/pubmed/15133103
https://doi.org/10.1016/j.coche.2018.11.007
https://doi.org/10.1016/j.ifacol.2020.12.558
https://doi.org/10.1016/j.ifacol.2020.12.558
https://doi.org/10.3390/pr6040027
https://doi.org/10.3390/pr6040027
https://doi.org/10.1371/journal.pcbi.1010695

44. Imani M, Ghoreishi SF. Bayesian Optimization Objective-Based Experimental Design. In: 2020 Ameri-

can Control Conference (ACC); 2020. p. 3405–3411.

45. Pinto JC, Lobão MW, Monteiro JL. Sequential experimental design for parameter estimation: a different

approach. Chemical Engineering Science. 1990; 45(4):883–892. https://doi.org/10.1016/0009-2509

(90)85010-B

46. Versyck KJ, Van Impe JF. Trade-offs in design of fed-batch experiments for optimal estimation of bioki-

netic parameters. In: Proceedings of the 1998 IEEE International Conference on Control Applications

(Cat. No.98CH36104). vol. 1; 1998. p. 51–55 vol.1.

47. Benabbas L, Asprey SP, Macchietto S. Curvature-Based Methods for Designing Optimally Informative

Experiments in Multiresponse Nonlinear Dynamic Situations. Industrial & Engineering Chemistry

Research. 2005; 44(18):7120–7131. https://doi.org/10.1021/ie040096w

48. Galvanin F, Macchietto S, Bezzo F. Model-Based Design of Parallel Experiments. Industrial & Engi-

neering Chemistry Research. 2007; 46(3):871–882. https://doi.org/10.1021/ie0611406

49. Franceschini G, Macchietto S. Novel anticorrelation criteria for model-based experiment design: Theory

and formulations. AIChE Journal. 2008; 54(4):1009–1024. https://doi.org/10.1002/aic.11429

50. Franceschini G, Macchietto S. Anti-Correlation Approach to Model-Based Experiment Design: Applica-

tion to a Biodiesel Production Process. Industrial & Engineering Chemistry Research. 2008; 47(7):

2331–2348. https://doi.org/10.1021/ie071053t

51. Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M. CasADi—A software framework for nonlinear

optimization and optimal control. Mathematical Programming Computation. 2019; 11(1):1–36. https://

doi.org/10.1007/s12532-018-0139-4

52. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. In: Bengio Y, LeCun Y, editors. 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings; 2015. Available from: http://arxiv.org/abs/1412.6980.

53. Hausknecht M, Stone P. Deep Recurrent Q-Learning for Partially Observable MDPs; 2015. Available

from: https://arxiv.org/abs/1507.06527.

54. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, et al. Continuous control with deep reinforce-

ment learning; 2015. Available from: https://arxiv.org/abs/1509.02971.

55. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems; 2015. Available from: https://www.tensorflow.org/.

56. Wan X. Influence of feature scaling on convergence of gradient iterative algorithm. In: Journal of phys-

ics: Conference series. vol. 1213. IOP Publishing; 2019. p. 032021.

57. Camacho EF, Alba CB. Model predictive control. Springer science & business media; 2013.

58. Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-

scale nonlinear programming. Mathematical programming. 2006; 106(1):25–57. https://doi.org/10.

1007/s10107-004-0559-y

PLOS COMPUTATIONAL BIOLOGY Deep reinforcement learning for optimal experimental design in biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010695 November 21, 2022 24 / 24

https://doi.org/10.1016/0009-2509(90)85010-B
https://doi.org/10.1016/0009-2509(90)85010-B
https://doi.org/10.1021/ie040096w
https://doi.org/10.1021/ie0611406
https://doi.org/10.1002/aic.11429
https://doi.org/10.1021/ie071053t
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1007/s12532-018-0139-4
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1507.06527
https://arxiv.org/abs/1509.02971
https://www.tensorflow.org/
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1371/journal.pcbi.1010695

