Author response to: The impact of virtual-reality simulation training on operative performance in laparoscopic cholecystectomy: meta-analysis of randomized clinical trials

Gemma Humm1,2,*, Helen Mohan3, Christina Fleming4, Rhiannon Harries5, Christopher Wood6, Khaled Dawas2, Danail Stoyanov1 and Laurence B. Lovat1,2

1. Wellcome/Engineering and Physical Sciences Research Council Centre for Interventional and Surgical Sciences, University College London, London, UK
2. UCL Division of Surgery and Interventional Science, University College London, London, UK
3. Department of General and Colorectal Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
4. Department of General and Colorectal Surgery, University Hospital Limerick, Limerick, Ireland
5. Department of General and Colorectal Surgery, Swansea Bay University Health Board, Swansea, UK
6. Department of General and Colorectal Surgery, University College London Hospitals NHS Foundation Trust, London, UK

*Correspondence to: Gemma Humm, Wellcome/Engineering and Physical Sciences Research Council Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 43-45 Foley Street, London, W1W 7TY, UK (e-mail: g.humm@ucl.ac.uk)

Dear Editor

We thank Toale et al. for their correspondence on 'The impact of virtual-reality simulation training on operative performance in laparoscopic cholecystectomy: meta-analysis of randomized clinical trials'1 and welcome the opportunity to respond.

This correspondence has highlighted an important distinction on the methodology of some of the included studies. Four of the included studies trained their participants to a defined proficiency using virtual-reality training (VRT) and compared performance with participants who received no additional training (NAT)2–5. Individually these studies favoured VRT, which would likely be confirmed by meta-analysis. We acknowledge that inclusion of train-to-proficiency model subgroup analysis could be beneficial in demonstrating a positive relationship between VRT and performance and should be considered for future work. Of the three studies identified in the correspondence, two justified the training duration with previous evidence, but it is reasonable to question whether sufficient time was available for all participants to all achieve a defined level of competence, particularly with mixed-ability participants. Most available and included studies use the train-to-time model, which is likely a reflection of the training delivered of the time. With the implementation of the new competency-based general surgery curriculum in the UK and Ireland, it is likely that the train-to-proficiency model methodology and barriers to the implementation of simulation training will be more widely reflected in academic research.

Ideally, all participants would have comparable baseline characteristics and proficiency before intervention. Meta-analysis of studies with heterogenous participants (such as medical students versus surgical trainees) can influence results. This can also serve to reflect the heterogenous levels of skills, experience, and learning curves of those in a cohort of junior trainees, which should be considered in the interpretation of results.

References