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Abstract. Over the last months, dozens of artificial intelligence (AI) solutions for
COVID-19 diagnosis based on chest X-ray image analysis have been proposed.
All of them with very impressive sensitivity and specificity results. However, its
generalization and translation to the clinical practice are rather challenging due to
the discrepancies between domain distributions when training and test data come
from different sources. Consequently, applying a trained model on a new data set
may have a problem with domain adaptation leading to performance degradation.
This research aims to study the impact of image pre-processing on pre-trained
deep learning models to reduce the learning domain. The dataset used in this re-
search consists of 5,000 X-ray images obtained from different sources under two
categories: negative and positive COVID-19 detection. We implemented transfer
learning in 3 popular convolutional neural networks (CNNs), including VGG16,
VGG19, and DenseNet169. We repeated the study following the same structure for
original and pre-processed images. The pre-processing method is based on the Con-
trast Limited Adaptive Histogram Equalization (CLAHE) filter application and im-
age registration. After evaluating the models, the CNNs that have been trained with
pre-processed images obtained an accuracy score up to 1.2% better than the unpro-
cessed ones. Furthermore, we can observe that in the 3 CNN models, the repeated
misclassified images represent 40.9% (207/506) of the original image dataset with
the erroneous result. In pre-processed ones, this percentage is 48.9% (249/509). In
conclusion, image processing techniques can help to reduce the learning domain
for deep learning applications.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is a novel illness caused by severe acute respira-
tory syndrome coronavirus-2 (SARS-CoV-2). According to the World Health Organiza-
tion, as of May 5th, 2022, there have been about 512M confirmed cases and 6M deaths
[1]. Early in the pandemic, expectations were raised that chest CT or chest x-ray (CXR)
might play a crucial role in the first-line diagnosis of COVID-19. Over time, the PCR
test became more sensitive, and clinicians’ understanding of the disease and how to treat
it improved. However, the lab test still suffers from insufficient sensitivity, such as 71%
reported in Fang et al. [2]. This is due to many factors, such as sample preparation and
quality control [3]. Given the current sensitivity of the nucleic acid tests, many suspected
patients must be tested multiple times several days apart before reaching a confident di-
agnosis. Hence, the imaging findings play a critical role in constraining the viral trans-
mission and fighting against COVID-19 [4].

For this reason, over the last 24 months, there have appeared a lot of artificial intel-
ligence (AI) solutions for COVID-19 CXR and CT diagnosis [5]. Compared to the tra-
ditional imaging workflow, which relies heavily on human labor, AI enables safer, more
accurate, and efficient imaging solutions [4].

To improve diagnosis, Information Technology (IT) services from clinical health-
care institutions have started to install a large number of the possible solutions in their
networks, and they have integrated them with their image radiology viewers. In this way,
radiologists can select one or more AI algorithms, send the data to compute, and get a di-
agnostic from each one. However, each of those solutions has been trained with different
datasets. This difference in the training data increases the uncertainty of the correctness
of any output of any AI solution. This issue is known as domain adaptation [6].

In addition, one of the main problems in evaluating clinical predictions is that deep
learning models are often trained and tested on data that do not correspond to the target
population and consequently makes it difficult for its generalization and application into
a large scale setting. Therefore, a dataset may not adequately represent the range of
possible patients and symptoms, generating a bias termed spectrum bias [7]. Because of
this bias, most models that obtain high performance may perform poorly in other real-
world scenarios where device vendor, acquisition parameters, image quality can vary.

Hence, the end-users of these tools, radiologists, feel overwhelmed with the impres-
sive number of options that they can use from their radiology image viewers and the large
number of different answers that they can get depending on the solution they choose.

However, several researchers are still working on developing reliable deep learning
tools that can overcome the mentioned shortcomings. Li et al. [8] created a COVID-
MobileXpert model for COVID-19 diagnosis on CXR images classified as COVID, Nor-
mal, and Pneumonia. They used 429 images for training (149 correspond to COVID-19)
and 108 images for testing (36 of COVID-19), obtaining an accuracy of 88%.

Furthermore, Rahaman et al. [9] have compared different transfer learning ap-
proaches to identify COVID-19 samples from CXR images. They applied transfer
learning to 15 models for 3-class classification (COVID-19, Normal, and Pneumo-
nia). They used 720 images (220 COVID-19) for training and 140 (40 COVID-19)
for testing. VGG19 (89.3% accuracy) and VGG16 (88.6% accuracy) showed the best
results. Chowdhury et al. [10] trained and validated the ResNet101, MobileNetV2,
CheXNet, SqueezeNet, and DenseNet201 models. They used 3,487 CXR images for 2-
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class (COVID-19 and Normal) and 3-class classification (COVID-19, Normal, and Pneu-
monia). DenseNet201 models show the best performance achieving a sensitivity value of
99.7% and 97.9% for COVID-19 detection in the 2-class and 3-class classifications.

Other studies such as the one of Tahir et al. [11] and Rahman et al. [12] have used
pre-processing techniques to evaluate the performance of different models. On the one
hand, in [11], they have used the Contrast Limited Adaptive Histogram Equalization
(CLAHE) filter, lung segmentation and image complement techniques to study its im-
pact on the performance of the SqueezeNet, ResNet18, Inceptionv3, and DenseNet201
models for the classification of images into COVID-19, MERS, and SARS categories.
The testing was done on 700 radiographs, of which 423 were COVID-19. The best re-
sults were obtained with Inceptionv3 reaching an accuracy of 98% for non-segmented
CXR images. On the other hand, in [12], they have explored different image enhance-
ment techniques for segmented and non-segmented CXR images. In this case, the best
results were obtained with the ChexNet model and Gamma correlation method achieving
an accuracy of 96% for non-segmented images.

In relation to this last study, Heidari et al. [13] have carried out an analysis of the
performance of the VGG16 model by applying transfer learning for 3-class (Normal,
Pneumonia, and COVID-19) recognition. They have used CXR images by applying di-
aphragm removal, histogram equalization, and bilateral low-pass filter pre-processing
techniques. For the training, they used 8,474 radiographs (415 COVID-19) and 848 im-
ages (42 COVID-19) for testing. They obtained a weighted average precision of 95%, a
recall of 94%, and an F1-score of 94%. All these studies have shown good performance
for the diagnosis of COVID-19 and little generalization possibilities. We can observe
that most of the datasets used for training and testing are unstructured, having difficulties
over new learning domains for which they have not been trained.

This paper will analyze the impact of some image pre-processing techniques to re-
duce the learning domain from image-based datasets. For this purpose, we propose a
comparison of the performance of unprocessed images and pre-processed images using
three different models (VGG16, VGG19, and DenseNet-169) by applying transfer learn-
ing. The information in the manuscript is divided as follows: the gathered dataset used is
introduced in Section 2.1. The processing techniques and the methodology are described
in Sections 2.2 and 2.3, respectively. Section 2.4 presents the metrics used for the per-
formance analysis. The results obtained with the proposed models and discussion are
discussed in Section 3. Finally, in Section 4, the conclusions are summarized.

2. Methodology

2.1. Dataset

As a proof of concept, this research used 5,000 posterior anterior (PA) CXR images se-
lected from 6 publicly available datasets to demonstrate the influence of image process-
ing techniques in reducing the learning domain. The selection of the sub-sample taken
from the different databases was done randomly. All the images were in PNG format.
Of these 5,000 CXR radiographs, 4,000 belonging to the first 4 databases of Table 1
were used for training. 2,000 correspond to COVID-19 positive samples (COVID+), and
the remaining 2,000 correspond to Normal or Non-Pathological healthy control (HC)
samples. For the test, we used 1,000 images from the last two databases of Table 1.
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Table 1. Summary of the datasets used in the research.
DB Name Data Source DB Sample Number Sub-sample Number and Category Reference

COVID-19 Data Repository
Institute for Diagnostic and Interventional Radiology,
Hannover Medical School, Germany

243 COVID+ 189 COVID+ [14]

COVID Radiography Dataset
Germany Medical School, SIRM, EURORAD, CXNet,
COVID Chest XRay dataset, BIMCV and RSNA

3,616 COVID+
1,345 Viral Pneumonia
6,012 COVID- Lung Opacity
10,192 HC

1,470 COVID+
1,099 HC

[15]

COVIDGR Hospital Universitario Clı́nico San Cecilio, Granada, Spain
426 COVID+
426 HC

341 COVID+
341 HC

[16]

Labeled Optical Coherence Tomography (OCT)
and Chest X-Ray Images for Classification

University of California San Diego
4,273 Pneumonia
1,583 HC

560 HC [17]

Covid ChestXray Dataset Public sources, hospitals and physicians

506 Viral Pneumonia (468 COVID+)
46 Bacterial Pneumonia
26 Fungal Pneumonia
9 Lipoid Pneumonia
59 Unknown

468 COVID+ [18]

ChestX-ray8 Different hospitals’ Picture Archiving and Communication Systems (PACS)

5,789 Atelectasis
1,010 Cardiomegaly
6,331 Effusion
10,317 Infiltration
6,046 Mass
1,971 Nodule
1,062 Pneumonia
2,793 Pneumothorax
84,312 HC

532 HC [19]

Figure 1. Analysis of the standard deviation and density distribution of the mean pixel value for each image
of the datasets used (left) for training to generate the new dataset (right) including the training (in orange and
blue) and test images (red and green).

Figure 1 shows the differences between the mean pixel values and the standard devi-
ation of the images in each database and how the new database represents the unification
of all the previous ones.

2.2. Data pre-processing

Subsequently, the next step involved pre-processing the incoming images using differ-
ent techniques to compare the performance of the models with the original or non-
preprocessed images and the pre-processed ones. The motivation for the application of
pre-processing was, on the one hand, to improve the visual quality of the most damaged
area of the lungs by increasing the image contrast through the Contrast Limited Adaptive
Histogram Equalization (CLAHE) filter [20]. On the other hand, a rigid registration to
an atlas of the lungs was performed for lung alignment and repositioning in the CXR
radiographs to fix the deformed images. The atlas was created from the rigid registration
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to a half-way space of 1,000 CXR images and the posterior averaging of all of them.
Figure 2 shows the comparison between original and processed CXR images.

Figure 2. Sample of unprocessed COVID-19 positive case (A), unprocessed COVID-19 negative case (C) and
their result after applying CLAHE filter and image registration (B,D).

2.3. Proposed method

Training models for disease detection requires a large data size, which sometimes may be
difficult to achieve. To overcome the limited data size, we took advantage of pre-trained
deep neural networks and transfer learning approaches. Pre-trained neural networks al-
low us to use a large number of parameters that have been previously trained on other
datasets. Those parameters can be easily adapted to a new task with few modifications.
Transfer learning is particularly beneficial in cases where there are not enough training
samples to train a model from scratch, as may be the case for COVID-19 images.

We used transfer learning through ImageNet data which contains millions of labeled
images. We applied this method to VGG16, VGG19 and DenseNet169 pre-trained deep
neural networks to classify CXR images into negative and positive COVID-19 classes.

In addition, all images in the dataset were normalized between 0 and 1 and resized to
480 x 480 pixels. In the case of using the unprocessed database, no further modifications
were applied to the images. In the case of the preprocessed images, we realigned all the
images to an in-house lung atlas template using a rigid transformation and afterwards
applied a CLAHE filter [20] to automatically enhance the contrast of each image.

We took the architectures of the trained CNNs with ImageNet, which includes 1,000
class lists, for transfer learning [21]. The set of features learned by these networks was
used by transfer learning to extract specific features related to COVID-19 detection. The
weights of each layer of the CNN models were frozen, except for those of the fully con-
nected output layer. This layer was removed to adapt the model to the new classification
problem. The default hyperparameters for each of the networks were maintained.

We added six layers on the top of each model (Figure 3). First, we set a 4x4 Aver-
age Pooling layer to take the average value of the features from the feature maps, and
thus reduce computation complexity and variance avoiding overfitting. Next, we added
a Flatten layer to convert the multi-dimensional data into 1-dimensional array. Then, we
attached two fully connected layers with an output of 128 and 64, respectively, using
Rectified Linear Unit (ReLU) activation function. ReLU, which is defined as: ReLU(x)
= max(0,x), is applied after each of those layer to make the network non-linear. We also
add a dropout layer with a rate of 0.5 to avoid overfitting. Finally, another fully connected
layer with a softmax classifier and an output of two classes corresponding to negative
and positive COVID-19 detection. Softmax assigns each node a number between 0 and
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1, being the sum of all probabilities equal to 1. To train the CNN models, we set the batch
size to 10 and the number of epochs to 20. We used the Adam optimizer with a learn-
ing rate of 0.0001 for optimization. Adam optimization is a stochastic gradient descent
method that involves a combination of first and second-order moments. In this work, we
employed categorical cross-entropy as the loss function. Moreover, we used early stop-
ping as a kind of regularization used to avoid overfitting when training. The criterion we
have used is based on stopping training when the validation loss increases noticeably.

Figure 3. Transfer learning model scheme.

The trainig dataset (databases 1-4 of Table 1) was split using 10% of the images for
validation and 90% for training. In addition, the partition was 50% COVID+ and 50%
HC and all datasets were included in the training and validation groups. Test has been
done with an independent dataset (databases 5-6 of Table 1) that has not been used for
training. The partitioning of the testing dataset is 46.8% COVID+ and 53.2% HC.

2.4. Performance analysis

We evaluated true positives (TP) and true negatives (TN) to represent images that were
well classified as COVID+ or HC respectively, while false positives (FP) and false neg-
atives (FN) represent the misclassified images. The performance was measured in terms
of sensitivity, specificity, accuracy, F1-score, and precision.

3. Results and Discussion

By testing the unprocessed and pre-processed images and applying the metrics men-
tioned in the performance analysis, we obtained the results shown in Table 2. We observe
an improvement in accuracy (+1.1%) for the pre-processed images (82.5%) compared to
the unprocessed ones (81.4%) for VGG16 model. In addition, we see that the sensitivity
improves notoriously (+4.8%) for VGG16 model. This value is crucial for COVID-19
detection as it indicates a decrease in FN values (see Figure 4). As for the specificity, we
observe that the value decreases (by -2.6%) in the pre-processed images because of the
slight increase in the FN values, as shown in the confusion matrices (Figure 4). More-
over, for this reason, the precision value is reduced by 1.0% in the pre-processed images,
and the F1-score improves by 1.7%.

The VGG19 model testing results do not show the same pattern as in the previous
model presented in Table 2 and Figure 4. In this case, the accuracy of the pre-processed
images decreases up to 82.6% (by -0.6%) as an F1-score 82.2% (by -1.0%), and sensitiv-
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Table 2. Comparison between unprocessed and processed images for the three networks in terms of accuracy,
precision, sensitivity, specificity and F1-score (%). The best results are shown in bold. All the metrics results
are reported considering the 95% confidence interval.

CNN Model Dataset Accuracy Specificity Sensitivity F1-score Precision

VGG16
Original

81.4 ± 2.4 79.4 ± 3.4 83.4 ± 3.4 81.7 ± 3.5 80.2 ± 3.6
CI[79.0 to 83.8] CI[76.0 to 82.8] CI[80.0 to 86.8] CI[78.2 to 85.2] CI[76.6 to 83.8]

Pre-processed
82.5 ± 2.4 76.8 ± 3.6 88.2 ± 2.9 83.4 ± 3.4 79.2 ± 3.7
CI[80.1 to 84.9] CI[73.2 to 80.4] CI[85.3 to 91.1] CI[80.0 to 86.8] CI[75.5 to 82.9]

VGG19
Original 83.2 ± 2.3 83.0 ± 3.2 83.4 ± 3.4 83.2 ± 3.4 83.1 ± 3.4

CI[80.9 to 85.5] CI[79.8 to 86.2] CI[80.0 to 86.8] CI[79.8 to 86.6] CI[79.7 to 86.5]

Pre-processed 82.6 ± 2.3 85.0 ± 3.0 80.2 ± 3.6 82.2 ± 3.5 84.2 ± 3.3

CI[80.3 to 84.9] CI[82.0 to 88.0] CI[76.6 to 83.8] CI[78.7 to 85.7] CI[80.9 to 87.5]

DenseNet-169
Original 82.8 ± 2.3 82.0 ± 3.3 83.6 ± 3.4 82.9 ± 3.4 82.3 ± 3.5

CI[80.5 to 85.1] CI[78.7 to 85.3] CI[80.2 to 87.0] CI[79.5 to 86.3] CI[78.8 to 85.8]

Pre-processed 84.0 ± 2.3 77.6 ± 3.5 90.4 ± 2.7 85.0 ± 3.2 80.1 ± 3.6
CI[81.7 to 86.3] CI[74.1 to 81.1] CI[87.7 to 93.1] CI[81.8 to 88.2] CI[76.5 to 83.7]

Figure 4. The figure shows the confusion matrix results after testing the three models. Positive cases are
indicated as COVID+ or “+”, and negative cases as COVID- or “-”. Rows represent the true label and columns
represent the predicted label.

ity to 66.2% (by -3.2%). However, specificity increases by 2.0% and precision by 1.1%.
This is related to the results of the confusion matrices in Figure 4.

Regarding the test results for DenseNet-169 model (Table 2), we see an increase
in accuracy from 82.8% to 84.0% for the pre-processed images. Similarly, the F1-score
increases to 85.0% for the pre-processed images and the sensitivity to 90.4%. In this case,
specificity decreases by 4.8% and precision by 2.2%. In this case, the confusion matrices
of Figure 4 show a notorious reduction of 41.5% in the FN values of the pre-processed
images. Consequently, there is a 24.4% increase in the FP values.

Overall, the best results have been obtained for the pre-processed images, which
is related to the accuracy and sensitivity increase. This last point is remarkable since it
indicates that the number of images classified as FN, which represent COVID+ cases
classified as HC, is reduced.

In addition, we performed a study to compare the images classified as FN and FP
considering the three models (VGG16, VGG19, and DenseNet-169) for the two datasets
(original and preprocessed). We found that the repeated misclassified images represent
40.9% of the original image dataset with the erroneous result since 207 repeated im-
ages (69 images for each CNN model) were present in a total of 506 misclassified un-
processed images for the three models. This percentage is 48.9% in pre-processed ones
since 249 repeated images (83 images for each CNN model) were present in a total of
509 misclassified pre-processed images.
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Considering that a large part of the misclassified images are repeated, we wanted to
check if there is a pattern capable of differentiating these images from those that have
been well classified (TN and TP) by the three models in each dataset. To do this, we first
studied the mean pixel values and the standard deviation of each group. Figure 5 shows
that the mean pixel values of the TN images are clustered between 0.40 and 0.75 on a
scale of 0 to 1. While the TP images extend equally over a wide range in the case of the
unprocessed images, the pre-processed images show a density peak between 0.50 and
0.65 values. FN and FP values are under the spectrum of the well classified, so it is hard
to draw a clear differentiation.

Figure 5. Representation of the standard deviation and density of the mean pixel values for each image clas-
sified as TP, TN, FP and FN.

With the purpose of looking for differentiation between misclassified and well-
classified images, we carried out an entropy’s study to compare both groups. Within this
study, we have considered as FN and FP only images equally misclassified by the three
models. The groups TP and TN correspond to the images equally well classified as TP
or TN by the three models. Shannon Entropy [22] is a measure from information the-
ory which represents the level of uncertainty of a set of values and we employed it to
characterize the overall image’s texture coherence.

Figure 6 shows the results of this study, where we can observe a clear differentia-
tion between the misclassified images, which have higher entropy values, and the well-
classified ones. This difference could serve as an initial filter for identifying these images
before using them in convolutional networks.

Furthermore, we studied contrast, signal-to-noise ratio (SNR) and image normalized
entropy parameters to detect similarities between misclassified and well-classified im-
ages. To this end, after calculating those parameters for each image, we applied the t-test
to check whether the groups were statistically different or not. The significance level has
been set to p<0.05. Table 3 shows the results of the different p-values obtained in the
tests considering as FN and FP the images misclassified in common by the three models
at each dataset, and TP and TN as the well classified images in common by the three
models at each dataset. The results indicate that FN images are misclassified because
their resemblance to the TN images in terms of SNR and contrast.
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Figure 6. Representation of the Shannon entropy for each image classified as TP, TN, FP and FN.

Table 3. Results of the p-values obtained from the t-test.

Metric Dataset FN-TN FN-TP FP-TN FP-TP

SNR
Original 0.865 <0.001 0.215 0.004
Pre-processed 0.464 <0.001 0.002 0.447

Contrast
Original 0.954 <0.001 <0.001 0.017
Pre-processed 0.286 <0.001 0.690 <0.001

Entropy
Original 0.006 0.006 0.005 0.005
Pre-processed 0.004 0.004 0.003 0.002

4. Conclusion

In the present work, we conducted a comparative study of three CNN models trained and
tested with unprocessed and pre-processed CXR images to detect COVID-19. For this
purpose, we have created a dataset using 5,000 images from various publicly available
sources. After evaluating different classic metrics such as accuracy, sensitivity, or speci-
ficity, we have found that in most cases accuracy and sensitivity improve when using pre-
processed images. We found that these pre-processing steps are directly related to the de-
crease of images wrongly classified as non-COVID-19. The CNN model DenseNet-169,
trained and tested on pre-processed images, achieved an accuracy of 84.0%, a sensitivity
of 90.4%, and a specificity of 77.6%, showing the best performance results in terms of
positive COVID-19 detection. In addition, we have demonstrated that many misclassi-
fied images show higher entropy values than the well-classified ones, so our future work
will focus on introducing an entropy filter for improving the performance of the predic-
tion models. Moreover, we would like to implement other processing techniques such
as those in [11,12,13] and thus test the change in learning domain reduction in both the
models used in this article and in others mentioned in [11,12,9]. In conclusion, this study
has shown that well selected image processing techniques can help to reduce the learning
domain for deep learning applications.
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