
Exact learning dynamics of deep linear networks with
prior knowledge

Lukas Braun †,1

lukas.braun@psy.ox.ac.uk
Clémentine C. J. Dominé †,2

clementine.domine.20@ucl.ac.uk

James E. Fitzgerald 3

fitzgeraldj@janelia.hhmi.org
Andrew M. Saxe 2,4,5

a.saxe@ucl.ac.uk

Abstract

Learning in deep neural networks is known to depend critically on the knowledge
embedded in the initial network weights. However, few theoretical results have
precisely linked prior knowledge to learning dynamics. Here we derive exact
solutions to the dynamics of learning with rich prior knowledge in deep linear
networks by generalising Fukumizu’s matrix Riccati solution [1]. We obtain
explicit expressions for the evolving network function, hidden representational
similarity, and neural tangent kernel over training for a broad class of initialisations
and tasks. The expressions reveal a class of task-independent initialisations that
radically alter learning dynamics from slow non-linear dynamics to fast exponential
trajectories while converging to a global optimum with identical representational
similarity, dissociating learning trajectories from the structure of initial internal
representations. We characterise how network weights dynamically align with
task structure, rigorously justifying why previous solutions successfully described
learning from small initial weights without incorporating their fine-scale structure.
Finally, we discuss the implications of these findings for continual learning, reversal
learning and learning of structured knowledge. Taken together, our results provide
a mathematical toolkit for understanding the impact of prior knowledge on deep
learning.

1 Introduction

A hallmark of human learning is our exquisite sensitivity to prior knowledge: what we already know
affects how we subsequently learn [2]. For instance, having learned about the attributes of nine
animals, we may learn about the tenth more quickly [3, 4, 5, 6]. In machine learning, the impact
of prior knowledge on learning is evident in a range of paradigms including reversal learning [7],
transfer learning [8, 9, 10, 11], continual learning [12, 13, 14], curriculum learning [15], and meta
learning [16]. One form of prior knowledge in deep networks is the initial network state, which is
known to strongly impact learning dynamics [17, 18, 19]. Even random initial weights of different
variance can yield qualitative shifts in network behaviour between the lazy and rich regimes [20],
imparting distinct inductive biases on the learning process. More broadly, rich representations such
as those obtained through pretraining provide empirically fertile inductive biases for subsequent
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Figure 1: Learning with prior knowledge. A In our setting, a deep linear network with Ni input,
Nh hidden and No output neurons is trained from a particular initialisation using gradient descent.
B-D Network output for an example task over training time when starting from B small random
weights, C large random weights, and D the weights of a previously learned task. The dynamics
depend in detail on the initialisation. Solid lines indicate simulations, dotted lines indicate the
analytical solutions we derive in this work.

fine-tuning [21]. Yet while the importance of prior knowledge to learning is clear, our theoretical
understanding remains limited, and fundamental questions remain about the implicit inductive biases
of neural networks trained from structured initial weights. A better understanding of the impact of
initialisation on gradient-based learning may lead to improved pretraining schemes and illuminate
pathologies like catastrophic forgetting in continual learning [22].

Here, we address this gap by deriving exact solutions to the dynamics of learning in deep linear
networks as a function of network initialisation, revealing an intricate and systematic dependence.
We consider the setting depicted in Fig. 1A, where a network is trained with standard gradient descent
from a potentially complex initialisation. When trained on the same task, different initialisations
can radically change the network’s learning trajectory (Fig. 1B-D). Our approach, based on a matrix
Riccati formalism [1], provides explicit analytical expressions for the network output over time
(Fig. 1B-D dotted). While simple, deep linear networks have a non-convex loss landscape and have
been shown to recapitulate several features of nonlinear deep networks while retaining mathematical
tractability.

1.1 Contributions

• We derive an explicit solution for the gradient flow of the network function, internal repre-
sentational similarity, and finite-width neural tangent kernel of over- and under-complete
two-layer deep linear networks for a rich class of initial conditions (Section 3).

• We characterise a set of random initial network states that exhibit fast, exponential learning
dynamics and yet converge to rich neural representations. Dissociating fast and slow learning
dynamics from the rich and lazy learning regimes (Section 4).

• We analyse how weights dynamically align to task-relevant structure over the course of
learning, going beyond prior work that has assumed initial alignment (Section 5).

• We provide exact solutions to continual learning dynamics, reversal learning dynamics and
to the dynamics of learning and revising structured representations (Section 6).

1.2 Related work

Our work builds on analyses of deep linear networks [23, 1, 17, 24, 10, 25, 26], which have shown
that this simple model nevertheless has intricate fixed point structure and nonlinear learning dynamics
reminiscent of phenomena seen in nonlinear networks. A variety of works has analysed convergence
[27, 28], generalisation [10, 29, 30], and the implicit bias of gradient descent [31, 32, 33, 34]. These
works mostly considers the tabula rasa case of small initial random weights, for which exact solutions
are known [17]. By contrast our formalism describes dynamics from a much larger class of initial
conditions and can describe alignment dynamics that do not occur in the tabula rasa setting. Most
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directly, our results build from the matrix Riccati formulation proposed by [1]. We extend and refine
this result to obtain the dynamics of over- and under-complete networks; to obtain numerically stable
forms of the matrix equations; and to more explicitly reveal the impact of initialisation.

A line of theoretical research has considered online learning dynamics in teacher-student settings
[35, 36, 37], deriving ordinary differential equations for the average learning dynamics even in
nonlinear networks. However, solving these equations requires numerical integration. By contrast,
our approach provides explicit analytical solutions for the more restricted case of deep linear networks.

Other approaches for analysing deep network dynamics include the Neural Tangent Kernel (NTK)
[38, 39, 40] and the mean field approach [41, 42, 43]. While the former can describe nonlinear
networks but not the learning dynamics of hidden representations, the later yields a description of
representation learning dynamics in wide networks in terms of a partial differential equation. Our
work is similar in seeking a subset of more tractable models that are amenable to analysis, but we
focus on the impact of initialisation on representation learning dynamics and explicit solutions.

A large body of work has investigated the effect of different random initialisations on learning
in deep networks. The role of initialisation in the vanishing gradient problem and proposals for
better initialisation schemes have been illuminated by several works drawing on the central limit
theorem [44, 17, 45, 18, 46], reviewed in [47, 19, 48]. These approaches typically guarantee that
gradients do not vanish at the start of learning, but do not analytically describe the resulting learning
trajectories. Influential work has shown that network initialisation variance mediates a transition from
rich representation learning to lazy NTK dynamics [20], which we analyse in our framework.

2 Preliminaries and setting

Consider a supervised learning task in which input vectors xn ∈ RNi from a set of P training pairs
{(xn,yn)}n=1...P have to be associated with their target output vectors yn ∈ RNo . We learn this
task with a two-layer linear network model (Fig. 1A) that produces the output prediction

ŷn = W2W1xn, (1)

with weight matrices W1 ∈ RNh×Ni and W2 ∈ RNo×Nh , where Nh is the number of hidden
units. The network’s weights are optimised using full batch gradient descent with learning rate η (or
respectively time constant τ = 1/η) on the mean squared error loss

L(ŷ,y) = 1

2

〈
||ŷ − y||2

〉
, (2)

where ⟨·⟩ denotes the average over the dataset. The input and input-output correlation matrices of the
dataset are

Σ̃xx =
1

P

P∑
n=1

xnx
T
n ∈ RNi×Ni and Σ̃yx =

1

P

P∑
n=1

ynx
T
n ∈ RNo×Ni . (3)

Finally, the gradient optimisation starts from an initialisation W2(0),W1(0). Our goal is to under-
stand the full time trajectory of the network’s output and internal representations as a function of this
initialisation and the task statistics.

Our starting point is the seminal work of Fukumizu [1], which showed that the gradient flow dynamics
could be written as a matrix Riccati equation with known solution. In particular, defining

Q =

[
WT

1
W2

]
and F =

[
0 (Σ̃yx)T

Σ̃yx 0

]
, (4)

the continuous time dynamics of the matrix QQT from initial state Q(0) is

QQT (t) = eF
t
τ Q(0)

[
I+

1

2
Q(0)T

(
eF

t
τ F−1eF

t
τ − F−1

)
Q(0)

]−1

Q(0)T eF
t
τ , (5)

if the following four assumptions hold:

Assumption 2.1 The dimensions of the input and target vectors are identical, that is Ni = No.
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Assumption 2.2 The input data is whitened, that is Σ̃xx = I.

Assumption 2.3 The network’s weight matrices are zero-balanced at the beginning of training,
that is W1(0)W1(0)

T = W2(0)
TW2(0). If this condition holds at initialisation, it will persist

throughout training [17, 24].

Assumption 2.4 The input-output correlation of the task and the initial state of the network function
have full rank, that is rank(Σ̃xy) = rank(W2(0)W1(0)) = Ni = No. This implies that the network
is not bottlenecked, i.e. Nh ≥ min(Ni, No).

For completeness, we include a derivation of this solution in Appendix A.

Rather than tracking the weights’ dynamics directly, this approach tracks several key statistics
collected in the matrix

QQT =

[
WT

1 W1(t) WT
1 W

T
2 (t)

W2W1(t) W2W
T
2 (t)

]
, (6)

which can be separated into four quadrants with intuitive meaning: the off-diagonal blocks contain
the network function

Ŷ(t) = W2W1(t)X, (7)
while the on-diagonal blocks contain the correlation structure of the weight matrices. These permit
calculation of the temporal evolution of the network’s internal representations including the task-
relevant representational similarity matrices (RSM) [49], i.e. the kernel matrix ϕ(x)Tϕ(x′), of the
neural representations in the hidden layer

RSMI = XTWT
1 W1(t)X, RSMO = YT (W2W

T
2 (t))

+Y, (8)

where + denotes the pseudoinverse; and the network’s finite-width neural tangent kernel [38, 39, 40]

NTK = INo
⊗XTWT

1 W1(t)X+W2W
T
2 (t)⊗XTX, (9)

where I is the identity matrix and ⊗ is the Kronecker product. For a derivation of these quantities see
Appendix B. Hence, the solution in Equation (5) describes important aspects of network behaviour.

However, in this form, the solution has several limitations. First, it relies on general matrix exponen-
tials and inverses, which are a barrier to explicit understanding. Second, when evaluated numerically,
it is often unstable. And third, the equation is only valid for equal input and output dimensions. In
the following section we address these limitations.

Implementation and simulation Simulation details are in Appendix H. Code to replicate all
simulations and plots are available online1 under a GPLv3 license and requires <6 hours to execute
on a single AMD Ryzen 5950x.

3 Exact learning dynamics with prior knowledge

In this section we derive an exact and numerically stable solution for QQT that better reveals the
learning dynamics, convergence behaviour and generalisation properties of two-layer linear networks
with prior knowledge. Further, we alter the equations to be applicable to equal and unequal input and
output dimensions, overcoming Assumption 2.1).

To place the solution in a more explicit form, we make use of the compact singular value decom-
position. Let the compact singular value decomposition of the initial network function and the
input-output correlation of the task be

SVD(W2(0)W1(0)) = USVT and SVD(Σ̃yx) = ŨS̃ṼT . (10)

Here, U and Ũ ∈ RNo×Nm denote the left singular vectors, S and S̃ ∈ RNm×Nm the square matrix
with ordered, non-zero eigenvalues on its diagonal and V and Ṽ ∈ RNi×Nm the corresponding right
singular vectors. For unequal input-output dimensions (Ni ̸= No) the right and left singular vectors
are therefore not generally square and orthonormal. Accordingly, for the case Ni > No, we define
Ũ⊥ ∈ RNo×(No−Ni) as a matrix containing orthogonal column vectors that complete the basis, i.e.,
make

[
Ũ Ũ⊥

]
orthonormal. Conversely, we define Ṽ⊥ ∈ RNi×(Ni−No) for the case of Ni > No.

1https://github.com/saxelab/deep-linear-networks-with-prior-knowledge
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Figure 2: Exact learning dynamics A The temporal dynamics of the numerical simulation (coloured
lines) of the loss, network function, correlation of input and output weights and the NTK (columns
1-5 respectively) are exactly matched by the analytical solution (black dotted lines) for small initial
weight values and B large initial weight values. C Each line shows the deviation of the analytical loss
L̂ from the numerical loss L for one of n = 50 networks with random architecture and training data
(details in Appendix H) across a range of learning rates η ∈ [0.05, 0.0005]. The deviation mutually
decreases with the learning rate. D Numerical and analytical learning curves for five randomly
sampled example networks (coloured x in C).

Assumption 3.1 Define B = UT Ũ+VT Ṽ and C = UT Ũ−VT Ṽ. B is non-singular.

Theorem 3.1 Under the assumptions of whitened inputs, 2.2, zero-balanced weights 2.3, full rank
2.4, and B non-singular 3.1, the temporal dynamics of QQT are

QQT (t) = Z
[
4e−S̃ t

τ B−1S−1(BT )−1e−S̃ t
τ +

(
I− e−2S̃ t

τ

)
S̃−1

− e−S̃ t
τ B−1C

(
e−2S̃ t

τ − I
)
S̃−1CT (BT )−1e−S̃ t

τ

+ 4
t

τ
e−S̃ t

τ B−1(VT Ṽ⊥Ṽ
T
⊥V +UT Ũ⊥Ũ

T
⊥U)(BT )−1e−S̃ t

τ

]−1

ZT

(11)

with

Z =

Ṽ (
I− e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
+ 2Ṽ⊥Ṽ

T
⊥V(BT )−1e−S̃ t

τ

Ũ
(
I+ e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
+ 2Ũ⊥Ũ

T
⊥U(BT )−1e−S̃ t

τ

 . (12)

For a proof of Theorem 3.1 please refer to Appendix C.

With this solution we can calculate the exact temporal dynamics of the loss, network function, RSMs
and NTK (Fig. 2A, B). As the solution contains only negative exponentials, it is numerically stable and
provides high precision across a wide range of learning rates and network architectures (Fig. 2C, D).

We note that a solution for the weights W1(t) and W2(t), i.e., Q(t), can be derived up to a time
varying orthogonal transformation as demonstrated in Appendix C. Further, as time-dependent
variables only occur in matrix exponentials of diagonal matrices of negative sign, the network
approaches a steady state solution.

Theorem 3.2 Under the assumptions of Theorem 3.1, the network function converges to the global
minimum ŨS̃ṼT and acquires a rich task-specific internal representation, that is WT

1 W1 = ṼS̃ṼT

and W2W
T
2 = ŨS̃ŨT .

The proof of Theorem 3.2 is in Appendix C. We now turn to several implications of these results.

4 Rich and lazy learning regimes and generalisation

Recent results have shown that large deep networks can operate in qualitatively distinct regimes
that depend on their weight initialisations [20, 50], the so called rich and lazy regimes. In the
rich regime, learning dynamics can be highly nonlinear and lead to task-specific solutions thought
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Figure 3: Rich and lazy learning. A Semantic learning task, B SVD of the input-output correlation
of the task (top) and the respective RSMs (bottom). Rows and columns in the SVD and RSMs are
identically ordered as the order of items in the hierarchical tree. C Final QQT matrices after training
converged when initialised from random small weights, D random large weights (note how the upper
left and lower right quadrant differ from the task’s RSMs) and E large zero-balanced weights. F
Learning curves for the three different initialisations as in C (green), D (pink) and E (blue). While
both large weight initialisations lead to fast exponential learning curves, the small weight initialisation
leads to a slow step-like decay of the loss.

to lead to favourable generalisation properties [20, 25, 50]. By contrast, the lazy regime exhibits
simple exponential learning dynamics and exploits high-dimensional nonlinear projections of the
data produced by the initial random weights, leading to task-agnostic representations that attain zero
training error but possibly lower generalisation performance [38, 39, 40]. Traditionally, the rich and
lazy learning regimes have been respectively linked to low and high variance initial weights (relative
to the network layer size).

To illustrate these phenomena, we consider a semantic learning task in which a set of living things
have to be linked to their position in a hierarchical structure (Fig. 3A) [17]. The representational
similarity of the input of the task (ṼS̃ṼT ) reveals its inherent structure (Fig. 3B). For example, the
representations of the two fishes are most similar to each other, less similar to birds and least similar
to plants. Likewise, the representational similarity of the task’s target values (ŨS̃ŨT ) reveals the
primary groups among which items are organised. As a consequence, one can for example predict
from an object being a fish that it is an animal and from an object being a plant that it is not a
bird. Reflecting these structural relationships in internal representations can allow the rich regime to
generalise in ways the lazy regime cannot. Crucially, QQT (t) contains the temporal dynamics of the
weights’ representational similarity and therefore can be used to study if a network finds a rich or
lazy solution.

When training a two layer network from random small initial weights, the weights’ input and output
RSM (Fig. 3C, upper left and lower right quadrant) are identical to the task’s structure at convergence.
However, when training from large initial weights, the RSM reveals that the network has converged to
a lazy solution (Fig. 3D). We emphasise that the network function in both cases is identical (Fig. 3C, D,
lower left quadrant). And while their final loss is identical too, their learning dynamics evolve slow
and step-wise in the case of small initial weights and fast and exponentially in the case of large initial
weights (Fig. 3F), as predicted by previous work [20].

However, from Theorem 3.2 it directly follows that our setup is guaranteed to find a rich solution
in which the weights’ RSM is identical to the task’s RSM, i.e., WT

1 W1 = ṼS̃ṼT and W2W
T
2 =

ŨS̃ŨT . Therefore, as zero-balanced weights may be large, there exist initial states that converge
to rich solutions while evolving as rapid exponential learning curves (Fig. 3E, F). Crucially, these
initialisations are task-agnostic, in the sense that they are independent of the task structure (cf. [51]).
This finding applies to any learning task with well defined input-output correlation. For additional
simulations see Appendix D. Hence our equation can describe the change in dynamics from step-like
to exponential with increasing weight scale, and separate this dynamical phenomenon from the
structure of internal representations.

5 Decoupling dynamics

The learning dynamics of deep linear networks depend on the exact initial values of the synaptic
weights. Previous solutions studied learning dynamics under the assumption that initial network
weights are “decoupled”, such that the initial state of the network and the task share the same singular
vectors, i.e. that U = Ũ and V = Ṽ [17]. Intuitively, this assumption means that there is no
cross-coupling between different singular modes, such that each evolves independently. However, this
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Figure 4: Decoupling dynamics. A Analytical (black dotted lines) and numerical (solid lines) of the
temporal dynamics of the on- and off-diagonal elements of ATA in blue and red, respectively. B
Schematic representation of the decoupling process. C Three target matrices with dense, unequal
diagonal, and equal diagonal structure. D-F Decoupling dynamics for the top (D), middle (E), and
bottom (F) tasks depicted in panel C. Row F contains analytical predictions for the time of the peak
of the off-diagonal (dashed green). The network is initialised as defined in E with small, intermediate
and large variance.

assumption is violated in most real-world scenarios. As a consequence, most prior work has relied on
the empirical observation that learning from tabula rasa small initial weights occurs in two phases:
First, the network’s input-output map rapidly decouples; then subsequently, independent singular
modes are learned in this decoupled regime. Because this decoupling process is fast when training
begins from small initial weights, the learning dynamics are still approximately described by the
temporal learning dynamics of the singular values assuming decoupling from the start. This dynamic
has been called a silent alignment process [26]. Here we leverage our matrix Riccati approach to
analytically study the dynamics of this decoupling process. We begin by deriving an alternate form
of the exact solution that eases the analysis.

Theorem 5.1 Let the weight matrices of a two layer linear network be initialised by W1 = A(0)ṼT

and W2 = ŨA(0)T , where A(0) ∈ RNh×Ni is an arbitrary, invertible matrix. Then, under the
assumptions of equal input-output dimensions 2.1, whitened inputs 2.2, zero-balanced weights 2.3
and full rank 2.4, the temporal dynamics of QQT are fully determined by

ATA(t) =
[
e−S̃ t

τ

(
A(0)TA(0)

)−1
e−S̃ t

τ + (I− e−2S̃ t
τ )S̃−1

]−1

. (13)

For a proof of Theorem 5.1, please refer to Appendix E. We remark that this form is less general than
that in Theorem 3.1, and in particular implies UV = ŨṼ. Here the matrix ATA represents the
dynamics directly in the SVD basis of the task. Off-diagonal elements represent counterproductive
coupling between different singular modes (for instance, [ATA]21 is the strength of connection from
input singular vector 1 to output singular vector 2, which must approach zero to perform the task
perfectly), while on-diagonal elements represent the coupling within the same mode (for instance,
[ATA]11 is the strength of connection from input singular vector 1 to output singular vector 1, which
must approach the associated task singular value to perform the task perfectly). Hence the decoupling
process can be studied by examining the dynamics by which ATA becomes approximately diagonal.

The outer inverse in Equation 13 renders it difficult to study high dimensional networks analytically.
Therefore, we focus on small networks with input and output dimension Ni = 2 and No = 2, for
which a lengthy but explicit analytical solution is given in Appendix E. In this setting, the structure of
the weight initialisation and task are encoded in the matrices

A(0)TA(0) =

[
a1(0) b(0)
b(0) a2(0)

]
and S̃ =

[
s1 0
0 s2

]
, (14)
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Figure 5: Continual learning. A Top: Network training from small zero-balanced weights on a
sequence of tasks (coloured lines show simulation and black dotted lines analytical results). Bottom:
Evaluation loss for tasks of the sequence (dotted) while training on the current task (solid). As the
network function is optimised on the current task, the loss of other tasks increases. B Comparison
of the numerical and analytical amount of catastrophic forgetting on a first task after training on a
second task for n = 50 linear (red), tanh (blue) and ReLU (green) networks. C Weight alignment
before and after training on a sequence of two tasks for n = 50 networks in linear (red), tanh (blue)
and ReLU (green) networks. Shaded area shows ± std. D Evaluation loss for each of 5 tasks during
training a linear (red), tanh (blue) and ReLU (green) network. E Same data es in D but evaluated
as relative change (i.e. amount of catastrophic forgetting). The top half of each square shows the
pre-computed analytical amount of forgetting and the bottom half the numerical value.

where the parameters a1(0) and a2(0) represent the component of the initialisation that is aligned
with the task, and b(0) represents cross-coupling, such that taking b(0) = 0 recovers previously
known and more restricted solutions for the decoupled case [17]. We use this setting to demonstrate
two features of the learning dynamics.

Decoupling dynamics. First, we track decoupling by considering the dynamics of the off-diagonal
element b(t) (Fig. 4D-F red lines). At convergence, the off-diagonal element shrinks to zero as shown
in Appendix E. However, strikingly, b(t) can exhibit non-monotonic trajectories with transient peaks
or valleys partway through the learning process. In particular, in Appendix E we derive the time
of the peak magnitude as tpeak = τ

4s ln
s(s−a1−a2)
a1a2−b(0)2 (Fig. 4F green dotted line), which coincides

approximately with the time at which the on-diagonal element is half learned. If initialised from
small random weights, the off-diagonal remains near-zero throughout learning, reminiscent of the
silent alignment effect [26]. For large initialisations, no peak is observed and the dynamics are
exponential. At intermediate initialisations, the maximum of the off-diagonal is reached before the
singular mode is fully learned (Appendix E). Intuitively, a particular input singular vector can initially
project appreciably onto the wrong output singular vector, corresponding to initial misalignment. This
is only revealed when this link is amplified, at which point corrective dynamics remove the counter-
productive coupling, as schematised in Fig. 4B. We report further measurements of decoupling in
Appendix E.

Effect of initialisation variance. Next, we revisit the impact of initialisation scale for the on-diagonal
dynamics. As shown in Fig. 4D-F, as the initialisation variance grows the learning dynamics change
from sigmoidal to exponential, possibly displaying more complex behavior at intermediate variance
(Appendix E). In this simple setting we can analyse this transition in detail. Taking s1 = s2 = s as in
Fig. 4F and |a1(0)|, |a2(0)|, |b(0)| ≪ 1, we recover a sigmoidal trajectory,

a1(t) =
sa1(0)

e
−2st

τ [s− a1(0)− a2(0)] + a1(0) + a2(0)
, (15)

while for |a1(0)|, |a2(0)|, |b(0)| ≫ 0 the dynamics of the on-diagonal element a1 is close to expo-
nential (Fig. 4D-F left and right columns). We examine larger networks in Appendix E.
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Figure 6: Reversal learning and revising structured knowledge. Scale of x-axis varies in top and
bottom rows. A Analytical (black dotted) and numerical (solid) learning dynamics of a reversal
learning task. The analytical solution gets stuck on a saddle point, whereas the numerical simulation
escapes the saddle point and converges to the target. B In a shallow network, training on the same
task as in A converges analytically (black dotted) and numerically (solid). C Semantic learning tasks.
Revised living kingdom (top) and colour hierarchy (bottom). D SVD of the input-output coreelation
of the tasks and respective RSMs. E Analytical (black dotted) and simulation (solid) loss and F
learning dynamics of first training on the living kingdom (Fig. 3A) and subsequently on the respective
task in C. The analytical solution fails for the revised animal kingdom as it gets stuck in a saddle point,
while the simulation escapes the saddle (top, green circle). Initial training on the living kingdom task
from large initial weights and subsequent training on the colour hierarchy have similar convergence
times (bottom) G Multidimensional scaling (MDS) of the network function for initial training on
the living kingdom task from small (top) and large initial weights (bottom). Note how despite the
seemingly chaotic learning dynamics when starting form large initial weights, both simulations learn
the same representation. H MDS of subsequent training on the respective task in C.

6 Applications

The solutions derived in Sections 3 and 5 provide tools to examine the impact of prior knowledge on
dynamics in deep linear networks. So far we have traced general features of the behaviour of these
solutions. In this section, we use this toolkit to develop accounts of several specific phenomena.

Continual Learning Continual learning (see [12] for a review) and the pathology of catastrophic
forgetting have long been a challenge for neural network models [22, 52, 53]. A variety of theoretical
work has investigated aspects of continual learning [54, 55, 56, 57, 58]. In this setting, starting from
an initial set of weights, a network is trained on a sequence of tasks with respective input-output
correlations T1 = Σ̃yx

1 , T2 = Σ̃yx
2 , T3 = Σ̃yx

3 , .... As shown in Fig. 5A, our dynamics immediately
enable exact solutions for the full continual learning process, whereby the final state after training on
one task becomes the initial network state for the next task. These solutions thus reveal the exact time
course of forgetting for arbitrary sequences of tasks.

Training on later tasks can overwrite previously learned knowledge, a phenomenon known as
catastrophic forgetting [22, 52, 53]. From Theorem 3.2 it follows that from any arbitrary zero-
balanced initialisation 2.3, the network converges to the global optimum such that the initialisation
is completely overwritten and forgetting is truly catastrophic. In particular, the loss of any other
task Ti after training to convergence on task Tj is Li(Tj) = 1/2||Σ̃yx

j − Σ̃yx
i ||2F + c, where c is a

constant that only depends on training data of task Ti (Appendix F). As a consequence, the amount
of forgetting, i.e. the relative change of loss, is fully determined by the similarity structure of the
tasks and thus can be fully determined for a sequence of tasks before the onset of training (Fig. 5B,E,
Appendix F). For example, the amount of catastrophic forgetting in task Ta, when training on task Tc
after having trained the network on task Tb is La(Tc)− La(Tb). As expected, our results depend on
our linear setting and tanh or ReLU nonlinearities can show different behaviour, typically increasing
the amount of forgetting (Fig. 5B,D,E). Further, in nonlinear networks, weights become rapidly
unbalanced and forgetting values that are calculated before the onset of training do not predict the
actual outcome (Fig. 5B-E). In summary, our results link exact learning dynamics with catastrophic
forgetting and thus provide an analytical tool to study the mechanisms and potential counter measures
underlying catastrophic forgetting.
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Reversal learning During reversal learning, pre-existing knowledge has to be relearned, overcom-
ing a previously learned relationship between inputs and outputs. For example, reversal learning
occurs when items of a class are mislabeled and later corrected. We show analytically, that reversal
learning in fact does not succeed in deep linear networks (Appendix G). The pre-existing knowledge
lies exactly on the separatrix of a saddle point causing the learning dynamics to converge to zero
(Fig. 6A). In contrast, the learning still succeeds numerically, as any noise will perturb the dynamics
off the saddle point, allowing learning to proceed (Fig. 6A). However, the dynamics still slow in the
vicinity of the saddle point, providing a theoretical explanation for catastrophic slowing in deep linear
networks [59]. We note that the analytical solution requires an adaptation of Theorem 3.1, as B is
generally not invertible in the case of reversal learning (Appendix G). Further, as is revealed by the
exact learning dynamics (Appendix G), shallow networks do succeed without exhibiting catastrophic
slowing during reversal learning (Fig. 6B).

Revising structured knowledge Knowledge is often organised within an underlying, shared
structure, of which many can be learned and represented in deep linear networks [25]. For example,
spatial locations can be related to each other using the same cardinal directions, or varying semantic
knowledge can be organised using the same hierarchical tree. Here, we investigate if deep linear
networks benefit from shared underlying structure. To this end, a network is first trained on the
three-level hierarchical tree of Section 4 (eight items of the living kingdom, each with a set of eight
associated features), and subsequently trained on a revised version of the hierarchy. The revised task
varies the relation of inputs and outputs while keeping the same underlying tree structure. If the
revision involves swapping two neighbouring nodes on any level of the hierarchy, e.g. the identity
of the two fish on the lowest level of the hierarchy (Fig. 6C, top), the task is identical to reversal
learning, leading to catastrophically slowed dynamics (Fig. 6E-F, top). When training the network on
a new hierarchical tree with identical items but a new set of features, like a colour hierarchy (Fig. 6C,
bottom), there is no speed advantage in comparison to a random initialisation with similar initial
variance (Fig. 6E-F, bottom). Importantly, from Theorem 3.2 it follows, that the learning process can
be sped up significantly by initialising from large zero-balanced weights, while converging to a global
minimum with identical generalisation properties as when training from small weights (Fig. 6G-H).
In summary, having incorporated structured knowledge before revision does not speed up or even
slows down learning in comparison to learning from random zero-balanced weights. Notably, that is
despite the tasks’ structure being almost identical (Fig. 3B and Fig. 6D).

7 Discussion

We derive exact solutions to the dynamics of learning with rich prior knowledge in a tractable
model class: deep linear networks. While our results broaden the class of two-layer linear network
problems that can be described analytically, they remain limited and rely on a set of assumptions
(2.1-2.4). In particular, weakening the requirement that the input covariance be white and the weights
be zero-balanced would enable analysis of the impact of initialisation on internal representations.
Nevertheless, these solutions reveal several insights into network behaviour. We show that there
exists a large set of initial values, namely zero-balanced weights 2.3, which lead to task-specific
representations; and that large initialisations lead to exponential rather than sigmoidal learning curves.
We hope our results provide a mathematical toolkit that illuminates the complex impact of prior
knowledge on deep learning dynamics.
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A Appendix: Fukumizu Approach

For completeness, we reproduce the derivation from Fukumizu [1] of Equation 5. We consider the
learning setting describe in section 2. Under the assumptions of equal input-output dimensions 2.1,
whitened inputs 2.2 and zero-balanced weights 2.3, the weights dynamics yield

τ
d

dt
W1 = WT

2 (Σ̃
yx −W2W1Σ̃

xx), (16)

τ
d

dt
W2 = (Σ̃yx −W2W1Σ̃

xx)WT
1 . (17)

Under the assumption of whitened inputs 2.2, the dynamics simplify to
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We compute the time derivative
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Using equation 18 and 19 we compute the four quadrant separately giving
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where we have used the assumption of zero-balanced weights 2.3 to simplify equation 25 and equation
39.

Defining
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, (40)

the gradient flow dynamics of QQT (t) can be written as a differential matrix Riccati equation
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□

The four quadrant of 46 are equivalent to equations 25,29,33 and 39 respectively.

Assuming that Q(0) is full rank, the continuous differential equation 41 has a unique solution for all
t ≥ 0
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B Appendix: Network’s internal representations

B.1 Representational similarity analysis

The task-relevant representational similarity matrix [49] of the hidden layer, calculated from the
inputs H = W1X is

RSMI(t) = HT (t)H(t) (48)

= (W1(t)X)TW1(t)X (49)

= XT (WT
1 W1)(t)X. (50)

Similarly, the representational similarity matrix of the hidden layer, calculated from the outputs
H̃ = W+

2 Y , where + denotes the pseudoinverse, is

RSMO(t) = H̃T (t)H̃(t) (51)

= (W+
2 (t)Y )TW+

2 (t)Y (52)

= Y T (W2W
T
2 (t))

+Y. (53)

B.2 Finite-width neural tangent kernel

In the following, we derive the finite-width neural tangent kernel [38] for a two-layer linear network.
Starting with the network function at time t

Ft(X) = W2W1X, (54)

the discrete time gradient descent dynamics of the next time step yields

Ft+1(X) =

(
W2 − η

∂L
∂W2

)(
W1 − η

∂L
∂W1

)
X (55)

= W2W1X− η

(
W2

∂L
∂W1

+
∂L
∂W2

W1 − η
∂L
∂W2

∂L
∂W1

)
X. (56)

The network function’s gradient flow can then be derived as

Ft+1(X)− Ft(X)

η
= −

(
W2

∂L
∂W1

+
∂L
∂W2

W1 − η
∂L
∂W2

∂L
∂W1

)
X (57)

−−−→
η→0

d

dt
F (X) = −

(
W2

∂L
∂W1

+
∂L
∂W2

W1

)
X. (58)

Substituting the partial derivatives

∂L
∂W1

=
1

2

∂

∂W1
||W2W1X−Y||2F (59)

= WT
2 (W2W1X−Y)XT (60)

and

∂L
∂W2

=
1

2

∂

∂W2
||W2W1X−Y||2F (61)

= (W2W1X−Y)XTWT
1 (62)

then yields

d

dt
F (X) = −W2W

T
2 (W2W1X−Y)XTX− (W2W1X−Y)XTWT

1 W1X. (63)

Finally, we introduce the identity matrix INo
of size No and apply row-wise vectoriasation

vecr(F (X)) := f(X) and the identity vecr(ABC) = (A ⊗ CT ) vecr(B) to derive the neural
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tangent kernel
d

dt
F (X) = −W2W

T
2 (W2W1X−Y)XTX− INo

(W2W1X−Y)XTWT
1 W1X (64)

⇔ d

dt
f(X) = −

W2W
T
2 ⊗XTX+ I⊗XTWT

1 W1X︸ ︷︷ ︸
NTK

 vecr(W2W1X−Y) (65)

= −
([

W2 ⊗XT , I⊗XTWT
1

] [
W2 ⊗XT , I⊗XTWT

1

]T)
vecr

(
∂L
∂F

)
(66)

= −
(
[∇W1

f,∇W2
f ] [∇W1

f,∇W2
f ]

T
) ∂L
∂f

(67)

= −
(
∇θf∇θf

T
) ∂L
∂f

, (68)

where [A,B] denotes concatenation.

C Appendix: Exact learning dynamics with prior knowledge

C.1 Proof of Theorem 3.1

In the following, we prove that Equation 11 is in fact a solution to the matrix Riccati equation arising
from gradient flow (Equation 41). We prove the theorem by directly substituting our solution for
QQT (t) into the matrix Riccati equation.

C.1.1 Unequal input-output dimension

We start with the following equation

QQT (t) =
[
OeΛ

t
τ OT + 2MMT

]
Q(0)︸ ︷︷ ︸

L[
I+

1

2
Q(0)T

(
O

(
e2Λ

t
τ − I

)
Λ−1OT + 4

t

τ
MMT

)
Q(0)

]−1

︸ ︷︷ ︸
C−1

(69)

Q(0)T
[
OeΛ

t
τ OT + 2MMT

]
︸ ︷︷ ︸

R

=LC−1R, (70)

which is identical to Equation 11 in the main text, as we verify in Section C.2 (by reversing the
derivation from Equation 154 to Equation 130). Substituting our solution into the matrix Riccati
equation then yields

τ
d

dt
QQT = FQQT +QQTF− (QQT )2 (71)

⇒ τ
d

dt
LC−1R

?
= FLC−1R+ LC−1RF− LC−1RLC−1R. (72)

Next, we note that

OTO =
1√
2

[
Ṽ Ṽ

Ũ −Ũ

]T
1√
2

[
Ṽ Ṽ

Ũ −Ũ

]
= I, (73)

OTM =
1√
2

[
ṼT ŨT

ṼT −ŨT

]
1√
2

[
Ṽ⊥
Ũ⊥

]
(74)

=
1

2

[
ṼT Ṽ⊥ + ŨT Ũ⊥
ṼT Ṽ⊥ − ŨT Ũ⊥

]
(75)

= 0 (76)
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and

MTO =
1√
2

[
ṼT

⊥ ŨT
⊥
] 1√

2

[
Ṽ Ṽ

Ũ −Ũ

]
(77)

=
1

2

[
ṼT

⊥Ṽ + ŨT
⊥Ũ

ṼT
⊥Ṽ − ŨT

⊥Ũ

]
(78)

= 0. (79)
Then, using the chain rule ∂(AB) = (∂A)B+A(∂B) and the identities

d

dt
(A−1) = A−1(

d

dt
A)A−1 and

d

dt
(etA) = AetA = etAA (80)

we get

τ
d

dt
QQT = τ

d

dt

(
LC−1R

)
(81)

= τ

(
d

dt
L

)
C−1R+ τL

(
d

dt
C−1R

)
(82)

= τ

(
d

dt
L

)
C−1R+ τLC−1

(
d

dt
R

)
+ τL

(
d

dt
C−1

)
R, (83)

with

τ

(
d

dt
L

)
C−1R = τO

1

τ
ΛeΛ

t
τ OTQ(0)C−1R (84)

= OΛeΛ
t
τ OTQ(0)C−1R (85)

=
[
OΛOTOeΛ

t
τ OTQ(0) + 2OΛOTM︸ ︷︷ ︸

0

MTQ(0)
]
C−1R (86)

= FLC−1R, (87)

τLC−1

(
d

dt
R

)
= τLC−1Q(0)TO

1

τ
eΛ

t
τ ΛOT (88)

= LC−1Q(0)TOeΛ
t
τ ΛOT (89)

= LC−1
[
Q(0)TOeΛ

t
τ OTOΛOT + 2Q(0)TMMTO︸ ︷︷ ︸

0

ΛOT
]

(90)

= LC−1RF (91)
and

τL

(
d

dt
C−1

)
R = −τLC−1

(
d

dt
C

)
C−1R (92)

= −LC−1

[
τ
1

2
Q(0)TO2

1

τ
e2Λ

t
τ ΛΛ−1OTQ(0) (93)

+ τ
1

2
Q(0)T 4

1

τ
MMTQ(0)

]
C−1R

= −LC−1

[
Q(0)TOe2Λ

t
τ OTQ(0) + 2Q(0)TMMTQ(0)

]
C−1R (94)

= −LC−1

[
Q(0)TOeΛ

t
τ OTOeΛ

t
τ OTQ(0)

+ 2Q(0)TOeΛ
t
τ OTM︸ ︷︷ ︸

0

MTQ(0) (95)

+ 2Q(0)TMMTO︸ ︷︷ ︸
0

eΛ
t
τ OTQ(0)

+ 4Q(0)TMMTMMTQ(0)

]
C−1R

= −LC−1RLC−1R. (96)
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Finally, substituting Equations 84, 88 and 92 into the left hand side of Equation 72 proves equality.

□

C.1.2 Equal input-output dimension

In the case of equal input-output dimensions Ũ⊥ = Ṽ⊥ = 0 Equation 69 reduces to

QQT (t) =OeΛ
t
τ OTQ(0)︸ ︷︷ ︸

L[
I+

1

2
Q(0)TOe2Λ

t
τ Λ−1OTQ(0)− 1

2
Q(0)TOΛ−1OTQ(0)

]−1

︸ ︷︷ ︸
C−1

(97)

Q(0)TOeΛ
t
τ OT︸ ︷︷ ︸

R

= LC−1R. (98)

Therefore, analogously to the proof for unequal input-output dimensions, it follows that

τ
d

dt
QQT = τ

d

dt
LC−1R (99)

= τ

(
d

dt
L

)
C−1R+ τL

(
d

dt
C−1R

)
(100)

= τ

(
d

dt
L

)
C−1R+ τLC−1

(
d

dt
R

)
+ τL

(
d

dt
C−1

)
R, (101)

with

τ

(
d

dt
L

)
C−1R = τOΛ

1

τ
eΛ

t
τ OTQ(0)C−1R (102)

= OΛOTOeΛ
t
τ OTQ(0)C−1R (103)

= FLC−1R, (104)

τLC−1

(
d

dt
R

)
= τLC−1Q(0)TO

1

τ
eΛ

t
τ ΛOT (105)

= LC−1Q(0)TOeΛ
t
τ OTOΛOT (106)

= LC−1RF, (107)

and

τL

(
d

dt
C−1R

)
= −τLC−1

(
d

dt
C

)
C−1R (108)

= −τLC−1

(
1

2
Q(0)TOe2Λ

t
τ
2

τ
ΛΛ−1OTQ(0)

)
C−1R (109)

= −τLC−1Q(0)TOeΛ
t
τ OTOeΛ

t
τ Q(0)C−1R (110)

= −LC−1RLC−1R. (111)

Finally, substituting Equations 102, 105 and 108 into the left hand side of Equation 72 proves equality.

□

C.2 Derivation of the exact learning dynamics

In the following, we outline how the solution to the matrix Ricatti equation can be acquired. Let
the input and output dimension of a two-layer linear network (equation 1) be denoted by Ni and
No respectively. Further, let Nm = min(Ni, No) denote the smaller one of the two. The compact
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singular value decomposition of the initial network function and the input-output correlation of the
task is then

SVD(W2(0)W1(0)) = USVT and SVD(Σ̃yx) = ŨS̃ṼT . (112)

Here, U and Ũ ∈ RNo×Nm denote the left singular vectors, S and S̃ ∈ RNm×Nm the square matrix
with ordered, non-zero eigenvalues on its diagonal and V and Ṽ ∈ RNi×Nm the corresponding right
singular vectors. Please note that when using compact singular value decomposition, in the case
of unequal input-output dimensions (Ni ̸= No) the right and left singular vectors are not generally
square and orthonormal.

More specifically, in the case of Ni < No, ŨT Ũ = ṼT Ṽ = ṼṼT = I ∈ RNi×Ni but ŨŨT ̸=
I ∈ RNo×No . In this case, we use Ũ⊥ ∈ RNo×(No−Ni) to denote the matrix that contains orthogonal
column vectors such that the concatenation

[
Ũ Ũ⊥

]
is orthonormal and Ṽ⊥ ∈ RNi×(No−Ni) to

denote a matrix of zeros.

Conversely, in the case of Ni > No, ŨŨT = ŨT Ũ = ṼT Ṽ = I ∈ RNo×No but ṼT Ṽ ̸=
I ∈ RNi×Ni and we define Ṽ⊥ ∈ RNi×(Ni−No) such that

[
Ṽ Ṽ⊥

]
is orthonormal and Ũ⊥ ∈

RNo×(No−Ni) to denote a matrix of zeros.

C.2.1 Inverse and matrix exponential of F

The solution to the matrix Riccati equation as provided by Fukumizu [1] requires calculation of the
inverse F−1 and the matrix exponential eF

t
τ . To this end, we diagonalise F by completing its basis

by incorporating zero eigenvalues as illustrated below

F =

[
0 ṼS̃ŨT

ŨS̃ṼT 0

]
(113)

=
1√
2

[
Ṽ Ṽ

√
2Ṽ⊥

Ũ −Ũ
√
2Ũ⊥

]S̃ 0 0

0 −S̃ 0
0 0 0

 1√
2

[
Ṽ Ṽ

√
2Ṽ⊥

Ũ −Ũ
√
2Ũ⊥

]T
(114)

= PΓPT . (115)

Note that PTP = PPT = I and therefore PT = P−1. We then use the diagonalisation of F to
rewrite the matrix exponential

eF
t
τ = PeΓPT (116)

=
1√
2

[
Ṽ Ṽ

√
2V⊥

Ũ −Ũ
√
2U⊥

]eS̃ t
τ 0 0

0 e−S̃ t
τ 0

0 0 e0

 1√
2

[
Ṽ Ṽ

√
2V⊥

Ũ −Ũ
√
2U⊥

]T
(117)

=
1

2

[
ṼeS̃

t
τ ṼT + Ṽe−S̃ t

τ ṼT + 2Ṽ⊥Ṽ
T
⊥ ṼeS̃

t
τ ŨT − Ṽe−S̃ t

τ ŨT + 2Ṽ⊥Ũ
T
⊥

ŨeS̃
t
τ ṼT − Ũe−S̃ t

τ ṼT + 2Ũ⊥Ṽ
T
⊥ ŨeS̃

t
τ ŨT − Ũe−S̃ t

τ ŨT + 2Ũ⊥Ũ
T
⊥

]
(118)

=
1√
2

[
Ṽ Ṽ

Ũ −Ũ

] [
eS̃

t
τ 0

0 e−S̃ t
τ

]
1√
2

[
Ṽ Ṽ

Ũ −Ũ

]T
+ 2

1√
2

[
Ṽ⊥
Ũ⊥

]
1√
2

[
Ṽ⊥
Ũ⊥

]T
(119)

= OeΛ
t
τ O+ 2MMT . (120)

As the inverse F−1 = PΓ−1PT is not well defined for a Γ with zero eigenvalues. We study
eigenvalues of value zero by analysing the limiting behaviour of

eF
t
τ F−1eF

t
τ − F−1 (121)
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for a single mode

lim
ϵ→0

[
e

ϵt
τ
1

ϵ
e

ϵt
τ − 1

ϵ

]
= lim

ϵ→0

[
e

2ϵt
τ − 1

ϵ

]
(122)

L’Hospital−−−−−→ lim
ϵ→0

 ∂
∂ϵ

(
e

2ϵt
τ − 1

)
∂
∂ϵϵ

 (123)

= lim
ϵ→0

2
t

τ
e

2ϵt
τ (124)

= 2
t

τ
. (125)

which reveals the time dependent contribution of zero eigenvalues. Thus

eF
t
τ F−1eF

t
τ − F−1 = OeΛ

t
τ OTOΛ−1OTOeΛ

t
τ OT −OΛ−1OT + 4

t

τ
MMT . (126)

We continue by substituting the above results into Fukumizu’s equation

QQT (t) =
[
OeΛ

t
τ OT + 2MMT

]
Q(0) (127)[

I+
1

2
Q(0)T

(
OeΛ

t
τ OTOΛ−1OTOeΛ

t
τ OT −OΛ−1OT + 4

t

τ
MMT

)
Q(0)

]−1

Q(0)T
[
OeΛ

t
τ OT + 2MMT

]
=
[
OeΛ

t
τ OT + 2MMT

]
Q(0)[

I+
1

2
Q(0)T

(
OeΛ

t
τ Λ−1eΛ

t
τ OT −OΛ−1OT + 4

t

τ
MMT

)
Q(0)

]−1

(128)

Q(0)T
[
OeΛ

t
τ OT + 2MMT

]
=
[
OeΛ

t
τ OT + 2MMT

]
Q(0)[

I+
1

2
Q(0)T

(
O

(
e2Λ

t
τ Λ−1 −Λ−1

)
OT + 4

t

τ
MMT

)
Q(0)

]−1

(129)

Q(0)T
[
OeΛ

t
τ OT + 2MMT

]
=
[
OeΛ

t
τ OT + 2MMT

]
Q(0)[

I+
1

2
Q(0)T

(
O

(
e2Λ

t
τ − I

)
Λ−1OT + 4

t

τ
MMT

)
Q(0)

]−1

(130)

Q(0)T
[
OeΛ

t
τ OT + 2MMT

]
.

Then, matrix multiplication on the left side of the equation yields

OeΛ
t
τ =

1√
2

[
Ṽ Ṽ

Ũ −Ũ

][
eS̃

t
τ 0

0 e−S̃ t
τ

]
(131)

=
1√
2

[
ṼeS̃

t
τ Ṽe−S̃ t

τ

ŨeS̃
t
τ −Ũe−S̃ t

τ

]
(132)
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and

OTQ(0) =
1√
2

[
Ṽ Ṽ

Ũ −Ũ

]T [
V
√
SRT

U
√
SRT

]
(133)

=
1√
2

[
ṼTV

√
SRT + ŨTU

√
SRT

ṼTV
√
SRT − ŨTU

√
SRT

]
(134)

=
1√
2

(ṼTV + ŨTU
)√

SRT(
ṼTV − ŨTU

)√
SRT

 , (135)

such that

OeΛ
t
τ OTQ(0) =

1

2

[
ṼeS̃

t
τ Ṽe−S̃ t

τ

ŨeS̃
t
τ −Ũe−S̃ t

τ

] [
ṼTV

√
SRT + ŨTU

√
SRT

ṼTV
√
SRT − ŨTU

√
SRT

]
(136)

=
1

2

Ṽ (
eS̃

t
τ

(
ṼTV + ŨTU

)
+ e−S̃ t

τ

(
ṼTV − ŨTU

))√
SRT

Ũ
(
eS̃

t
τ

(
ṼTV + ŨTU

)
− e−S̃ t

τ

(
ṼTV − ŨTU

))√
SRT

 . (137)

We continue by calculating

4MMTQ(0) = 4
1√
2

[
Ṽ⊥
Ũ⊥

]
1√
2

[
Ṽ⊥
Ũ⊥

]T [
V
√
SRT

U
√
SRT

]
(138)

= 2

[
Ṽ⊥Ṽ

T
⊥ Ṽ⊥Ũ

T
⊥

Ũ⊥Ṽ
T
⊥ Ũ⊥Ũ

T
⊥

] [
V
√
SRT

U
√
SRT

]
(139)

= 2

[
Ṽ⊥Ṽ

T
⊥ 0

0 Ũ⊥Ũ
T
⊥

] [
V
√
SRT

U
√
SRT

]
(140)

= 2

[
Ṽ⊥Ṽ

T
⊥V
√
SRT

Ũ⊥Ũ
T
⊥U
√
SRT

]
(141)

and

1

2
Q(0)T 4

t

τ
MMTQ(0) =

t

τ

[
R
√
SVT R

√
SUT

] [Ṽ⊥Ṽ
T
⊥V
√
SRT

Ũ⊥Ũ
T
⊥U
√
SRT

]
(142)

=
t

τ

[
R
√
S
(
VT Ṽ⊥Ṽ

T
⊥V +UT Ũ⊥Ũ

T
⊥U

)√
SRT

]
(143)

Next, we define B = UT Ũ+VT Ṽ and C = UT Ũ−VT Ṽ and rewrite the inverse as[
I+

1

2
Q(0)TO

(
e2Λ

t
τ − I

)
Λ−1OTQ(0) + 2

t

τ
Q(0)TMMTQ(0)

]−1

(144)

=

[
I+

1

4
R
√
S

(
[B −C]

(
e2Λ

t
τ − I

)
Λ−1

[
BT

−CT

]
+ 4

t

τ

(
VT Ṽ⊥Ṽ

T
⊥V +UT Ũ⊥Ũ

T
⊥U

))√
SRT

]−1

. (145)

Working from the centre out, we have

[B −C]Λ−1

[
BT

−CT

]
= [B −C]

[
S̃−1 0

0 −S̃−1

] [
BT

−CT

]
(146)

= [B −C]

[
S̃−1BT

S̃−1CT

]
(147)

= BS̃−1BT −CS̃−1CT (148)
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and

[B −C] e2Λ
t
τ Λ−1

[
BT

−CT

]
= [B −C]

[
e2S̃

t
τ S̃−1 0

0 −e−2S̃ t
τ S̃−1

] [
BT

−CT

]
(149)

= [B −C]

[
e2S̃

t
τ S̃−1BT

e−2S̃ t
τ S̃−1CT

]
(150)

= Be2S̃
t
τ S̃−1BT −Ce−2S̃ t

τ S̃−1CT . (151)

Finally, using AB−1 = (BA−1)−1 (and A−1B = (B−1A)−1) to move terms into the inverse, we
rewrite

QQT (t) =
1

2

(Ṽ (
eS̃

t
τ BT − e−S̃ t

τ CT
)
+ 2Ṽ⊥Ṽ

T
⊥V

)√
SRT(

Ũ
(
eS̃

t
τ BT + e−S̃ t

τ CT
)
+ 2Ũ⊥Ũ

T
⊥U

)√
SRT


[
I+R

√
S

(
1

4
B
(
e2S̃

t
τ − I

)
S̃−1BT − 1

4
C
(
e−2S̃ t

τ − I
)
S̃−1CT (152)

+
t

τ

(
VT Ṽ⊥Ṽ

T
⊥V +UT Ũ⊥Ũ

T
⊥U

))√
SRT

]−1

1

2

(Ṽ (
eS̃

t
τ BT − e−S̃ t

τ CT
)
+ 2Ṽ⊥Ṽ

T
⊥V

)√
SRT(

Ũ
(
eS̃

t
τ BT + e−S̃ t

τ CT
)
+ 2Ũ⊥Ũ

T
⊥U

)√
SRT

T

=
1

2

Ṽ (
eS̃

t
τ BT − e−S̃ t

τ CT
)
+ 2Ṽ⊥Ṽ

T
⊥V

Ũ
(
eS̃

t
τ BT + e−S̃ t

τ CT
)
+ 2Ũ⊥Ũ

T
⊥U


[
S−1 +

1

4
B
(
e2S̃

t
τ − I

)
S̃−1BT − 1

4
C
(
e−2S̃ t

τ − I
)
S̃−1CT (153)

+
t

τ

(
VT Ṽ⊥Ṽ

T
⊥V +UT Ũ⊥Ũ

T
⊥U

)]−1

1

2

Ṽ (
eS̃

t
τ BT − e−S̃ t

τ CT
)
+ 2Ṽ⊥Ṽ

T
⊥V

Ũ
(
eS̃

t
τ BT + e−S̃ t

τ CT
)
+ 2Ũ⊥Ũ

T
⊥U

T

=

Ṽ (
I− e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
+ 2Ṽ⊥Ṽ

T
⊥V(BT )−1e−S̃ t

τ

Ũ
(
I+ e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
+ 2Ũ⊥Ũ

T
⊥U(BT )−1e−S̃ t

τ


[
4e−S̃ t

τ B−1S−1(BT )−1e−S̃ t
τ +

(
I− e−2S̃ t

τ

)
S̃−1

− e−S̃ t
τ B−1C

(
e−2S̃ t

τ − I
)
S̃−1CT (BT )−1e−S̃ t

τ (154)

+ 4
t

τ
e−S̃ t

τ B−1
(
VT Ṽ⊥Ṽ

T
⊥V +UT Ũ⊥Ũ

T
⊥U

)
(BT )−1e−S̃ t

τ

]−1

Ṽ (
I− e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
+ 2Ṽ⊥Ṽ

T
⊥VB−T e−S̃ t

τ

Ũ
(
I+ e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
+ 2Ũ⊥Ũ

T
⊥UB−T e−S̃ t

τ

T

.

C.3 Proof of Theorem 3.2: Limiting behaviour

As training time increases, all terms including a matrix exponential with negative exponent in
Equation 11 vanish to zero, as S̃ is a diagonal matrix with entries larger zero

lim
t→∞

e−S̃ t
τ = 0. (155)
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Therefore, in the temporal limit, eq. 11 reduces to

lim
t→∞

QQT (t) = lim
t→∞

[
WT

1 W1(t) WT
1 W

T
2 (t)

W2W1(t) WT
2 W2(t)

]
(156)

=

[
Ṽ

Ũ

] [
S̃−1

]−1 [
ṼT ŨT

]
(157)

=

[
ṼS̃ṼT ṼS̃ŨT

ŨS̃ṼT ŨS̃ŨT

]
. (158)

□

C.4 Dynamics of Q(t)

The solution for the weights W1(t) and W2(t) can be derived up to a time varying orthogonal
transformation as demonstrated by Yan et al. [60].

Under the assumptions of whitened inputs 2.2, zero-balanced weights 2.3, full rank 2.4, and equal
input-output dimension, the temporal dynamics of Q(t) is given as

Q(t) = eF
t
τ Q(0)

[
I+

1

2
Q(0)T

(
eF

t
τ F−1eF

t
τ − F−1

)
Q(0)

]− 1
2

D(t). (159)

where D(t) is an orthogonal matrix of size Nh ×Nh. From this definition, computing Q(t)Q(t)T ,
we recover equation 47.

Equation (159) shows that the individual weight matrices are not directly described by parts of the
Q(t)Q(t)T solution. Instead, they are fixed only up to a time-dependent orthogonal transformation.
To verify this, we numerically compute D(t) as D(t) = q(t)+Qsim(t) where Qsim(t) denotes
weights obtained from numerical simulations of gradent descent, + denotes the pseudoinverse (
q+(t) = (qT (t)q(t))−1q(t)

T where q(t) is rectangular) and

q(t) = eF
t
τ Q(0)

[
I+

1

2
Q(0)T

(
eF

t
τ F−1eF

t
τ − F−1

)
Q(0)

]− 1
2

. (160)

We numerically show in Fig. 7D right panel that D(t) generally changes over time. Letting Qd(t)
denote the estimated Q(t) using the numerically recovered D(t), Fig. 7D left and centre panels show
that both the dynamics of Qd(t) and Qd(t)Qd(t)

T match the temporal dynamics of the simulation.
The small derivation between the simulation and the analytical solution for later time points, is due to
the imprecision of the pseudoinverse.

In Fig. 7C, we report the implementation of equation 160. As expected, the analytical solution does
not match the numerical temporal dynamics. However,the solution for q(t)q(t)T recovers the correct
dynamics.

D Appendix: Rich and lazy learning regimes and generalisation

Under the assumptions of Theorem 3.1, the network function acquires a rich task-specific internal
representation at convergence, that is WT

1 W1 = ṼS̃ṼT and W2W
T
2 = ŨS̃ŨT . Therefore, there

exist initial states with large zero-balanced weights that lead to rich solutions.

We more quantitatively capture this phenomena in Fig. 8. We define the error on the internal repre-
sentation as Fig. 3 ||WT

1 W1 − ṼS̃ṼT ||2F and ||W2W
T
2 − ŨS̃ŨT |2F for W1 and W2 respectively.

Effectively, we measure the richness of the representation and in turn it’s generalisation ability. In
Fig. 8, the error remains zero for increasing gain for any network initialised with zero-balanced
weights. In other words, the representation at convergences is rich. In contrast, for random initialisa-
tion the error increase consequently with increasing gain. As the network is moving away from the
small random weight initialisation, the network converges to lazier representation.
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A B C

D

Figure 7: A: Loss under gradient descent learning two random input-output correlation task with
learning rate η = 0, 001 up to precision 1e− 7. The green dotted line marks the time at which the
target is switched from task 1 to task 2. B: Numerical (coloured line) and analytical (black dotted
line) temporal dynamics of QQT (t) as given by eq. 161. C: Numerical (coloured line) and analytical
(black dotted line) temporal dynamics of q(t) and q(t)q(t)T 160 D: Temporal dynamics of D(t).
Numerical (coloured line) and analytical (black dotted line) temporal dynamics of Qd(t)Qd(t)

T and
Qd(t) as given by equation 159 where D was computed numerically.

A B

Figure 8: A.B Mean and standard deviation on the error on the internal representation error defined
as in section D for the learning the living kingdom task (Fig. 6A), a random 7× 7 matrix (blue), a
random 5× 7 matrix (yellow), a 7× 5 matrix (green). All the task ran were ran with learning rate
η = 0.001 enforcing initial zero-balanced weights 2.3 (dotted line) and breaking the assumption of
zero-balanced initial weights 2.3 (line). Nh = 10 for all networks.
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E Appendix: Decoupling dynamics

E.1 Proof for Theorem 5.1

Let the input and output dimension of a two-layer linear network (eq. 1) be equal, i.e., Ni = No, then
eq. 11 simplifies to

QQT (t) =

Ṽ (
I− e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
Ũ

(
I+ e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
[
4e−S̃ t

τ B−1S−1(BT )−1e−S̃ t
τ +

(
I− e−2S̃ t

τ

)
S̃−1

− e−S̃ t
τ B−1C

(
e−2S̃ t

τ − I
)
S̃−1CT (BT )−1e−S̃ t

τ

]−1

(161)Ṽ (
I− e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)
Ũ

(
I+ e−S̃ t

τ CT (BT )−1e−S̃ t
τ

)T

.

Further, let the singular value decomposition of the input-output correlation of the task be

SVD(Σ̃yx) = ŨS̃ṼT (162)

and suppose that the initial state of the network can be written in the form

SVD(W2(0)W1(0)) = USVT = ŨA(0)TA(0)ṼT . (163)

First, we note that the initial weights in this setting are not independent of the structure of the target
task. In particular,

U
√
S = ŨA(0)T (164)

⇔ ŨTU
√
S = A(0)T (165)

⇔
√
SUT Ũ = A(0) (166)

(167)

and
√
SVT = A(0)ṼT (168)

⇔
√
SVT Ṽ = A(0) (169)

and therefore
√
SUT Ũ =

√
SVT Ṽ (170)

⇔ UVT = ŨṼT . (171)

This further simplifies the equation, as

U
√
S = ŨA(0)T (172)

⇔ U = ŨA(0)T
√
S
−1

(173)

and
√
SVT = A(0)ṼT (174)

⇔ VT =
√
S
−1

A(0)ṼT (175)

⇔ V = ṼA(0)T
√
S
−1

, (176)
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then recollecting the definition of B and C we get

BT = ŨTU+ ṼTV (177)

= ŨT ŨA(0)T
√
S
−1

+ ṼT ṼA(0)T
√
S
−1

(178)

=
(
ŨT Ũ+ ṼT Ṽ

)
A(0)T

√
S
−1

(179)

= 2A(0)T
√
S
−1

(180)

and

CT = ŨTU− ṼTV (181)

=
(
ŨT Ũ− ṼT Ṽ

)
A(0)T

√
S
−1

(182)

= 0. (183)

Substituting the new values of B and C into Equation 161 then yields

QQT (t) =

[
Ṽ

Ũ

] [
4e−S̃ t

τ
1

4
A(0)−1

√
SS−1

√
SA(0)−T e−S̃ t

τ +
(
I− e−2S̃ t

τ

)
S̃−1

]−1 [
Ṽ

Ũ

]T
(184)

=

[
Ṽ

Ũ

] [
e−S̃ t

τ

(
A(0)TA(0)

)−1
e−S̃ t

τ +
(
I− e−2S̃ t

τ

)
S̃−1

]−1
[
Ṽ

Ũ

]T
. (185)

Finally, we note that the dynamics can thus be written as

QQT (t) =

[
ṼATA(t)ṼT ṼATA(t)ŨT

ŨATA(t)ṼT ŨATA(t)ŨT

]
(186)

where

ATA(t) =
[
e−S̃ t

τ

(
A(0)TA(0)

)−1
e−S̃ t

τ +
(
I− e−2S̃ t

τ

)
S̃−1

]−1

. (187)

□

E.2 Solution for 2× 2 dynamics

We consider small networks with input and output dimension Ni = 2 and No = 2. In this setting, the
structure of the weight initialisation and task are encoded in the matrices

A(0)TA(0) =

[
a1(0) b(0)
b(0) a2(0)

]
and S̃ =

[
s1 0
0 s2

]
, (188)

where the parameters a1(0) and a2(0) represent coupling within a singular mode, and b(0) represents
counterproductive cross-coupling between different singular modes.

From Equation 13, we have

ATA(t) =

[[
e

−s1t
τ 0

0 e
−s2t

τ

] [
a1(0) b(0)
b(0) a2(0)

]−1
[
e

−s1t
τ 0

0 e
−s2t

τ

]
(189)

+

[[
1 0
0 1

]
−

[
e

−2s1t
τ 0

0 e
−2s2t

τ

]] [
s1 0
0 s2

]−1
]−1

(190)

=

[
1

a1(0)a2(0)− b(0)2

[
e

−s1t
τ 0

0 e
−s2t

τ

] [
a2(0) −b(0)
−b(0) a1(0)

][
e

−s1t
τ 0

0 e
−s2t

τ

]

+

[[
1 0
0 1

]
−

[
e

−2s1t
τ 0

0 e
−2s2t

τ

]] [ 1
s1

0

0 1
s2

] ]−1

,
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where we use [
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
. (191)

We continue with

ATA(t) =

[
1

a1(0)a2(0)− b(0)2

[
e

−s1t
τ 0

0 e
−s2t

τ

][
a2(0) −b(0)
−b(0) a1(0)

] [
e

−s1t
τ 0

0 e
−s2t

τ

]
(192)

+

[ 1
s1

0

0 1
s2

]
−

[
1
s1
e

−2s1t
τ 0

0 1
s2
e

−2s2t
τ

]]−1

(193)

=

[
1

a1(0)a2(0)− b(0)2

[
e

−2s1t
τ a2(0) −e

−s1t
τ b(0)e

−s2t
τ

−e
−s2t

τ b(0)e
−s1t

τ e
−2s2t

τ a1(0)

]

+

[ 1
s1

0

0 1
s2

]
−

[
1
s1
e

−2s1t
τ 0

0 1
s2
e

−2s2t
τ

]]−1

=

 e
−2s1t

τ a2(0)

a1(0)a2(0)−b(0)2
+ 1

s1
− 1

s1
e

−2s1t
τ − e

−s1t
τ b(0)e

−s2t
τ

a1(0)a2(0)−b(0)2

− e
−s2t

τ b(0)e
−s1t

τ

a1(0)a2(0)−b(0)2
e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ


−1

(194)

.

We use equation 191 and simplify the denominator

ATA(t) =

1(
e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ

)(
e
−2s1t

τ a2(0)

a1(0)a2(0)−b(0)2
+ 1

s1
− 1

s1
e

−2s1t
τ

)
−

(
− e

−s2t
τ b(0)e

−s1t
τ

a1(0)a2(0)−b(0)2

)2

(195)

×

 e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ

e
−s1t

τ b(0)e
−s2t

τ

a1(0)a2(0)−b(0)2

e
−s2t

τ b(0)e
−s1t

τ

a1(0)a2(0)−b(0)2
e
−2s1t

τ a2(0)

a1(0)a2(0)−b(0)2
+ 1

s1
− 1

s1
e

−2s1t
τ

 .

The diagonal element a1(t) is given as
(196)

a1(t) =

e
−2s2t

τ a1(0)
a1(0)a2(0)−b(0)2 + 1

s2
− 1

s2
e

−2s2t
τ(

e
−2s2t

τ a1(0)
a1(0)a2(0)−b(0)2 + 1

s2
− 1

s2
e

−2s2t
τ

)(
e
−2s1t

τ a2(0)
a1(0)a2(0)−b(0)2 + 1

s1
− 1

s1
e

−2s1t
τ

)
−

(
− e

−s2t
τ b(0)e

−s1t
τ

a1(0)a2(0)−b(0)2

)2
,

and interchanging subscripts 1 and 2 yields a2(t). As a check on this result, by setting b(0) = 0 we
recover the expression

a1(t) =
a1(0)

e
−2s1t

τ + a1(0)
s1

(
1− e

−2s1t
τ

) , (197)

from Saxe et al. [25].

We further simplify the denominator to
ATA(t) =

1

1
a1(0)a2(0)−b(0)2

(
e

−2(s1+s2)t
τ (1− a1(0)

s1
− a2(0)

s2
) + e

−2s2t
τ

a1(0)
s1

+ e
−2s1t

τ
a2(0)
s2

)
+ 1

s2s1

(198)

×

 e
−2s2t

τ a1(0)

a1(0)a2(0)−b(0)2
+ 1

s2
− 1

s2
e

−2s2t
τ

e
−s1t

τ b(0)e
−s2t

τ

a1(0)a2(0)−b(0)2

e
−s2t

τ b(0)e
−s1t

τ

a1(0)a2(0)−b(0)2
e
−2s1t

τ a2(0)

a1(0)a2(0)−b(0)2
+ 1

s1
− 1

s1
e

−2s1t
τ
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E.3 Off-Diagonal decoupling dynamics

We track the decoupling by considering the dynamics of the off-diagonal element b(t).

b(t) =

e
−s2t

τ b(0)e
−s1t

τ

a1(0)a2(0)−b(0)2

1
a1(0)a2(0)−b(0)2

(
e

−2(s1+s2)t
τ (1− a1(0)

s1
− a2(0)

s2
) + e

−2s2t
τ

a1(0)
s1

+ e
−2s1t

τ
a2(0)
s2

)
+ 1

s2s1

.

(199)
As t tends to infinity limt→∞ b(t) = 0 the off-diagonal element shrinks to zero.

We can further simplify the off-diagonal to

b(t) =
b(0)

e
−(s1+s2)t

τ (1− a1(0)
s1
− a2(0)

s2
) + e

(s1−s2)t
τ

a1(0)
s1

+ e
(s2−s1)t

τ
a2(0)
s2

+ a1(0)a2(0)−b(0)2

s2s1

.

(200)

Equation 200 can exhibit non-monotonic trajectories with transient peaks as shown in Fig. 4. The
qualitative observations for the 2 × 2 network hold for larger target matrices as shown in Fig. 9.
For large initialisation, the dynamics are exponential. At intermediate and small initialisation, the
maximum of the off-diagonal is reached before the singular mode is fully learned. In the small
initialisation scheme, the peak is of negligible size. The respective target matrix for Panel A-D, B-E
and C-F in Fig. 9 are

dense


5 6 3 0 1
4, 1 0 1 2
3 0 2 4 0
3 4 0 3 2
2 0 1 3 4

 , diagonal


5 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

 and equal diagonal


5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5

 .

We characterise these dynamics considering the case where s1 = s2 = s for the two-by-two solution
(i.e. equal diagonal target y) for which we can compute the time of the peak. In this particular case,
we can further simplify the off-diagonal to

b(t) =
b(0)

e
−2(s)t

τ (1− a1(0)+a2(0)
s ) + a1(0)+a2(0)

s + a1(0)a2(0)−b(0)2

s2

. (201)

We find the time of the maximum of the off-diagonal elements to be tpeak = τ
4s ln

s(s−a1(0)−a2(0))
a1(0)a2(0)−b(0)2 .

The presence of a peak in the off-diagonal values, indicates the decoupling, but as shown in Fig. 4D-F,
the peak size is negligible in comparison to the size of the on-diagonal values for small initial weights.
This difference is reminiscent of the silent alignment effect described by [26]. We further note, that
the time scale of decoupling is on the same order as the one reported for the silent alignment effect
tsa = 1

s .

E.4 On-diagonal dynamics and the effect of initialisation variance

In this section we revisit the impact of initialisation scale for the on-diagonal dynamics. We now start
with

(202)

a1(t) =

e
−2s2t

τ a1(0)
a1(0)a2(0)−b(0)2 + 1

s2
− 1

s2
e

−2s2t
τ

1
a1(0)a2(0)−b(0)2

(
e

−2(s1+s2)t
τ (1− a1(0)

s1
− a2(0)

s2
) + e

−2s2t
τ

a1(0)
s1

+ e
−2s1t

τ
a2(0)
s2

)
+ 1

s2s1

.

The diagonal elements simplify in the cases where s1 = s2 = s (i.e. target Y is diagonal),

(203)

a1(t) =

e
−2st

τ a1(0)
a1(0)a2(0)−b(0)2 + 1

s −
1
se

−2st
τ

1
a1(0)a2(0)−b(0)2

(
e

−4st
τ (1− a1(0)

s − a2(0)
s ) + e

−2st
τ

a1(0)
s + e

−2st
τ

a2(0)
s

)
+ 1

s2

.
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A

B

C

D

E

F

Figure 9: A-C Network function dynamics (Diagonal elements: blue, Off-diagonal elements: red)
learning with learning rate η = 0.01 on the target 5× 5 diagonal matrices shown in Equation 201.
The network was initialised as defined in Section E with Small (σ = 1e−6), Intermediate (σ = 0.1)
and Large (σ = 2) variance, and hidden layer size Nh = 10. A, Dense. B, Diagonal. C, Equal
diagonal. D-F. Corresponding numerical temporal dynamics of the projection of the network function
on- and off-diagonal elements into the singular-basis of the initialisation. Equivalently, the temporal
dynamics of the elements of AAT bottom left quadrant. D, Dense. E, Diagonal. F, Equal diagonal.

We consider when |a1(0)|, |a2(0)|, |b(0)| ≪ 1, and recover a sigmoidal trajectory,

a1(t) =
sa1(0)

e
−2st

τ [s− a1(0)− a2(0)] + a1(0) + a2(0)
. (204)

We can compute the time at which a1(t) rises to half its asymptotic value to be

thalf =
τ

2s
log

(
s− a1(0)− a2(0)

a1(0)− a2(0)

)
. (205)

For |a1(0)|, |a2(0)|, |b(0)| ≫ 0 the dynamics of the on-diagonal element a1 is close to exponential.

The observation for 2 × 2 network hold for larger target matrices as shown in Fig. 9. For large
variance initialisations, the dynamics are exponential. At intermediate variance initialisations, we
observe more complex behaviour. While at small variance initialisations, the on-diagonal element
describes a sigmoidal trajectory.

F Appendix: Continual Learning

We consider the case of training a two-layer deep linear network on a sequence of tasks Ta, Tb, Tc, ...
with corresponding correlation functions Ta = Σ̃yx

a , Tb = Σ̃yx
b .... Then, the full batch loss of the

i-th task at any point in training time is

Li =
1

2P
||W2W1Xi −Yi||2F . (206)

From Theorem 3.2 it follows that after training the network to convergence on task Tj , the network
function is W2W1 = ŨS̃ṼT = Σ̃yx

j . Further, using the assumption of whitened inputs 2.2 and the
identities ||A||2F = tr(AAT ) and tr(A) + tr(B) = tr(A+B), the full batch loss of the i-th task is
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then

Li(Tj) =
1

2P

∣∣∣∣∣∣Σ̃yx
j Xi −Yi

∣∣∣∣∣∣2
F

(207)

=
1

2P
Tr

(
(Σ̃yx

j Xi −Yi|)(Σ̃yx
j Xi −Yi|)T

)
(208)

=
1

2P
Tr

(
Σ̃yx

j XiX
T
i Σ̃

yxT

j

)
− 1

P
Tr

(
Σ̃yx

j XiY
T
i

)
+

1

2P
Tr

(
YiY

T
i

)
(209)

=
1

2
Tr

(
Σ̃yx

j Σ̃yxT

j

)
− Tr

(
Σ̃yx

j Σ̃yxT

i

)
+

1

2
Tr

(
Σ̃yy

i

)
(210)

=
1

2
Tr

((
Σ̃yx

j − Σ̃yx
i

)(
Σ̃yx

j − Σ̃yx
i

)T

− Σ̃yx
i Σ̃yxT

i

)
+

1

2

(
Σ̃yy

i

)
(211)

=
1

2

∣∣∣∣∣∣Σ̃yx
j − Σ̃yx

i

∣∣∣∣∣∣2
F
−1

2
Tr

(
Σ̃yx

i Σ̃yxT

i

)
+

1

2

(
Σ̃yy

i

)
︸ ︷︷ ︸

c

. (212)

Therefore, the amount of forgetting F on task Ti when training on task Tk after having trained the
network on task Tj , i.e. the relative change of loss, is fully determined by the similarity structure of
the tasks

Fi(Tj , Tk) = Li(Tk)− Li(Tj) (213)

=
1

2

∣∣∣∣∣∣Σ̃yx
k − Σ̃yx
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G Appendix: Revising structured knowledge

G.1 Reversal learning dynamics

In the following, we assume that the input dimension is equal to the output dimension. Further, we
denote the i-th column of the left and right singular vectors as ui, ũi and vi, ṽi respectively.

Reversal learning occurs when the task and the initial network function share the same left and right
singular vectors, i.e., U = Ũ and V = Ṽ, except for one or multiple columns of the left singular
vectors, for which the direction is reversed:

−ui = ũi. (216)

We note that, if there is any reversal in the right singular vectors −vi = ṽi, this can be written
as a reversal in the left singular vectors, as the signs of the right and left singular vectors are
interchangeable. In the reversal learning setting, both B = UT Ũ+VT Ṽ and C = UT Ũ−VT Ṽ
are diagonal matrices. The diagonal entries of C are zero if the singular vectors are aligned and 2
if they are reversed. Similarly, diagonal entries of B are 2, if the singular vectors are aligned and
zero if they are reversed. Therefore, in the case of reversal learning, B is a diagonal matrix with 0
values and thus is not invertible. As a consequence, the learning dynamics cannot be described by
Equation 11. However, as B and C are diagonal matrices, the learning dynamics simplify. Let bi, ci,
si and s̃i denote the i-th diagonal entry of B, C, S and S̃ respectively, then the network dynamics
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can be rewritten as
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Ũ
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=
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It follows, that in the reversal learning case, i.e. b = 0, for each reversed singular vector, the
dynamics vanish to zero

lim
t→∞

−sic2i s̃ie−4s̃i
t
τ

4s̃ie−2s̃i
t
τ + sic2i

(
e−2s̃i

t
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t
τ

) ũiṽ
T
i = 0. (220)

Analytically, the learning dynamics are initialised and remain on the separatrix of a saddle point,
until the corresponding singular value of the network function has vanished and remains zero,
corresponding to convergence to the saddle point. When simulated numerically, the learning dynamics
escape the saddle points due to imprecision of floating point arithmetic. However, training still suffers
from catastrophic slowing [59], as escaping the saddle point takes time (Fig. 6A). In contrast, in
the case of aligned singular vectors (c = 0), we recover the equation for the temporal dynamics
as described in Saxe et al. [17]. Training succeeds, as the singular value of the network function
converges to its target value

lim
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i (221)

= s̃iũiṽ
T
i . (222)

In summary, in the case of aligned singular vectors, the learning dynamics can be described by
the convergence of singular values. However in the case of reversal learning, analytically, training
does not succeed. In simulations, the learning dynamics escape the saddle point due to numerical
imprecision, but the learning dynamics are catastrophically slowed in the vicinity of the saddle point.

G.2 Exact learning dynamics in shallow networks

To provide a point of comparison to our deep linear network results, here we derive a solution for the
temporal dynamics of reversal learning in a shallow network.

The network’s weights are optimised using full batch gradient descent with learning rate η (or
equivalently time constant τ = 1/η) on the mean squared error loss given in Equation 2, yielding the
first task dynamics

τ
d

dt
W = Σ̃yx −WΣ̃xx, (223)

where Σ̃xx and Σ̃yx is the input and input-output correlation matrices of the dataset. We define

SVD(W(0)) = USVT and SVD(Σ̃yx) = ŨS̃ṼT . (224)
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motivating the change of variable W = UWVT . We project the weight into the basis of the
initialisation

τ
d

dt
UWVT =Σ̃yx −UWVT Σ̃xx (225)

τ
d

dt
UWVT =UUT Σ̃yxVVT −UWVT Σ̃xx (226)

τ
d

dt
W =UT Σ̃yxV −WΣ̃xx. (227)

Under the assumption of whitened inputs 2.2, the dynamics yields

τ
d

dt
W =UT Σ̃yxV −W. (228)

Defining Wii = bi the diagonal element of the matrix, encoding the strength of the mode i transmitted
by the input-to-output weight. Similarly, we write (UT Σ̃yxV)ii = ki. Assuming decoupled initial
conditions, we obtain the scalar dynamics

τ
d

dt
bi = ki − bi (229)

with solution
bi = ki(1− e

−t
τ ) + b0i e

−t
τ . (230)

Reverting the change of variable, the weight trajectory yields

W = UB(t)VT . (231)

This solution is very similar to the one proposed by Saxe et al. [25]. However, the key here is that
ki can have negative values. ki is negative whenever a vector is in the opposite direction to the
initialisation (as in the reversal learning setting). We show in Fig. 6 that the analytical solution derived
above matches the numerical temporal dynamics. From Equation 230, we note that the shallow
network cannot display catastrophic slowing.

H Simulations

In the following, we describe the details of the simulation studies. Generally, Ni, Nh and No denote
the dimension of the input, hidden layer and output (target) respectively. The number of training
samples is N and the learning rate is denoted by η = 1/τ .

H.1 Zero-balanced weight initialisation

The initial network weights are zero-balanced 2.3 when they satisfy

W1(0)W1(0)
T = W2(0)

TW2(0). (232)
In practice, we use Algorithm H.1 to initialise the network weights

Here α is a scaling factor which is used to control the variance of the weights, i.e., to vary between
small and large weight initialisations.

H.2 Tasks

In the following, we describe the different tasks that are used throughout the simulation studies.

H.2.1 Random regression task

In a random regression task the inputs X ∈ RNi,N are sampled from a random normal distribution
X ∼ N (µ = 0, σ = 1). The input data X is then whitened, such that 1/NXXT = I. The target
values Y ∈ RNo,N are also sampled from a random normal distribution, however, with variance
adjusted to the number of output nodes Y ∼ N (µ = 0, α = 1/

√
No). Thus, network inputs and target

values are uncorrelated Gaussian noise and therefore, a linear solution does generally not exist.
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Algorithm 1 Zero-balanced weight initialisation
Require: Ni, Nh, No, α

R, _, _,← SVD(N (µ = 0, σ = 1, shape = (Nh, Nh)))
U, S, V ← SVD(N (µ = 0, σ = 1, shape = (No, Ni)))

Q← α
√
S

if Ni ̸= No then

Q̃1 ←
[
Q
0

]
W1 ← RQ̃1V

T

Q̃2 ← [Q 0]

W2 ← UQ̃2R
T

else
W1 ← RQ̃V T

W2 ← UQ̃RT

end if
return W1W2

H.2.2 Teacher-student task

In order to guarantee that a linear solution exists, we use the teacher-student setup. First, inputs X
are sampled as in the random regression task. Then, target values are generated by first sampling a
pair of random zero-balanced weights W1 ∈ RNh×Ni and W2 ∈ RNo×No and then, target values
are generated as Y = W2W1X. Like this, it is ensured that a linear solution exists. The variance of
the output is varied by changing the variation within the zero-balanced weights α.

H.3 Figure 1

Fig. 1 panels B-D show three simulations from varying initial weights on the same teacher-student
task. The task was created with α = 0.6. Farther, Ni = 5, Nh = 10, No = 2 and N = 10. The
learning rate was η = 0.1 and the initial network weights were sampled with α = 0.01, α = 0.5 and
α = 0.01 in panels B, C and D respectively.

H.4 Figure 2

Fig. 2 panels A and B show a simulation on the same teacher-student task (α = 0.6), once from small
initial weights (alpha = 0.001) and once from large initial weights (alpha = 0.2). Dimensions were
Ni = 4, Nh = 5, No = 3 and N = 30 and the learning rate was η = 0.05.

Panel C was generated by running 50 simulations, each with a different initial random seed. For
each of the simulations, dimensions were sampled randomly, such that Ni ∈ [2, 50], No ∈ [2, 50],
Nh = [min(Ni, No), 50] and N ∈ [2max(Ni, Nh, No), 3max(Ni, Nh, No)]. Then, a random
regression task was generated. Subsequently, a linear network was initialised such that the initial
weight variance was 1/2(std(W1) + std(W2)) ∈ [0.01/

√
max(Ni, No, Nh), 1./

√
max(Ni, No, Nh)]. The

network was then trained on the same task from the same initial weights for seven different learning
rates η ∈ {0.05, 0.0232, 0.0107, 0.005, 0.0023, 0.0011, 0.0005}.

H.5 Figure 3

Fig. 3 panel A was generated from the RSM of the target matrix shown in 233.

Fig. 3 panel C,D and E was generated by training a linear network with Ni = 8, Nh = 10, No = 8
on the target Y shown in Equation 233. The input X is the identity matrix.The learning rate was
η = 0.01.
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4 4 4 4 4 4 4 4
−3 −3 −3 −3 3 3 3 3
−4 −4 4 4 0 0 0 0
0 0 0 0 −3 −3 3 3
−1 1 0 0 0 0 0 0
0 0 −2 2 0 0 0 0
0 0 0 0 −3 3 0 0
0 0 0 0 0 0 −4 4


(233)

Fig. 3 panel B,C was initialised with random weights and gain g = 4e−07 and g = 0.15 respectively.
Figure 3 panel D was initialise with zero-balanced weights and Gain g = 0.2

H.6 Figure 4

Fig. 4 panel A was generated by training a linear network with Ni = 5, Nh = 10, No = 5 on the
target Y as shown in Equation 201 (equal diagonal). The network was initialised with α = 0.1. The
learning rate was η = 0.01.

Fig. 4 panel D, E and F was generated by training a linear network with Ni = 2, Nh = 10, No = 2
on the target Y as shown in Fig. 4C and Input X is the identity. Network was initialised with small
α = 1e−6, intermediate α = 0.3 and large α = 2 . The learning rate was η = 0.0001.

H.7 Figure 5

Fig. 5 panel A was generated by training a linear network with Ni = 5, Nh = 10, No = 6
subsequently on four different random regression tasks with N = 25. The learning rate was η = 0.05
and the initial weights were small (α = 0.0001).

Panels B and C were generated by running 50 simulations on two subsequent random regression
tasks, each with a different initial random seed. The simulation was repeated three times, the
first time with a linear, the second time with a tanh and the last time with a ReLU activation
function in the hidden layer. Dimension were randomly sampled such that Ni ∈ [2, 20], No ∈
[2, 20], Nh = [min(Ni, No), 100] and N = 50. The initial weight variance was chosen such that
1/2(std(W1) + std(W2)) ≈ 1/max(N,Nh, No). The learning rate was η = 0.05.

For panel D, the same simulation was repeated for three times, the first time with a linear, the second
time with a tanh and the last time with a ReLU activation function. Each time, five random regression
tasks with dimensions Ni = 5, Nh = 10, No = 6 and N = 25 were generated. Then a network with
initial weight scale α = 0.0001 was trained with learning rate η = 0.05 on a random sequence of
length 15, sampled from the five random regression tasks.

H.8 Figure 6

Fig. 6 panel A was generated by training a linear network with Ni = 8, Nh = 8, No = 8 on the
target Y shown in Equation 234 after learning Task 1. The input X is the identity matrix . The first
task was learned from small random weight with target Y as shown in Equation 233 and the input X
is an identity matrix. The learning rate was η = 0.01.



−4 −4 −4 −4 −4 −4 −4 −4
3 3 3 3 −3 −3 −3 −3
4 4 −4 −4 0 0 0 0
0 0 0 0 3 3 −3 −3
1 −1 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 3 −3 0 0
0 0 0 0 0 0 4 −4


(234)

Fig. 6 panel B was generated by training a shallow network with Ni = 8, No = 8 on the target Y as
shown in Equation 235 after learning Task 1. The input X is an identity matrix. The first task was
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learned from small random weight with target Y as shown in Equation 233 and input X is the identity.
The learning rate was η = 0.0001.



4 4 4 4 4 4 4 4
−3 −3 −3 −3 3 3 3 3
−4 −4 4 4 0 0 0 0
0 0 0 0 −3 −3 3 3
−1 1 0 0 0 0 0 0
0 0 −2 2 0 0 0 0
0 0 0 0 −3 3 0 0
0 0 0 0 0 0 4 −4


(235)
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