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Background and Motivation

Eagle Ford shale in Texas

http://the-earth-story.com/
post/ 114862966776/ drilling-shale-and-
blowouts-this-is-a-classic

» Failure of shale gas well facilities can have catastrophic
consequences for people and environment

» Statistics shows that majority of blowouts happen during
drilling when “pressure kicks” propagate into the well and
BOP fails to divert the gas to a flare stack

» Safe design of Major Hazards installations requires
quantitative risk assessment (QRA) based on models
predicting the hazards
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Event tree for gas release consequence
modelling
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Objectives

» Development of model for simulating the transient
outflow of shale gas in the event of a wellhead

blowout

» Application of the wellhead blowout model to a
specific EU well to assess the hazards associated
with transient fire and explosion over-pressure
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Modelling challenges

» Model of the well discharge:
» Transient compressible multi-phase flow;
» Heat transfer through casing and viscous friction;
» Complex multicomponent hydrocarbon mixtures;
» Complex geometry of the well;

» Modelling jet fires and explosion:
» 3D radiation profiles

» Coupling with the outflow model
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The well discharge flow model equatio

dp Jdpu

ot T ox D

Opu d(pu” +p) fwpu?

at ax P9

OpE  9(puE +up) _ fwpu® N
A = = —pugy — =5+ qw

where p, u, E and p are respectively the fluid density, velocity,
total specific energy and pressure, x the spatial coordinate,

t is the time, D is the internal diameter, g, is the gravity
force, q,, is the heat flux, and f,, is the Fanning friction factor
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Jet fire modelling

AN\
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Schematics of the frustum representing a
jet (after Chamberlain, 1987)

b is the lift-off distance (m);
W, and W, are the diameters of the frust
R, is the visible flame length (m);
L, is the flame length (m);

0 is the angle between the release direction a
the vertical axis;

a is the tilt angle of the jet flame;



Jet fire - thermal radiation model

The radiated flux at the receiver object:

q=TXVF XS,

VF is the view factor;
T is the atmospheric transmissivity;

F. . ..
S = Qs the average surface emissive power (kW m2);
A

Q = mAH, is the power radiated into atmosphere (kW);

AH, is the heat of combustion (kJ kg') ;
m is the mass flow rate (kg s');

F, = 0.21e7%00323%; 4 0,11 is the fraction of heat emitted.




Explosion modelling

V.. is the volume of the released stoichiometric cloud (m3) Ve=lo

V, is volume of unobstructed part of the cloud (m3) v,
V.- is volume of obstructed part of the cloud (m?3)
o Ignition/*
Qo Q.5 is the amount of vapour released (kg) SOUTHR
Ve = Y p is the cloud density (kg/m3)
* a is the air-fuel stoichiometric concentration (vol%)
E=E,V E is the energy of the blast wave (J/m3)

E, is the heat of combustion of a stoichiometric hydrocarbon-air mixture (3.5 MJ/
V is the volume of the cloud in specific region of interest (m?3)

1, is the radius of the released vapour cloud (m)
\

r’ is dimensionless radial distance
r' =1 3[p JE to the explosion source (-) Explosion overpressure

> P =f(PS’0'r’)

P/, is the blast strength (-)
Pso = Pso/Pa p, is the ambient pressure (Pa)

P, is the peak overpressure (Pa) . SHALEXENVIRONMENT




Physical properties of the fluid

» Fluid phase properties are simulated using an accurate equation of
state for a typical natural gas composition
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» Case study
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Case study - Methodology

» Cuadrilla Roseacre Wood shale gas
exploration project

v Well geometry

v Location and weather conditions

v Formation pressure and temperature

Prospective shale gas areas

( Jurassic shale gas

» Consequence modelling for possible . sl Rl G ionlienos ki ges
deviations from the nominal reservoir » Basin ~\| @ Cambrian - ilurian shale gas
oy o . . . L) Y] S ™
conditions, i.e. estimated magnitudes of < AL \ S
“pressure kicks” Map of Europe showing shale rock sedimentary

basins in Europe (SXT Deliverable 2.2)
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Well site layout and weather conditions

Offices
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Schematic of the drilling site layout and the shale gas exploration
wells (Cuadrilla Elswick Ltd).




» Reservoir pressure hydrostatic gradient ~ 100 bar/km,

» Reservoir temperature gradient ~ 23°C/km.
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Case study parameters

Parameters Value
Well parameters

Overall length 4000 m
Material of construction Mild steel
Wall surface roughness 0.05 mm

Heat transfer coefficient
External diameter

Internal diameter

Wall thickness

Orientation relative to horizontal

0 W/mZK (Adiabatic)
127 mm

114.4 mm

6.2 mm

90 © (vertical)

Reservoir parameters

L\ Well conductor

«———— Surface casing

A

/ Intermediate casing

Temperature 343 K
Pressure 200 - 600 bar
Ambient conditions

Temperature 293.15 K
Pressure 1.01 bara
Wind Speed 0-10 m/s
Relative Humidity of air 50%

A
Production casing
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» Results and Conclusions
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Outflow simulation results
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inputs for consequence modelling




Incident heat flux contours
at the ground level around
vertical flame formed at
the wellhead (0;0),
predicted at various times
following the blowout.

Instantaneous ignition.
Wind speed = 0 m/s.
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Thermal radiation - safe distances

. | | | | Safe distance
‘\“\ wind speed 10 m/s, t = 10's can be

14 \ ~-=-wind speed 10 m/s, t =505 determined for
‘ zero wind speed, t=105 a given radiation
-““\ ~=-=--zero wind speed, t=50s threshold

10 \
\
\
\
\
-.\
8 \

12

kKW/m?

Incident heat flux (kW/ m2)

0 25 50 75 100 125 150 175 200

Receiver distance from the point of release (m)

The incident radiation heat flux as a function of the
receiver distance, predicted for the vertical well blowout




Thermal radiation * »
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Explosion overpressure hazards

Potential damage to health caused by peak overpressure
for various types of locations

Type of location Peak overpressure (mbar)
People in the open

1000

70} 250
People in normal
buildings
Blast resistant > 200

buildings

Blast proof buildings > 1000

Potential damage

Eardrum rupture

Picked up and thrown; likely
fatality

Significant likelihood of

fatality due to masonry

collapse and projectiles,
particularly glass

Some likely fatality
Some likely fatality
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Explosions - safe distances

10000 \ |
Potentially fatal
1000 \ \\ overpressure
e threshold for |
v \ people in buildings
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Distance from explosion centre (m)

Simulated explosion overpressures as a function of distance from the
explosion source at the wellhead for various levels of confinement

Level of
confinement:

===Vgr=10m3
- - Vgr =100 m3
— Vgr = 1000 m3
—Vgr = 10000 m3
—-- 70 mbar
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Conclusions

» A methodology has been developed to predict hazards associated
with shale gas wellhead blowout

» The methodology enables prediction of
o the transient flow rate,
o the thermal radiation from jet fires, and
o the explosion overpressure levels

» The methodology was applied to evaluate safety hazards for a
hypothetical blowout scenario for a realistic shale gas well
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