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Introduction 1 

Digital health, a broad-spectrum concept that has received a significant boost as 2 

a result of the Covid-19 pandemic, is growing exponentially, flexing its muscles with 3 

scientific breakthroughs and associated publications, while also driving trends and 4 

developments in industry. 5 

For cardiovascular medicine in particular, during the last year an impressive 6 

number of authoritative new publications have confirmed previous research findings 7 

and proposed new innovative ideas and practices related to the diagnostic and 8 

therapeutic management of cardiovascular diseases, with the promise of ground-9 

breaking developments during the coming years, for both cardiovascular sciences and 10 

care. 11 

In the year 2021, as in the years immediately preceding, the field of digital 12 

health has been flooded with publications referring to the diverse applications of 13 

artificial intelligence (AI), from supervised to unsupervised learning, focusing mainly 14 

on the diagnostic capabilities of this impressive new technology. 15 

Furthermore, the role of machine learning algorithms in the development of 16 

clinical prognostic models for risk assessment and early warning systems represents a 17 

rapidly evolving field that may be expected to have a catalytic effect by improving the 18 

prediction of medium- and long-term clinical outcomes. 19 

Indeed, the prospects seem to be excellent. 20 

Nonetheless, some questions still remain. Apart from the in silico design and 21 

development, the explainability of the machine learning algorithms and their validation 22 

methodology need to be more solidly confirmed in well-designed longitudinal studies, 23 

as well as in clinical practice before these algorithms find their way into the guidelines. 24 
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Beyond the field of AI—though often closely connected with it—developments 1 

in wearable devices have commandeered a significant part of the recent scientific 2 

literature, highlighting emerging new possibilities for the fuller monitoring and 3 

treatment of cardiovascular diseases and their related risk factors. 4 

The technological developments in wearables—especially as they expand to 5 

cover not only the needs of fitness, but also those of diagnosis and monitoring of 6 

cardiovascular diseases—will obviously require more substantial regulation to ensure 7 

device reliability, backed by well-organised studies that will highlight their cost-8 

effectiveness so that insurance companies may be persuaded they should be 9 

reimbursable.  10 

ΑΙ-enabled cardiovascular diagnostic tools, techniques & methodologies 11 

 A new era in ECG analysis  12 

The application of AI to the ECG has seen significant advances recently, and 13 

has developed in two broad categories: 1) tools to automate ECG interpretation, 14 

extending human capabilities via massive scalability, important as mobile form factors 15 

permit signal acquisition; and 2) algorithms to identify conditions not visible to human 16 

readers by training networks to identify multiple, complex, nonlinear patterns in the 17 

ECG signal to find occult disease (confirmed using other tests such as imaging), or 18 

impending disease. In contrast to automation tools in which a human overread provides 19 

a gold standard, algorithms identifying occult or future conditions require additional 20 

patient information. 21 

Several groups have used large, labelled data sets to train neural networks to 22 

accurately apply diagnostic codes to single-lead and multiple-lead ECGs. Hannun1 et 23 

al used 91,232 single-lead ECGs from a wearable patch to train a network to provide 24 
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12 rhythm classes, and found that the network outperformed the average cardiologist’s 1 

read. Subsequently, two mega trials using smart watches based on PPG technology 2 

enrolled 419,297 and 246,541 patients to screen for AF in under 9 months.2,3 3 

These trials confirmed the ability to massively enrol subjects and acquire data, 4 

at the cost of high rates of early dropout, low yield of disease (<0.5% in both studies), 5 

and with limited clinical characterisation of the study subjects. Ongoing trials will 6 

assess these tools in the context of patients selected for arrhythmia risk. Finally, there 7 

have been recent reports of interesting research that aimed to develop and validate an 8 

AI-enabled ECG algorithm capable of comprehensive 12-lead ECG analysis 9 

comparable to that of practicing cardiologists.4 10 

Furthermore, the AI-ECG has identified occult and manifest cardiac conditions, 11 

including ventricular dysfunction,5 peripartum cardiomyopathy,6 amyloid heart 12 

disease7 and pulmonary hypertension,8 as well as non-cardiac conditions such as 13 

hyperkalaemia and cirrhosis.9,10 In addition, special algorithms have been used for the 14 

early diagnosis of valvular diseases such as asymptomatic or oligosymptomatic severe 15 

aortic stenosis and mitral regurgitation,11,12,13 left ventricular hypertrophy,14,15 16 

myocardial infarction16,17 and a number of other conditions. Common findings in these 17 

studies include a strong clinical performance (AUC often above 0.90) and detection of 18 

disease months to years ahead of the clinical diagnosis. 19 

The significance of these findings remains to be evaluated, taking into account 20 

the scalability of electrocardiography and hence the contribution of AI to its further and 21 

more substantial utilisation. 22 

The ECG is an ever-present diagnostic tool that has served medical practitioners 23 

for more than a century. With the support of deep-learning AI techniques it is clearly 24 
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entering a new era, in which it may prove to be a powerful detector of subclinical and 1 

clinical cardiac diseases, going beyond the boundaries of human observation. There can 2 

be no doubt that, when the previous capabilities of the ECG are combined with the 3 

evolving features of wearable devices such as smartphones, the chances of a much 4 

broader and pluralistic diagnostic process will increase rapidly. 5 

The AI-ECG and clinical trials 6 

  Clinical trials are essential to demonstrate the ability of novel digital tools like 7 

the AI-ECG to improve human health. Factors to consider in evaluating the quality of 8 

AI-ECG studies are listed in Table 1. A framework for the assessment of how well AI-9 

ECG clinical trials can predict meaningful outcomes, based on whether the trials are 10 

single-centre or multicentre, prospective or retrospective, is shown in Table 2. It is 11 

likely that level 3 or higher would be required for regulatory approval, allowing for 12 

variation in specific tests and regional differences. There is a pressing need for 13 

additional clinical trials to assess AI-ECG tools. A search of clinicaltrials.gov on Oct 14 

8, 2021, for trials utilising the terms “artificial intelligence” and “ECG” returned 27 15 

studies, with only 5 completed.  16 

The first AI-ECG prospective trial published, the Eagle study,18 demonstrated 17 

how digital, pragmatic trials can effectively and rapidly enrol subjects, and how the AI-18 

ECG can positively impact clinical practice. It randomised 120 primary care teams from 19 

45 clinics or hospitals in Minnesota and Wisconsin to an intervention arm (clinicians 20 

have access to AI-ECG results screening for left ventricular dysfunction when routinely 21 

ordering a clinical ECG) or a control arm (no AI results). Despite the development of 22 

the pandemic, over 22,000 patients were enrolled in 8 months, and the AI-ECG 23 

increased the diagnosis in the overall cohort (OR 1.32, p=0.007). The test performance 24 
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(AUC=0.92) matched that of the initial retrospective cohort (0.93).19 Interestingly, the 1 

overall utilisation of echocardiography was similar in both groups but in the 2 

intervention group more echocardiograms were ordered for patients with a positive AI-3 

ECG (38.1% control vs. 49.6% intervention, p<0.001), suggesting that the AI-ECG did 4 

not lead to more echocardiograms, but to better selection of patients to undergo 5 

imaging. 6 

Cardiovascular imaging 7 

Imaging has been the frontrunner in the application of AI in healthcare, because 8 

of the repetitive nature of imaging processing and evaluation. AI may improve imaging 9 

quality—and thereby scan and dose time—and assist in segmentation, processing and 10 

analysis.20 Furthermore, most data are retrieved from a single standardised data source, 11 

making it more accessible for large scale analyses. During the pandemic, critics were 12 

pointing out that, despite massive efforts, AI had no impact on the care of COVID-19 13 

patients, while simple straightforward randomised controlled trials did save lives.21 14 

However, this clearly shows only one side of the coin. The pandemic led to a greater 15 

burden on radiology resources, as CT scans were carried out routinely in all patients. 16 

AI is key in all parts of the imaging pipeline, including acquisition, processing, and 17 

analyses.22,23 Furthermore, a plethora of papers have been published during the 18 

pandemic, showing the prognostic value of calcium score measurements in COVID-19 19 

chest CT-scans.  20 

Those measurements can be automated using deep learning,24 providing 21 

clinicians with information, not only about the pulmonary status of COVID-19 patients, 22 

but also their cardiovascular risk.25 AI will enable automated analyses of routine chest 23 

CT exams for opportunistic cardiovascular screening, allowing early preventive 24 
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treatment. All these developments, together with the notable FDA clearance of a new 1 

technology to identify strokes on brain CT scans enabled by AI, hold out the prospect 2 

of a bright future in medical diagnostics.26,27  3 

Retinal photography to detect cardiovascular disease 4 

Another imaging application that can determine risk across a wide range of 5 

diseases is retinal photography. Retinal photography is a non-invasive imaging 6 

modality that aides in the diagnosis and treatment of major eye diseases, but can also 7 

provide information on the human vasculature and therefore cardiovascular disease. 8 

Prior manual coded studies have shown that retinal vascular abnormalities are 9 

predictive for cardiovascular disease.28 Deep learning can extend this knowledge 10 

through automation and detection of more subtle signs that are not clearly visible to the 11 

human eye. Several large-scale studies have been published recently, focusing on the 12 

predictive value of features extracted from retinal photographs. Studies have shown that 13 

deep learning algorithms can predict levels of biomarkers such as haemoglobin to detect 14 

anaemia,29 as well as age, sex, body composition and creatinine levels,30 although 15 

external validation is warranted before this can be widely adopted in population 16 

screening. Another interesting study investigated the predictive capability of deep-17 

learning–enabled coronary artery calcium (CAC) scores derived from retinal scan 18 

data.31 CT scans and retinal measurements were performed on the same day and the 19 

score derived from retinal images showed an AUC of 0.74 for predicting CAC>0. 20 

Although higher than other single risk factors, like age, sex and cholesterol, the added 21 

predictive value in the multivariable clinical model was limited (AUC from 0.782 to 22 

0.784). However, the CAC score derived from retinal scans showed a similar 23 

performance in predicting cardiovascular outcomes to CAC measured by CT scan (both 24 

AUC 0.71). Furthermore, the authors showed in the UK Biobank that this retinal-based 25 
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CAC score could improve risk stratification in those with borderline or intermediate 1 

risk.  2 

Disadvantages exist. Home-based tests are not yet available, and images with 3 

poor quality were excluded in the reported analyses, which is likely to limit the external 4 

validity. Real-world data are necessary to estimate the added value in population 5 

screening, and the development of mobile applications for self-tests is needed32 before 6 

implementation on a large scale. These deep learning applications are, however, already 7 

useful in those who already undergo regular retinal scans, such as diabetic patients, to 8 

screen for retinopathy.33  9 

To close this section, at least a brief mention should be made of the diagnostic 10 

capability and cost-effectiveness of the combined imaging approach, where the use of 11 

AI and MRI yields the atheroma index of the coronary arteries or peripheral vessels as 12 

a byproduct of the primary diagnostic evaluation of other organs.34  13 

Automation of imaging processing 14 

While the application of AI in cardiovascular imaging for clinical decision 15 

making is still in its infancy, the use of AI to automate imaging processing in other 16 

fields, such as ophthalmology as discussed above, oncology and dermatology, has 17 

already matured. However, several promising studies using different imaging 18 

modalities have recently been published and show that cardiology is able to catch up 19 

with the other disease domains. A large international collaborative study showed that 20 

the coefficient of variation in measuring left ventricular wall thickness by 21 

cardiovascular magnetic resonance was significantly lower for machine learning in 22 

comparison to human experts.35 This study involved a cohort of patients with 23 

hypertrophic cardiomyopathy, where variations in wall thickness measurements 24 
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directly impact clinical decision making by affecting the calculation of sudden death 1 

risk and thereby the indication for preventive ICD implementation.  2 

Another recent example of automation is the International Society for Heart and 3 

Lung Transplantation’s grading of endomyocardial biopsies in heart transplant 4 

patients.36 The authors compared histological grading performed by expert pathologists 5 

with a computer-assisted automated pipeline and showed similar performance of the 6 

Computer-Assisted Cardiac Histologic Evaluation (CACHE) grader in comparison to 7 

the pathologist (Figure 1). Moreover, they showed only limited attenuation of the 8 

performance when it was applied to an external validation dataset, indicating good 9 

generalisability across different scanning and tissue preparation protocols. International 10 

collaborative efforts in the field of transplant research have been hampered by 11 

variations in grading by individual centres, which increase the noise-to-signal ratio in 12 

the detection of biologically meaningful results when datasets from individual centres 13 

are merged. CACHE-enabled automated grading can play an instrumental role in 14 

advancing the field of transplant research.  15 

Finally, AI will increasingly be applied in the field of echocardiography. Prior 16 

studies have shown that AI can identify different echo views, can segment cardiac 17 

structures, estimate ejection fraction37,38 and diagnose diseases such as cardiac 18 

amyloidosis.39 Recently, a study from Stanford also showed that deep learning 19 

algorithms are able to detect pacemaker or ICD leads and, interestingly, are able to 20 

predict age, sex, height and weight based on echo images.40 Furthermore, they used 21 

gradient-based sensitivity mapping methods to highlight the regions of interest for 22 

human interpretation. Visualisation methods to unlock the so-called “black box” 23 

algorithms are essential if healthcare professionals are to fully adopt the results 24 

generated by AI models. These algorithms will support untrained professionals with the 25 
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interpretation of echocardiograms when cardiological expertise is of limited 1 

availability. A recent study showed that deep learning can even help untrained nurses 2 

to perform limited echocardiograms for standard evaluation of left and right ventricular 3 

size and pericardial effusion, enabling the use of echocardiograms in non-cardiological 4 

settings, such as primary care, COVID wards or remote areas.41 However, before its 5 

widespread implementation, additional studies regarding safety and generalisability are 6 

warranted.  7 

Big data and prognostic models for cardiovascular risk prediction 8 

Machine learning for risk prediction  9 

Clinical risk prediction modelling based on machine learning has been an active 10 

field of research. During the first months of the pandemic, hundreds of such models 11 

were developed.42 Clinical prediction models are commonly developed to inform 12 

physicians about the probability of a certain disease being present (diagnosis), or to 13 

predict a certain health state in the future (prognosis), for individual patients, and to use 14 

that knowledge in the care of those patients.43 By applying machine learning techniques 15 

that can use complex data relationships between predictors and outcome without the 16 

need for the modeller to pre-specify them, the expectation is that the accuracy of 17 

predictions will improve compared to traditional risk prediction modelling approaches, 18 

and that its application will be less labour intensive at the bedside.  19 

Improvements in predictive accuracy are, however, not guaranteed.44 For 20 

instance, a study that developed machine learning models to predict the risk of death 21 

after acute myocardial infarction (AMI) found that machine learning models were not 22 

uniformly superior to a traditional logistic regression approach in a cohort of 755,402 23 

AMI patients.45 In fact, of the three models used, two were superior to the logistic 24 
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regression model for risk stratification. In addition, those two models were much better 1 

calibrated across patient groups based on age, sex, race and mortality risk, and thus 2 

better suited for risk prediction. In contrast, the third model, based on a neural network, 3 

was found to be inferior to the logistic regression model used in the study. There may 4 

be pragmatic reasons for this inferiority, but they are probably related to the 5 

methodology used and in particular the sample sizes of each of the study’s populations. 6 

Nonetheless, in other settings machine learning approaches have yielded 7 

promising results. One such study developed models to predict the risk of death, 8 

myocardial infarction, and major bleeding after an acute coronary syndrome (ACS). 9 

The machine learning-based models were developed from a cohort with 19,826 adult 10 

ACS patients and were shown to predict the risk with high AUCs on external validation, 11 

at 1 year (AUCs: 0.81 to 0.92) and 2 years (AUCs: 0.84 to 0.93).46 12 

Early warning systems 13 

Early warning systems are prognostic predictive models that aim to inform 14 

physicians about important future health outcomes. Often, these early warning systems 15 

are used to monitor patients and to update these predictions over time. For instance, to 16 

predict circulatory failure in patients admitted to intensive care, a machine learning 17 

model was developed that made a new prediction for every patient every 5 minutes.47 18 

The early warning systems developed were shown to yield high AUCs, between 0.88 19 

and 0.94. However, these models also produced 2 to 3 alarms per patient per day. This 20 

may result in so-called “alarm fatigue”, which can lead to inadequate responses and 21 

may even impact patient safety.48 Hence, for these early warning systems and other risk 22 

prediction models used to guide clinical decisions, it is essential to ensure safety and 23 

effectiveness in improving patient outcomes, for instance through an RCT comparing 24 



13 
 

the early warning system to standard of care. One such an RCT evaluated a machine 1 

learning-based early warning system for pending intraoperative hypotension.49 This 2 

early warning system updates every 20 seconds the probability of a hypotensive event 3 

in the next 15 minutes (warning when estimated probability >85%) based on the arterial 4 

pressure waveform.50 In an RCT with 60 adult elective non-cardiac surgery patients, 5 

the early warning system, in combination with a hemodynamic diagnostic guidance and 6 

treatment protocol, reduced the median total time of hypotension per patient from 32.7 7 

minutes under standard of care to 8 minutes.  8 

Big data: representativeness and algorithmic fairness 9 

Access to large and diverse databases with electronic health records creates 10 

important new research opportunities. Such large databases include the Clinical 11 

Practice Research Datalink (CPRD), with highly detailed data from over 5 million 12 

individuals representative of the UK population. Using the CPRD data, one interesting 13 

study developed and validated several machine learning-based risk prediction models 14 

for predicting the risk of familial hypercholesterolaemia in primary care patients.51 15 

These prediction models were shown to have high AUCs of around 0.89. The large 16 

scale and representativeness of large databases also allows for studying specific groups 17 

that may otherwise be difficult to study. For instance, one study compared 18 

cardiovascular disease incidences and outcomes in homeless individuals using a linkage 19 

between CPRD, hospital episode statistics and the Office of National Statistics for 20 

mortality data.52 This study showed that homeless individuals have a 1.8 times higher 21 

risk of developing cardiovascular disease and are 1.6 times more likely to die within 1 22 

year after cardiovascular disease diagnosis, compared to similar individuals who are 23 

not homeless. Finally, large and diverse databases, where minority groups are also well 24 

represented, are essential to ensure that the algorithms developed are fair,53 i.e. do not 25 
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systematically disadvantage certain groups of individuals. This requires evaluation of 1 

the performance of the algorithms in important subgroups. For instance, a recent study 2 

on atherosclerotic cardiovascular disease risk prediction showed a comparable 3 

performance of existing pooled cohort equations and newly developed machine-4 

learning based models in Asian and Hispanic subgroups, for which the performance 5 

was so far uncertain.54 6 

Wearable devices in cardiovascular risk assessment, cardiovascular disease 7 

prevention, diagnosis and management 8 

Wearables in AF risk assessment and management  9 

The role of physical activity as a modifiable risk factor for the development of 10 

atrial fibrillation (AF) was studied recently in a well-organised prospective study,55 11 

which included 93,669 participants from the UK Biobank prospective cohort, without 12 

a prevalent history of AF, who wore a wrist-based triaxial accelerometer for one week. 13 

The sensor captured acceleration at 100 Hz with a dynamic range of ±8 g. The primary 14 

outcome of the study was incident AF.  15 

According to the findings of the study, greater accelerometer-derived physical 16 

activity is associated with a lower risk of incident AF and stroke, after adjustment for 17 

clinical risk factors (Figure 2). Wearable sensors may enable both objective assessment 18 

of physical activity and modification of AF risk through targeted feedback. The authors 19 

consider that future preventive efforts to reduce AF risk may be most effective if they 20 

target adherence to objective activity thresholds. 21 

Another study56 that aimed to investigate the association between changes in 22 

physical activity and the onset of AF reported similar findings. A total of 1410 23 

participants from the general population were studied (46.2% women, mean age 24 
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74.7±4.1 years), with risk factors but with no prior AF diagnosis, who underwent 1 

continuous monitoring for AF episodes along with daily accelerometric assessment of 2 

physical activity, using an implantable loop recorder, over an average period of 3.5 3 

years.  4 

According to the findings of the study, intra-individual changes in physical 5 

activity were associated with the onset of AF episodes, as detected by continuous 6 

monitoring, in a high-risk population. For each person, a 1-h decrease in daily physical 7 

activity during the previous week increased the odds of AF onset the next day by ~25%, 8 

while the strongest association was seen in the group with the lowest activity overall. 9 

Apart from these two recent and revealing studies of the relationship between a 10 

person’s physical activity and the occurrence of AF, a significant number of ongoing 11 

or recently published studies have evaluated the capabilities of wearables, focusing on 12 

the relationship between the individual clinical outcome and the burden of recorded 13 

episodes of clinical or subclinical AF.57  14 

Wearables in HF assessment and management  15 

Heart failure (HF), a fast growing disease internationally, also has a long-16 

standing affinity with wearable technology, since the pathophysiology of the disease 17 

and its clinical consequences require close and continuous long-term monitoring. 18 

Indeed, wearables offer a unique opportunity to assess patients’ status and a number of 19 

indicators closely, outside the classical settings. In patients with HF, data from 20 

consumer wearables, such as physical activity step count or heart rate, but also more 21 

intense monitoring of such factors as pulmonary artery pressure or fluid retention, have 22 

long been the target of these evolving devices. 23 
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When we look at the findings and messages of the most recent relevant studies, 1 

those of the Link-HF multicentre study by Stehlik et al,58 which evaluated the accuracy 2 

of non-invasive remote monitoring in predicting rehospitalisation for HF, were quite 3 

revealing. This was a study of 100 patients with heart failure, aged 68.4±10.2 years 4 

(only 2% female). The investigators showed that multivariate physiological telemetry 5 

from a wearable sensor, in combination with machine learning analytics, can 6 

accomplish accurate early detection of impending rehospitalisation with a predictive 7 

accuracy comparable to that of implantable devices. The authors emphasise, however, 8 

that the clinical efficacy and generalisability of this low-cost non-invasive approach to 9 

rehospitalisation mitigation still needs further testing. 10 

Looking at the issues more broadly, apart from the use of modern electronic 11 

technology for continuous haemodynamic monitoring in HF patients, it has become 12 

clear that such technology can and should be used for education and support in these 13 

patients’ therapeutic management.59  14 

The EPIC-HF study (Electronically Delivered Patient-Activation Tool for 15 

Intensification of Medications for Chronic Heart Failure with Reduced Ejection 16 

Fraction) evaluated patients from a diverse health system who had HF and reduced 17 

ejection fraction, randomising them to usual care versus patient activation tools. The 18 

tools—a 3-minute video and a 1-page checklist—encouraged patients to work 19 

collaboratively with their clinicians to “make one positive change” in their HF 20 

medication. 21 

The findings were clear. A patient activation tool delivered electronically before 22 

the cardiology clinic visit enhanced clinicians’ intensification of guideline-directed 23 

medical therapies. 24 
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ST-segment elevation myocardial infarction. 1 

The vast majority of wearable devices currently offer single-lead 2 

electrocardiographic (ECG) recording, which allows the detection of AF and, more 3 

rarely, other arrhythmias to a satisfactory extent. However, such ECG recordings 4 

cannot reliably detect ST/T changes due to regional myocardial ischaemia. 5 

Nevertheless, a good many expectations have been invested in this possibility, as ECG 6 

recording by wearables, backed by telemonitoring to detect the early signs of 7 

myocardial ischaemia, could limit its often destructive effects. 8 

Muhlestein J. et al.,60 in their relatively recent publication, reviewed the 9 

feasibility of combining serial smartphone single-lead recordings to create a virtual 12-10 

lead ECG capable of reliably diagnosing ST-elevation myocardial infarction. The study 11 

included 200 subjects (mean age 60 years, 43% female).  12 

For all interpretable pairs of smartphone ECGs, compared with standard 12-lead 13 

ECGs (n=190), the sensitivity, specificity, and positive and negative predictive values 14 

for STEMI or STEMI equivalent (LBBB) achieved by the smartphone were 0.89, 0.84, 15 

0.70 and 0.95, respectively. The authors concluded that a 12-lead equivalent ECG 16 

constructed from multiple serial single-lead recordings from a smartphone can identify 17 

STEMI with a good correlation to a standard 12-lead ECG. 18 

Similarly to the previous study, a prospective study61 also investigated the 19 

feasibility and accuracy of a smartwatch in recording multiple electrocardiographic 20 

leads and detecting ST-segment changes associated with acute coronary syndromes, 21 

compared with a standard 12-lead ECG. A commercially available smartwatch was 22 

used in 100 participants. The watch was placed in different body positions to obtain 9 23 



18 
 

bipolar ECG tracings (corresponding to Einthoven leads, II and III and precordial leads 1 

V1-V6), which were compared with a simultaneous standard 12-lead ECG.  2 

To a significant extent there was agreement between the findings of the 3 

smartwatch tracings and the standard ECGs for the identification of a normal ECG, ST-4 

segment changes, and no ST-segment elevation. 5 

The findings of the two previous studies give cause for optimism that, in the 6 

near future, the technical difficulties will be overcome, so that the recording of wearable 7 

devices will gain sufficient reliability for the recording of ischaemic changes on the 8 

ECG. 9 

Conclusions 10 

Digital health stands poised to transform cardiovascular medicine, much as 11 

echocardiographic imaging has upended stethoscope-based auscultation for diagnosis. 12 

Work published in 2021 has advanced this hope, and engaged an ever-widening group 13 

of stakeholders, critical to ensure proper evaluation of this important technology that 14 

may touch so many lives. Digital health’s great promise in no small measure stems from 15 

its ability to endow extant medical tests (ECG, fundoscopy, imaging) and EHR data 16 

that are known to practitioners and integrated into workflows with new superpowers, 17 

and to draw massively scalable data from wearables into the fold. This integration will 18 

accelerate adoption, and impact care.  19 

Before the promise of digital health can bear fruit to improve human health, a 20 

major gap must be addressed – the paucity of clinical trials to address outcomes. The 21 

“black box” issue and lack of explainability are widely discussed concerns that may not 22 

be solved in the short term, but may be mitigated or overcome with robust evidence 23 

from prospective clinical trials. Data management processes to prevent overwhelming 24 
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an already taxed health care system are mandatory. Further development of novel 1 

hybrid regulatory strategies recognising software as a medical device coupled to 2 

consumer hardware are prerequisites to exponentially driving data availability. With 3 

broad input from clinicians, industry, regulators, and patients; attention to privacy and 4 

human rights; diligent testing, validation and oversight; and prospective trial data, 5 

digital health promises an exciting and healthy future, as opposed to a brave new world.  6 
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Figure legends 1 

Figure 1: An overview of the ‘Computer-Assisted Cardiac Histologic Evaluation-2 

Grader’ multi-centre validation experiment. The Computer-Assisted Cardiac Histologic 3 

Evaluation-Grader performance was compared to both the grade of record and to 4 

independent pathologists performing re-grading, demonstrating non-inferiority to 5 

expert pathologists, generalizability to external datasets, and excellent sensitivity and 6 

negative predictive value. Reproduced by permission, from Peyster EG et al.36  7 

 8 

Figure 2: Cumulative risks of atrial fibrillation (upper panel) and stroke (lower panel) 9 

stratified by adherence to physical activity recommendations, as it is validated by 10 

accelerometer-derived physical activity. Reproduced by permission, from Khurshid S. 11 

et al.55 12 
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Tables 1 

Table 1:  Factors to consider in evaluating AI-ECG studies 2 

1. Data label accuracy: robustness of data labels used for training and testing 3 

a. Proxy labels (EMR report of “chest pain”) vs. gold standard labels 4 

(physician described angina, troponin levels, serial ECGs) 5 

b. Number of subjects for whom labels available 6 

c. Absence in labels of false distractors (e.g. all ECGs from patients with 7 

condition taken at one hospital, using an acquisition system different 8 

than that used in controls, so that network may identify differences in 9 

ECG machines rather than disease) 10 

2. Risk of bias: cohort creation and controls  11 

a. Controls not identical to cases in all conditions except the desired AI 12 

differentiator, most commonly in demographics (example: using adult 13 

controls for pediatric ECGs with WPW to train a network) 14 

b. Controls and cases taken from public data sets (difficult to know details 15 

regarding absence/presence of conditions, poor phenotyping) 16 

c. Use of only subsets of larger data sets, introducing potential bias – need 17 

for racial, ethnic, and geographic diversity in data sets (example: initial 18 

face recognition AI trained using only Caucasians, mislabeled African 19 

Americans as primates) 20 

d. Inappropriate exclusion of data at the patient or signal feature level will 21 

bias results (examples: exclusion of signals on the basis of artifact of 22 

those same exclusions won’t be used in real world implementation; or 23 

exclusion of patients with hypertension when creating an AI ECG screen 24 

for hypertension) 25 
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e. Temporal shifts – training using data acquired in the remote past and 1 

application to recent data sets 2 

f. Commercial interest and backgrounds of engineers creating AI tools 3 

(potential bias) 4 

3. Overfitting/ lack of generalizability 5 

a. Overly complex AI ECG network with a small number of samples (the 6 

results are not generalizable to other populations).   7 

b. Most datasets for AI-ECG training number in the tens of thousands or 8 

more, although exceptions exist 9 
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Table 2:  Proposed Categories of Clinical Trials to Assess the AI-ECG 1 

Study 

Category 

Description of 

Population Used to 

TEST an AI-ECG 

network 

Study Design Strengths Limitations 

1 Public data set Retrospective Inexpensive, rapid Unreliable 

phenotyping, high 

risk of bias, limited 

clinical utility 

2 Single Center: same 

hospital/clinic used 

to acquire data, but 

different patients 

Retrospective Rich data sets to 

phenotype patients, 

rapid, relatively 

inexpensive, robust 

proof of concept 

approach 

Risk of bias, 

underrepresenting 

important populations 

3 Multicenter: 

different hospital 

system used to test 

AI, than one used to 

create 

Retrospective Lower risk of bias, 

potential for greater 

diversity among 

subjects, test types, 

potential to rapidly and 

meaningfully assess tests 

Need to confirm 

labels assessed in 

systematic, similar 

manner across       sites 

(example:  assessment 

of EF by echo) 

4 Single center: same 

hospital used to test 

AI, different 

patients 

Prospective Assesses AI, impact on 

workflow, adoption by 

clinicians, clinical 

impact 

Greater technical 

infrastructure 

required, more 

expensive, greater 

time requirement 

5 Multicenter Prospective 

(may use 

retrospective 

ECGs to 

prospectively 

enroll patients) 

Prospective trial but with 

accelerated enrollment, 

by screening large 

dataset of stored ECGs; 

potential for portal/email 

study invitations and 

pragmatic design, 

statistical robust, 

potential to minimize 

bias 

Greater technical 

requirements, time, 

expense 
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