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Machine learning detects altered 
spatial navigation features 
in outdoor behaviour of Alzheimer’s 
disease patients
Abhirup Ghosh1, Vaisakh Puthusseryppady2,3, Dennis Chan4, Cecilia Mascolo1 & 
Michael Hornberger2*

Impairment of navigation is one of the earliest symptoms of Alzheimer’s disease (AD), but to date 
studies have involved proxy tests of navigation rather than studies of real life behaviour. Here we use 
GPS tracking to measure ecological outdoor behaviour in AD. The aim was to use data-driven machine 
learning approaches to explore spatial metrics within real life navigational traces that discriminate AD 
patients from controls. 15 AD patients and 18 controls underwent tracking of their outdoor navigation 
over two weeks. Three kinds of spatiotemporal features of segments were extracted, characterising 
the mobility domain (entropy, segment similarity, distance from home), spatial shape (total turning 
angle, segment complexity), and temporal characteristics (stop duration). Patients significantly 
differed from controls on entropy (p-value 0.008), segment similarity (p-value 10−7 ), and distance 
from home (p-value 10−14 ). Graph-based analyses yielded preliminary data indicating that topological 
features assessing the connectivity of visited locations may also differentiate patients from controls. 
In conclusion, our results show that specific outdoor navigation features discriminate AD patients 
from controls, which has significant implication for future AD diagnostics, outcome measures and 
interventions. Furthermore, this work illustrates how wearables-based sensing of everyday behaviour 
may be used to deliver ecologically-valid digital biomarkers of AD pathophysiology.

Spatial navigation symptoms in Alzheimer’s disease (AD), such as disorientation or even getting lost, are often 
overshadowed by the predominant episodic memory problems. However, spatial navigation symptoms have 
much more significant implications than purely memory problems. In particular, spatial navigation has been 
reported to be one of the first cognitive abilities to be affected in AD, which occurs as a result of the disease 
pathology appearing early in structures which form part of the brain’s navigation centre (i.e., medial temporal 
lobe and parietal structures)1. Indeed, studies have suggested that changes to spatial navigation abilities could 
potentially represent a sensitive and specific cognitive marker for AD2,3. These studies have mainly investigated 
how individuals use the two main navigation strategies (i.e., egocentric/body-based and allocentric/map-based) 
to move in virtual reality (VR) environments4 , and their findings suggest that suboptimal performance on allo-
centric navigation tasks can not only help identify individuals that are in the preclinical stages of AD but also in 
predicting clinical progression of the disease.

Despite these strong findings for laboratory or clinic-based spatial navigation testing, there is much less evi-
dence on how spatial navigation performance affects real-world navigation performance in AD. Most previous 
studies on real-world spatial navigation in AD, are based on anecdotal or single case evidence with little system-
atic evidence on the ecological impact of spatial navigation symptomatology. Exceptions are studies investigating 
getting lost events in AD, which studied the antecedents or consequences of such events but with little regard of 
how spatial navigation symptomatology might have contributed to those events5. We have previously published 
data investigating such events as well and trying to relate them to spatial navigation features, such as landmark 
density or road networks6,7. However, much less is known as to the everyday navigation patterns in AD and how 
the pervasive spatial navigation changes in the disease affect those patterns. This might allow to identify changes 
before AD patients get lost and mitigate the risks of such events occurring.
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The current study addresses this issue exploring the real-life outdoor navigation patterns of community dwell-
ing AD patients and age, gender matched healthy controls in real-world environments using GPS trajectory data. 
Given the novelty of this dataset, the data analysis was undertaken using two complementary approaches. First, 
we used a data-driven machine learning approach, where we specifically aim to investigate (a) how the outdoor 
navigation patterns of AD patients differ from controls with respect to various selected features and (b) if we can 
correctly classify all participants as being either AD patients or healthy controls, based solely on a combination 
of these selected features. We hypothesise that the outdoor navigation patterns of AD patients will differ from 
that of the controls on certain selected features, as results from previous studies have shown that AD patients 
have distinct outdoor navigation patterns in the community8–11. We also hypothesise that our machine learning 
classifier will be able to identify the AD patients and controls based on solely these features of their GPS data. 
Second, we tested the a priori hypothesis that AD would be associated with changes in navigational patterns as 
modelled using graph-based analyses. The rationale for this approach is based on the extensive knowledge that the 
hippocampus within the medial temporal lobe is critically involved in maintaining an allocentric representation 
of the environment that is a fundamental component of navigation12,13, and more recent work indicating that 
this hippocampus-based cognitive map can be modelled in terms of graph metrics14. Given that hippocampal 
degeneration is a central feature of AD, our hypothesis-led prediction is that topological measures of outdoor 
navigation would differentiate AD patients from control participants.

Methods
Participant recruitment.  Sixteen community-dwelling AD patients and eighteen age and gender-matched 
healthy controls were recruited for this study. Inclusion criteria for the study were: 50–80 years of age, residing 
at home, and if a patient, having a clinical diagnosis for AD and with a carer (relative/spouse) willing to assist 
in the study. Exclusion criteria were: a previous history of alcohol or substance abuse, presence of a psychiatric 
condition, any other significant medical condition that may be likely to affect participation in the study (head 
injury, loss of vision, mobility issues), and for patients, the presence of a comorbid neurological condition not 
related to AD.

All patients were clinically diagnosed with AD using the National Institute of Neurological and Communica-
tive Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association (NINCDS/ADRDA) 
diagnostic criteria15.

Experimental protocol.  The study adhered to all relevant guidelines and regulations. Ethical approval for 
this study was granted by the Faculty of Medicine and Health Sciences Research Ethics Committee at the Uni-
versity of East Anglia (Ref. FMH2017/18-94), as well as the National Health Service Health Research Authority 
(project ID 205788; 16/LO/1366). All AD patients had capacity to consent and did so independently. All research 
was conducted in accordance with the relevant guidelines and regulations. All participants underwent an experi-
mental protocol consisting of a cognitive screening session and two weeks GPS tracking.

Cognitive screening session.  The cognitive screening session was held in a quiet testing room on the 
university campus for the controls and for patients, in a quiet room in their own home. In this session, the back-
ground demographics of the participants were collected from their carers such as their age, gender, and level 
of education. In addition, the participants completed the Mini-Addenbrooke’s Cognitive Examination (Mini-
ACE), which is a validated cognitive screening test for dementia16. Participant scores on the Mini-ACE enable us 
to gauge their general level of cognitive functioning (i.e., higher scores indicating higher cognitive functioning) 
as well as screen for dementia (i.e., scores ≤ 25/30).

GPS tracking.  Following cognitive screening, all participants underwent GPS tracking of their outdoor 
navigation (i.e., outside the home) patterns in the community for a 2-week period. The two-week timeframe was 
chosen to capture the participants’ outdoor navigation patterns over repeated weekdays/weekends. The entire 
data collection period, across all participants, lasted from November 2018–November 2019 (i.e., 12 months and 
14 days).

All participants were provided with a GPS tracker (Trackershop Pro Pod 5). They were asked to wear the 
tracker (i.e., by placing it in their coat/trouser pockets) whenever they left their house during the tracking period, 
regardless of the mode of transport used and whether they were alone/accompanied. Participants were also 
provided with a navigation diary and were asked to record the date/time of each outing, and whether they were 
alone or accompanied during the outing.

GPS data for the first batch of 22 participants (13 controls, 9 patients) were recorded at a sampling frequency 
of 0.33 Hz (i.e., one sample every 3 s), while for the remaining 12 participants (5 controls, 7 patients), it was 
recorded at 0.20 Hz (i.e., one sample—every 5 s). The differences in sampling frequencies are due to the GPS 
Company changing the lowest sampling frequency (from 0.33 to 0.20 Hz) of the devices online, midway through 
data collection. The devices recorded the following variables for each location data point-date/time, address 
(street name), speed (miles per hour), battery level (percentage), distance travelled (miles), signal accuracy 
(percentage), and latitude/longitude coordinates.

One patient’s data had to be discarded from the analysis due to them having a faulty GPS tracker and sub-
sequently, insufficient collected data. Therefore, the data analysis was conducted on a total of 15 AD patients 
and 18 controls.

Participant demographics.  There were no statistically significant differences between controls and 
patients for age or gender, however controls had a significantly higher number of years of education than the 
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patients. Group differences were seen in the Mini-ACE score, with patients performing significantly worse than 
controls; the scores of all patients met the upper cut-off of ≤ 25/30, indicating significant cognitive impairment 
for patients (Table 1).

Data analysis.  While many analytical and data driven mobility models exist in the literature17–19, they are 
not readily applicable in our case of trying to identify individuals with AD from their outdoor navigation pat-
terns. This is because these models in principle study statistical behaviour consistent across a large population 
(e.g., scale free behaviour), and identifies participants that fall outside this distribution; however, our sample size 
is too small to establish such normative behaviour. Further models20 targeted specifically to walking traces also 
do not apply to our analysis as we consider data that is from a variety of transportation modes. Thus, in this work, 
we study novel features extracted from segments of the outdoor navigation traces. We use this approach follow-
ing common practice in audio processing and activity recognition from sensing data21, whereby the extracted 
segments provide tangible units of movement from the continuous trajectories and make the problem tractable.

Extracting segments.  We define a segment as a sub-trajectory where the person returns to the same location 
(Fig. 1a,b). While returning to the same latitude and longitude is unrealistic, we consider a slack radius of 10 m 
for practical purposes. The duration of the segment needs to be between 1 and 20 min and the length of the sub-
trajectory (i.e., the sum of lengths of the constituent linear pieces between location samples) needs to be at least 
100 m long. The thresholds for the time interval and length are exploratory choices. The chosen upper threshold 
for the segment duration filters out long outings (e.g., daily trace), whilst the chosen lower threshold for segment 
duration and length filters out trivial short segments due to localization noise or being static at a place.

We extracted the segments in such a way that time intervals of no two segments overlap. The following 
computational method was used for segment extraction. For each location point l  on a participant’s trace, we 
find the locations within 10 m of l  using a KD-tree22. These locations constitute potential segment endpoints. 
If multiple segments exist with the same starting location, we consider the one with the maximum length. Note 

Table 1.   Participant demographics. ns not significant. *p < 0.05, ***p < 0.001.

Controls (mean; SD) Patients (mean; SD) Significance

Total sample 18 15 –

Age 68.33 (7.53) 70.33 (6.86) ns

Education (years) 15.44 (3.11) 12.80 (1.78) *

Male 9 8
ns

Female 9 7

Mini-ACE score 28.52 (1.50) 18.13 (5.64) ***
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Figure 1.   (a) A schematic to show an example segment extracted from the GPS trace. The red part is the 
segment we extract from the black trace. (b) Shows two example segments extracted from the dataset. (c) The 
number of segments extracted from the participants. The segments for the patients are marked according to 
whether they have moved with a caregiver or alone.
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that the dataset contains all the movements carried out by the participants irrespective of the transportation 
modes used. Thus, the extracted segments also include different modes of transport.

Spatiotemporal features of the segments.  We investigate two types of spatial features from the segments char-
acterising the mobility domain and the geometric shape of individual segments. Along with this we also study 
temporal properties of individual segments. As the number of segments varies across participants (Fig. 1c), we 
focus on the following features that are independent of the number of segments. The intuitive interpretation of 
the features is listed in Fig. 2b.

Mobility domain characterization.  Features in this category aim to depict aggregate movement with all the seg-
ments from a participant. For these features we use coarser location resolution than GPS locations for computa-
tional efficiency and meaningful aggregation in terms of the visited location regions. Popular similarity measures 
for curves are expensive to compute23, in contrast, computing the common location regions crossed by a pair of 
segments is efficient. Here we present the results for an exploratory resolution of 100m× 100m , i.e., we lay a grid 
over the map and replace a location point with the index of the cell containing it.

(a)

(b)

Spatial Feature Description Intuitive interpretation 
Mobility domain characterization 

Segment similarity # of segments that crosses more than 
half the same cells as this segment 

Weather the same route is used in 
navigation 

Entropy Shannon entropy of the distribution of 
the cells visited by a person 

Coverage of the movement 
environment 

Distance from home Euclidean distance from segment 
centroid to home location 

Affinity towards home 

Temporal characterization 
Duration of stops Duration of stops (more thank a min) 

in a segment 
 

Shape characterization 
Total turning angle Sum of the sin of the turning angles Measures the complexity of the 

shape of a segment 
Segment complexity # of times a person turned more than 

120 in a segment 
Another measure of complexity 

 

(c)

Filter nodes to 

get Cognitive graph

Get initial graph

Figure 2.   (a) Schematics explaining the spatial features: Left shows the angle between consecutive movement 
vectors and right shows a virtual grid and the red cells correspond to the cells crossed by the segment. (b) 
Summarizes the spatiotemporal features. (c) Overview of the process to create the cognitive graph from an 
individual’s mobility trajectory.
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Segment entropy.  For each participant, we count the number of times a cell c in the grid is visited (for example 
the red cells in Fig. 2a). Such normalized counts produce a probability distribution on the cells. We consider the 
entropy as H = −

∑
cell c P(c)logP(c) where P(c) denotes the probability mass at cell c . While considering the 

distribution, we discard the cells with zero values, which would otherwise introduce bias in the distribution. 
Our measure of entropy follows the definition based on information theory24. Intuitively, segment entropy is 
low when a participant’s movement has strong bias towards visiting a small number of locations within the grid, 
whereas the entropy is large for uniform distribution of visits to locations within the grid.

Segment similarity.  The similarity between a pair of segments is defined as the Jaccard similarity of their inter-
secting cell IDs. We consider two segments as being similar if their Jaccard similarity is more than 0.5. Note that 
the Jaccard similarity between two sets A and B is calculated as |A∩B|

|A∪B| . The feature measures the fraction of seg-
ments from a participant that are similar to a segment.

Entropy and segment similarity have subtle differences. Entropy has a single value for a participant, and it 
measures how the segments are spatially distributed. For example, a person always following the same path will 
produce both low entropy and high segment similarity for segments corresponding to that path.

Distance from home.  The dataset does not contain the home locations for the participants. Therefore, we esti-
mate the home location of a participant as the centroid of the daily first and last locations. We then measure the 
Euclidean distance between home and the centroid of each segment.

Temporal characterization.  Duration of stops measures the sequence of time durations a person remains static 
during a segment. We consider a person is static if the location does not change for at least a minute.

Spatial shape characterization.  These features describe the geometric shape of the segments. They follow the 
popular measure for complexity of curves called tortuosity25 which is defined as proportional to the total curva-
ture (or the turning angles) of a curve.

We first calculate the turning angles (Fig. 2a) along the segment and calculate two statistics as features. A 
segment is a sequence of vectors with location samples as the end points. At each location sample, xi we consider 
the first order turning angle, θ1i  created by the vectors ending at vi−1(< xi−1, xi > ) and starting at vi(< xi , xi+1 > ) 
(Fig. 2a) and the second order angle, θ2i  between the vectors, (< xi−2, xi >,< xi , xi+2 >).

Segment complexity.  We first compute the average of the absolute first and second order turning angles at 

each location sample point, i.e., θi =
(|θ1i |+|θ2i |)

2
 . The complexity of a segment is the total number of θi that are 

more than the exploratory threshold of 120o . As we take the absolute values of the turning angles, complexity 
remains the same even with inverting the direction of travel. Further the averaging provides stability against 
noisy localization.

Total turning angle.  It sums up the sine of the first order turning angles in a segment, i.e., 
∑

isin(θ
1
i ). The sine 

function captures the natural intuition of turning angles where the value turns negative beyond 180o. This feature 
captures a different perspective of complexity of segments as it does not use any threshold (e.g., 120o).

While the angle turns are influenced by the underlying road network, large angle turns capture the ‘com-
plexity’ of movements as such large turning angles are rare in a road network. Further, it must be mentioned 
that segments may indeed include movements denoted by walking; as walking traces can deviate from the road 
network, this feature provides an appropriate measure that quantifies movement beyond characterising road 
network. Example segments with their complexities are shown in Supplementary Fig. S2.

Supplementary material, S1 describes another feature to characterise the shape of a segment called, radius 
of gyration.

Graph‑based features.  In addition to the above, and in light of previous work indicating that navigation is 
structured as a “cognitive graph”14, we also modelled data in terms of graph metrics. For each participant a 
mobility network is constructed in the following way. First the location resolution is reduced using a grid in the 
same way as in the case of mobility domain characterization features. Each cell within the grid containing at least 
one location sample is considered a node in the graph. An edge connects two nodes if the cells contain consecu-
tive locations in the trace. The resulting graph is then filtered by removing the nodes (cells) where the person 
stayed less than 5 min to ignore the places crossed in transit. While removing a node, we pairwise connect all its 
neighbours to maintain the same connectivity. Figure 2.c shows an example construction of a graph.

The graph-based features include the following centrality measures based on hop distances between nodes. 
Closeness Centrality of a node u is defined as the reciprocal of the sum of the shortest path distances to all other 
nodes from u. Betweenness Centrality of a node v is measured as the fraction of the shortest paths that pass-
through v. Degree centrality of a node is the fraction of nodes it is connected to.

Participant features.  We have considered two types of features, (i) where each participant has a single feature 
value, like entropy, and (ii) where each segment of a participant has a value like segment complexity. As the 
classification tools require a feature vector for everyone, we represent the type (ii) features using normalized 
histograms of the values from the segments.
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Ethics declarations.  Signed informed consent was obtained from all participants before undertaking the 
experimental protocol. Ethical approval for this study was provided by the Faculty of Medicine and Health Sci-
ences Research Ethics Committee at the University of East Anglia (FMH2017/18-123) as well as the National 
Health Service Health Research Authority (project ID 205788; 16/LO/1366).

Results
We begin by presenting the statistical analysis of the spatiotemporal features leading to the classification of 
controls from patients. First, we consider the patients movements when they were alone. Next, we classify the 
segments from patients based on if they moved alone or accompanied. Finally, we present the results for cognitive 
graph-based features to separate controls from patients (without discarding the movements when accompanied).

Spatiotemporal features.  Figure 3 studies spatiotemporal features from the controls and patients. Here, 
we only consider the patients’ segments when they moved alone; we selected the patients with more than five 
such segments—the dataset contains seven such patients. Figure 3a–d show the aggregate and individual distri-
butions of segment similarity, entropy, distance from home, and duration of stops. P-values (Fig. 3e) are calcu-
lated between the distributions of the aggregated feature values from controls and patients using Kolmogorov–
Smirnov (KS) test that measures the difference between the two distributions through the maximum separation 
of their cumulative distribution functions26 (See Supplementary Fig. S3). We choose KS test as it aligns with our 
choice of feature representation using histogram. We further report the effect sizes using Cohen’s d method27,28. 
Cohen’s d effect size measures the difference between the mean values of two populations normalized by a func-
tion of their sizes and variances.

For segment similarity, while the median values for the control and patients are close (Fig. 3a, left) (0.019 
and 0.026 respectively), their distributions are significantly different with p-value being in the order of 10−7 and 
large effect size. Along with the aggregate distribution, the distribution of individuals (Fig. 3a, right) show that 
patients have higher segment similarity compared to controls.

For entropy, the population median values are 3.66 and 2.43 for controls and patients respectively (Fig. 3b, 
left), and the p-value is 0.008 with huge effect size. Both the aggregate and individual distributions show that 
the patients have lower entropy than the controls. The observation means that the places visited by patients are 
often spatially less diverse than the controls.

Further the patients move closer to their home locations compared to controls with median values for distance 
from home being 703 m and 2.8 km respectively (Fig. 3c). This is supported by the low p-value in the order of 
10−14 . The effect size is medium.

The separation between controls and patients is less clear for the duration of stops, segment complexity, and 
total turning angle (Fig. 3d,f,g)—the aggregate distributions produce p-values 0.4, 0.86, and 0.5 respectively. All 
of them have small effect sizes. However, the individual distributions for control and patients differ in the spread 
of the feature values (Fig. 3d).

Patient classification based on spatiotemporal features.  Here we study a binary classification 
between controls and patients using different combinations of the spatiotemporal features. Again, we used 
patients’ segments when they moved alone. A logistic regression classifier is used and the features represented 
as histograms with ten bins (Supplementary Fig S5 shows the performance for varying number of bins). We 
measure the efficacy of the classifier using sensitivity and specificity. Sensitivity is defined as the fraction of the 
patients among the participants predicted as patients by the classifier. Similarly, the specificity is defined as the 
fraction of the controls among the participants predicted as controls.

The classification is evaluated using leave one out strategy where all the participant’s data is used for train-
ing except one test participant and each participant is tested iteratively. We use stochastic gradient descent29 to 
minimize the logistic regression loss. All the parameters are set to the default values from the library except the 
number of iterations. As the optimization is stochastic, uses random initialization, and runs for a fixed number 
of steps (10,000), each experiment produces a slightly different result. Thus, each experiment is executed 50 
times to estimate the uncertainty of the prediction which is represented as the standard deviations of the class 
probabilities in different runs.

No feature achieves high sensitivity and specificity on its own, however results improve when combining a set 
of features (Fig. 4a). Entropy achieves best sensitivity of 0.85 as a singleton feature, however, it has large variance. 
Separately combining entropy with segment similarity and duration of stops improves the results significantly—
both cases the median sensitivity is 0.71, and the specificity becomes 0.94 for the latter. However, the variance 
of the sensitivity remains large. Combining the segment similarity and entropy with either duration of stops, 
distance from home, or segment complexity reduce the variance and the uncertainty of prediction. All these 
combinations achieve the same median sensitivity of 0.71. Although the latter two achieve lower uncertainty and 
lower variance in sensitivity, the first combination achieves better specificity (median 0.83).

Figure 4b shows the individual classification probabilities when using the combination of segment similar-
ity, duration of stops, and entropy as features. The best sensitivity then is 0.85 when only the participant 034 
is wrongly classified. The median sensitivity is 0.71 where 035 is also wrongly classified along with 034. The 
large variance of the classification probability (longer bars in Fig. 4b) for 030, 034, and 035 denote that these 
participants lie close to the classification boundary in the feature space. All three participants 030, 034, and 035 
had relatively high Mini ACE scores: 25, 23, and 24 respectively which correlate with the high uncertainty in 
classification. The classification achieves median specificity of 0.83 where 002 and 021 are wrongly classified.
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Figure 3.   (a–d) Aggregate (left) and individual (right) distributions of feature values between control and 
patients. (a–c) are the features that produce best classification in Fig. 4. The boxes represent the region between 
25 and 75 percentiles while the solid line inside the box denotes the median. All other values are shown as 
scatter points. (e) p-values (using KS-test) and effect size (Cohen’s d) between control and patients’ alone 
segments (f,g) Aggregate distributions for home distances and segment complexity.
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Classifying whether a patient was moving alone.  Patients in the dataset have moved either alone or 
accompanied by their caregivers. In this section, we study a binary classification task to predict whether a given 
segment was produced when a patient moved alone. This task considers the same set of patients as the previous 
two sections and does not include controls. Here we aggregate the segments over the participants.

Figure 5 investigates different spatiotemporal features to characterise the geometric shape and the temporal 
behaviour of the segments. This uses the same set of features described in the methods, the only exception being 
the number of stops. All the features achieve low p-value (all below 10−3) according to the KS test (Fig. 5b) with 
number stops having the lowest value in the order of 10−27.

Alone segments have smaller segment complexity, total turning angle values and number of stops than the 
accompanied segments (Fig. 5a). They are also nearer to home than the accompanied ones.

The classification between alone and accompanied segments is studied in Fig. 5c. The experiment uses support 
vector machine with radial basis kernel. The experiment uses randomly chosen 20% of the data points as test 
samples and uses the rest for training. The experiment is repeated 20 times and at each run different accuracy 
is obtained due to randomness in the classifier initialization and test sample selection. None of the singleton 
features achieve accuracy beyond 0.8, however a combination of segment complexity and total turning angle 
produces median accuracy of 0.9. The classification boundary for this (Fig. 5d) is simple and the alone segments 
occupy a concise space in the feature space.

Classification of patients and controls using graph‑based features.  Here we study the binary clas-
sification task with all segments from the patients (produced while alone or accompanied). This is more chal-
lenging than the patient classification considering only alone movements because when the patients are accom-
panied by their caregivers their mobility decisions may have been influenced. Thus, the features characterising 
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the spatiotemporal shapes of the segments are meaningless. However, assuming broader mobility decisions are 
governed by the patients while the caregiver supports navigation, the spatial features characterising the mobility 
domain still are useful. These visiting patterns can further be characterized by the graph-based features.

Here we consider the participants that have at least ten nodes in their graphs—all controls along with 13 
patients satisfy this criterion. Figure 6a shows the aggregate (left) and the individual (right) distributions for three 
features that achieve high classification results. The p-values and effect sizes are shown in Fig. 6b. The patients 
visit less number places as their graphs have lower number of nodes—median values are 40 and 28 respectively. 
Further the patients have nodes with higher closeness and degree centrality than the controls, i.e., they have a 
few fixed place(s) from which they go to other places.

Here we use the logistic regression and the same leave-one-out test methodology as used for classifying 
patients using spatiotemporal features.

None of the singleton graph-based features achieve good classification accuracy (Fig. 6c). The combination 
of the segment similarity and entropy also produce poor sensitivity (median 0.53) and specificity (median 0.67). 
While the combination of the graph-based features achieves the median specificity of 0.83 and median sensitiv-
ity of 0.61, it suffers from high uncertainty (mean value of 0.02). Finally combining the spatial features with 
the graph-based features produce median sensitivity of 0.69 and median specificity of 0.72. Further the mean 
uncertainty is also reduced to 0.01.
Discussion
Taken together, outdoor navigation patterns of AD patients differed from that of controls, with respect to the 
spatial characteristics of the extracted trajectory segments and connectivity properties of the visited places, in 
line with our primary a priori hypothesis. In more detail, we found that when compared to controls, patients had 
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a significantly lower segment entropy (i.e., more ordered), a higher segment similarity and moved less far away 
from their home location. Patients having more ordered and similar segments could potentially be explained by 
reports from previous studies that patients exhibit an increasing reliance on using familiar routes to navigate, 
potentially as a means to compensate for their declining navigation abilities30–32. Similarly, patients moving less 
distance from home suggests that they confine their outdoor navigation to very familiar locations, which may 
potentially represent a safeguarding mechanism to protect themselves from getting lost in the community as a 
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result of their impairments in navigation33. It is as present unclear why patients have lower segment complexi-
ties than controls and this requires further investigation, however this could potentially be related to declines in 
mobility that are widely reported in AD patients, specifically in making turns34,35.

In addition to the above data-driven outcomes, we tested the a priori hypothesis that AD would be associated 
with disrupted navigational graphs, given previous work showing that hippocampus-based mapping of the envi-
ronment could be measured as a cognitive graph14. However, limited availability of data from the relatively short 
evaluation window did not allow acquisition of sufficient base topological data points on nodes (places visited) 
and paths (routes taken between places visited) to construct robust graphs for effective analysis, especially for 
the case when the patients moved alone. Despite our exciting, initial results for modelling navigational data to 
classify controls from patients using graph-based analyses, future studies in large scale, longitudinal AD cohorts 
are required to explore the true potential of these techniques.

Regarding the results of the classification task, it is important to mention that the trajectory data is composed 
of movement both when the patients are alone and when they are accompanied by their carers. As the extent 
to which the carer may have influenced the outdoor navigation patterns of the patient (in moments when they 
were accompanied) is unclear, we first analysed a cleaner signal—when the patients moved alone. A combination 
of segment pairwise similarity, segment entropy and duration of stops produced the best classification result: a 
median sensitivity of 0.71 and specificity of 0.83.

The shape-based features produced the best results while classifying the movements when the patients moved 
alone from when they were accompanied. Accompanied segments show higher complexity in terms of both 
segment complexity and total turning angle features. This is likely due to patients requiring less navigation skills 
during an outing with their carer or other people and therefore, take more complex routes. These features achieve 
90% classification accuracy, and it reinforces the intuitive idea that the navigation patterns are influenced by the 
carer. Further we explored classifying controls from patients without filtering out the traces when they moved 
accompanied. For this task, we explored the cognitive graph-based features and found that they improved the 
classification, yielding a median sensitivity of 0.69 and specificity of 0.72.

The geometric shape-based features, namely total turning angle and segment complexity do capture features 
beyond the noise in GPS localization (Supplementary Fig. S6). This is because as all the participants are given 
the same localization device, the calibration and the sampling rate remain consistent, this reduces the pos-
sibility of the complexity arising solely due to noise. Critically, it is difficult to apply popular localization noise 
removal methods here36. This is since the existing de-noising methods discard out-of-distribution location 
points considering them as localization noise, whereas in the context of characterising AD, we are looking for 
patterns outlier to control population. Previous studies had linked complex movement in indoor environment 
to cognitive impairment, in contrast, our results shows that the outdoor mobility differs from the indoor setting 
in an intricate way37.

Despite our promising results, there are some important limitations to our study that need to be mentioned. 
Our results show that the classification accuracy reduces when the data includes movements made by patients 
when they were accompanied by their carers. However, datasets generated by passive sensing will naturally 
contain a mixture of location traces when the tracked subjects were alone and accompanied. Though we show 
promising initial results in automated classification of alone/accompanied, such labelling, in general, is difficult 
to be performed in an automated way as part of the post-hoc analysis simply because the carer may have differ-
ent level of influence on mobility. Therefore, a larger dataset comprised of more participants tracked for a longer 
period of time is necessary to provide insights into the robustness of the features. A larger dataset will also enable 
the usage of complex classification methods, for example deep learning based techniques, to improve accuracy. 
This might overcome some of the variances in the classification accuracy in the current data set. Moreover, 
small sample size may also have effect on the combination of features to predict group classification. Still, the 
effect sizes of the data shows that our results are robust, and it is encouraging that in even such a small sample 
outdoor navigation, patterns can be detected reliably. Clearly, future data collection is needed to replicate and 
extend our findings.

As location data are sensitive, its long-term usage for tracking has natural privacy implications. In spite of 
several efforts to anonymize location data38,39, it remains an open problem mainly because of the uniqueness of 
the spatiotemporal points in individual traces. However, the privacy risks can be lowered by deployment strate-
gies. In a centralized learning paradigm, training needs the data from multiple participants to be accumulated 
in a single machine (such as the dataset we use in this study), and then the trained model can be deployed in a 
participant’s personal device in the wild. As the inference can be done at the device itself, the data from the users 
in the wild do not need to travel to the server and thus this preserves privacy. Moreover, following the recent 
advancement in machine learning, federated learning provides an alternate strategy to train the classifier in a 
distributed fashion without sharing the data to a central server40.

In conclusion, to the best of our knowledge, this is the first study to investigate whether one can identify 
AD patients solely based on GPS data of their outdoor navigation patterns in the community. Our results high-
light the potential utility of real-world navigation patterns as an ecologically valid behavioural marker of AD. 
However, as the sample size in our data is small our results should be viewed as an initial proof of the concept. 
Knowledge gained from this study can inform the future study of navigation in AD, and in particular applying 
the metrics evaluated in this study to real world navigational data obtained from people in earlier stages of AD, 
when pathology manifests in the brain regions underpinning navigation, to determine the utility of this approach 
to detect AD prior to the onset of dementia. Further, it will inform future studies in patients with AD who are 
at risk of getting lost and one can develop algorithms based on real-world GPS data which calculate risk factors 
for AD patients getting lost.
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Data availability
Due to privacy concerns for the GPS data, we do not make the data public, however we are happy to consider 
data requests on individual basis.
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