
Physics in Medicine & Biology
     

PAPER • OPEN ACCESS

Toward semi-automatic biologically effective dose
treatment plan optimisation for Gamma Knife
radiosurgery
To cite this article: Thomas Klinge et al 2022 Phys. Med. Biol. 67 215001

 

View the article online for updates and enhancements.

You may also like
Assessing small-volume spinal cord dose
for repeat spinal stereotactic body
radiotherapy treatments
Lijun Ma, Neil Kirby, Renee Korol et al.

-

A feasibility study of spatiotemporally
integrated radiotherapy using the LQ
model
M Kim and M H Phillips

-

On the effect of dose delivery temporal
domain on the biological effectiveness of
central nervous system CyberKnife
radiosurgery applications: theoretical
assessment using the concept of
biologically effective dose
A Moutsatsos, P Kouris, M Zoros et al.

-

This content was downloaded from IP address 95.149.219.102 on 25/11/2022 at 09:48

https://doi.org/10.1088/1361-6560/ac8965
https://iopscience.iop.org/article/10.1088/0031-9155/57/23/7843
https://iopscience.iop.org/article/10.1088/0031-9155/57/23/7843
https://iopscience.iop.org/article/10.1088/0031-9155/57/23/7843
https://iopscience.iop.org/article/10.1088/1361-6560/aaf0c3
https://iopscience.iop.org/article/10.1088/1361-6560/aaf0c3
https://iopscience.iop.org/article/10.1088/1361-6560/aaf0c3
https://iopscience.iop.org/article/10.1088/1361-6560/ac783b
https://iopscience.iop.org/article/10.1088/1361-6560/ac783b
https://iopscience.iop.org/article/10.1088/1361-6560/ac783b
https://iopscience.iop.org/article/10.1088/1361-6560/ac783b
https://iopscience.iop.org/article/10.1088/1361-6560/ac783b
https://iopscience.iop.org/article/10.1088/1361-6560/ac783b
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv7ywr6OZRoO7pKpMmakrgNKy5wJdGmy8CmYvY9wn19TfeVSO4BB6IfBgx1Nvf9wlCyCA2nTOHknI4aKMOm0sU92fe9XqBeO0uNtw79tXHNmo1yfaONCeGypRP_2TrXilMz86sRfEItnfxyFMnLQrVGnOCHE-0Px3QklrFCEoJNpBGkdJ2sq4LsSubF15eD95Yf8srGqC7e3zXXmWMLO_Zo0HLVo-AEd_L5e8XRGEL3K7W3U65Aam2WSHtmEHCCfJOxvxCXrsp5oBqjyJLrhn6-SE4tViQjCFAgZHRkmfHsYA&sai=AMfl-YR86cy6rNUqBsWJ00mr66c1edsOajhYb2WmfO6AkFLkDZPbiGpaC22YW3Y4T0Jr2uGCzc8sLXOToG9a88-cGg&sig=Cg0ArKJSzNIW17fpIpkb&fbs_aeid=[gw_fbsaeid]&adurl=https://iopscience.iop.org/bookListInfo/physics-engineering-medicine-biology-series%23series


Phys.Med. Biol. 67 (2022) 215001 https://doi.org/10.1088/1361-6560/ac8965

PAPER

Toward semi-automatic biologically effective dose treatment plan
optimisation for Gamma Knife radiosurgery

ThomasKlinge1,2,3,∗ , Hugues Talbot4 , Ian Paddick5 , SébastienOurselin3 ,
JamieRMcClelland1,2 andMarcModat3

1 Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Dept. Medical Physics and Biomedical Engineering,
University College London, London, UnitedKingdom

2 Centre for Medical Image Computing, Dept. Medical Physics and Biomedical Engineering, University College London, London,
United Kingdom

3 School of Biomedical Engineering& Imaging Sciences, King’s College London, London, UnitedKingdom
4 CentraleSupélec, Université Paris-Saclay, Inria, Gif-sur-Yvette, France
5 Queen SquareGammaKnife Centre, NationalHospital forNeurology andNeurosurgery, London, UnitedKingdom
∗ Author towhomcorrespondence should be addressed.

E-mail: thomas.klinge.17@ucl.ac.uk

Keywords:GammaKnife, BED, treatment planning, inverse planning, discrete non-convex optimisation

Abstract
Objective.Dose-rate effects inGammaKnife radiosurgery treatments can lead to varying biologically
effective dose (BED) levels for the same physical dose. The non-convex BEDmodel depends on the
delivery sequence and creates a non-trivial treatment planning problem.We investigate the feasibility
of employing inverse planningmethods to generate treatment plans exhibiting desirable BED
characteristics using the per iso-centre beam-on times and delivery sequence.Approach.We
implement two dedicated optimisation algorithms.One approach relies onmixed-integer linear
programming (MILP) using a purposely developed convex underestimator for the BED tomitigate
localminima issues at the cost of computational complexity. The second approach (local
optimisation) is faster and potentially usable in a clinical setting butmore prone to localminima
issues. It sequentially executes the beam-on time (quasi-Newtonmethod) and sequence optimisation
(local search algorithm).We investigate the trade-off between time to convergence and solution
quality by evaluating the resulting treatment plans’ objective function values and clinical parameters.
We also study the treatment time dependence of the initial and optimised plans using BED95 (BED
delivered to 95%of the target volume) values.Main results.When optimising the beam-on times and
delivery sequence, the local optimisation approach converges several orders ofmagnitude faster than
theMILP approach (minutes versus hours–days)while typically reachingwithin 1.2% (0.02–2.08%)
of thefinal objective function value. The quality parameters of the resulting treatment plans showno
meaningful difference between the local andMILP optimisation approaches. The presented
optimisation approaches remove the treatment time dependence observed in the original treatment
plans, and the chosen objectives successfully promotemore conformal treatments. Significance.We
demonstrate the feasibility of using an inverse planning approachwithin a reasonable time frame to
ensure BED-based objectives are achieved across varying treatment times and highlight the prospect
of further improvements in treatment plan quality.

1. Introduction

In stereotactic radiosurgery (SRS) treatments with theGammaKnife (GK), an array of collimatedCobalt-60
sources is used to precisely deliver therapeutic radiation to an intracranial target volume (TV). Since its
introduction over 50 years ago, theGKhas become a standard deliverymethod for SRS procedures (Podgorsak
et al 1989, Schulder and Patil 2008) and theGKunit has undergone significant updates. So far, there have been
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five commercially availablemodels that introduced significant changes to the treatment delivery (e.g. geometry
of the radiation unit, patient positioning system, collimator selection).

Given that treatments are reported in terms of total physical dose, the significant changes in the time-
domain ofGK treatment delivery are currently not taken into account under the assumption that GK treatments
are single fraction acute exposures. However, it has been shown that the typical time frame ofGK SRS treatments
would allow for repair of sublethal radiation damage, an effect that is known to be exposure time dependent
(Hallgren et al 2019).

There have been a number of studies that demonstrated how the biologically effective dose (BED) across
different patients treatedwith theGK varies with the treatment time despite being evaluated for the same
physical dose levels (Hopewell et al 2012, 2013,Millar et al 2015). Themodel used for these publicationswas
initially derived for a generalised fractionated protracted irradiation under consideration of incomplete repair
processes (Millar andCanney 1993) and subsequently, a version of thismodel using two repair- rates was used in
an iso-effect fit to extract themodel parameters (Pop et al 2000).More recent treatment outcome studies
demonstrated an improved correlationwith BED compared to the physical dose for single iso-centre trigeminal
neuralgia (Tuleasca et al 2019), andmulti iso-centre acromegaly (Graffeo et al 2020) and pituitary adenoma
(Graffeo et al 2021) SRS treatments (using a simplified version of the BED for retrospective analysis (Jones and
Hopewell 2018)). In addition, it has recently been demonstrated how the BEDwill changewith the sequence in
which the iso-centres are delivered and also due to unscheduled interruptions in treatment delivery (Klinge et al
2021). This is due to the fact that the BEDmodel tracks all changes in the in-patient dose-rate distribution
throughout the entire treatment delivery, including beam-off periods. Any attempt at BED-based treatment
planningwill thus have to consider the exact delivery sequence in addition to the conventional treatment
planning parameters.

These studies raise the need to investigate the value of BED-based treatment planning, especially given the
large potential for variations in treatment time, number of iso-centres and possible collimator combinations
enabledwith themodernGKPerfexion (PFX) and Icon6.While there are inverse planning tools available for
physical doseGK treatment planning (Sjölund et al 2019), they typically rely on formulating a convex treatment
planning problem that can be solved efficiently (Levivier et al 2018). Using a BEDmodel that incorporates
incomplete repair intervals adds a layer of complexity to the problem since the induced radiation damage of an
individual iso-centre is linked to the properties of the other iso-centres and can not be treated independently.
The nonlinear and non-convex nature of the BEDmodelmakes it inherently a hard problem to solve to
optimality.

The goal of this study is to explore the value and feasibility of using inverse planning to create BED-basedGK
treatment plans via adjustments to the beam-on times and delivery sequence (or shot order)using both local and
global optimisation techniques. Starting from a planmanually generated using the conventional approach
relying only on physical dose, we optimise the original treatment plan in terms of BEDby changing the sequence
and exposure times only (fixed iso-centre locations and collimator settings). Local optimisation approaches are
used to quickly solve for themost beneficial beam-on times (gradient-based (Byrd et al 1995)) and delivery
sequence (local search (Johnson andMcGeoch 1997)).While they are fast, the non-convexity of the BEDmeans
that there is also the risk of getting ‘stuck’ in localminima, which in turn can result in less optimal treatment
plans. To tackle the problemof non-convexity, amixed-integer programming (MIP) approach that can
simultaneously solve the discrete delivery sequence and continuous per iso-centre beam-on timeswas
developed. This is realised using a convex hull of the BEDmodel to create amixed-integer linear programming
(MILP) problem7.While this approach does consider the entire solution space, the global optimumof such a
non-convex function can only be guaranteedwith global solvers and (possibly) infinite time. This approach is a
trade-off between considering the vast solution space and convergingwithin non-infinite time.

Both optimisation strategies are applied to a cohort of vestibular schwannoma treatments, 14 cases in total,
using the original physical dose plans as the starting point. The performances of these approaches are evaluated
in terms of their final objective function values, the quality of the optimised treatment plans, and the required
time to convergence to determine the clinical feasibility and quality of the individual approaches.

6
For the cohort in this study, treatment timeswere 18.2–75.3 min using 3–17 iso-centres.

7
The interested reader is referred toNocedal andWright (2006) for a general introduction to optimisation problems (e.g. convexity,

continuous optimisation, complexity), to Chen et al (2009) for an overview ofMIP problems, and toBurer and Letchford (2012) for amore
specific review of non-convexMINLP programming (e.g. convex hull). The derivation of theMILP approach using the convex hull of the
BED is described in the appendix C.
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2.Method

The proposed semi-automatic creation of BED-optimised treatment plans consists of two steps: iso-centre setup
and optimisation. In the initial setup step, the location and collimator settings of the iso-centres are defined. This
could be done by conventional (manual) physical dose treatment planning, an initial ‘filling’ step or any physical
dose inverse planningmodule. After this initial phase, we optimise the per iso-centre beam-on times and the
sequence of delivery.

2.1. Treatment planning problem
2.1.1. BEDmodel
The BEDmodel used in the current studywas originally developed byMillar andCanney (1993) as an extension
of the linear-quadraticmodel (Fowler 1989) and refined by Pop et al (2000) to include two repair-rates and
determine theα/β ratio (Fowler 1989) for central nervous system tissue. The per voxel BED can be determined
as follows:
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with the number of iso-centresN, the total doseDT, per iso-centre dose d, per iso-centre beam-on time δt, start
time of the iso-centres t, repair-rateμ, partition coefficient c8, and treatment protocolΞ describing the dose-rate
time dependence. Themodel parameters as determined by Pop et al are shown in table 4 in the appendix.
Expressed in terms of the per iso-centre dose-rate d, the BED equations become:
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Themodel determines the BED-based on the dose-rate profile throughout the treatment. Each individual
iso-centre delivers the dose at a constant dose-rate for a period of time. Practically, thismeans the iso-centres
become individual fractions that are defined by a start time, beam-on time and dose-rate. This formulation
implicitly includes periods of beam-off time in-between the delivery of iso-centres where the patient is
repositioned and a new set of collimators can be selected. For every iso-centre, all preceding iso-centres are taken
into account to determine the residual sub-lethal radiation damage (see nested sum in equation (4)).
Consequently, changing the order of deliverywill change the BED formulation in twoways: firstly, the nested
sumnowhas to be evaluated over the new sequence, and secondly the starting times of the individual iso-centres
need to be updated. Evenwith only the beam-on times as a variable, the BED (δt) constitutes a non-convex
function (i.e. Hessianmatrix not positive semi-definite for all δt).

2.1.2. Problem definition
After the iso-centre definition (location and shape), the individual per iso-centre dose-rate distributions are
fixed, leaving both the per iso-centre beam-on times and the sequence of delivery as free variables. The treatment
planning problemusing a BED-based objective function f (BED) can then be described as follows:

( )

{ } ( )d d Î Î
Î

d

 

f

t t j N

seq

arg min BED

subject to: 0, , 1 ... . 5
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The δtj are the beam-on times of the individual iso-centres j and seq is their delivery sequencewhich is
constrained to be amember of the symmetric group NS on thefinite set {1,..,N} ofN iso-centres. This group is
comprised of allN! possible permutations of the delivery sequence. Due to the characteristics of the BEDmodel
and the discrete nature of the sequence, this constitutes a non-convexmixed-integer nonlinear programming
problem (MINLP).

8
The partition coefficient determines the relative contributions from the two repair-rates.
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2.1.3. Objective function
All optimisation approaches in this study (MILP, gradient-basedmethods, combinatorial optimisation) use the
same objective in order to enable comparisons acrossmethods. The chosen objective function is comprised of
theweighted sumof two objectives: themeanBEDunder-exposure inside the target volume (TV) and themean
BEDover-exposure in the normal tissue (NT) around the target (Rim)

( )
( ) ( ) ( )å å=

-
+

-

Î Î

f w
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N
w

max

N
BED

0, BED BED 0, BED BED
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Depending onwhether a given voxel is part of the TVor the Rim, itsBEDvwill be compared to the prescription
valueBEDref or the upper permitted thresholdBEDthres and the result scaled according to the size of the volume
of interest (VOI) (NTV,NRim). Theweighting factorsw can be used to focus the optimisationmore on target
coverage or selectivity.

2.1.4. Solving the treatment planning problem
While a brute force approach could theoretically be employed to identify themost beneficial delivery sequence
of a given treatment plan, the fact that the number of possible sequences increases with the factorial of the iso-
centre numbermakes this approach impractical for all but the simplest treatments. The first naive way of
tackling this problem is to explore efficient and established local approaches to individually optimise the beam-
on time (gradient-based) and the delivery sequence (local search). See section 2.2 for a description of the
algorithms used in this study.

However, due to the non-convex nature of the BED, there is the possibility for the optimiser to get stuck in a
localminimumand never reach the globally optimal value. Ideally, onewould like to simultaneously explore all
possible combinations of beam-on times and delivery sequences to avoid reaching convergence at a sub-optimal
solution.While there are global optimisation techniques, the nonlinear non-convex nature of the BED together
with themixed-integer variables and the large space of possible permutations of the delivery sequencemakes
solving this problem to optimality prohibitively expensive in terms of computing power and time.

To tackle both problemsmentioned above, a ‘convexmixed-integer underestimator’ of the ‘full BED’was
developed (see section 2.3). This reduces the problem to amixed-integer linear programming problem (MILP).
While this convexMILP approach can still not guarantee global optimality, it does consider the entire search
space during optimisation and allows to simultaneously optimise the beam-on time and delivery sequence.

2.2. Local optimisation approaches
Two established algorithms (see 2.2.1 and 2.2.2) are used to optimise the beam-on time and delivery sequence
independently. To achieve the best possible planwith these local approaches, they are executed in an alternating
fashion until no further improvement of the objective function is observed.

2.2.1. Beam-on time optimisation
Tofind themost beneficial set of beam-on times, given the defined objectives and constraints, the limited-
memory Broyden–Fletcher–Goldfarb–Shanno bound-constrained (L-BFGS-B) algorithm (Byrd et al 1995) for
the optimisation of nonlinear problems is used. The L-BFGS-B algorithmutilises the gradient and an
approximation of theHessian (2nd derivative) to guide the direction of the optimisation. For this study the
implementation of the scipy.optimize (Virtanen et al 2020) librarywas usedwith the BED-based objective
function as an input. The gradient is approximated numerically during the optimisation.

2.2.2. Delivery sequence
In order to optimise the sequence of delivery, the treatment planning problem is expressed as a travelling
salesperson problem (TSP). Instead of the travelling distance, the BED-based objective function is evaluated to
determine the quality of a given sequence. To solve this TSP, a common local search algorithm, the 2-opt
approach (Croes 1958, Johnson andMcGeoch 1997), is adapted to the BED treatment planning scenario.
Generally, the 2-opt approach starts with an initial solution, creates a new connection between 2 nodes on the
route and solves the order inwhich all the other nodes will nowbe visited to create a new, potentially improved
solution. Since in our case, there is no distancemeasure to identify the potential for improved routing (e.g.
longest distances, cross-over), the nodes (iso-centres) to be connected (delivered one after the other) are
determined iteratively. Starting from the first iso-centre, the objective function is evaluated forwhich iso-centre
should be delivered next (3,K,N)until an improvement is found. If no improvement is found, the next iso-
centre in the current sequence is chosen as a candidate to be connected to the others. If an improvement was
found, the algorithm is started from the beginning. The algorithm is stoppedwhen nomore improvement is
found for an entire iteration over all iso-centres. Since a treatment delivery is not a closed loop, this approach
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never changes the starting iso-centre. Tomitigate this issue, the 2-opt algorithm is executed once for every iso-
centre in the starting position. The initial solution is always created from the current best solution.

2.3. Convexmixed-integer underestimator approach (ConvexMILP)
In general,MINLP problems are difficult to solve since even their continuous relaxation constitutes a non-
convex problem that requires a global optimisation approach to solve. Tomitigate this issue, we propose the use
of a convex relaxation of the full BEDmodel that can be solved to optimality with availableMILP solvers. The
‘relaxed BED’ can then be used as an underestimator for the full problem.

Specifically, the ‘relaxed BED’will be defined by the bounds on the beam-on times δtj of the individual iso-
centres j.When the bounds are initially loose, a large range of beam-on times is permitted for all iso-centres and
optimising it returns a lower bound of the feasible objective function value for the ‘full BED’. By iteratively
tightening the bounds of the underestimator around its’ current optimum,we canminimise the objective
function value (of the ‘full BED’) until the fullmodel and its’ relaxation converge towards each other. For this
study, CPLEX 12.109 was used as theMILP solver.

2.3.1. Defining the convex hull of the BEDmodel
Thefirst step in the creation of the ‘relaxed’BEDmodel is to substitute all nonlinear terms in equation (4) (i.e. all
terms including the exponential function)with a new variable. In our case (constant dose-rate), we are left with
linear and trilinear terms for the intra and inter iso-centre interactions, respectively.

In order to achieve a convex relaxation, the dual envelopemethod for generalmultilinear terms, as described
byCosta and Liberti (2012), is applied. The convex hull is defined from the support points created by the
combinations of the lower and upper bounds of the variables. Applied to the BEDmodel, these bounds are
determined by the values of the substituted nonlinear terms at the lower and upper bounds of the beam-on times
δt. The Lagrangemultipliers that are used to navigate the convex hull have nowbecome the newdecision
variables.

To constrain the optimisation to physically deliverable treatment plans, the timing information, i.e. beam-
on times and starting times of the individual iso-centres, has to be recovered from the nonlinear terms This is
achieved by applying a piecewise linearisation (PWL) (Lin et al 2013) to each individual substituted term.

In thismanner, convex hulls are created for every addend of the nested sum in the full BEDmodel

(equation (4)). In total, there are ( )-N N 1

2
convex hulls of the interaction terms for a given delivery sequence.

Due to the limitation of the optimisation variables to beam-on times and sequence, the dual envelope
formulation of ‘outer sum’ terms is effectively a linearisation.However, the presented approach could still be
applied if the dose-rate were to be included as a variable (due to its’ dependence on iso-centre location and
collimator selection). The approachwould then create a convex hull equivalent to theMcCormick envelopes
(bilinear). Using this general approach formultilinear functions allows for greatflexibility for future expansion
of themodel.

2.3.2. Delivery sequence
If the delivery sequence can change, then every iso-centre could feasibly interact with all other iso-centres.

To accommodate all possible delivery sequences, themodel is extended to include allN(N− 1) interaction
termswith a binary variable (hjk) signifying whether the term is active or not, based on the variable start times (tj,
tk) of the iso-centres
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Using a set of logical constraints, we can ensure that only the appropriate terms describing a feasible delivery
sequence are active.

Since the time in-between the beginning of the delivery of two iso-centres (tj− tk) depends on the specific
sequence, its’ bounds need to accommodate this and do not shrinkwith the beam-on time bounds anymore. As
a result, the number of support points of the PWLof the interaction termneeds to be increased to ensure that the
‘relaxed’BEDwill be close to the ‘full’BEDwhen the beam-on time is tightened, leading to amore complex

9
ILOGCPLEXOptimization Studio V12.10.0User’sManual, International BusinessMachines Corporation, 2021.
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optimisation problem. The number of PWL support points is a parameter of the optimisation problem that
allows to control the trade-off betweenmodel complexity and underestimator accuracy.

2.4.Workflow
2.4.1. Data import
The cohort for this study consists of 14 cases of vestibular schwannoma treatedwith theGKPFX. An overview is
shown in table 1. All cases were plannedwith a prescription dose of 12 Gy and a varying prescription iso-dose.
Treatment times ranged from18 to 75 min, assuming a gap of 0.06 min between iso-centre deliveries.

To load the previously created treatment plans into the BED treatment planning framework, a research
version ofGammaPlan 10.1 is used that allows exporting per-isocentre dose distributions. The exported data
includes the dose distributions in a 31× 31× 31 voxel grid covering the target volume (TV), a binarymask of
the TV, the original iso-centre setup (shape, beam-on times and delivery sequence), and a registrationmatrix to
the imaging study.

With this information, the original dose andBEDdistributions can be calculated and later compared to the
optimised versions.

2.4.2. Problem setup
Since using all voxels (almost 30 000) for the optimisation is impractical andwould include regionswith very
limited dose, the problem is constrained to a region of interest (ROI)where ameaningful dose contribution can
occur. To this end, a Rim structure is created, which can also drive the optimisation towards normal tissue (NT)
sparing. This is achieved by applying 4 iterations of binary dilation to the TVmask using the scipy.ndimage.
morphology library fromVirtanen et al (2020), which effectively grows the TVoutwards by 4 voxels. This
approach ensures that the number of voxels is approximatively split into a ratio of 60%Rimand 40%TV for all
cases of the cohort.

For the present study, both theweights and reference/threshold BED are chosen to be equivalent
( = =w w 100TV Rim , see equation (6)). A treatment time of 60 min is taken as a reference for the BED, as
suggested by Jones andHopewell (2018).With a prescription dose of 12Gy, this corresponds to a BEDof 53.95
Gy2.47.

10 Using the same objective function for all optimisation runs allows for comparing the performance of
the different approaches taken to optimise the problem.

2.4.3. Optimisation Runs
Weapply the two introduced approaches (local andMILP) to every case in the cohort. For each of the
approaches, beam-on time optimisations with andwithout sequencing (BO-Seq-opt/BO-opt) are executed on a
computing cluster using the same setup.Hence, there are four individual optimisation runs per patient. The

Table 1.Overview of patients treated for vestibular schwannomawith theGKPFX. Listed are the case
number, the prescribed dose, the prescription iso-dose, the treatment timeT (including beam-off periods),
the number of iso-centresNiso, the reference dose-rate on the day of treatment, and the TV.

Case Pres. Pres. T [min] Niso Reference TV [cm3]
Dose [Gy] Iso-dose [%] Dose-rate [Gymin−1]

1 12 52 44.7 4 1.7 0.2

2 12 51 32.4 9 2.4 3.6

3 12 50 46.2 17 2.1 5.1

4 12 43 62.7 16 1.9 12.1

5 12 44 61.2 11 1.7 2.5

6 12 46 75.3 11 1.7 4.7

7 12 44 48.3 12 1.7 5.9

8 12 50 74.8 17 1.6 1.5

9 12 60 28.1 12 3.4 1.8

10 12 58 18.2 3 3.1 0.1

11 12 50 37.3 12 2.8 3.1

12 12 50 58.1 17 2.1 7.0

13 12 42 51.4 12 1.9 4.6

14 12 46 45.3 11 1.9 1.3

TV: Target Volume

10
Gy2.47 is used to signify BED instead of physical dose (Gy). The subscript denotes the α/β-ratio used to determine the BED. α/β-ratio and

other BEDparameters are shown in table 4 (derived by Pop et al 2000).

6

Phys.Med. Biol. 67 (2022) 215001 TKlinge et al



initial beam-on time is set to 1 min for every case, to avoid accidentally starting from anear-optimal position,
e.g. where the original treatment planwas already close to the chosen BED reference.

Due to the large combinatorial complexity for theMILPBO-Seq-opt scenario, a hard limit for themaximum
amount of computation time spent in a single iteration is set (deterministic time limit 20e6 ticks corresponds to
20.8–36.8 h11) in order to ensure convergencewithin a reasonable amount of time. If that time limit is exceeded,
the currently best solutionwill be used to update themodel for the next iteration. To ensure a feasible solution is
found in every iteration, a pre-solving step is executed (i.e. beam-on time optimisationwith afixed sequence).
Further details on the parameters chosen for the different optimisation runs can be seen in table 5 in the
appendix.

2.4.4. Plan quality indices
The indices describing the treatment plan quality used in this study are defined using following volume ratios:

( )
( )

( )=
Ç

C
V PIV TV

V TV
Coverage:

.
9

( )
( )

( )=
Ç

S
V PIV TV

V PIV
Selectivity: 10

( )
( ) ( )

( )=
Ç
´

PCI
V PIV TV

V PIV V TV
Paddick Conformity Index: . 11

2

The coverage describes the fraction of the TV that is covered by the prescription iso-dose volume (PIV), while
the selectivity describes the fraction of the PIV that is inside the TV. The PCI (Paddick 2000) combines the two
proportions to give ameasure of conformity. For clinical considerations, it is commonly essential tomaintain a
particular coverage. Providing the individual values gives the treatment planner additional information (i.e.
conformity and how it is ‘split’ between coverage and selectivity). TheD95 and BED95 are defined as the
minimumdose andBEDvalues delivered to 95%of the TV.

2.4.5. Analysis
Thefinal objective function values are compared across the entire cohort in order tomeasure the performance of
the individual approaches against each other and determine the benefit of explicitly optimising the sequence
over using the beam-on times to compensate for thefixed sequence. The clinical scores for coverage, selectivity
and PCI are used to determine the initial plan quality in terms of dose andBED, the benefit of the optimisation
methods and howwell they correlate to the objective function values. Part of themotivation for the BED
optimisation is to not only reduce the intra-patient variability but also the inter-patient variability. To visualise
this, the originalD95 and BED95 values in relation to the treatment time are compared to the ones obtained from
the optimised treatment plans. In addition (BE)DVHs and dose/BEDdistributions of a selection of patients are
used to qualitatively describe general changes introduced by the optimisations.

3. Results

In this section, the performance of the four different optimisation runs in terms of theminimisation of the
objective function (see section 3.1), the resulting quality parameters of the treatment plans (see section 3.2), and
examples of the BED-Volume histograms (BEDVHs) and dose/BEDdistributions (see section 3.3) are
presented.

For four of the cases (03, 04, 08, 12) theMILPBEDoptimisation approachwith sequencing did not fully
converge, i.e. in the individual iterations of solving the convex underestimator problemno integer-optimal
solutionwas foundwithin the given limit on the computation time12. Thus, the current best integer solution is
returned and used to update the beam-on time.When optimising the sequence of delivery, the complexity of the
problemdrastically increases with the number of iso-centres which for these cases was especially large (16 and 17
compared to themaximumof 12 for the rest of the cohort. A planwith 12 iso-centres yields 12!= 4.8e8 possible
sequences, while with 17 iso-centres this number increases to 17!= 3.6e14). Since these cases are not optimised
to completion, theywill be excluded from the analysis when comparing the individual optimisation approaches
to not skew the results for this optimisationmethod.

11
Deterministic time tickswill be the same for repeated solves evenwith different loads on the system slowing down the ‘real-world’

optimisation time (seconds/hours).
12

Optimisation parameters ensure a result within approximately 14 dwhen running on a cluster using 48 threads.
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3.1. Performance of the optimisation approaches
Thefinal objective function values are used to assess the performance of the different optimisers. Figure 1 shows
an overview of the objective function value for the original treatments compared to the four different
optimisation runs. There are large variations for the initial objective function values and all cases in the cohort
exhibit significant improvements when using any of the optimisation approaches. Post-optimisation, the
objective function values are improved by a factor of approximately 1.25–6.10.

Examining the different optimisation regimentsmore closely, it becomes evident that the use of the delivery
sequence as a variable for the optimisation unlocks the potential for further improvements of the objective
function compared to optimising only the beam-on time. Using the local beam-on time optimisation as a
reference, the average improvement in objective function valuewhen using sequencing in the optimisation is
around 5.86% and 6.95% for the local andMILP optimisations, respectively (see objective function values in
table 2).

In comparison, the differences between the local andMILP optimisations aremuch smaller.When only
using the beam-on time optimisation, the optimisation results are similar. For the beam-on time and
sequencing runs, the difference is increased but still small (in the order of 1% improvement when using the
MILP optimisation). At the same time, the optimisation times increase significantly with the number of iso-
centres. For example, the optimisation time for case 09 is considerably increased from0.1 min for the local
beam-on time optimisation to 4.4 minwhen optimising the sequence aswell.With theMILP approach, the
optimisation time increases from3.5 min to over 200 h due to the incredibly large number of possible delivery
sequences. The local approach requires only a fraction of that time (1/2900) to reach an objective function value
within 2.1%of theMILP result.

3.2. Treatment plan quality.
To investigate the quality of the optimised treatment plans, the selectivity, coverage, and PCI are evaluated in
terms of the prescribed dose (original plans) and prescribed BED (original and optimised plans). The treatment
time relationship is assessed using theD95/BED95 values of the treatment plans. Figure 2 gives an overview of the
quality parameters for the entire cohort. It can be observed that the original (physical dose) plan favoured
coverage (min 95%) over selectivity (min 74%). Evaluating the same original plan in terms of the prescribed BED
shows that BED coveragewas generally even higher while the selectivity was lower (min 59%). This trade-off at
the cost of BED selectivity leads to a lower PCI across the cohort of original treatments.

After optimising these treatment plans, the result shows a slight improvement over the original physical dose
PCI. Furthermore, the optimised treatment plans exhibit very similar selectivity and coverage values. Since the
generalised objective function used for all cases equally weighs coverage of the TV against sparing of the Rim
structure, this behaviour is to be expected.

Figure 1.Objective function values for the original treatment plan and the four optimisation scenarios using the local andMILP
approaches with andwithout sequencing. Adding sequencing to the optimisation leads to clear improvements, where the local
optimisation reaches close to the performance of theMILP (excluding cases that exceeded the time limit).
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Table 2.PerformanceOverview: shown are the number of iso-centresNiso, the timeT to reach convergence, thefinal objective function value and the relative difference to the baseline of a local beam-on time optimisation.

Initial Beam-on time optimisation Beam-on time+ Sequence optimisation

Local MILP local MILP

Case Niso obj. Δobj [%] T [min] obj. T [min] obj. Δobj [%] T [min] obj. Δobj [%] T [min] obj Δobj [%]

01 4 243.69 164.00 0.01 92.31 0.14 92.31 0.00 0.02 89.65 −2.88 0.67 88.25 −4.40

02 9 49.40 90.33 0.07 25.95 0.60 25.93 −0.08 0.58 25.25 −2.72 159.25 24.92 −3.98

03 17 58.52 119.17 0.41 26.70 6.64 26.64 −0.21 24.85 25.39 −4.90 17 469.19a 25.32 −5.18

04 16 48.53 31.48 0.45 36.91 3.90 36.90 −0.02 15.67 33.84 −8.33 15 429.26a 34.77 −5.78

05 11 57.10 48.45 0.12 38.46 0.61 38.45 −0.03 1.11 34.41 −10.53 6481.12 34.19 −11.10

06 11 99.02 36.99 0.08 72.28 0.63 72.28 0.00 0.92 64.99 −10.08 3956.95 63.84 −11.67

07 12 45.04 56.54 0.12 28.77 1.25 28.69 −0.27 2.42 26.83 −6.75 10 072.48 26.30 −8.58

08 17 42.63 114.15 0.32 19.91 5.41 19.79 −0.60 21.88 19.04 −4.36 19 043.28a 19.19 −3.58

09 12 260.18 491.65 0.13 43.98 3.46 43.56 −0.94 4.14 43.50 −1.08 12 085.30 42.62 −3.09

10 3 432.85 366.55 0.01 92.78 0.16 92.77 −0.01 0.02 87.04 −6.18 0.58 87.02 −6.20

11 12 107.27 112.95 0.13 50.37 1.60 50.27 −0.21 1.98 49.39 −1.96 10 039.29 48.79 −3.15

12 17 54.81 24.76 0.35 43.93 6.12 43.92 −0.03 15.70 41.57 −5.39 19 896.36a 43.96 0.07

13 12 115.74 53.52 0.15 75.39 1.71 75.38 −0.01 1.40 65.11 −13.64 6650.02 64.80 −14.06

14 11 147.64 57.36 0.10 93.82 1.12 93.81 −0.01 1.12 91.21 −2.78 5567.23 90.77 −3.25

Mean: 11.71 125.89 126.28 0.17 52.97 2.38 52.91 −0.17 6.56 49.80 −5.83 9060.78 49.63 -6.00

w/ob 9.70 155.79 147.83 0.09 61.41 1.13 61.35 −0.16 1.37 57.74 −5.86 5501.29 57.15 −6.95

MILP:mixed-integer linear programming.
a Case did not fully convergewithin the time limit.
b Mean value excluding cases that did not convergewithin the time limit.
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Todistinguish between the different optimisation scenarios, the distribution of the quality parameters (by
optimisationmethod) across the cohort is shown infigure 2(b). Variations across the individual optimisation
approaches are small and the onlymeaningful differences can be observed between optimisations with and
without sequencing. Using the sequence optimisation leads to slight improvements in both selectivity and
coverage and thus aremore pronounced in the PCI values. On average these cases show a PCI of 0.875 compared
to 0.872 and 0.815 for the beam-on times only optimisation and original BED, respectively. The optimised PCI
values highlight also an improvement over the original dose PCI of .853 on average. Table 3 presents an overview
of themean and range of quality parameters.

Onemotivation for the use of BED-based treatment plans is to reduce the inter-patient variability due to the
variable timings of the dose deliveries (see Jones andHopewell 2018). The treatment time dependence of theD95

and BED95 values in figure 2(c) exhibits a reduction of the BEDwith increasing treatment time (52.7–68.5
Gy2.47)while there is no time dependence in terms of dose (12–12.5Gy). After the BEDoptimisation, the BED95

values are distributed around the prescribed BEDwithout any observable treatment time dependence. The range
of BED95 values across all optimisations is 49.8–56Gy2.47 and is slightly smaller for the optimisations that
included the sequencing (beam-on and sequencing: 50.5–56.4Gy2.47, beam-on: 49.8–56.3Gy2.47).

3.3. BEDVHs anddose/BEDdistributions
In this section, we present three example cases, one exhibiting onlyminor changes from the optimisations (case
06), onewith improvements to both coverage and selectivity (case 08), and one that revealed substantially higher
BED levels for the original treatment (case 09). BEDVHs of the original and optimised treatment plans for the

Figure 2.Comparison of the quality parameters of the original and optimised dose andBEDdistributions. 2(a)Plot of coverage versus
selectivity of the individual cases. Initial plans favour coverage over selectivity (more pronounced for BED). Optimised plans balance
coverage and selectivity. 2(b)Box plots showing the distribution of quality parameter values for the individualmethods. There are
onlyminor variations between the local andMILP optimisations. Improvements, especially in PCI, aremore pronounced for
sequence optimised plans. 2(c):D95 and BED95 values over the total treatment time. Initial plans show a decrease in BED level with
longer treatment timeswhich the physical dose and optimised treatment plans do not exhibit.
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selected cases and the corresponding distributions of the physical dose andBED are shown infigure 3. In
addition, figure 4 shows a comparison plot for case 09, visualising the difference in the BEDdistributions
between the initial and locally optimised (beam-on time and sequence) treatment plans.

Several cases happened to be close to the chosen BED reference,mostly due to their original treatment time,
and as a result, their BEDVHs exhibit only small changes after the optimisation (see case 06 infigure 3(a)). The
minimal changes to the BEDVHare reflected in the similarity of all iso-dose and iso-BED lines for both the
original and the optimised treatment plans. Changes in the BEDdistribution after the optimisations aremostly
limited to re-distributions in the high dose/BED region inside of the TV.

Case 08 is an examplewhere both the coverage and selectivity could be improved by the BEDoptimisation.
The BED95 of the TV after optimisation is increased by approximately 2.3Gy2.47, while the BED5 of the Rim is
reduced by approximately 1.2Gy2.47. These improvements appear to be facilitated by a significant increase of
BED levels inside the TVwhere the peak BED is now increased fromoriginally 181 to 216–227Gy2.47 for the
optimised treatment plans. The improvements in conformity observed in the BEDVHare also visible in the BED
distributions that show improved adherence to the TV shape, especially on the left side (patient right) of the
target. This improved conformity of the optimised treatment plans also coincides with an increase in the volume
covered by the 150Gy2.47 iso-BED line.

Asmentioned before,most cases exhibitmarginal BED levels beyond the chosen prescribed BED. An
example is case 09with an originally short treatment time of 28.1 min. Figure 3(c) shows that the volume
covered by the prescribed BED is substantially larger than that covered by the prescribed physical dose. After
optimisation, the BED is generally scaled down to the reference level (BED95 of 53.7Gy2.47). In addition, the split
in the target volume in the chosen slice now also exhibits a split in the prescribed BED iso-lines.

The difference plot infigure 4 shows a large area around the split in the TVwhere the BED is reduced by
more than 40Gy2.47, with a peak reduction of 71.8Gy2.47. In the initial treatment plan, large parts of the healthy
tissue in the gap of the TV receivedmore than 100Gy2.47 (peak: 140.8Gy2.47).

In contrast to the initial physical dose treatment plans, the proposed optimisation approaches do not enforce
a specific heterogeneity in the distributions. Themean prescription iso-dose level across the cohort originally
was 48.8% (σ= 5.23%)which translates to 25.9% (σ= 4.2%) in terms of the reference BED. After optimising
the beam-on time and sequencewith theMILP approach, these values change to 50.9% (σ= 8.3%) and 28.28%
(σ= 7.4%), respectively.

4.Discussion

4.1.Optimiser performance
The experiments executed in this study suggest that it is feasible to optimise the per iso-centre beam-on times
and the sequence of delivery to create themost beneficial BEDdistribution. The local approaches do appear to
converge to a localminimum, as evident by the fact that theMILP optimisation approach usually converges to a
lower objective function value. However, this localminimumappears to be close to the global optimumand no
meaningful degradation in plan quality was found as a result of the difference in objective function value. In
addition, convergence is reached relatively quickly in the order of seconds/minutes (single-threaded load)
compared to hours/days with theMILP approach (multi-threaded).

Using the convex underestimator approach, it is possible to simultaneously consider the beam-on time and
order of iso-centre delivery to improve on the local approach.However, the complexity of theMILPmodels
increases dramatically with the number of iso-centres, to the degree that for four of the cases in the cohort (03,

Table 3.Overview of the objective function values and quality parameters (Selectivity, Coverage, PCI) for the original treatments and the
different optimisation scenarios. Shown are the average and range for all cases that were optimised to convergence.

Optimisation
Objective

Selectivity Coverage PCI

Mean Mean Min Max Mean Min Max Mean Min Max

Orig Dose — 0.883 0.744 0.967 0.966 0.952 0.985 0.853 0.718 0.929

BED 155.79 0.837 0.587 0.930 0.974 0.945 0.997 0.815 0.581 0.896

Beam-on Local 61.41 0.927 0.860 0.962 0.940 0.894 0.967 0.872 0.768 0.931

MILP 61.35 0.927 0.859 0.964 0.940 0.894 0.968 0.872 0.768 0.933

Beam-on Local 57.74 0.929 0.867 0.963 0.942 0.898 0.968 0.875 0.779 0.932

and sequence MILP 57.15 0.929 0.865 0.964 0.942 0.900 0.968 0.876 0.779 0.934

BED: biologically effective dose,MILP:mixed-integer linear programming, PCI: Paddick conformity index.
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04, 08, 12)withNiso� 16 theMILP problem could not be solved to integer-optimality within the defined limit
on the computation time. Consequently, the next update of the beam-on time bounds is based on the current
best solutionwhich can be sub-optimal and lead to the exclusion of the global optimum from the possible
solutions. Thus, thefinal result after a lengthy optimisation (up to 14 d on a compute cluster) can beworse than
the local beam-on time optimisation (see case 08). However, given the results for the cases with fewer iso-
centres, this is only an issue of computation time and resources and not a flawof the approach itself. In addition,

Figure 3. Selected BEDVHs plot with the corresponding dose/BEDdistributions for the original and BEDoptimised treatment plans.
BED95/5 values aremarked for the original (solid) and optimised (dashed) treatments. (a)Case 06 exhibits onlyminor changes after
optimisation (mostly limited to the high dose/BED region). (b)Case 08 shows improved conformity of the optimised treatment plans
that coincides with an increased high BED region. (c)Case 09 shows that the optimisations lead to a substantial reduction of the BED
to the prescribed level.
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this approach provides a lower bound for the global optimumwithin the provided limits on the beam-on time
whereas it is impossible to estimate the distance to the global optimumwith the local approaches.

4.2. Plan quality
Optimising both the beam-on time and sequence can lead to considerably better objective function values,
however, this is dependent on the individual cases. In addition, improvements in the objective function value do
not necessarily directly translate to increased plan quality.

Asmentioned before,most cases exhibitmarginal BED levels beyond the chosen prescribed BED. As a result,
optimisation typically scales down the BEDof the treatment to the appropriate level and increase the selectivity
to a similar level of coverage.

The objective functionwas chosen to be easily compatible across all approaches and create reasonable
treatment plans across the entire cohort. It will generally promote both coverage and selectivity to the same
degree which results in improved PCI values for the optimised treatment plans.While this relatively simple
objective functionwould be completelyminimised (no penalties) for perfect coverage and selectivity, a better
objective function value does not directly translate to a better clinical score. In a clinical situation, onewould
incorporate the planning goals (e.g.minimum95%coverage, VOImaximumBED thresholds) and quality
parameters in the objective function and tailor theweights of the different objectives to the individual patient to
achieve themost beneficial treatment plans. The improvements in the overall PCIwith this generic objective
function indicate that it would be possible to not only reach the same treatment plan quality as for the physical
dose plan, but improve on it. It would appear that the added complexity of using a BEDmodel with incomplete
repair intervals also provides an additional degree of freedom (in the time domain) that could allow for the
creation of evenmore conformal treatment plans than currently possible.

An example for this is case 08where both the selectivity and coverage are above the original levels of the
physical dose plan. This improvement comeswith an increase of the high BED region at the centre of the target.
When introducing BED-based treatment plans, onewill have to investigate the appropriate prescription BED
values and themost beneficial range of BED values inside the TV.

4.3. BEDprescription
In this study, the prescription BEDwas chosen according to Jones andHopewell (2018)with a reference
treatment time of 60 min. For the present cohort, this happens to represent a relatively lowBED, requiring the
optimisation to generally scale down the overall BED level. This is of course only one proposedway to take the
treatment time into account and define a reference BED. If a shorter treatment timewas chosen as a basis, the
present cohort could have appeared to generally exhibit a lower BED than desired. Nevertheless, the results in
this study demonstrate that the optimisation approaches can both scale up or down the overall BED level and
optimise the conformity of the given cases. Evenwithout enforcing a certain level of heterogeneity to the BED
distribution, the optimised treatment plans exhibit similar prescription iso-dose and iso-BED levels as the
clinical treatments. This suggests that the inherent heterogeneity in the deliveredGKdose is generally
maintainedwhen optimising the BED in the presented scenarios.

Additional studies are needed to determine an appropriate prescription BED that signifies a beneficial trade-
off between the therapeutic effect and the incidence of adverse effects. An examplewould be the publication by

Figure 4.Case 09: BEDdistributions for the initial and BEDoptimised (local beam-on time and sequencing) treatment plans showing
a substantial BED reduction that ismost pronounced in the area of the split in the TV.Negative values in the difference plot indicate a
lower BED in the optimised treatment plan. The TV andRim structures are outlined in red and brown, respectively.
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Tuleasca et al (2019) that investigated the treatment of trigeminal neuralgia, which found that increasing BED
values above a certain threshold increases the risk of complications without increasing the probability of pain
control any further. Accuratelymodelling the tumour control probability (TCP) and normal tissue complication
probability (NTCP) can be a valuable tool for determining the therapeutic windowof a given treatment regimen.

4.4. Contouring theVOIs
Whenusing inverse planning, the contours that are created determinewhether a voxel is considered to bepart of
theTV, anOARor theNT. Thus, special care has to be taken to ensure an accurate representation of the treatment
planning problem.As canbe seen for case 09,where therewas a gap in theTVona single slice (slice thickness: 1.5
mm), the optimiser does not distinguish between voxels of the same class basedon their location/surrounding
tissue andwill adapt the treatment plan accordingly tominimise the objective function. In this case, a lower
objective function value is achieved by additional sparing of theNT in this small gap, a characteristicwhichwas not
observed in theoriginal treatment plan. Thiswas likely done to ensure coverage of the entire TV.With the inverse
planning approach, these highBEDvalues in theNT (regardless of their location) are penalisedwhich leads to the
observedBED reductions in that area. This highlights the importance of the drawncontours being consistentwith
the intention of the treatment planner. If the intention is to accept higher BEDvalues in this gap, an additional
contourwith a higher BED threshold or lower penaltyweight couldbe added in this location.

In a clinical scenario, where appropriate target coverage is required, the treatment plannerwould then adapt
either the objectives or the contours to ensure the clinical goals aremet. In addition, the contouring stepwill
have to include anyVOIs in the vicinity of the TV that need to be considered during the treatment plan
optimisation. Avoidance of non-delineated critical structures, which a human plannermight be aware of during
manual planning, is not possible with an inverse planning approach.

4.5. Expansion of the treatment planning framework
Having established the local optimisationmethods to be a suitable choice for BED treatment planning, the next
stepwould be to include further variables into this optimisation approach to explore the possibility of not only
matching the quality of the original dose plan but to improve upon it. One candidate is the iso-centre location.
To use the same L-BFGS-B optimisation framework to simultaneously optimise both the beam-on times and the
iso-centre locations, some approximations have to bemade. Firstly, the shape of the distribution is assumed to
remain unchanged for small displacements of a fewmillimetres. Secondly, to allow for continuous values of the
displacement, the dose-ratematrix is linearly interpolated at the candidate locations.

We integrated the iso-centre location optimisation in our proposed framework and figure 5 shows the
quality parameters for the original treatment, the local beam-on time and sequencing approach and the location
and beam-on time optimisation. Clear improvements, even beyond the values for the original dose treatment
plan can be observed.While themean coverage nowmatches the original dose value, themean selectivity is
increased from89.6% to 95.5%. These preliminary results show the potential formeaningful improvements of
the treatment plan quality by taking advantage of the added degree of freedomprovided by a BEDmodel.

Additionally, the simultaneous optimisation of sequence and beam-on time could be extended to the
selection of themost beneficial collimators for the individual sectors. Different combinations of optimisation
variables could then be compared to determine the best trade-off between the increased complexity of the
optimisation and the expected improvements of the treatment plans.

Havingdemonstrated the ability for BED-based inverse planning, the next step is to establish a semi-automatic
workflow that allowsoptimising individual treatment plans in a clinical scenario. Thiswould includemore
practical objectives to individualise treatment plans and a level of interactivity allowing to explore the feasible
trade-offs for a given treatment plan. In general, the investigated semi-automatic approach couldbe fully
automated if an initial ‘filling’ stepwas used for the iso-centre definition as available inLeksell GammaPlan.13

Given a consensus about BED-based prescriptions is found, such an approach could be translated into the
clinical workflow. Thiswould require some investment into the software development of the system, e.g. to
adapt the treatment planningworkflow and tailor the optimisation algorithms to the available hardware.
GammaPlan Lightning is themost recent example of a proposed novel inverse planning approach (see Sjölund
et al 2019) being integrated into the clinical treatment planning system.

The computationally expensive convex underestimator approach could be used as a benchmark to assess
other viable optimisationmethods. One could create a number of artificial test cases which can be optimised to a
very high degree with theMILP approach. Publishing these test cases with the appropriate results could then
allowothers to benchmark their solutions without having to run the costly optimisation themselves.

13
See Leksell GammaPlanOnline ReferenceManual. Article No. 102300Rev. 01, Elekta Instrument AB Stockholm, Sweden, 2011.
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4.6. The role of BED inGKSRS
While there is evidence that dose-rate effects like those expressed in the BED formulation influence the
treatment outcome in terms of the therapeutic effectiveness and incidence of adverse effect, it is not the only
measure influencing treatment success and not all studies find a good correlation between the BED and the
investigated treatment endpoints.

For trigeminal neuralgia treatments, a study byTuleasca et al (2019)determined a beneficial BED range to
minimise the risk of patients developing hypoesthesiawithout compromising the long termpain-free incidence.
Since thesewere single iso-centre treatments, theBEDcouldbe calculateddirectly from thephysical dosewithout
theneed to consider interactions across iso-centreswhichwould require access to per iso-centre dosemaps.

Formulti iso-centre treatments, several BED approximationmethodswere developed by Jones and
Hopewell (2018) that allow for the determination of themarginal BED value from the prescribed dose and
treatment time. These simplified BEDmodels do not capture all the information contained in the delivered 3D
distributions but allow for a convenient way to retrospectively estimatemarginal BED values. The simplified
BEDwas successfully used to determine treatment outcome correlations in acromegaly (Graffeo et al 2020) and
pituitary adenomaGraffeo et al (2021) SRS treatments. The importance of adhering to themodel constraints has
been highlighted in a letter to the editor byHopewell et al (2021).

Therehave alsobeendiscussions about the role of the referencedose-rate in the context of outcomecorrelation.
One important distinction tomake is that theBEDused in thepresented study is determinedbasedon the3D in-
patient dose-rate distributionwhile the referencedose-rate value is basedon the calibrationmeasurementof the
specificGKunit at the centre of aphantom.Factors like collimator size, sector blocking andpatient geometrymake it
infeasible to infer one fromtheother. Illustrative examples of this areprovided inPaddick et al (2019),where similar
treatment times andBEDvalues areobserved for varying referencedose-rates (1–4Gymin−1).

Another factor to consider is the α/β-ratio. For this study, the value 2.47 Gy, as determinedbyPop et al (2000)
togetherwith the repair-rates andpartition coefficient, is used. Analogous to previous studiesHopewell et al
(2012, 2013),Millar et al (2015), Klinge et al (2021), thisfixed value of the α/β-ratio is used for theBEDcalculation.
Jones et al (2020) reportminor effects on equivalent doses for radiationmyelopathy in the central nervous system
when varying theα/β-ratio (1.5–3.0Gy). Using the commonly accepted value of 2 Gy resulted in a<1%deviation
of the equivalent single doses for treatment times of up to 5 h. If onewere able to extract additional andprecise
patient-specific information about all involved tissues before the treatment, the likely tissue response couldbe
better quantified.This information could includeα/β-ratios for all involved tissues and additional or various
repair-rates. Thepresentedoptimisation approaches allow for the assignment of per-voxel tissueparameters and
any number of desired repair-rates. The treatment plan could then be tailored to the specific targeted tissues ona
per-patient basis. Inpractice however, this information is not currently available for treatment planning.

There is certainly a need to further investigate all factors that can influence treatment outcomes to provide
treatment plannerswith the tools required to ensure the best possible treatment.One of these tools is the BED.
Previous studies have used theBEDmodel to retrospectively investigate variationswithin the sameprescription
dose level (Hopewell et al 2012, 2013,Millar et al2015,Klinge et al2021) and investigate outcomecorrelations

Figure 5.Quality parameters for the original dose andBEDdistributions and the local optimisation approach using either beam-on
time and sequencing or beam-on time and iso-centre location optimisation. Location optimised plans show the potential for
improvements beyond the level of the original physical dose treatment plans.
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(discussed above). In contrast, thepresentedwork investigates how thesefindings couldbeused to further improve
SRS treatments in the future. This requires the development of newoptimisationmethods to enable theuse of the
more complexBEDmodel developedbyMillar and colleagues for inverse planning. There currently exist noBED
treatment planning solutions. This study is an important step towards possible future treatment planning systems.

5. Conclusion

This study demonstratesmultiple strategies that could be employed tomake BEDplanning feasible in clinical
settings. BED treatment planning could significantly reduce the inter-patient variability and has the potential to
improve the outcome ofGK radiosurgery treatments.

For our cohort, the local optimisation approaches are sufficient to reach the same level of treatment plan
quality as themore complexMILP approaches. Furthermore, it is feasible to optimise both the beam-on times
and the delivery sequence together to improve on treatment plans createdwith only the beam-on times as a
variable. TheMILP approach, while less prone to localminima issues, is too computationally expensive to be
used in its current form in a clinical workflowwithout further significant improvements in optimisation speed.
Nevertheless, it can be helpful to provide a lower bound on the achievable objective function value and could be
used to benchmark newoptimisation approaches.

With the described optimisationmethods it is possible to (at least) reach the same treatment plan quality in
terms of BED as for the original physical dose treatment plans.
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AppendixA. BEDmodel

Millar andCanney (1993)derived amodel to determine the BEDof a fractionated, protracted treatment with a
variable dose-rate andmultiple damage and repair processes. In their work, they extend upon the principle
assumptions of the linear-quadratic (LQ)model:

1. The fractional cell death rate is proportional to the rate of induction of lethal damage (extended to include the
effects due to a polynomial representation in the dose-rate)

2. There are two components of cellular damage: direct lethal damage and sublethal damage

3. The rate of induction of sublethal damage is proportional to the dose-rate (extended to include the effects due to
a polynomial representation in the dose-rate)

4. Sublethal damage is potentially repairable and is governed by a single exponential repair rate process
(modified to include effects due tomultiple types of damages, each of whichmay be repaired bymultiple repair
mechanisms)

5. Certain types of sublethal damage can be converted to lethal damage by further irradiation. Only convertible
sublethal damagewill be considered.

6. Only a small proportion of induced sublethal damage is converted to lethal damage

7. The rate of production of lethal damage derived from sublethal damage is proportional to both the dose-rate
and the amount of sublethal damage (extended to include the effects due to a polynomial representation in the
dose-rate)
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These assumptions allow them to describe the time-dependent fractional rate of induced cell death for an
arbitrary fractionated protracted treatment. Integration over the duration of the treatment then allows the
determination of the biological effect of the entire treatment. The addition of further assumptions thatmore
closely describe a clinical treatment with theGK (or any radiosurgical treatment) allows the simplification of the
model. These assumptions are a constant dose-rate during each fraction (i.e. iso-centre), a varying dose-rate
level between individual fractions, a single repair rate process, and first-order polynomials for the induction of
lethal damage, sublethal damage and translation from sublethal to lethal damage.

This simplification of themodel can be formulated as the general LQmodel with an additional correction
function describing the dose delivery. Pop et al (2000) derived a bi-exponential version of this BEDmodel from
animal studies and this BEDmodel has since beenwell established and used by numerous studies over the past
decades. As suchwe refer the reader to the previous work cited in themanuscript for a thorough analysis of the
underlying principles.

Appendix B. BEDoptimisation settings

AppendixC. Creation of theMILPproblem

MINLPproblems are generally challenging to solve and can require immense computing resources (Burer and
Letchford 2012, Köppe 2012). A common solution approach is tofind a reformulation of the problem that has
beneficial properties like convexity (Burer and Letchford 2012). This study introduces amethod that creates a
convex hull of the problem to solve it iteratively.

Table 5. Settings for the different BEDoptimisation techniques employed in this study.

Scenario Solver Settings Workflow

Original — Beam-on times fromdose calculation Calculate BEDwith original order of iso-centres as sequence

Local L-BFGS-B Approx grad: True, bounds: (0,None),m: 50 Provide BEDobjective function and initial beam-on time vector

BO-opt Epsilon: 1 s,maxiter: 250 Optimise to convergence

ConvexMILP CPLEXMIP Threads: 48,mip tolerancemipgap: 0.002, Build underestimator for beam-on of 1 min+/−
10 min − > optimise − >

BO-opt mip_heuristicfreq: -1,mip_limits_cutpasses: -1

Convergence criteria:min bounds: 0.01 min, Update bounds to dtopt+/− 60%of last interval − > optimise

until convergence

rel. diff ‘relaxed’ versus full: 2x<1e-3,

individual objective function rel. diff: 4x<1e-3

Local L-BFGS-B Approx grad: True, bounds: (0,None),m: 50, First execute beam-on optimisation, then optimise sequence

BO+Seq-opt Epsilon: 1 s,maxiter: 250

2-opt Convergence: obj func rel. diff: 3x< 1e-3 Alternate to convergence

ConvexMILP CPLEXMIP Threads: 48,mip tolerancemipgap: 0.002, Start with beam-onMILP

BO+Seq-opt mip_heuristicfreq: -1,mip_limits_cutpasses: -1, Until beam-on time bounds<+/− 1min

det time limit: 20e6,mip_limits_repairtries: 300 Switch tomodel with sequence optimisation

Convergence criteria:min bounds: 0.01 min, Update bounds to dtopt+/− 60%of last interval

rel. diff ‘relaxed’ versus full: 2x<1e-3, Optimise until convergence

individual objective function rel. diff: 7x<1e-3

BED: biologically effective dose, L-BFGS-B: limited-memory Broyden–Fletcher–Goldfarb–Shanno bound-constrained algorithm,MILP:

mixed-integer linear programming.

Table 4.BEDmodel parameters forα/β-ratio, repair-ratesμ1,2
and partition coefficient cused in this study. The partition
coefficient determines the relative contributions from the two
repair-rates. A value of 1 represents equal contributions from slow
and fast repair. These values were determined by Pop et al (2000).

Parameter: α/β [Gy] μ1 [ ]1

min
μ2 [ ]1

min c

Value: 2.47 0.0608 0.0053 0.98
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This section covers the steps required to create this convex relaxation (MILP) of the generalMINLP
treatment planning problem. Firstly, short general descriptions of the necessarymethods are presented, and
secondly, their application to the BEDoptimisation problem is described.

NotationThroughout the derivation of theMILP formulation, the following conventions are used to
describe different objects.

The application of a convex envelope is described by the introduction of a ’ ˆ ’. So ŵ refers to the convex
envelope ofw.

Vector andmatrix variables are expressedwith bold lettering and their individual scalar components are
referencedwith subscripts (e.g. all beam-on times δtwith the jth beam-on time δtj). For the BED, the subscript
index identifying the current voxel is omittedwhen not specifically required. This is done to aid readability
where the BED is completely analogous across all voxels, i.e. the only difference between the voxels v is their
dose-rate parameter djv for iso-centre j.

C.1. Convex envelopes
The convex relaxation of the optimisation problem is realised using convex envelopes formultilinear functions
w(x)

( ) · · [ ] ( )= ¼ " Î Î w x x x j k x x x k, : , , 12k j j
L

j
U

1

with known lower xj
L and upper xj

U bounds of all variables. Themultilinear functionw(x) is replacedwith a new
variable ŵ and a set of constraints defining the convex relaxation.

C.1.1.McCormic envelopes. If the function is bilinear (k= 2), two linear constraints define a lower convex and
upper concave envelope. These explicit constraints are known as theMcCormick inequalities
(McCormick 1976):

ˆ ( )+ -convex w x x x x x x: 13L L L L
1 2 2 1 1 2

ˆ ( )+ -w x x x x x x 14U U U U
1 2 2 1 1 2

ˆ ( )+ -concave w x x x x x x: 15L U L U
1 2 2 1 1 2

ˆ ( )+ -w x x x x x x . 16U L U L
1 2 2 1 1 2

These inequalities restrict the values of ( ˆ )x x w, ,1 2 to bewithin the polyhedron defined by the vertex set of the
possible combinations of lower and upper bounds of the variables {( ) ( )=P x x x x x x x x, , , , , ,W

L L L L U U U U
1 2 1 2 1 2 1 2

( ) ( )}x x x x x x x x, , , , ,U U U U U L U L
1 2 1 2 1 2 1 2 .

C.1.2. Dual envelopes. In general, convex envelopes ofmultilinear terms are vertex polyhedral (Rikun 1997,
Tardella 2008). To take advantage of this property, Costa and Liberti (2012) propose to express the points inside
the envelope as the convex combination of its extreme points { }= ¼ Í +P p p, ,W

k
1 2

1
k . Their approach,

named dual envelopes, allows them to define the convex hull of a generalmultilinear term for an arbitrary value
of Î k .

They introduce a vector l Î 0
2k

of nonnegative Lagrangemultipliers that defines a point such that:

( )å ål l=  =
 

x p 1. 17
i

i i
i

i
2 2k k

To create the envelopes, the piʼs need to be expressed as a function of the bounds on the variables x
L, xU. Costa

and Liberti define two parameter sequences, dij and bj(dij). The value of dijä {0, 1} describes whether the jth
component of pi is a lower or upper bound, while bj(dij) returns the value of the specific bound:

( )" =
-
-

 i j k d
i

2 ,
1

2
mod 2 18k

ij k j
⎛
⎝

⎢
⎣⎢

⎥
⎦⎥

⎞
⎠

( ) ( ) ( )" =  =j k b x b x0 1 . 19j j
L

j j
U

The k-linear termw(x)= x1L xk can then be relaxedwith the introduction of 2
k constrained variablesλi and

k+ 1 new constraints:

ˆ ( ) ( )å l=
 

w b d 20
i

i
j k

j ij
2k

( ) ( )å l" =


j k x b d 21j
i

i j ij
2k

( )å l l=  "  


i1 2 , 0. 22
i

i
k

i
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This relaxation is executed individually for every term in the nested sumof the BED formulation (see
equation (4)). In this way, the convex hull of a problem containing k-linear terms can be constructed, allowing
the relaxed problem to be optimisedwith the Lagrangemultipliersλi as the decision variables.

C.2. BigMMethod
When formulating the problem, there are situations where the product of two variables needs to be determined.
An example is the use of the interaction terms in equation (7), where a binary variable is introduced to determine
the active termsTo solve themodel with the proposedmethods, the product of the two involved variables needs
to be linearised (Glover 1975). For themultiplication of a bounded continuous variableM ä [0,MU] and binary
variable x ä {0, 1}, a new variable z=M · x and a set of constraints can be introduced:

· ( )z M x 23U

( )z M 24

( ) · ( )- -z M x M1 25U

( )z 0. 26

These linear inequalities ensure that z is within the expected bounds [0,MU], equal to zero if x= 0, and equal to
M if x= 1. This approach is commonly referred to as the bigMmethod. Similarly, if the continuous variable is
bounded to a non-positive interval [ML, 0], the variable z=M · xwill require the following constraints:

· ( )z M x 27L

( )z M 28

( ) · ( )- -z M x M1 29L

( )z 0. 30

For two binary variables x, yä {0, 1}, we can define z= x · y together with the following three inequalities:

( )z x 31

( )z y 32

( )+ -z x y 1. 33

These linearisationswill be used to facilitate the sequence optimisation that requires the introduction of
additional binary variables (see appendix C.4.6).

C.3. Piece-wise linearisation
To constrain the optimisation to physically deliverable treatment plans, the timing information, i.e. beam-on
times and starting times of the individual iso-centres, has to be recovered from the dual envelope formulation
without re-introducing nonlinearity to the optimisation. This is achieved by applying a piecewise linearisation
(PWL) (Lin et al 2013) to each individual substituted nonlinear term.

For a single variable function ( )  f x : with x ä [a0, am], a set ofm+ 1monotonically increasing
support points {al | lä {0,K,m}, a0< a1<L< am} can be defined. An approximate PWLof L( f (x)) over the
interval [a0, am] can then be achieved using the two surrounding support points al� x� al+1 and their
individual weights νl:

( ( )) ( )å n=
=

L f x a 34
l

m

l l
0

( )å n=
=

x a . 35
l

m

l l
0

This requires the use of the following constraints:

( )n n - y y, 36m m0 0 1

( )n + = ¼ -- y y l m, for 1, , 1 37l l l1

( )å =
=

-

y 1 38
l

m

l
0

1

( )å n =
=

1 39
l

m

l
0

{ } ( )nÎ = ¼ -y l m0, 1 , 0, for 0, , 1. 40l l

The binary variable yl determines the active interval for any value of x ä [a0, am] and thuswhich two adjacent νl
take a nonzero value.
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The number of new (binary) variables and linear constraints introducedwith this approach scales linearly
with the number of support pointsm. A higher number of support points increases both the accuracy of the
PWL and the computational cost to solve the problem.

C.4. Convex relaxation of theMINLPproblem
C.4.1. Reformulating the BED. To implement the optimisation of the BED,we need to express it in terms of the
actual decision variables and parameters used by the solver. Specifically, we define a new variableΔt that
describes the difference in starting time of two iso-centres and relate this back to the individual combination of
beam-on times δt and gaps g between iso-centre deliveries. In addition, we substitute the nonlinear terms and
combine constants that are the same acrossmultiple summands into a single parameter.Original:
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C.4.2. Application of the dual envelopes. The dual envelope approach described in appendix C.1.2 is applied to
the nonlinear terms w w,A B1,2 1,2. For simplicity and readability, wewill limit the formal description to a single
termofwA andwB. The implementation for the individual repair-ratesμ1,μ2, iso-centres, and possible
interaction terms is completely analogous. For the interaction terms, the individual beam-on times are
designated as δtc (the current iso-centre) and δtp (a previously delivered iso-centre).

The nonlinear functionwA is replacedwith the convex envelope ŵA constructed from the lower and upper
bounds of the beam-on time d dt t, .
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Practically, since k= 1 for our application (single variable,wA=∏j�kxj), this boils down to a substitution of the
nonlinear functionwAwhere the Lagrangemultipliersλi act as a scaling factor within the bounded interval
[ ( ) ( )]d dw t w t,A A . If, for example, wewould add the dose-rate d as a decision variable, then this could easily be
formulated as a bilinear function (wA= x1 · x2) and the dual envelopewould act as described in appendix C.1.2.

Similarly, the interaction termbetween the iso-centreswB is a nonlinear function of three variables that
require a convex relaxation to create a linear problem. First, we substitute the individual terms in the product to
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expresswB as a trilinear function:
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The bounds on the individual xj are determined from the lower and upper bounds of the individual variables
d dD Dt t t t, , , .
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With this information, the dual envelop ŵB of the trilinear interaction term (k= 3) is defined as follows:
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Now the convex relaxation of the BED can be expressedwith the beam-on times δt and Lagrangemultipliersλ as
variables:
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C.4.3. Application of PWLs. Up until now, all terms in the convex BED formulation are completely
independent of each other.However, in practice, each individual iso-centre will contribute tomultiple of these
terms For example, iso-centre jwill interact with all previously delivered iso-centres k< j in oneway and all
following iso-centres k> j in anotherway (see x1, x2, x3 in equation (54)). Thus, wemust enforce consistency for
all the timing information across the individual envelopes. Since the individual terms substituted in the dual
envelope approach are bijective over the domain 0 of the timing variables (δt andΔt) and their corresponding
codomains, they can be inverted. Thus, one can retrieve the timing information from the state of the variables of
the dual envelopes. To not re-introduce nonlinearities into our system,we apply PWLs to these nonlinear terms
to determine the values of the timing variables δt andΔt.

By enforcing an equality constraint between the PWLof the nonlinear terms L and the corresponding values
from the dual envelope ( ˆx w,j ), the timing variables can be extracted from the current state of the PWL.

For ŵA the relationship is as follows:
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For ŵB weneed to create a PWL for each of the three terms (x1, x2, x3) and enforce the same equality constraints:
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Asmentioned above, these equations are exemplary for individual envelopes. The introduced constraints
need to be enforced across all terms in the BED formulation. For each of the two repair-rates there areNiso ŵAʼs
and ( )= -Nia

N N 1

2
iso iso ŵBʼs.With the constraints on every individual term,we can ensure that the timing of the

iso-centres is consistent across all envelopes even after switching to the Lagrangemultipliers as the variables.

C.4.4. Objective function. To implement the objective function (see equation (6)), a new cost variable is
introduced:
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Using inequality constraints for every voxel v, it can be ensured that only BED values beyond the defined lower
BEDref and upper bounds BEDthres contribute to the penalty value (i.e. no negative penalty is incurred for voxels
within their defined bounds)
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C.4.5. Beam-on timeMILP problem. With the approaches introduced above, we can nowdefine the beam-on
time optimisation as aMILP problem. The parameters controlling the number of support points used for the
PWLs (mA andmB,1,mB,2,mB,3) allow for a trade-off between the accuracy of the approximations and the
incurred computational cost. An appropriate choice of this parameter becomes crucial when dealingwith the
sequence optimisation (see appendix C.5.1). For the beam-on timeMILP problem, two support points were
used for every envelope.
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C.4.6. Adding sequence optimisation. To add the ability to change the delivery sequence, we introduce a square
matrix variableh ä {0, 1}N×N controlling the active terms
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and enforce a constraint that limits the active terms to the physically possible ones. That is: there are always
( )-N N 1

2
active terms and only one active interaction term for any combination of two iso-centres j, k.

{ } ( )" Î ¼ ¹ + =j k N j k h h, 1, , , 1. 73jk kj

Now the solver would be able to activate and deactivate all the individual interaction terms.However, when
changing the sequence of delivery there ismore changing than only the active interaction termsThe time
between two iso-centres depends on the beam-on times of all the iso-centres delivered in-between them. Thus,
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weneed to be able to relate the active terms, to the delivery sequence. To that endwe introduce thematrix s ä
{0, 1}N×N, which describes which iso-centre is delivered at which position in the order of delivery. The column
describes the position in the sequence and the non-zero row index determines the iso-centre used in that
position

[ ] ( )=  =  =
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-
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seq s h2 1 3
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1 1

. 74
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Again, we need to ensure that s is constrained to a feasible treatment, i.e. exactly one iso-centre delivered at every
position (column) and each iso-centre (row index)must be used once
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To enforce the consistency between the variables for iso-centre order s and the active terms h, we introduce a
comparison function compjk between two iso-centres j and k:
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compjk ä {− (N−1),K,−1, 1,K,N− 1}will be positive if iso-centre j is delivered before iso-centre k (i.e.
tj< tk), and negative if iso-centre j is delivered after iso-centre k (i.e. tj> tk). Thus, the binary interaction term
control variable hjkneeds to be one for all combinations of j and kwhere compjk< 0. This can be enforcedwith
the following inequality constraint:

{ } · · ( )" Î ¼ ¹ + £ -j k N j k h comp h comp, 1, , , 1. 77jk jk kj kj

Now that the active termsh directly represent the current sequence, the starting time of every iso-centre j can be
defined as follows:

( ) ( )å d= +
= ¹

t h t g . 78j
k k j
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1,

Wecannowuse this starting time definition to constrain the value ofΔtjk to the appropriate value based on the
delivery sequence:

( ) ( )D = -h t h t t . 79jk jk jk j k

The use of the binary variable hjk is required here to ensure compatibility with the dual envelopes and PWLs
which only allow values ofΔtjkwithin the predefined bounds [ ]D Dt t,jk jk whereD >t 0jk .

At this point, the problem fully is described and the convex relaxation of the BED could be optimised.
However, with the additional binary variables introduced above, the problem is no longer linear. There are
multiplications of the binary variablehwith the interaction terms ŵB, sequence s, beam-on times δt, starting
times t, and time in-between iso-centre deliveriesΔt. Every one if these nonlinearities is resolved using the bigM
method described in appendix C.2. The required inequalities are completely analogous to that description and
are omitted here for clarity:
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Now the convex relaxation of the BED for the simultaneous beam-on time and sequence optimisation can be
defined as follows:
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C.5. Beam-on time and sequenceMILPproblem
With the variables and constraints introduced above, we can now formulate aMILP problem for the beam-on
time and sequence optimisation.
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23 33 80 85 big constr.

49 52 57 61 dual env. constr.
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69 70 86 cost constr. .

Note:All variables that were specific to the ( )= -Nia
N N 1

2
iso iso interaction terms in equation (71) are now expressed

withNiso×Niso individual components to cover all possible interactions. Their diagonal elements (i.e. ‘self-
interaction’ of an iso-centre) do not contribute to the optimisation problem.

C.5.1. PWL considerations for the sequence optimisation. As described above, to solve the treatment planning
problem the convex relaxation of the BED is built from a set of bounds on the iso-centre timings (δt,Δt). For the
beam-on time optimisation, the bounds ofΔt follow directly from the bounds on the individual beam-on times.
As the bounds on beam-on times tighten, so do the bounds on the possibleΔt. Thus, the convex relaxation of
the BEDconverges to the value of the full nonlinear version even if we only use theminimumof two support
points in the PWLs. This substantially reduces the computational cost of solving themodel.

When the order of iso-centre delivery can change, then the range of possible values forΔtwill not shrink
with the bounds on the beam-on time. Instead, its lower limit is determined by the shortest possible beam-on
time and the upper limit is defined by the (N− 1) longest possible beam-on times. In order to ensure accurate
values forΔt (and thus the BED) are determined from the PWLof the corresponding nonlinear term, the
number of support points needs to be increased. Preliminary tests determined that using 10 support points was
sufficient to accurately determine the BED from the convex relaxation.
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