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Abstract

Objective. Dose-rate effects in Gamma Knife radiosurgery treatments can lead to varying biologically
effective dose (BED) levels for the same physical dose. The non-convex BED model depends on the
delivery sequence and creates a non-trivial treatment planning problem. We investigate the feasibility
of employing inverse planning methods to generate treatment plans exhibiting desirable BED
characteristics using the per iso-centre beam-on times and delivery sequence. Approach. We
implement two dedicated optimisation algorithms. One approach relies on mixed-integer linear
programming (MILP) using a purposely developed convex underestimator for the BED to mitigate
local minima issues at the cost of computational complexity. The second approach (local
optimisation) is faster and potentially usable in a clinical setting but more prone to local minima
issues. It sequentially executes the beam-on time (quasi-Newton method) and sequence optimisation
(local search algorithm). We investigate the trade-off between time to convergence and solution
quality by evaluating the resulting treatment plans’ objective function values and clinical parameters.
We also study the treatment time dependence of the initial and optimised plans using BEDgs (BED
delivered to 95% of the target volume) values. Main results. When optimising the beam-on times and
delivery sequence, the local optimisation approach converges several orders of magnitude faster than
the MILP approach (minutes versus hours—days) while typically reaching within 1.2% (0.02—2.08%)
of the final objective function value. The quality parameters of the resulting treatment plans show no
meaningful difference between the local and MILP optimisation approaches. The presented
optimisation approaches remove the treatment time dependence observed in the original treatment
plans, and the chosen objectives successfully promote more conformal treatments. Significance. We
demonstrate the feasibility of using an inverse planning approach within a reasonable time frame to
ensure BED-based objectives are achieved across varying treatment times and highlight the prospect
of further improvements in treatment plan quality.

1. Introduction

In stereotactic radiosurgery (SRS) treatments with the Gamma Knife (GK), an array of collimated Cobalt-60
sources is used to precisely deliver therapeutic radiation to an intracranial target volume (TV). Since its
introduction over 50 years ago, the GK has become a standard delivery method for SRS procedures (Podgorsak
etal 1989, Schulder and Patil 2008) and the GK unit has undergone significant updates. So far, there have been
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five commercially available models that introduced significant changes to the treatment delivery (e.g. geometry
of the radiation unit, patient positioning system, collimator selection).

Given that treatments are reported in terms of total physical dose, the significant changes in the time-
domain of GK treatment delivery are currently not taken into account under the assumption that GK treatments
are single fraction acute exposures. However, it has been shown that the typical time frame of GK SRS treatments
would allow for repair of sublethal radiation damage, an effect that is known to be exposure time dependent
(Hallgren et al 2019).

There have been a number of studies that demonstrated how the biologically effective dose (BED) across
different patients treated with the GK varies with the treatment time despite being evaluated for the same
physical dose levels (Hopewell eral 2012, 2013, Millar et al 2015). The model used for these publications was
initially derived for a generalised fractionated protracted irradiation under consideration of incomplete repair
processes (Millar and Canney 1993) and subsequently, a version of this model using two repair- rates was used in
an iso-effect fit to extract the model parameters (Pop et al 2000). More recent treatment outcome studies
demonstrated an improved correlation with BED compared to the physical dose for single iso-centre trigeminal
neuralgia (Tuleasca et al 2019), and multi iso-centre acromegaly (Graffeo et al 2020) and pituitary adenoma
(Graffeo etal 2021) SRS treatments (using a simplified version of the BED for retrospective analysis (Jones and
Hopewell 2018)). In addition, it has recently been demonstrated how the BED will change with the sequence in
which the iso-centres are delivered and also due to unscheduled interruptions in treatment delivery (Klinge et al
2021). This is due to the fact that the BED model tracks all changes in the in-patient dose-rate distribution
throughout the entire treatment delivery, including beam-off periods. Any attempt at BED-based treatment
planning will thus have to consider the exact delivery sequence in addition to the conventional treatment
planning parameters.

These studies raise the need to investigate the value of BED-based treatment planning, especially given the
large potential for variations in treatment time, number of iso-centres and possible collimator combinations
enabled with the modern GK Perfexion (PFX) and Icon®. While there are inverse planning tools available for
physical dose GK treatment planning (Sjolund et al 2019), they typically rely on formulating a convex treatment
planning problem that can be solved efficiently (Levivier et al 2018). Using a BED model that incorporates
incomplete repair intervals adds a layer of complexity to the problem since the induced radiation damage of an
individual iso-centre is linked to the properties of the other iso-centres and can not be treated independently.
The nonlinear and non-convex nature of the BED model makes it inherently a hard problem to solve to
optimality.

The goal of this study is to explore the value and feasibility of using inverse planning to create BED-based GK
treatment plans via adjustments to the beam-on times and delivery sequence (or shot order) using both local and
global optimisation techniques. Starting from a plan manually generated using the conventional approach
relying only on physical dose, we optimise the original treatment plan in terms of BED by changing the sequence
and exposure times only (fixed iso-centre locations and collimator settings). Local optimisation approaches are
used to quickly solve for the most beneficial beam-on times (gradient-based (Byrd et al 1995)) and delivery
sequence (local search (Johnson and McGeoch 1997)). While they are fast, the non-convexity of the BED means
that there is also the risk of getting ‘stuck’ in local minima, which in turn can result in less optimal treatment
plans. To tackle the problem of non-convexity, a mixed-integer programming (MIP) approach that can
simultaneously solve the discrete delivery sequence and continuous per iso-centre beam-on times was
developed. This is realised using a convex hull of the BED model to create a mixed-integer linear programming
(MILP) problem’. While this approach does consider the entire solution space, the global optimum of such a
non-convex function can only be guaranteed with global solvers and (possibly) infinite time. This approach is a
trade-off between considering the vast solution space and converging within non-infinite time.

Both optimisation strategies are applied to a cohort of vestibular schwannoma treatments, 14 cases in total,
using the original physical dose plans as the starting point. The performances of these approaches are evaluated
in terms of their final objective function values, the quality of the optimised treatment plans, and the required
time to convergence to determine the clinical feasibility and quality of the individual approaches.

6 . . . . . .
For the cohort in this study, treatment times were 18.2—75.3 min using 3—17 iso-centres.

7 The interested reader is referred to Nocedal and Wright (2006) for a general introduction to optimisation problems (e.g. convexity,
continuous optimisation, complexity), to Chen et al (2009) for an overview of MIP problems, and to Burer and Letchford (2012) for a more
specific review of non-convex MINLP programming (e.g. convex hull). The derivation of the MILP approach using the convex hull of the
BED is described in the appendix C.
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2. Method

The proposed semi-automatic creation of BED-optimised treatment plans consists of two steps: iso-centre setup
and optimisation. In the initial setup step, the location and collimator settings of the iso-centres are defined. This
could be done by conventional (manual) physical dose treatment planning, an initial ‘filling’ step or any physical
dose inverse planning module. After this initial phase, we optimise the per iso-centre beam-on times and the
sequence of delivery.

2.1. Treatment planning problem

2.1.1. BED model

The BED model used in the current study was originally developed by Millar and Canney (1993) as an extension
of the linear-quadratic model (Fowler 1989) and refined by Pop et al (2000) to include two repair-rates and
determine the oo/ G ratio (Fowler 1989) for central nervous system tissue. The per voxel BED can be determined
as follows:

1] ®@E, - O(E, al

BED:DT‘FEI: (&, pup) +c ( HZ)]de 1)
) 1+c¢ n=1
8

6t-7l(lfe’“‘"f)] - bt
E N 2 [ g u _ l j—l .e u(t] Ik)(gﬂmkf 1)(6 u<\1]7 1)
ltzj:l dj &]_2 H,Zkfldkd Oty 6t;
BE, p) = , ()

Yol

with the number of iso-centres N, the total dose D7, per iso-centre dose d, per iso-centre beam-on time ¢, start
time of the iso-centres t, repair-rate y, partition coefficient ¢*, and treatment protocol Z describing the dose-rate
time dependence. The model parameters as determined by Pop et al are shown in table 4 in the appendix.
Expressed in terms of the per iso-centre dose-rate d, the BED equations become:

N _ . =
BED = " diét; + é[qj(“’ ) e WE “2)] 3)
j=1 E 1 + c
— 20 1 bt 18 5t — it
UE, p) ==Y [di7| 6t — —Q — e #) | — =D dpdje W (el — 1)(e % — 1) |. (4)
Mj:l H Hk=1

The model determines the BED-based on the dose-rate profile throughout the treatment. Each individual
iso-centre delivers the dose at a constant dose-rate for a period of time. Practically, this means the iso-centres
become individual fractions that are defined by a start time, beam-on time and dose-rate. This formulation
implicitly includes periods of beam-off time in-between the delivery of iso-centres where the patient is
repositioned and a new set of collimators can be selected. For every iso-centre, all preceding iso-centres are taken
into account to determine the residual sub-lethal radiation damage (see nested sum in equation (4)).
Consequently, changing the order of delivery will change the BED formulation in two ways: firstly, the nested
sum now has to be evaluated over the new sequence, and secondly the starting times of the individual iso-centres
need to be updated. Even with only the beam-on times as a variable, the BED (6t) constitutes a non-convex
function (i.e. Hessian matrix not positive semi-definite for all 67).

2.1.2. Problem definition
After the iso-centre definition (location and shape), the individual per iso-centre dose-rate distributions are
fixed, leaving both the per iso-centre beam-on times and the sequence of delivery as free variables. The treatment
planning problem using a BED-based objective function f(BED) can then be described as follows:

argmin  f(BED)

8tj,seq
subjectto: 0t; >0, &€ R, je {l.N} ®)
seq € Gy

The 6t; are the beam-on times of the individual iso-centres j and seq is their delivery sequence which is
constrained to be a member of the symmetric group Gy on the finite set { 1,.., N} of Niso-centres. This group is
comprised of all N/possible permutations of the delivery sequence. Due to the characteristics of the BED model
and the discrete nature of the sequence, this constitutes a non-convex mixed-integer nonlinear programming
problem (MINLP).

The partition coefficient determines the relative contributions from the two repair-rates.
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2.1.3. Objective function

All optimisation approaches in this study (MILP, gradient-based methods, combinatorial optimisation) use the
same objective in order to enable comparisons across methods. The chosen objective function is comprised of
the weighted sum of two objectives: the mean BED under-exposure inside the target volume (TV) and the mean
BED over-exposure in the normal tissue (NT) around the target (Rim)

max (0, BED,,s — BED , _
f(BED) = wiv 3 ( ref V) i Y max (0, BED, BEDﬂm)'

veTV Nry vERim Nrim

(6)

Depending on whether a given voxel is part of the TV or the Rim, its BED, will be compared to the prescription
value BED,sor the upper permitted threshold BEDj,,., and the result scaled according to the size of the volume
of interest (VOI) (N7v, Ngim)- The weighting factors w can be used to focus the optimisation more on target
coverage or selectivity.

2.1.4. Solving the treatment planning problem

While a brute force approach could theoretically be employed to identify the most beneficial delivery sequence
of a given treatment plan, the fact that the number of possible sequences increases with the factorial of the iso-
centre number makes this approach impractical for all but the simplest treatments. The first naive way of
tackling this problem is to explore efficient and established local approaches to individually optimise the beam-
on time (gradient-based) and the delivery sequence (local search). See section 2.2 for a description of the
algorithms used in this study.

However, due to the non-convex nature of the BED, there is the possibility for the optimiser to get stuckina
local minimum and never reach the globally optimal value. Ideally, one would like to simultaneously explore all
possible combinations of beam-on times and delivery sequences to avoid reaching convergence at a sub-optimal
solution. While there are global optimisation techniques, the nonlinear non-convex nature of the BED together
with the mixed-integer variables and the large space of possible permutations of the delivery sequence makes
solving this problem to optimality prohibitively expensive in terms of computing power and time.

To tackle both problems mentioned above, a ‘convex mixed-integer underestimator’ of the ‘full BED’ was
developed (see section 2.3). This reduces the problem to a mixed-integer linear programming problem (MILP).
While this convex MILP approach can still not guarantee global optimality, it does consider the entire search
space during optimisation and allows to simultaneously optimise the beam-on time and delivery sequence.

2.2. Local optimisation approaches

Two established algorithms (see 2.2.1 and 2.2.2) are used to optimise the beam-on time and delivery sequence
independently. To achieve the best possible plan with these local approaches, they are executed in an alternating
fashion until no further improvement of the objective function is observed.

2.2.1. Beam-on time optimisation

To find the most beneficial set of beam-on times, given the defined objectives and constraints, the limited-
memory Broyden—Fletcher—Goldfarb—Shanno bound-constrained (L-BFGS-B) algorithm (Byrd et al 1995) for
the optimisation of nonlinear problems is used. The L-BFGS-B algorithm utilises the gradient and an
approximation of the Hessian (2nd derivative) to guide the direction of the optimisation. For this study the
implementation of the scipy.optimize (Virtanen et al 2020) library was used with the BED-based objective
function as an input. The gradient is approximated numerically during the optimisation.

2.2.2. Delivery sequence

In order to optimise the sequence of delivery, the treatment planning problem is expressed as a travelling
salesperson problem (TSP). Instead of the travelling distance, the BED-based objective function is evaluated to
determine the quality of a given sequence. To solve this TSP, a common local search algorithm, the 2-opt
approach (Croes 1958, Johnson and McGeoch 1997), is adapted to the BED treatment planning scenario.
Generally, the 2-opt approach starts with an initial solution, creates a new connection between 2 nodes on the
route and solves the order in which all the other nodes will now be visited to create a new, potentially improved
solution. Since in our case, there is no distance measure to identify the potential for improved routing (e.g.
longest distances, cross-over), the nodes (iso-centres) to be connected (delivered one after the other) are
determined iteratively. Starting from the first iso-centre, the objective function is evaluated for which iso-centre
should be delivered next (3,..., N) until an improvement is found. If no improvement is found, the next iso-
centre in the current sequence is chosen as a candidate to be connected to the others. If an improvement was
found, the algorithm is started from the beginning. The algorithm is stopped when no more improvement is
found for an entire iteration over all iso-centres. Since a treatment delivery is not a closed loop, this approach

4
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never changes the starting iso-centre. To mitigate this issue, the 2-opt algorithm is executed once for every iso-
centre in the starting position. The initial solution is always created from the current best solution.

2.3. Convex mixed-integer underestimator approach (Convex MILP)

In general, MINLP problems are difficult to solve since even their continuous relaxation constitutes a non-
convex problem that requires a global optimisation approach to solve. To mitigate this issue, we propose the use
of a convex relaxation of the full BED model that can be solved to optimality with available MILP solvers. The
‘relaxed BED’ can then be used as an underestimator for the full problem.

Specifically, the ‘relaxed BED’ will be defined by the bounds on the beam-on times 6¢; of the individual iso-
centres j. When the bounds are initially loose, a large range of beam-on times is permitted for all iso-centres and
optimising it returns a lower bound of the feasible objective function value for the ‘full BED’. By iteratively
tightening the bounds of the underestimator around its’ current optimum, we can minimise the objective
function value (of the ‘full BED’) until the full model and its’ relaxation converge towards each other. For this
study, CPLEX 12. 10° was used as the MILP solver.

2.3.1. Defining the convex hull of the BED model

The first step in the creation of the ‘relaxed’ BED model is to substitute all nonlinear terms in equation (4) (i.e. all
terms including the exponential function) with a new variable. In our case (constant dose-rate), we are left with
linear and trilinear terms for the intra and inter iso-centre interactions, respectively.

In order to achieve a convex relaxation, the dual envelope method for general multilinear terms, as described
by Costa and Liberti (2012), is applied. The convex hull is defined from the support points created by the
combinations of the lower and upper bounds of the variables. Applied to the BED model, these bounds are
determined by the values of the substituted nonlinear terms at the lower and upper bounds of the beam-on times
o0t. The Lagrange multipliers that are used to navigate the convex hull have now become the new decision
variables.

To constrain the optimisation to physically deliverable treatment plans, the timing information, i.e. beam-
on times and starting times of the individual iso-centres, has to be recovered from the nonlinear terms This is
achieved by applying a piecewise linearisation (PWL) (Lin et al 2013) to each individual substituted term.

In this manner, convex hulls are created for every addend of the nested sum in the full BED model
(equation (4)). In total, there are w convex hulls of the interaction terms for a given delivery sequence.

Due to the limitation of the optimisation variables to beam-on times and sequence, the dual envelope
formulation of ‘outer sum’ terms is effectively a linearisation. However, the presented approach could still be
applied if the dose-rate were to be included as a variable (due to its’ dependence on iso-centre location and
collimator selection). The approach would then create a convex hull equivalent to the McCormick envelopes
(bilinear). Using this general approach for multilinear functions allows for great flexibility for future expansion
of the model.

2.3.2. Delivery sequence
If the delivery sequence can change, then every iso-centre could feasibly interact with all other iso-centres.

To accommodate all possible delivery sequences, the model is extended to include all N(N — 1) interaction
terms with a binary variable (h;) signifying whether the term is active or not, based on the variable start times (t;,
t) of the iso-centres

2 i 2 1 \
\IJ(E> ,Lt) = —Z d] I:(St] — _(1 _ e/u‘)tj):l
Fj=1 1

— %Z hjdidje# 4= W (erd — 1) (e~ — 1) )
j=k
L {1, if t;(6t, seq) > t;.(6t, seq)
ke =

. 8
0, if t;(6t, seq) < tr(6t, seq) ®)

Using a set of logical constraints, we can ensure that only the appropriate terms describing a feasible delivery
sequence are active.

Since the time in-between the beginning of the delivery of two iso-centres (; — ;) depends on the specific
sequence, its’ bounds need to accommodate this and do not shrink with the beam-on time bounds anymore. As
aresult, the number of support points of the PWL of the interaction term needs to be increased to ensure that the
‘relaxed’ BED will be close to the ‘full’ BED when the beam-on time is tightened, leading to a more complex

o ILOG CPLEX Optimization Studio V12.10.0 User’s Manual, International Business Machines Corporation, 2021.
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Table 1. Overview of patients treated for vestibular schwannoma with the GK PFX. Listed are the case
number, the prescribed dose, the prescription iso-dose, the treatment time T (including beam-off periods),
the number of iso-centres N, the reference dose-rate on the day of treatment, and the TV.

Case Pres. Pres. T [min] Ni5, Reference TV [em?]
Dose [Gy] Iso-dose [%] Dose-rate [Gy min ']
1 12 52 44.7 4 1.7 0.2
2 12 51 32.4 9 2.4 3.6
3 12 50 46.2 17 2.1 5.1
4 12 43 62.7 16 1.9 12.1
5 12 44 61.2 11 1.7 2.5
6 12 46 75.3 11 1.7 4.7
7 12 44 48.3 12 1.7 5.9
8 12 50 74.8 17 1.6 1.5
9 12 60 28.1 12 34 1.8
10 12 58 18.2 3 3.1 0.1
11 12 50 37.3 12 2.8 3.1
12 12 50 58.1 17 2.1 7.0
13 12 42 51.4 12 1.9 4.6
14 12 46 45.3 11 1.9 1.3

TV: Target Volume

optimisation problem. The number of PWL support points is a parameter of the optimisation problem that
allows to control the trade-off between model complexity and underestimator accuracy.

2.4. Workflow

2.4.1. Data import

The cohort for this study consists of 14 cases of vestibular schwannoma treated with the GK PEX. An overview is
shown in table 1. All cases were planned with a prescription dose of 12 Gy and a varying prescription iso-dose.
Treatment times ranged from 18 to 75 min, assuming a gap of 0.06 min between iso-centre deliveries.

To load the previously created treatment plans into the BED treatment planning framework, a research
version of GammaPlan 10.1 is used that allows exporting per-isocentre dose distributions. The exported data
includes the dose distributionsina31 x 31 x 31 voxel grid covering the target volume (TV), a binary mask of
the TV, the original iso-centre setup (shape, beam-on times and delivery sequence), and a registration matrix to
the imaging study.

With this information, the original dose and BED distributions can be calculated and later compared to the
optimised versions.

2.4.2. Problem setup
Since using all voxels (almost 30 000) for the optimisation is impractical and would include regions with very
limited dose, the problem is constrained to a region of interest (ROI) where a meaningful dose contribution can
occur. To this end, a Rim structure is created, which can also drive the optimisation towards normal tissue (NT)
sparing. This is achieved by applying 4 iterations of binary dilation to the TV mask using the scipy.ndimage.
morphology library from Virtanen et al (2020), which effectively grows the TV outwards by 4 voxels. This
approach ensures that the number of voxels is approximatively split into a ratio of 60% Rim and 40% T'V for all
cases of the cohort.

For the present study, both the weights and reference/threshold BED are chosen to be equivalent
(Wrv = Wrim = 100, see equation (6)). A treatment time of 60 min is taken as a reference for the BED, as
suggested by Jones and Hopewell (2018). With a prescription dose of 12 Gy, this corresponds to a BED of 53.95
Gy,.47.' Using the same objective function for all optimisation runs allows for comparing the performance of
the different approaches taken to optimise the problem.

2.4.3. Optimisation Runs

We apply the two introduced approaches (local and MILP) to every case in the cohort. For each of the
approaches, beam-on time optimisations with and without sequencing (BO-Seq-opt/BO-opt) are executed on a
computing cluster using the same setup. Hence, there are four individual optimisation runs per patient. The

10 Gy,.47is used to signify BED instead of physical dose (Gy). The subscript denotes the “/3-ratio used to determine the BED. '/ 3-ratio and
other BED parameters are shown in table 4 (derived by Pop et al 2000).
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initial beam-on time is set to 1 min for every case, to avoid accidentally starting from a near-optimal position,
e.g. where the original treatment plan was already close to the chosen BED reference.

Due to the large combinatorial complexity for the MILP BO-Seq-opt scenario, a hard limit for the maximum
amount of computation time spent in a single iteration is set (deterministic time limit 20e6 ticks corresponds to
20.8-36.8h'") in order to ensure convergence within a reasonable amount of time. If that time limit is exceeded,
the currently best solution will be used to update the model for the next iteration. To ensure a feasible solution is
found in every iteration, a pre-solving step is executed (i.e. beam-on time optimisation with a fixed sequence).
Further details on the parameters chosen for the different optimisation runs can be seen in table 5 in the
appendix.

2.4.4. Plan quality indices
The indices describing the treatment plan quality used in this study are defined using following volume ratios:

c_ Y@IvnTV)

Coverage: 9
8 V(TV). ©
Selectivity: _ V@va1v) (10)
V(PIV)
2
Paddick Conformity Index: VIPIVOTV) (11)

T V@IV) x V(TV)

The coverage describes the fraction of the TV that is covered by the prescription iso-dose volume (PIV), while
the selectivity describes the fraction of the PIV that is inside the TV. The PCI (Paddick 2000) combines the two
proportions to give a measure of conformity. For clinical considerations, it is commonly essential to maintain a
particular coverage. Providing the individual values gives the treatment planner additional information (i.e.
conformity and how it is ‘split’ between coverage and selectivity). The Dos and BEDys are defined as the
minimum dose and BED values delivered to 95% of the TV.

2.4.5. Analysis

The final objective function values are compared across the entire cohort in order to measure the performance of
the individual approaches against each other and determine the benefit of explicitly optimising the sequence
over using the beam-on times to compensate for the fixed sequence. The clinical scores for coverage, selectivity
and PCl are used to determine the initial plan quality in terms of dose and BED, the benefit of the optimisation
methods and how well they correlate to the objective function values. Part of the motivation for the BED
optimisation is to not only reduce the intra-patient variability but also the inter-patient variability. To visualise
this, the original Dgs and BEDg5 values in relation to the treatment time are compared to the ones obtained from
the optimised treatment plans. In addition (BE)DVHs and dose/BED distributions of a selection of patients are
used to qualitatively describe general changes introduced by the optimisations.

3. Results

In this section, the performance of the four different optimisation runs in terms of the minimisation of the
objective function (see section 3.1), the resulting quality parameters of the treatment plans (see section 3.2), and
examples of the BED-Volume histograms (BEDVHs) and dose/BED distributions (see section 3.3) are
presented.

For four of the cases (03, 04, 08, 12) the MILP BED optimisation approach with sequencing did not fully
converge, i.e. in the individual iterations of solving the convex underestimator problem no integer-optimal
solution was found within the given limit on the computation time'”. Thus, the current best integer solution is
returned and used to update the beam-on time. When optimising the sequence of delivery, the complexity of the
problem drastically increases with the number of iso-centres which for these cases was especially large (16 and 17
compared to the maximum of 12 for the rest of the cohort. A plan with 12 iso-centres yields 12/ = 4.8¢8 possible
sequences, while with 17 iso-centres this number increases to 17/ = 3.6e14). Since these cases are not optimised
to completion, they will be excluded from the analysis when comparing the individual optimisation approaches
to not skew the results for this optimisation method.

11 C e . . . . . P s
Deterministic time ticks will be the same for repeated solves even with different loads on the system slowing down the ‘real-world
optimisation time (seconds/hours).

12 e ce . . .
Optimisation parameters ensure a result within approximately 14 d when running on a cluster using 48 threads.
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Figure 1. Objective function values for the original treatment plan and the four optimisation scenarios using the local and MILP
approaches with and without sequencing. Adding sequencing to the optimisation leads to clear improvements, where the local
optimisation reaches close to the performance of the MILP (excluding cases that exceeded the time limit).
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3.1. Performance of the optimisation approaches

The final objective function values are used to assess the performance of the different optimisers. Figure 1 shows
an overview of the objective function value for the original treatments compared to the four different
optimisation runs. There are large variations for the initial objective function values and all cases in the cohort
exhibit significant improvements when using any of the optimisation approaches. Post-optimisation, the
objective function values are improved by a factor of approximately 1.25-6.10.

Examining the different optimisation regiments more closely, it becomes evident that the use of the delivery
sequence as a variable for the optimisation unlocks the potential for further improvements of the objective
function compared to optimising only the beam-on time. Using the local beam-on time optimisation as a
reference, the average improvement in objective function value when using sequencing in the optimisation is
around 5.86% and 6.95% for the local and MILP optimisations, respectively (see objective function values in
table 2).

In comparison, the differences between the local and MILP optimisations are much smaller. When only
using the beam-on time optimisation, the optimisation results are similar. For the beam-on time and
sequencing runs, the difference is increased but still small (in the order of 1% improvement when using the
MILP optimisation). At the same time, the optimisation times increase significantly with the number of iso-
centres. For example, the optimisation time for case 09 is considerably increased from 0.1 min for the local
beam-on time optimisation to 4.4 min when optimising the sequence as well. With the MILP approach, the
optimisation time increases from 3.5 min to over 200 h due to the incredibly large number of possible delivery
sequences. The local approach requires only a fraction of that time (* /2900) to reach an objective function value
within 2.1% of the MILP result.

3.2. Treatment plan quality.

To investigate the quality of the optimised treatment plans, the selectivity, coverage, and PCI are evaluated in
terms of the prescribed dose (original plans) and prescribed BED (original and optimised plans). The treatment
time relationship is assessed using the Dys/BEDys values of the treatment plans. Figure 2 gives an overview of the
quality parameters for the entire cohort. It can be observed that the original (physical dose) plan favoured
coverage (min 95%) over selectivity (min 74%). Evaluating the same original plan in terms of the prescribed BED
shows that BED coverage was generally even higher while the selectivity was lower (min 59%). This trade-off at
the cost of BED selectivity leads to alower PCI across the cohort of original treatments.

After optimising these treatment plans, the result shows a slight improvement over the original physical dose
PCI. Furthermore, the optimised treatment plans exhibit very similar selectivity and coverage values. Since the
generalised objective function used for all cases equally weighs coverage of the TV against sparing of the Rim
structure, this behaviour is to be expected.




Table 2. Performance Overview: shown are the number of iso-centres Nj,,, the time T to reach convergence, the final objective function value and the relative difference to the baseline of alocal beam-on time optimisation.

Initial Beam-on time optimisation Beam-on time + Sequence optimisation
Local MILP local MILP
Case Niso obj. Ay (%] T [min] obj. T [min] obj. Aoy [%] T [min] obj. Aoy [%] T [min] obj Aoy [%]
01 4 243.69 164.00 0.01 92.31 0.14 92.31 0.00 0.02 89.65 —2.88 0.67 88.25 —4.40
02 9 49.40 90.33 0.07 25.95 0.60 25.93 —0.08 0.58 25.25 —2.72 159.25 24.92 —3.98
03 17 58.52 119.17 0.41 26.70 6.64 26.64 —0.21 24.85 25.39 —4.90 17 469.19* 25.32 —5.18
04 16 48.53 31.48 0.45 36.91 3.90 36.90 —0.02 15.67 33.84 —8.33 15 429.26" 34.77 —5.78
05 11 57.10 48.45 0.12 38.46 0.61 38.45 —0.03 1.11 34.41 —10.53 6481.12 34.19 —11.10
06 11 99.02 36.99 0.08 72.28 0.63 72.28 0.00 0.92 64.99 —10.08 3956.95 63.84 —11.67
07 12 45.04 56.54 0.12 28.77 1.25 28.69 —0.27 2.42 26.83 —6.75 10 072.48 26.30 —8.58
08 17 42.63 114.15 0.32 19.91 5.41 19.79 —0.60 21.88 19.04 —4.36 19 043.28" 19.19 —3.58
09 12 260.18 491.65 0.13 43.98 3.46 43.56 —0.94 4.14 43.50 —1.08 12 085.30 42.62 —3.09
10 3 432.85 366.55 0.01 92.78 0.16 92.77 —0.01 0.02 87.04 —6.18 0.58 87.02 —6.20
11 12 107.27 112.95 0.13 50.37 1.60 50.27 —0.21 1.98 49.39 —1.96 10 039.29 48.79 -3.15
12 17 54.81 24.76 0.35 43.93 6.12 43.92 —0.03 15.70 41.57 —5.39 19 896.36" 43.96 0.07
13 12 115.74 53.52 0.15 75.39 1.71 75.38 —0.01 1.40 65.11 —13.64 6650.02 64.80 —14.06
14 11 147.64 57.36 0.10 93.82 1.12 93.81 —0.01 1.12 91.21 —2.78 5567.23 90.77 —3.25
Mean: 11.71 125.89 126.28 0.17 52.97 2.38 52.91 —0.17 6.56 49.80 —5.83 9060.78 49.63 -6.00
w/o® 9.70 155.79 147.83 0.09 61.41 1.13 61.35 —0.16 1.37 57.74 —5.86 5501.29 57.15 —6.95

MILP: mixed-integer linear programming.
* Case did not fully converge within the time limit.
® Mean value excluding cases that did not converge within the time limit.
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Figure 2. Comparison of the quality parameters of the original and optimised dose and BED distributions. 2(a) Plot of coverage versus
selectivity of the individual cases. Initial plans favour coverage over selectivity (more pronounced for BED). Optimised plans balance
coverage and selectivity. 2(b) Box plots showing the distribution of quality parameter values for the individual methods. There are
only minor variations between the local and MILP optimisations. Improvements, especially in PCI, are more pronounced for
sequence optimised plans. 2(c): Dgs and BEDys values over the total treatment time. Initial plans show a decrease in BED level with
longer treatment times which the physical dose and optimised treatment plans do not exhibit.

To distinguish between the different optimisation scenarios, the distribution of the quality parameters (by
optimisation method) across the cohort is shown in figure 2(b). Variations across the individual optimisation
approaches are small and the only meaningful differences can be observed between optimisations with and
without sequencing. Using the sequence optimisation leads to slight improvements in both selectivity and
coverage and thus are more pronounced in the PCI values. On average these cases show a PCI 0f 0.875 compared
10 0.872 and 0.815 for the beam-on times only optimisation and original BED, respectively. The optimised PCI
values highlight also an improvement over the original dose PCI of .853 on average. Table 3 presents an overview
of the mean and range of quality parameters.

One motivation for the use of BED-based treatment plans is to reduce the inter-patient variability due to the
variable timings of the dose deliveries (see Jones and Hopewell 2018). The treatment time dependence of the Dys
and BEDys values in figure 2(c) exhibits a reduction of the BED with increasing treatment time (52.7-68.5
Gy,.47) while there is no time dependence in terms of dose (12—12.5 Gy). After the BED optimisation, the BEDy;
values are distributed around the prescribed BED without any observable treatment time dependence. The range
of BEDys values across all optimisations is 49.8—-56 Gy, 47 and is slightly smaller for the optimisations that
included the sequencing (beam-on and sequencing: 50.5-56.4 Gy, 47, beam-on: 49.8-56.3 Gy, 47).

3.3.BEDVHs and dose/BED distributions

In this section, we present three example cases, one exhibiting only minor changes from the optimisations (case
06), one with improvements to both coverage and selectivity (case 08), and one that revealed substantially higher
BED levels for the original treatment (case 09). BEDVHs of the original and optimised treatment plans for the

10
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Table 3. Overview of the objective function values and quality parameters (Selectivity, Coverage, PCI) for the original treatments and the
different optimisation scenarios. Shown are the average and range for all cases that were optimised to convergence.

Optimisation Selectivity Coverage PCI
Objective

Mean Mean Min Max Mean Min Max Mean Min Max

Orig Dose — 0.883 0.744 0.967 0.966 0.952 0.985 0.853 0.718 0.929
BED 155.79 0.837 0.587 0.930 0.974 0.945 0.997 0.815 0.581 0.896

Beam-on Local 61.41 0.927 0.860 0.962 0.940 0.894 0.967 0.872 0.768 0.931
MILP 61.35 0.927 0.859 0.964 0.940 0.894 0.968 0.872 0.768 0.933

Beam-on Local 57.74 0.929 0.867 0.963 0.942 0.898 0.968 0.875 0.779 0.932
and sequence MILP 57.15 0.929 0.865 0.964 0.942 0.900 0.968 0.876 0.779 0.934

BED: biologically effective dose, MILP: mixed-integer linear programming, PCI: Paddick conformity index.

selected cases and the corresponding distributions of the physical dose and BED are shown in figure 3. In
addition, figure 4 shows a comparison plot for case 09, visualising the difference in the BED distributions
between the initial and locally optimised (beam-on time and sequence) treatment plans.

Several cases happened to be close to the chosen BED reference, mostly due to their original treatment time,
and as a result, their BEDVHs exhibit only small changes after the optimisation (see case 06 in figure 3(a)). The
minimal changes to the BEDVH are reflected in the similarity of all iso-dose and iso-BED lines for both the
original and the optimised treatment plans. Changes in the BED distribution after the optimisations are mostly
limited to re-distributions in the high dose/BED region inside of the TV.

Case 08 is an example where both the coverage and selectivity could be improved by the BED optimisation.
The BEDys of the TV after optimisation is increased by approximately 2.3 Gy, 47, while the BEDs of the Rim is
reduced by approximately 1.2 Gy, 4;. These improvements appear to be facilitated by a significant increase of
BED levels inside the TV where the peak BED is now increased from originally 181 to 216-227 Gy, 4, for the
optimised treatment plans. The improvements in conformity observed in the BEDVH are also visible in the BED
distributions that show improved adherence to the TV shape, especially on the left side (patient right) of the
target. This improved conformity of the optimised treatment plans also coincides with an increase in the volume
covered by the 150 Gy, 47 iso-BED line.

As mentioned before, most cases exhibit marginal BED levels beyond the chosen prescribed BED. An
example is case 09 with an originally short treatment time of 28.1 min. Figure 3(c) shows that the volume
covered by the prescribed BED is substantially larger than that covered by the prescribed physical dose. After
optimisation, the BED is generally scaled down to the reference level (BEDys of 53.7 Gy 47). In addition, the split
in the target volume in the chosen slice now also exhibits a split in the prescribed BED iso-lines.

The difference plot in figure 4 shows a large area around the split in the TV where the BED is reduced by
more than 40 Gy, 47, with a peak reduction 0of 71.8 Gy, 47. In the initial treatment plan, large parts of the healthy
tissue in the gap of the TV received more than 100 Gy, 47 (peak: 140.8 Gy, 47).

In contrast to the initial physical dose treatment plans, the proposed optimisation approaches do not enforce
aspecific heterogeneity in the distributions. The mean prescription iso-dose level across the cohort originally
was 48.8% (o = 5.23%) which translates to 25.9% (o = 4.2%) in terms of the reference BED. After optimising
the beam-on time and sequence with the MILP approach, these values change to 50.9% (o = 8.3%) and 28.28%
(0 = 7.4%), respectively.

4. Discussion

4.1. Optimiser performance
The experiments executed in this study suggest that it is feasible to optimise the per iso-centre beam-on times
and the sequence of delivery to create the most beneficial BED distribution. The local approaches do appear to
converge to alocal minimum, as evident by the fact that the MILP optimisation approach usually convergesto a
lower objective function value. However, this local minimum appears to be close to the global optimum and no
meaningful degradation in plan quality was found as a result of the difference in objective function value. In
addition, convergence is reached relatively quickly in the order of seconds/minutes (single-threaded load)
compared to hours/days with the MILP approach (multi-threaded).

Using the convex underestimator approach, it is possible to simultaneously consider the beam-on time and
order of iso-centre delivery to improve on the local approach. However, the complexity of the MILP models
increases dramatically with the number of iso-centres, to the degree that for four of the cases in the cohort (03,
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Figure 3. Selected BEDVHs plot with the corresponding dose/BED distributions for the original and BED optimised treatment plans.
BEDys,5 values are marked for the original (solid) and optimised (dashed) treatments. (a) Case 06 exhibits only minor changes after
optimisation (mostly limited to the high dose/BED region). (b) Case 08 shows improved conformity of the optimised treatment plans
that coincides with an increased high BED region. (c) Case 09 shows that the optimisations lead to a substantial reduction of the BED

04, 08, 12) with N, > 16 the MILP problem could not be solved to integer-optimality within the defined limit
on the computation time. Consequently, the next update of the beam-on time bounds is based on the current
best solution which can be sub-optimal and lead to the exclusion of the global optimum from the possible
solutions. Thus, the final result after a lengthy optimisation (up to 14 d on a compute cluster) can be worse than
the local beam-on time optimisation (see case 08). However, given the results for the cases with fewer iso-
centres, this is only an issue of computation time and resources and not a flaw of the approach itself. In addition,
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Figure 4. Case 09: BED distributions for the initial and BED optimised (local beam-on time and sequencing) treatment plans showing
asubstantial BED reduction that is most pronounced in the area of the split in the TV. Negative values in the difference plot indicate a
lower BED in the optimised treatment plan. The TV and Rim structures are outlined in red and brown, respectively.

this approach provides a lower bound for the global optimum within the provided limits on the beam-on time
whereas it is impossible to estimate the distance to the global optimum with the local approaches.

4.2. Plan quality

Optimising both the beam-on time and sequence can lead to considerably better objective function values,
however, this is dependent on the individual cases. In addition, improvements in the objective function value do
not necessarily directly translate to increased plan quality.

As mentioned before, most cases exhibit marginal BED levels beyond the chosen prescribed BED. As a result,
optimisation typically scales down the BED of the treatment to the appropriate level and increase the selectivity
to asimilar level of coverage.

The objective function was chosen to be easily compatible across all approaches and create reasonable
treatment plans across the entire cohort. It will generally promote both coverage and selectivity to the same
degree which results in improved PCI values for the optimised treatment plans. While this relatively simple
objective function would be completely minimised (no penalties) for perfect coverage and selectivity, a better
objective function value does not directly translate to a better clinical score. In a clinical situation, one would
incorporate the planning goals (e.g. minimum 95% coverage, VOI maximum BED thresholds) and quality
parameters in the objective function and tailor the weights of the different objectives to the individual patient to
achieve the most beneficial treatment plans. The improvements in the overall PCI with this generic objective
function indicate that it would be possible to not only reach the same treatment plan quality as for the physical
dose plan, but improve on it. [t would appear that the added complexity of using a BED model with incomplete
repair intervals also provides an additional degree of freedom (in the time domain) that could allow for the
creation of even more conformal treatment plans than currently possible.

An example for this is case 08 where both the selectivity and coverage are above the original levels of the
physical dose plan. This improvement comes with an increase of the high BED region at the centre of the target.

When introducing BED-based treatment plans, one will have to investigate the appropriate prescription BED
values and the most beneficial range of BED values inside the TV.

4.3. BED prescription
In this study, the prescription BED was chosen according to Jones and Hopewell (2018) with a reference
treatment time of 60 min. For the present cohort, this happens to represent a relatively low BED, requiring the
optimisation to generally scale down the overall BED level. This is of course only one proposed way to take the
treatment time into account and define a reference BED. If a shorter treatment time was chosen as a basis, the
present cohort could have appeared to generally exhibit a lower BED than desired. Nevertheless, the results in
this study demonstrate that the optimisation approaches can both scale up or down the overall BED level and
optimise the conformity of the given cases. Even without enforcing a certain level of heterogeneity to the BED
distribution, the optimised treatment plans exhibit similar prescription iso-dose and iso-BED levels as the
clinical treatments. This suggests that the inherent heterogeneity in the delivered GK dose is generally
maintained when optimising the BED in the presented scenarios.

Additional studies are needed to determine an appropriate prescription BED that signifies a beneficial trade-
off between the therapeutic effect and the incidence of adverse effects. An example would be the publication by
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Tuleasca et al (2019) that investigated the treatment of trigeminal neuralgia, which found that increasing BED
values above a certain threshold increases the risk of complications without increasing the probability of pain
control any further. Accurately modelling the tumour control probability (TCP) and normal tissue complication
probability NTCP) can be a valuable tool for determining the therapeutic window of a given treatment regimen.

4.4. Contouring the VOIs

When using inverse planning, the contours that are created determine whether a voxel is considered to be part of
the TV, an OAR or the NT. Thus, special care has to be taken to ensure an accurate representation of the treatment
planning problem. As can be seen for case 09, where there was a gap in the TV on a single slice (slice thickness: 1.5
mm), the optimiser does not distinguish between voxels of the same class based on their location/surrounding
tissue and will adapt the treatment plan accordingly to minimise the objective function. In this case, alower
objective function value is achieved by additional sparing of the N'T in this small gap, a characteristic which was not
observed in the original treatment plan. This was likely done to ensure coverage of the entire TV. With the inverse
planning approach, these high BED values in the NT (regardless of their location) are penalised which leads to the
observed BED reductions in that area. This highlights the importance of the drawn contours being consistent with
the intention of the treatment planner. If the intention is to accept higher BED values in this gap, an additional
contour with a higher BED threshold or lower penalty weight could be added in this location.

In a clinical scenario, where appropriate target coverage is required, the treatment planner would then adapt
either the objectives or the contours to ensure the clinical goals are met. In addition, the contouring step will
have to include any VOIs in the vicinity of the TV that need to be considered during the treatment plan
optimisation. Avoidance of non-delineated critical structures, which a human planner might be aware of during
manual planning, is not possible with an inverse planning approach.

4.5. Expansion of the treatment planning framework

Having established the local optimisation methods to be a suitable choice for BED treatment planning, the next
step would be to include further variables into this optimisation approach to explore the possibility of not only
matching the quality of the original dose plan but to improve upon it. One candidate is the iso-centre location.
To use the same L-BFGS-B optimisation framework to simultaneously optimise both the beam-on times and the
iso-centre locations, some approximations have to be made. Firstly, the shape of the distribution is assumed to
remain unchanged for small displacements of a few millimetres. Secondly, to allow for continuous values of the
displacement, the dose-rate matrix is linearly interpolated at the candidate locations.

We integrated the iso-centre location optimisation in our proposed framework and figure 5 shows the
quality parameters for the original treatment, the local beam-on time and sequencing approach and the location
and beam-on time optimisation. Clear improvements, even beyond the values for the original dose treatment
plan can be observed. While the mean coverage now matches the original dose value, the mean selectivity is
increased from 89.6% to 95.5%. These preliminary results show the potential for meaningful improvements of
the treatment plan quality by taking advantage of the added degree of freedom provided by a BED model.

Additionally, the simultaneous optimisation of sequence and beam-on time could be extended to the
selection of the most beneficial collimators for the individual sectors. Different combinations of optimisation
variables could then be compared to determine the best trade-off between the increased complexity of the
optimisation and the expected improvements of the treatment plans.

Having demonstrated the ability for BED-based inverse planning, the next step is to establish a semi-automatic
workflow that allows optimising individual treatment plans in a clinical scenario. This would include more
practical objectives to individualise treatment plans and a level of interactivity allowing to explore the feasible
trade-offs for a given treatment plan. In general, the investigated semi-automatic approach could be fully
automated if an initial “filling’ step was used for the iso-centre definition as available in Leksell GammaPlan."”

Given a consensus about BED-based prescriptions is found, such an approach could be translated into the
clinical workflow. This would require some investment into the software development of the system, e.g. to
adapt the treatment planning workflow and tailor the optimisation algorithms to the available hardware.
GammaPlan Lightning is the most recent example of a proposed novel inverse planning approach (see Sjolund
etal2019) being integrated into the clinical treatment planning system.

The computationally expensive convex underestimator approach could be used as a benchmark to assess
other viable optimisation methods. One could create a number of artificial test cases which can be optimised to a
very high degree with the MILP approach. Publishing these test cases with the appropriate results could then
allow others to benchmark their solutions without having to run the costly optimisation themselves.

13 See Leksell GammaPlan Online Reference Manual. Article No. 102300 Rev. 01, Elekta Instrument AB Stockholm, Sweden, 2011.
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Figure 5. Quality parameters for the original dose and BED distributions and the local optimisation approach using either beam-on
time and sequencing or beam-on time and iso-centre location optimisation. Location optimised plans show the potential for
improvements beyond the level of the original physical dose treatment plans.

4.6. The role of BED in GK SRS

While there is evidence that dose-rate effects like those expressed in the BED formulation influence the
treatment outcome in terms of the therapeutic effectiveness and incidence of adverse effect, it is not the only
measure influencing treatment success and not all studies find a good correlation between the BED and the
investigated treatment endpoints.

For trigeminal neuralgia treatments, a study by Tuleasca et al (2019) determined a beneficial BED range to
minimise the risk of patients developing hypoesthesia without compromising the long term pain-free incidence.
Since these were single iso-centre treatments, the BED could be calculated directly from the physical dose without
the need to consider interactions across iso-centres which would require access to per iso-centre dose maps.

For multi iso-centre treatments, several BED approximation methods were developed by Jones and
Hopewell (2018) that allow for the determination of the marginal BED value from the prescribed dose and
treatment time. These simplified BED models do not capture all the information contained in the delivered 3D
distributions but allow for a convenient way to retrospectively estimate marginal BED values. The simplified
BED was successfully used to determine treatment outcome correlations in acromegaly (Graffeo et al 2020) and
pituitary adenoma Graffeo et al (2021) SRS treatments. The importance of adhering to the model constraints has
been highlighted in a letter to the editor by Hopewell et al (2021).

There have also been discussions about the role of the reference dose-rate in the context of outcome correlation.
One important distinction to make is that the BED used in the presented study is determined based on the 3D in-
patient dose-rate distribution while the reference dose-rate value is based on the calibration measurement of the
specific GK unit at the centre of a phantom. Factors like collimator size, sector blocking and patient geometry make it
infeasible to infer one from the other. Illustrative examples of this are provided in Paddick et al (2019), where similar
treatment times and BED values are observed for varying reference dose-rates (14 Gy min ")

Another factor to consider is the “/G-ratio. For this study, the value 2.47 Gy, as determined by Pop et al (2000)
together with the repair-rates and partition coefficient, is used. Analogous to previous studies Hopewell et al
(2012,2013), Millar et al (2015), Klinge et al (2021), this fixed value of the “ / 3-ratio is used for the BED calculation.
Jones et al (2020) report minor effects on equivalent doses for radiation myelopathy in the central nervous system
when varying the */ 3-ratio (1.5-3.0 Gy). Using the commonly accepted value of 2 Gy resulted in a <1% deviation
of the equivalent single doses for treatment times of up to 5 h. If one were able to extract additional and precise
patient-specific information about all involved tissues before the treatment, the likely tissue response could be
better quantified. This information could include */ 3-ratios for all involved tissues and additional or various
repair-rates. The presented optimisation approaches allow for the assignment of per-voxel tissue parameters and
any number of desired repair-rates. The treatment plan could then be tailored to the specific targeted tissues on a
per-patient basis. In practice however, this information is not currently available for treatment planning.

There is certainly a need to further investigate all factors that can influence treatment outcomes to provide
treatment planners with the tools required to ensure the best possible treatment. One of these tools is the BED.
Previous studies have used the BED model to retrospectively investigate variations within the same prescription
doselevel (Hopewell etal 2012,2013, Millar eral 2015, Klinge et al 2021) and investigate outcome correlations
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(discussed above). In contrast, the presented work investigates how these findings could be used to further improve
SRS treatments in the future. This requires the development of new optimisation methods to enable the use of the
more complex BED model developed by Millar and colleagues for inverse planning. There currently exist no BED
treatment planning solutions. This study is an important step towards possible future treatment planning systems.

5. Conclusion

This study demonstrates multiple strategies that could be employed to make BED planning feasible in clinical
settings. BED treatment planning could significantly reduce the inter-patient variability and has the potential to
improve the outcome of GK radiosurgery treatments.

For our cohort, the local optimisation approaches are sufficient to reach the same level of treatment plan
quality as the more complex MILP approaches. Furthermore, it is feasible to optimise both the beam-on times
and the delivery sequence together to improve on treatment plans created with only the beam-on times as a
variable. The MILP approach, while less prone to local minima issues, is too computationally expensive to be
used in its current form in a clinical workflow without further significant improvements in optimisation speed.
Nevertheless, it can be helpful to provide alower bound on the achievable objective function value and could be
used to benchmark new optimisation approaches.

With the described optimisation methods it is possible to (at least) reach the same treatment plan quality in
terms of BED as for the original physical dose treatment plans.

Acknowledgements

This work is supported by the EPSRC-funded UCL Centre for Doctoral Training in Medical Imaging [EP/1.016478/
1], the Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) [NS/A000050,/1], the Wellcome/
EPSRC Centre for Medical Engineering [WT 203 148/Z/16/Z], the NIHR BRC based at Guys and St Thomas Trust
and the CRUK ARTNET Network Accelerator Award [A21993].Ethical statement

This research study was conducted retrospectively using non-identifiable human subject data. Applicable law
and standards of ethics have been respected in accordance with the principles embodied in the Declaration of
Helsinki and in accordance with local statutory requirements.Conflict of interest

Jamie R McClelland reports grants from Elekta Instrument AB, but outside the scope of the submitted work. Ian
Paddick reports personal fees from Elekta Instrument AB, but outside the scope of the submitted work. Other
authors have nothing to disclose. The views expressed represent those of the authors and not those of Elekta
Instrument AB.

Appendix A. BED model

Millar and Canney (1993) derived a model to determine the BED of a fractionated, protracted treatment with a
variable dose-rate and multiple damage and repair processes. In their work, they extend upon the principle
assumptions of the linear-quadratic (LQ) model:

1. The fractional cell death rate is proportional to the rate of induction of lethal damage (extended to include the
effects due to a polynomial representation in the dose-rate)
2. There are two components of cellular damage: direct lethal damage and sublethal damage

3. Therate of induction of sublethal damage is proportional to the dose-rate (extended to include the effects due to
a polynomial representation in the dose-rate)

4. Sublethal damage is potentially repairable and is governed by a single exponential repair rate process
(modified to include effects due to multiple types of damages, each of which may be repaired by multiple repair
mechanisms)

5. Certain types of sublethal damage can be converted to lethal damage by further irradiation. Only convertible
sublethal damage will be considered.

6. Onlyasmall proportion of induced sublethal damage is converted to lethal damage

7. The rate of production of lethal damage derived from sublethal damage is proportional to both the dose-rate
and the amount of sublethal damage (extended to include the effects due to a polynomial representation in the
dose-rate)
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Table 4. BED model parameters for v/ 3-ratio, repair-rates y; »
and partition coefficient c used in this study. The partition
coefficient determines the relative contributions from the two
repair-rates. A value of 1 represents equal contributions from slow
and fast repair. These values were determined by Pop et al (2000).

Parameter: a/B[Gyl H [ﬁ] 1o [ ] c

min

Value: 2.47 0.0608 0.0053 0.98

These assumptions allow them to describe the time-dependent fractional rate of induced cell death for an
arbitrary fractionated protracted treatment. Integration over the duration of the treatment then allows the
determination of the biological effect of the entire treatment. The addition of further assumptions that more
closely describe a clinical treatment with the GK (or any radiosurgical treatment) allows the simplification of the
model. These assumptions are a constant dose-rate during each fraction (i.e. iso-centre), a varying dose-rate
level between individual fractions, a single repair rate process, and first-order polynomials for the induction of
lethal damage, sublethal damage and translation from sublethal to lethal damage.

This simplification of the model can be formulated as the general LQ model with an additional correction
function describing the dose delivery. Pop et al (2000) derived a bi-exponential version of this BED model from
animal studies and this BED model has since been well established and used by numerous studies over the past
decades. As such we refer the reader to the previous work cited in the manuscript for a thorough analysis of the
underlying principles.

Appendix B. BED optimisation settings

Table 5. Settings for the different BED optimisation techniques employed in this study.

Scenario Solver Settings Workflow
Original — Beam-on times from dose calculation Calculate BED with original order of iso-centres as sequence
Local L-BFGS-B Approx grad: True, bounds: (0, None), m: 50 Provide BED objective function and initial beam-on time vector
BO-opt Epsilon: 1 s, maxiter: 250 Optimise to convergence
Convex MILP CPLEX MIP Threads: 48, mip tolerance mipgap: 0.002, Build underestimator for beam-on of 1 min +/—
10 min — > optimise — >

BO-opt mip_heuristicfreq: -1, mip_limits_cutpasses: -1

Convergence criteria: min bounds: 0.01 min, Update bounds to dt,, +/— 60% oflast interval — > optimise

until convergence
rel. diff ‘relaxed’ versus full: 2x <1e-3,
individual objective function rel. diff: 4x <1e-3

Local L-BFGS-B Approx grad: True, bounds: (0, None), m: 50, First execute beam-on optimisation, then optimise sequence
BO+-Seq-opt Epsilon: 1 s, maxiter: 250
2-opt Convergence: obj funcrel. diff: 3x < 1e-3 Alternate to convergence

Convex MILP CPLEX MIP Threads: 48, mip tolerance mipgap: 0.002, Start with beam-on MILP
BO+Seq-opt mip_heuristicfreq: -1, mip_limits_cutpasses: -1, Until beam-on time bounds < +/— 1 min

det time limit: 20e6, mip_limits_repairtries: 300 Switch to model with sequence optimisation

Convergence criteria: min bounds: 0.01 min, Update bounds to dt,,, +/— 60% of last interval

rel. diff ‘relaxed’ versus full: 2x <1e-3, Optimise until convergence

individual objective function rel. diff: 7x <1e-3

BED: biologically effective dose, L-BFGS-B: limited-memory Broyden—Fletcher—Goldfarb—Shanno bound-constrained algorithm, MILP:
mixed-integer linear programming.

Appendix C. Creation of the MILP problem

MINLP problems are generally challenging to solve and can require immense computing resources (Burer and
Letchford 2012, Képpe 2012). A common solution approach is to find a reformulation of the problem that has
beneficial properties like convexity (Burer and Letchford 2012). This study introduces a method that creates a
convex hull of the problem to solve it iteratively.
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This section covers the steps required to create this convex relaxation (MILP) of the general MINLP
treatment planning problem. Firstly, short general descriptions of the necessary methods are presented, and
secondly, their application to the BED optimisation problem is described.

Notation Throughout the derivation of the MILP formulation, the following conventions are used to
describe different objects.

The application of a convex envelope is described by the introduction ofa’ ~’. So # refers to the convex
envelope of w.

Vector and matrix variables are expressed with bold lettering and their individual scalar components are
referenced with subscripts (e.g. all beam-on times 0t with the jth beam-on time 6%;). For the BED, the subscript
index identifying the current voxel is omitted when not specifically required. This is done to aid readability
where the BED is completely analogous across all voxels, i.e. the only difference between the voxels v is their
dose-rate parameter djv for iso-centre j.

C.1. Convex envelopes
The convex relaxation of the optimisation problem is realised using convex envelopes for multilinear functions
w(x)

w(x) = X1 ... Xps Vi<k xj€ [ij, xJU], ke N (12)

with known lower ij and upper ijbounds of all variables. The multilinear function w(x) is replaced with a new
variable W and a set of constraints defining the convex relaxation.

C.1.1. McCormic envelopes.  Ifthe function is bilinear (k = 2), two linear constraints define a lower convex and
upper concave envelope. These explicit constraints are known as the McCormick inequalities
(McCormick 1976):

convex: W > xlw + xfx — xfbxf (13)

w>xVe+ xVxn — xUxV (14)

concave: W< x4+ xVn — xftxy (15)

W< xl% + xfxa — xU x). (16)
These inequalities restrict the values of (x;, x, W) to be within the polyhedron defined by the vertex set of the
possible combinations of lower and upper bounds of the variables P,y = {(x], x1, x x1), (x', xV, x xY),

(x1U> x2U) xlszU), (xlu) sz) xlUx2L)}'

C.1.2. Dual envelopes. In general, convex envelopes of multilinear terms are vertex polyhedral (Rikun 1997,
Tardella 2008). To take advantage of this property, Costa and Liberti (2012) propose to express the points inside
the envelope as the convex combination of its extreme points Py = {p,,...,p,;} C RF*1. Theirapproach,
named dual envelopes, allows them to define the convex hull of a general multilinear term for an arbitrary value
ofk € N.
They introduce avector A € ]RZ;O of nonnegative Lagrange multipliers that defines a point such that:
x= > Aip, A doAi=1 (17)
i>2k i>2k

To create the envelopes, the p;’s need to be expressed as a function of the bounds on the variables x L xY.Costa
and Liberti define two parameter sequences, d;;and bj(d;;). The value of d;; € {0, 1} describes whether the jth
component of p;is alower or upper bound, while b;(d;;) returns the value of the specific bound:

. . i1
Vi< 2k i<k d; = (l leij JmodZ) (18)

Vi<k bi0) =xf A bi(l) =x. (19)

The k-linear term w(x) = x, - - x; can then be relaxed with the introduction of 2* constrained variables );and
k + 1 new constraints:

w=> X[ by (20)
i<k <k
V] § k x]- = Z /\,bJ(d,]) (21)
i<2k
doAi=1 A Vi< 2K N >0 (22)
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This relaxation is executed individually for every term in the nested sum of the BED formulation (see
equation (4)). In this way, the convex hull of a problem containing k-linear terms can be constructed, allowing
the relaxed problem to be optimised with the Lagrange multipliers A; as the decision variables.

C.2.Big M Method

When formulating the problem, there are situations where the product of two variables needs to be determined.
An example is the use of the interaction terms in equation (7), where a binary variable is introduced to determine
the active terms To solve the model with the proposed methods, the product of the two involved variables needs
to be linearised (Glover 1975). For the multiplication of a bounded continuous variable M € [0, M Yland binary
variable x € {0, 1}, anew variable z= M - xand a set of constraints can be introduced:

z< MY - x (23)
z<M (24)
z>M— (1 —x) MY (25)
z>0. (26)

These linear inequalities ensure that zis within the expected bounds [0, M V], equal to zero if x = 0, and equal to
M ifx = 1. This approach is commonly referred to as the big M method. Similarly, if the continuous variable is
bounded to a non-positive interval [M L 0], the variablez = M - x will require the following constraints:

z> ML «x (27)
2> M (28)
z<M— (1 —x) M- (29)
z2<0. (30)
For two binary variables x, y € {0, 1}, we can define z = x - y together with the following three inequalities:
z< X (31)
zZy (32)
zz2x+y— 1L (33)

These linearisations will be used to facilitate the sequence optimisation that requires the introduction of
additional binary variables (see appendix C.4.6).

C.3. Piece-wise linearisation

To constrain the optimisation to physically deliverable treatment plans, the timing information, i.e. beam-on
times and starting times of the individual iso-centres, has to be recovered from the dual envelope formulation
without re-introducing nonlinearity to the optimisation. This is achieved by applying a piecewise linearisation
(PWL) (Lin et al 2013) to each individual substituted nonlinear term.

For asingle variable function f (x): R — Rwithx € [ag, a,,,], aset of m 4+ 1 monotonically increasing
support points {a;| I € {0,...,m},a0 < a; < --- < a,,,} can be defined. An approximate PWL of L( f(x)) over the
interval [ag, a,,,] can then be achieved using the two surrounding support points 4; < x < a;,  and their
individual weights v;:

L(f(x) => a (34)
1=0
m
X = Z av). (35)
1=0
This requires the use of the following constraints:
Vo < Yo Um < V-1 (36)
vy, + forl=1,....m — 1 (37)
m—1
n=1 (38)
1=0
=1 (39)
1=0
y € {0, 1}, v >0, forl = 0,...,m — 1. (40)

The binary variable y, determines the active interval for any value of x € [ay, a,,,] and thus which two adjacent v,
take a nonzero value.
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The number of new (binary) variables and linear constraints introduced with this approach scales linearly
with the number of support points m. A higher number of support points increases both the accuracy of the
PWL and the computational cost to solve the problem.

C.4. Convex relaxation of the MINLP problem

C.4.1. Reformulating the BED.  To implement the optimisation of the BED, we need to express it in terms of the
actual decision variables and parameters used by the solver. Specifically, we define a new variable At that
describes the difference in starting time of two iso-centres and relate this back to the individual combination of
beam-on times 8t and gaps g between iso-centre deliveries. In addition, we substitute the nonlinear terms and
combine constants that are the same across multiple summands into a single parameter. Original:

L (=, -U(E,
BED:Zdjét,-JrL[ G )+ M ”2)] (41)
e /B 1+¢
—_ 2 N 32 1 16t
U(Z, p) = —Z di*| 6t — —(1 — e71%)
=1 K
[ ‘ ‘
— = dydje =W (erdh — 1) (e~ — 1) |. (42)
Hg=1
Reformulated:
N . N . 2 N . 2
BED = Z djétj + AIZ dj WAI((Stj) + AZZ dj WAZ((Stj)
=1 j=1 j=1
N j-1 N j-1
— Blzz dkdjWBl(Atjk) oty 51']‘) — Bzzz dkdjWBz(Atjk, Oty 61’1‘) (43)
J=lk=1 j=1k=1
Bi:ila/ﬁzﬁ’ i€ (1,2} (45)
wa = St— L —ent, i€ (1,2) (46)
W, = e Hiblik(erith — 1)(e7H% — 1), i€ 1,2} (47)
j—1
Atp =1t — tr =Y (6 + g). (48)

I=k

C.4.2. Application of the dual envelopes.  The dual envelope approach described in appendix C.1.2 is applied to
the nonlinear terms w 4, ,, wp, ,. For simplicity and readability, we will limit the formal description to a single
term of w, and wg. The implementation for the individual repair-rates 1y, tt,, iso-centres, and possible
interaction terms is completely analogous. For the interaction terms, the individual beam-on times are
designated as 0t. (the current iso-centre) and 6t (a previously delivered iso-centre).

The nonlinear function w, is replaced with the convex envelope #, constructed from the lower and upper
bounds of the beam-on time §¢, .

W= > N [] bidyp) (49)
i<k <k
ok s (]i-1
Vi<25ji<k dlj_(l T JmodZ) (50)
Vi<k o b(0) =xf = w(éD) A bi(1) = xj = wy(8t) (51)
dAi=1 A Vi< 2k N >0 (52)

i<k

Practically, since k = 1 for our application (single variable, w, = [1j<x)), this boils down to a substitution of the

nonlinear function w, where the Lagrange multipliers ); act as a scaling factor within the bounded interval

[wa (8t), wy (60)].If, for example, we would add the dose-rate d as a decision variable, then this could easily be

formulated as a bilinear function (w4 = x; - x,) and the dual envelope would act as described in appendix C.1.2.
Similarly, the interaction term between the iso-centres wp is a nonlinear function of three variables that

require a convex relaxation to create a linear problem. First, we substitute the individual terms in the product to
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express wp as a trilinear function:

wg = e HAlp(ehdly — 1)(e Ml — 1) =x; - % - X3 (53)

x = e M, X% = el — 1, X3 = e M — 1, (54)

The bounds on the individual x; are determined from the lower and upper bounds of the individual variables

At, At, o, ot
le = ¢ HAly sz = el — 1, x3L = g M _ ] (55)
xlU = e‘“A_tfP, xZU = el — 1, x3U L (56)

With this information, the dual envelop wj of the trilinear interaction term (k = 3) is defined as follows:

wg = > N [ bj(dyp (57)

i<k <k
V] < k Xj = Z /\,b](d,]) (58)

i<k

ok (i1

Vi<25ji<k dl](l 7 Jmodz) (59)
Vi<k o bj0)=xf A bij(1) = x (60)
dai=1 A Vi< 2k \i>0. (61)

i<2k

Now the convex relaxation of the BED can be expressed with the beam-on times 6t and Lagrange multipliers A as
variables:

N N N
BED = Z d]»&tj + AIZ deWAbj + AZZ djsz/Az)j
j=1 j=1 j=1

N j—1 L N j-1 o
— Blzz dkdjVT/Bl,jk — BZZZ dkdjlf’t\/gz,jk. (62)
j=1k=1 j=1k=1

C.4.3. Application of PWLs.  Up until now, all terms in the convex BED formulation are completely
independent of each other. However, in practice, each individual iso-centre will contribute to multiple of these
terms For example, iso-centre j will interact with all previously delivered iso-centres k < jin one way and all
followingiso-centres k > jin another way (see x;, X, X3 in equation (54)). Thus, we must enforce consistency for
all the timing information across the individual envelopes. Since the individual terms substituted in the dual
envelope approach are bijective over the domain R of the timing variables (6t and At) and their corresponding
codomains, they can be inverted. Thus, one can retrieve the timing information from the state of the variables of
the dual envelopes. To not re-introduce nonlinearities into our system, we apply PWLs to these nonlinear terms
to determine the values of the timing variables 6t and At.

By enforcing an equality constraint between the PWL of the nonlinear terms L and the corresponding values
from the dual envelope (xj, W), the timing variables can be extracted from the current state of the PWL.

For ), the relationship is as follows:

L(ét - l(1 - e“‘”)) = Z(al - l(1 - e”“’))ul =" Aibi(di) (63)
1% 1=0 H i<k
=06t = Z apvy. (64)
1=0
For wp we need to create a PWL for each of the three terms (x;, x,, x3) and enforce the same equality constraints:
L(xj) = > xj(apvi = Y, \ibj(dy), je{l,2,3L, k=3 (65)
1=0 i<2k
j=1LLe ") =Y (e "y = Y Nibi(din) = Aty = a (66)
1=0 i<k 1=0
j=2:L(eh — 1) =) (e — Dy = > Niba(din) = 6ty = Y ayy (67)
=0 i<k 1=0
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m m
j=3:L(e Mt —1)= Z (e7# — Dy = Z A\ibs(d;3) = 6t = Z av). (68)
=0 i<k 1=0
As mentioned above, these equations are exemplary for individual envelopes. The introduced constraints
need to be enforced across all terms in the BED formulation. For each of the two repair-rates there are Nj,, Wy ’s
and N, = W Wwp’s. With the constraints on every individual term, we can ensure that the timing of the

iso-centres is consistent across all envelopes even after switching to the Lagrange multipliers as the variables.

C.4.4. Objective function. 'To implement the objective function (see equation (6)), a new cost variable is
introduced:

~ cost. cost
f(BED) = wry Y = WRim Y Loy (69)
veTV v vERim NRim
Using inequality constraints for every voxel v, it can be ensured that only BED values beyond the defined lower
BED,.rand upper bounds BED ., contribute to the penalty value (i.e. no negative penalty is incurred for voxels
within their defined bounds)

BED,; — BED, Vve TV
cost, > (70)

BED, — BEDy,.. Vv € Rim

C.4.5. Beam-on time MILP problem. With the approaches introduced above, we can now define the beam-on
time optimisation as a MILP problem. The parameters controlling the number of support points used for the
PWLs (1,4 and mp 1, mp ,, g 3) allow for a trade-off between the accuracy of the approximations and the
incurred computational cost. An appropriate choice of this parameter becomes crucial when dealing with the
sequence optimisation (see appendix C.5.1). For the beam-on time MILP problem, two support points were
used for every envelope.

minimise f (BED)

W.r.t. 6t € RYy At € RN
WA € RN M ¢ REGNox2
L(WA) c R;ENM = R;EleuXmA }’A e {0, 1}2><Niso><m,x71
WP e RGN AB g R2Nax®
xPeRYN xPe RN xP e RENw (71)

L(xf) e RENe vf e RGN B € (0, 1} 2 Naxmai—1
L(xP) e REMNe 8 e RGNz yB € {0, 1} 27 Naxmsa—1
L(x)) € RN vf e RGN ™ pB € {0, 1} 27 Niwxmpa
cost; € Rg{;’

s.t. (49) — (52) (57) — (61) (dual env. constr.)

(34) — (40) (63) — (68) (PWL constr.)
(62) (69) — (70)  (cost constr.).

C.4.6. Adding sequence optimisation. To add the ability to change the delivery sequence, we introduce a square
matrix variable h € {0, 1}V controlling the active terms

N N N
. . o s
BED = > " d;6t; + AY | di Wa,j + A diWa,;
=1 j=1 j=1
— B> hjdidiwp, i — B2 hjdidiwp, j (72)
j=k j=k

and enforce a constraint that limits the active terms to the physically possible ones. That is: there are always
NWN-1)

active terms and only one active interaction term for any combination of two iso-centres j, k.
V]',ke {1,...,N},j¢k hjk+hkj: 1. (73)

Now the solver would be able to activate and deactivate all the individual interaction terms. However, when
changing the sequence of delivery there is more changing than only the active interaction terms The time
between two iso-centres depends on the beam-on times of all the iso-centres delivered in-between them. Thus,
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we need to be able to relate the active terms, to the delivery sequence. To that end we introduce the matrix s €
{0,1 }N *N which describes which iso-centre is delivered at which position in the order of delivery. The column
describes the position in the sequence and the non-zero row index determines the iso-centre used in that
position

010 - 10
seq=[213]<s=|100l<h=|0 — 0. (74)
001 11 —

Again, we need to ensure that s is constrained to a feasible treatment, i.e. exactly one iso-centre delivered at every
position (column) and each iso-centre (row index) must be used once

NE
&

I

~

N
Vi€ {1,...,N}, dosi=1 A (75)
j=1

-
Il
—_

To enforce the consistency between the variables for iso-centre order s and the active terms h, we introduce a
comparison function compji between two iso-centres jand k:

N-1
compy, = D (N = i)(sij — sin)- (76)
i=1
compy. € { — (N —1),...,—1,1,...,N — 1} will be positive ifiso-centre j is delivered before iso-centre k (i.e.

tj < t), and negative if iso-centre j is delivered after iso-centre k (i.e. t; > t;). Thus, the binary interaction term
control variable hj, needs to be one for all combinations of jand k where compj, < 0. This can be enforced with
the following inequality constraint:

Vi, ke {1,...N},j=k hy. - compy. + hy; - compy; < —1. (77)

Now that the active terms h directly represent the current sequence, the starting time of every iso-centre j can be
defined as follows:

N
= Z hjk(étk + gk)' (78)
k=1,k=j

We can now use this starting time definition to constrain the value of At; to the appropriate value based on the
delivery sequence:

hjkAtjk = hjk(tj — t). (79)

The use of the binary variable hj; is required here to ensure compatibility with the dual envelopes and PWLs
which only allow values of Atj, within the predefined bounds [Atj, Atj]where Aty > 0.

At this point, the problem fully is described and the convex relaxation of the BED could be optimised.
However, with the additional binary variables introduced above, the problem is no longer linear. There are
multiplications of the binary variable h with the interaction terms w3, sequence s, beam-on times 0t, starting
times #, and time in-between iso-centre deliveries At. Every one if these nonlinearities is resolved using the big M
method described in appendix C.2. The required inequalities are completely analogous to that description and
are omitted here for clarity:

Vi, k€ {1,...N},j=k:

Vie {1,2): hyWwp,jx = fﬁ(i (80)
Vie {l,.,N—1},l=jVI=k: hicsii = Zji (81)
hidte = zjf (82)

hit; =z (83)

hte = zﬁf (84)

he Aty = zj'. (85)

Now the convex relaxation of the BED for the simultaneous beam-on time and sequence optimisation can be
defined as follows:
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N N N
BED = Z djétj + AIZ deWAI)j + AZZ deWAzJ
=1 =1 =1
— By dydizy — Byy didi2yp (86)
j=k j=k

C.5. Beam-on time and sequence MILP problem
With the variables and constraints introduced above, we can now formulate a MILP problem for the beam-on
time and sequence optimisation.

minimise f (BED)

w.r.t. s € {o, 1}Nisn><Nisu h € {0, I}NisaXNiso zS ¢ {0, 1}Nisn><1\7:sa><l\7isr1><1\’isa
6t € Ry t e RYy At € RYg"Neo
Z(St c RIZ\%‘)XMSO ZTJr c Rg]i(s)aXMso ZT7 c Rg’(s)oXMsv
At NigoX Nigo 5B 2 X NigoX Nigo
z=h e ]R>O z° € R>O
WA ¢ RZ;SNM M e R;;NMXZ
A 2 X Nis A 2 X Niso X Mg A 2% NjgpX t14— 1
L(w?) € RSy v4 e RS y*4 e {0, 1} 7N (87)
~B 2 X NisoX Nigo B 2 X NisoxX Nigox 8
w® e Ry X e Ry
xlB c R;EMWXMSU xf c Réél\rﬁo st c Riél\rx’m
L(xlB) c RéEMSGXMSO I/F c R;éMsostoxmB,l le c {0’ I}ZXMszMsoxmB,171
i 2 X Nj, _
L(xZB) c R;EMSG l/g c R;S is0 X Mp 2 yzB c {O, 1}2><N,m><mB,z 1
i 2XN; g —
L(x3B) c R2<>(<)Nm V? c R;& isoX Mp,3 }’3B c {0, I}ZXMsoxmB,s 1

cost; € RYy»

s.t. (73) (75) — (79)  (seq. constr.)
(23) — (33) (80) — (85) (big M constr.)
(49) — (52) (57) — (61) (dual env. constr.)
(34) — (40) (63) — (68) (PWL constr.)
(69) — (70) (86) (cost constr.).

Note: All variables that were specific to the N, = NN — 1)

with Nj;, X Nj,, individual components to cover all possible interactions. Their diagonal elements (i.e. ‘self-
interaction’ of an iso-centre) do not contribute to the optimisation problem.

interaction terms in equation (71) are now expressed

C.5.1. PWL considerations for the sequence optimisation. ~ As described above, to solve the treatment planning
problem the convex relaxation of the BED is built from a set of bounds on the iso-centre timings (6¢, Af). For the
beam-on time optimisation, the bounds of At follow directly from the bounds on the individual beam-on times.
As the bounds on beam-on times tighten, so do the bounds on the possible At. Thus, the convex relaxation of
the BED converges to the value of the full nonlinear version even if we only use the minimum of two support
points in the PWLs. This substantially reduces the computational cost of solving the model.

When the order of iso-centre delivery can change, then the range of possible values for A¢will not shrink
with the bounds on the beam-on time. Instead, its lower limit is determined by the shortest possible beam-on
time and the upper limit is defined by the (N — 1) longest possible beam-on times. In order to ensure accurate
values for At (and thus the BED) are determined from the PWL of the corresponding nonlinear term, the
number of support points needs to be increased. Preliminary tests determined that using 10 support points was
sufficient to accurately determine the BED from the convex relaxation.
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