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  Abstract 

Social interaction involves rich and complex behaviours where verbal and non-verbal 

signals are exchanged in dynamic patterns. The aim of this thesis is to explore new 

ways of measuring and analysing interpersonal coordination as it naturally occurs in 

social interactions. Specifically, we want to understand what different types of head 

nods mean in different social contexts, how they are used during face-to-face dyadic 

conversation, and if they relate to memory and learning. Many current methods are 

limited by time-consuming and low-resolution data, which cannot capture the full 

richness of a dyadic social interaction. This thesis explores ways to demonstrate how 

high-resolution data in this area can give new insights into the study of social 

interaction. Furthermore, we also want to demonstrate the benefit of using virtual 

reality to artificially generate interpersonal coordination to test our hypotheses about 

the meaning of head nodding as a communicative signal. 

The first study aims to capture two patterns of head nodding signals – fast nods 

and slow nods – and determine what they mean and how they are used across 

different conversational contexts. We find that fast nodding signals receiving new 

information and has a different meaning than slow nods. The second study aims to 

investigate a link between memory and head nodding behaviour. This exploratory 

study provided initial hints that there might be a relationship, though further analyses 

were less clear. In the third study, we aim to test if interactive head nodding in virtual 

agents can be used to measure how much we like the virtual agent, and whether we 

learn better from virtual agents that we like. We find no causal link between memory 

performance and interactivity. In the fourth study, we perform a cross-experimental 

analysis of how the level of interactivity in different contexts (i.e., real, virtual, and 

video), impacts on memory and find clear differences between them. 
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Impact Statement 

 

The overall objective of this thesis is to understand how people coordinate and learn 

using head nods by establishing new ways to measure, analyse and artificially 

generate dyadic social interactions. We establish a data collection framework that is 

able to measure the precise multimodal nature of dyadic verbal and non-verbal 

behaviour using motion capture, and to analyze the coordination between people in 

a conversation using wavelet analysis. This could be very important for determining 

naturalistic parameters in social interaction, such as its timing or rhythmic properties. 

Understanding the timing and at which frequencies specific behaviours occur can 

help us answer how and why we use these as social communicative signals. Such 

knowledge could impact research on disorders of the social brain such as autism, 

and automatic detection or sensing of social signals.  

The quantification of these social signals further demonstrates the experimental 

benefits of artificially generating social signals in virtual agents based on behavioural 

data from real interactions. This can then be used to further test and challenge our 

cognitive hypotheses about social behaviour to provide new insights and directions 

for research into human interpersonal coordination. Using motion capture to build 

better virtual models of interpersonal coordination with a grounding in psychology 

can subsequently contribute to improved realism of virtual agents that closely 

approximate real behaviour without the need to manually extract and code individual 

parameters. This will guide better research on virtual reality and provide fundamental 

new insights and directions for reasearch into interpersonal coordination. 

The findings in this thesis also demonstrate that it is possible to identify specific 

head nodding behaviours and link these behaviours to conversational outcomes. 
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These head nodding behaviours can also be used as a way to quantify features of 

an interaction (e.g., affiliation, liking, interest), or as part of a clinical assessment.  

Understanding how different conversational outcomes like memory and learning 

are affected by social interaction is important in education. In this new era of online 

social interaction following the recent coronavirus (COVID-19) pandemic, it is 

important to understand what makes an interaction work and how we can best 

implement the benefits of real social interactions in an online educational setting.   

The convergence of research questions in both psychology and computing thus 

sets the scene for the studies presented in this thesis, which draws together these 

diverse research areas, combining cognitive and psychological hypothesis testing 

with new advances in measuring, analysing, and artificially generating interpersonal 

coordination to provide a new level of understanding of dyadic social interaction. 
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Human social interaction involves rich and complex behaviours where verbal and 

non-verbal signals are exchanged in dynamic patterns (Paxton & Dale, 2013). In this 

thesis we are interested in learning more about head nodding during face-to-face 

dyadic conversations in naturalistic settings. Specifically, we want to understand 

what different types of head nods mean during different social contexts, how they are 

used, and if they relate to learning and memory. To understand social coordination, it 

is helpful to have detailed high-resolution data recordings and to analyse this with 

appropriate methods. However, many current methodological frameworks are limited 

by time-consuming and low-resolution data collection methods, which cannot capture 

the full richness of a dyadic social interaction. By using a multimodal data collection 

framework of dyadic face-to-face conversation, we also want to explore new ways of 

modelling coordinated behaviour as it naturally occurs in social interactions. 

We begin this chapter by reviewing previous work on interpersonal coordination 

(Section 1.1). In this section we cover verbal and non-verbal social signals (1.1.1) 

and give an overview of two types of coordinated behaviours: Behavioural Mimicry 

(1.1.2) and Backchannel Signals (1.1.3). We will then focus specifically on head 

nodding behaviour (Section 1.2). In this section we look at head nods as mimicry 

(1.2.1), head nods as backchannels (1.2.2), and introduce approaches to the study 

of interpersonal coordination (1.2.3). During the next three sections, we review the 

methodological background to Measuring (Section 1.3), Analysing (Section 1.4), and 

artificially generating (Section 1.5) interpersonal coordination. These sections include 

our approach to recording dyads (1.3.1), how to analyse this data with time-

frequency analysis (1.4.1–1.4.2), and to artificially generate social signals in 

interactive virtual agents (1.5.1–1.5.2). We conclude this chapter by presenting our 

overall aims, together with an overview of the experimental chapters (Section 1.6).  
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1.1 Interpersonal Coordination 

Face-to-face conversations are undoubtedly our most important form of social 

interactions. Understanding the social interplay during conversations, how they work, 

and why they are important, remains a challenge for researchers studying their 

complex nature from different fields of interest, like psychology, cognitive 

neuroscience, linguistics, or computer science. The study of how people perform this 

behavioural and linguistic coordination during social interaction is essential to 

understanding the nature of social cognition and has attracted the attention of many 

social disciplines recently. Various terminology has been used to define 

interpersonal coordination, and a general definition is that interpersonal coordination 

is the temporal matching of body movements and/or linguistic utterances between 

people when they engage in social interaction (Bernieri & Rosenthal, 1991; Hoehl, 

Fairhurst, & Schirmer, 2020). In this thesis, we will use the umbrella term 

‘coordination’ when we talk about ways in which people temporally organise their 

verbal and non-verbal behaviour in social interactions.  

From early work (Chartrand & Bargh, 1999; Condon & Ogston, 1966; Kendon, 

1970) to more recent studies (Abney, Paxton, Dale, & Kello, 2015; Ramseyer & 

Tschacher, 2011) it has been demonstrated that people coordinate their movements 

in different ways, including synchronizing rhythms (Richardson & Dale, 2005), 

mimicking (Chartrand & Bargh, 1999), structuring turn-taking behaviour (Duncan & 

Fiske, 1977), and assuming complementary roles (Garrod & Pickering, 2004). 

The outcomes of interpersonal coordination have been widely studied in a variety 

of contexts. Many studies examine the positive outcomes, either at an individual 

level, or at the level of the dyad or group. Perhaps the most well-known finding 

related to positive outcomes of coordination is that it promotes liking and feelings of 
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closeness between interacting partners (Lakin, Jefferis, Cheng & Chartrand, 2003). 

Other interpersonal outcomes include findings that coordination increases rapport 

(Hove & Risen, 2009), and cooperation (Wilmermuth & Heath, 2009). 

However, there are many challenges involved in understanding the functional 

benefits of interpersonal coordination as the research community is still uncertain 

about what mechanisms are involved and how they interact across multiple 

modalities and timescales (Dale, Fusaroli, Duran & Richardson, 2013). There is a 

growing recognition that studying isolated participants responding to stimuli or 

interacting with confederates does not translate well to real-world social interaction, 

which is often complex and dynamic (Krakauer, Ghazanfar, Gomez-Marin, MacIver, 

& Poeppel, 2017; Risko, Richardson, & Kingstone, 2016). Recent attempts have 

been made to fill this gap, calling for a ‘second-person neuroscience’ capturing the 

need for natural interactions, involving multiple modalities across different contexts 

and timescales (Heerey, 2015; Schilbach et al., 2013).  

In this thesis, the aim is to explore new ways of 1) Measuring real-world 

interpersonal coordination using high resolution motion capture to identify fine 

grained behaviours based on hypotheses about the meaning of specific social 

signals; 2) Analysing interpersonal coordination as it naturally occurs in dyadic social 

interaction; 3) Artificially Generating interpersonal coordination in virtual characters 

that can interact with participants to test our hypotheses about the meaning of 

specific behaviours as communicative signals. These advances can allow us to 

investigate how to quantify simple interaction behaviour in higher resolution and test 

hypotheses with high experimental control.  

In the next section we will review research on how two or more people coordinate 

exchanges of both verbal and non-verbal social signals. 
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1.1.1 Verbal and Non-Verbal Social Signals 

Take a moment to consider an example of a complex social interaction – two poker 

players trying to outwit each other at the poker table. One of the players is confident 

he has the winning hand and is trying to hide his confidence to lure the other player 

in and bet the pot. As he does this, he is acting stoic not to give anything away that 

the other player can use to “read” him. In poker slang this is known as not giving 

away a “tell”. However, his opponent knows this, and is trying everything he can to 

“talk up” the situation by verbally asking questions that will elicit a response that he 

can read and gather clues on how confident he is. The player with the winning hand 

is experienced enough to recognize that this is what the other player is doing, so he 

does not answer. At this point, the other player, realizing talking does not work, 

slams and rubs his hands together, leans back in his chair more relaxed, and laughs 

at the situation while saying “I don’t know what to do?!”. Now, the player with the 

winning hand does the same, he leans back laughing in his chair while soon realizing 

his own mistake. By responding in such a relaxed and confident manner, he just 

gave away multiple “tells” to the other player, which was exactly what the other 

player wanted, to coerce a non-verbal response. There is a lot to gather from this 

example on how people coordinate their verbal and non-verbal behaviour.  

First, a social interaction is a shared behaviour between two or more individuals, 

resulting in a transfer of information through verbal and non-verbal messages. In this 

thesis, we will be discussing and referring to these messages as social signals. We 

define a social signal as a detectable and interpretable message produced, voluntary 

or involuntary, during social interactions that provide an exchange of information 

between people (Maynard-Smith & Harper, 2003). As such, a social signal is 

profitable to both the sender and receiver (Kleinsmith & Bianchi-Berthouze, 2013).  
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Secondly, interpersonal coordination is reciprocal, meaning that both players trade 

behaviours back and forth in a dynamic “dance” (Kendon, 1970). Traditionally, the 

role of the person that is receiving a signal has been viewed from two main 

perspectives in the language sciences. In what Clark and Krych (2004) called 

‘unilateral’ views on conversation, speaking and listening are two separate 

processes. In this view, the receiver is a passive listener. In ‘bilateral’ views on 

conversation, speaking and listening is considered a joint activity where the receiver 

of a signal is not merely a passive observer but has to adapt and coordinate his 

behaviour with that of the speaker to maintain mutual understanding (Clark, 1996; 

Sacks, Schegloff, & Jefferson, 1974). A simple and clear-cut difference between 

speaker and listener roles is rare in real-world social interactions. In research, we 

typically use this ‘sender-receiver’ framework because it acts as a good model of 

explanation. For example, we distinguish between the person (sender) who sends, 

speaks, enact, or otherwise reveals a signal; and another person (receiver) who 

decodes and interprets the signal. This distinction is heuristic in the sense that it 

often works as a good-enough labelling in a world where any social interaction 

quickly becomes highly dynamical and complex. 

Any description of conversation also requires consideration of how people can 

build mutual understanding between two or more people and the key concept here is 

‘common ground’ (Clark, 1996). Common ground is the set of beliefs and knowledge 

held by both people, which they both know that the other also believes. During a 

conversation, common ground can be updated as each person hears new 

information from their partner or signals to their partner that they understand what 

they have received. This process is called ‘grounding’ (Clark & Brennan, 1991).  



 
 

19 
 

Face-to-face conversations is a type of social interaction that involve highly 

coordinated exchanges of verbal and non-verbal signals. Experimental studies of 

conversation, or discourse, have primarily focused on verbal communication (Clark, 

1996). Since the 1960s, several disciplines, both inside and outside of linguistics, 

have been interested in how language and body movements are interconnected 

within human action. This introduced new challenges for disciplines traditionally 

focused almost exclusively on language, but also fueled new contributions in the 

social sciences on human action and communication. Within perspectives inspired 

by social interaction, such as Conversation Analysis (CA) (Duncan & Fiske, 1977; 

Sacks et al., 1974), emerged a field called interactional linguistics (Ochs, Schegloff, 

& Thompson, 1996) where focus is on the systematic organization and diversity of 

action within various social settings. In other words, action is understood as being 

organized not as isolated events by individuals but within social interaction. This 

includes gestures, gaze, facial expressions, body postures, body movements, 

prosodic speech (e.g., rhythm, pitch) and grammar. CA offered a new approach to 

study syntax and semantics, by encouraging a view of different modalities as 

interconnected, and language as integrated within this framework as one among 

many other modalities. According to Sacks and Schegloff (2002), CA has always 

been interested in bodily behaviour during social interaction and how it is 

sequentially organized. Even though the field of linguistics recognized early the 

relevance of gestures, this multimodality opened new avenues for analysis. 

It is now widely recognized that non-verbal communication is important for 

successful interaction. Humans can produce non-verbal social signals in a variety of 

modalities, ranging from gaze (e.g., direction, blinks, pupil dilation) (Argyle & Cook, 

1976; Kendon, 1967), body-movements including gestures (Kendon, 2004), posture 
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(Condon & Ogston, 1971), and head movements (Cerrato, 2005), to facial speech 

expressions (Ekman & Friesen, 1972). As we saw with the example of the two poker 

players, both verbal and non-verbal social signals are interconnected. For example, 

listening to someone speaking can influence you with what words they speak, the 

acoustics of the sound produced when speaking those words, the visual signals of 

the mouth moving, the posture and movement of their body and head. Social 

interaction is thus naturally multimodal, with a large variety of possible signals that 

each modality can produce. Importantly, by modalities, we mean not just the more 

specific and traditional notion of a sensory modality, but also measures derived from 

the human system that can lead to coordinated behaviour, including many non-

verbal modalities, or ‘modes’ of interacting, like for example head nods, facial 

expressions, gestures, and eye-blinks (Burgoon et al., 2002). For this thesis, we will 

limit our investigations to the domain of non-verbal social signals.  

In the next section, we are going to focus more closely on two specific types of 

interpersonal coordination, known as Behavioural Mimicry (1.1.2) and Backchannel 

Signals (1.1.3), which will drive our hypotheses used in this thesis.   

 

 

1.1.2 Behavioural Mimicry    

Humans copy each other in a variety of ways during conversations, including facial 

expressions (Bavelas & Chovil, 1997), moods (Neumann & Strack, 2000), speech 

(Giles & Powesland, 1975), postures and gestures (Chartrand & Bargh, 1999; 

Shockley, Santana, & Fowler, 2003). The copying of mannerisms, posture, gestures, 

and body movements is commonly called ‘behavioural mimicry’ (Lakin & Chartrand, 

2003), or the ‘chameleon effect’ (Chartrand & Bargh, 1999). It typically arises 
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spontaneously during social interaction. For example, one person touches their hair 

and the other does the same shortly afterwards without thinking about it. Thus, 

mimicry differs from more goal-directed imitation (Hale & Hamilton, 2016a) where 

one person might copy to learn a skill or achieve a particular goal (Bekkering & 

Prinz, 2002; Bekkering, Wohlschlager, & Gattis, 2000). The spontaneous nature of 

behavioural mimicry makes it more difficult to fake, which in turn makes it seem more 

honest and revealing about socially relevant information (Pentland, 2010). 

Early research observed that mimicry during clinical therapy sessions (Scheflen, 

1963) and classroom interactions (Bernieri, 1988) was correlated with reported 

affiliation, empathy, and rapport. In their pioneering study Chartrand and Bargh 

(1999) experimentally manipulated behavioural mimicry and demonstrated a causal 

effect from being mimicked to positive outcomes. The authors had confederates 

copy the naturally occurring posture, movements, and mannerisms of the 

participants while taking turns to describe various photographs to each other. At the 

end of the experiment, participants who were mimicked rated the confederate as 

significantly more likeable. Following this study, the confederate paradigm became 

widely used for studying behavioural mimicry (Stel, Rispens, Leliveld, & Lokhorst, 

2011; Van Baaren, Holland, Kawakami, & van Knippenberg, 2004), and the link 

between mimicry and affiliation led to the theory that mimicry functions as a ‘social 

glue’ to facilitate liking and affiliation to help people bond with members of our social 

groups (Lakin et al., 2003). This ‘Social Glue Hypothesis’ states that a person’s initial 

liking of someone leads the person to mimic their posture, movements, and 

mannerisms in conversations, which in turn leads to greater mutual liking between 

the interacting partners. Support for this theory comes from evidence that people 

mimic others more when interacting with in-group members (Bourgeois & Hess, 
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2008), or have a goal to affiliate (Cheng & Chartrand, 2003). Behavioural mimicry 

has also been related to improved rapport (Chartrand & Van Baaren, 2009), altruistic 

behaviour (Van Baaren, Holland, Kawakami, & van Knippenberg, 2004), trust 

(Bailenson & Yee, 2005), and better collaborative performance (Fusaroli & Tylén, 

2012; Marsh, Richardson & Schmidt, 2009). Moreover, during mimicry, the boundary 

between self and other is thought to become blurred (Georgieff & Jeannerod, 1998), 

and research has shown that behavioural mimicry appears to influence or affect the 

self-construal of the person being mimicked (Ashton-James, van Baaren, Chartrand, 

Decety, & Karremans, 2007), which led the researchers to propose that an increase 

in self-other overlap, where people feel closer or more like the other, leads to more 

prosocial behaviour, and not just towards the person mimicking, but to others in 

general. Some studies investigate the idea that being mimicked increases self-other 

overlap (Hale & Hamilton, 2016a), while others have suggested that a greater self-

other overlap can induce more mimicry behaviour (Maister & Tsakiris, 2016). Other 

findings consistent with these proposals is that being mimicked generally induces 

cognitive changes in feelings of interdependence (Stel et al., 2011). It has also been 

suggested that some people show more spontaneous mimicry than others, leading 

to more liking (Salazar-Kämpf, Liebermann, Kerschreiter, & Krause, 2017). 

However, the cognitive processes underlying this link or what exactly sustains this 

“social glue” are not yet clear and heavily debated. Moreover, even the basic link 

from mimicry to liking has not been replicated consistently, and it is not known if 

individual differences in mimicry are robust across different contexts. In Chapter 2, 

we will examine if there are reliable individual differences in social signalling 

behaviour. While some previous studies imply that some people show more mimicry 

than others (Salazar-Kämpf et al., 2017), there is little data to quantify this. Our 
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large-scale data collection will provide an opportunity to explore individual 

differences. In Chapter 3, we aim to determine if coordination between two people in 

a conversation might be related to measurable outcomes of the conversation, 

including how much the two people relate to each other in terms of self-other 

processing. Research has shown that mimicry appears to affect the self-construal of 

the person being mimicked (Ashton-James et al., 2007), and that being mimicked 

increases self-other overlap (Hale & Hamilton, 2016a), but so far only subjective 

reports and low-resolution methods have been used to examine this link. With higher 

resolution data and behavioural measures, we aim to explore the link between 

mimicry and self-other overlap further. In Chapter 4, we will examine mimicry in 

relation to liking, and how virtual reality can be used to test this relationship. Virtual 

mimicry has been shown to have significant effects on people’s perception and 

attitude toward them (Bailenson & Yee, 2005), and could be used to test competing 

hypotheses about how people respond to mimicry. We aim to improve upon this 

method and artificially generate mimicry in virtual characters to test if virtual 

characters that mimic participants are more likable than those who do not mimic.  

In the next section, we will introduce another type of interpersonally coordinated 

behaviour that is important for social interactions, known as Backchannel Signals. 

 

 

 

1.1.3 Backchannel Signals  

Research over the past decades has highlighted behavioural coordination that help 

establish and maintain common ground. Backchannelling is one such coordinated 

behaviour, believed to smooth interaction, and maintain grounding (Clark, 1996). 
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Descriptions of conversation behaviour often distinguish between the primary 

channel of information, from the speaker to the listener, and a secondary channel of 

information, or backchannel, from listener to speaker. Argyle (2013) notes that 

backchannel responses have a powerful effect on speakers. They afford an 

opportunity to communicate messages to the speaker without disrupting the flow of 

their speech. The speaker does not perceive them as interruptions (Duncan & Fiske, 

1977). Whenever people listen to someone speaking, they do not just passively 

receive what is being said, but they actively participate in the interaction providing 

information about how they feel and think of the speaker’s message. Thus, 

backchannels support the bilateral account of conversation. For example, when 

speakers send a signal, the listener provide feedback through a backchannel, which 

in turn affect the speaker (Clark & Krych, 2004). Verbal backchannels are 

represented as linguistic verbal answers like “Yes”, or vocalizations such as ‘uh-uh’ 

and ‘mm-hm’ comments (Sacks et al., 1974). Non-verbal backchannels are usually 

associated with gestures, smiling, gaze, blinks, facial expressions, and head 

movements (Argyle, 2013; Goodwin 1981; Heylen, 2006; McCarthy, 2003; Hömke, 

Holler, & Levinson, 2017). It has been estimated that up to 20% of all facial 

expressions that occur during a conversation are backchannel signals (Bavelas & 

Chovil, 1997), and that backchannels occur more than a thousand times in an hour 

of conversation (Gardner, 1998).  

Much of the research with non-verbal backchannel signals has been dedicated to 

identifying the social meaning behind them. For example, Hömke et al. (2017), 

investigated blinking as one potential additional type of backchannel, hypothesizing 

that it may serve a social-communicative function. To examine this, they studied 

dyadic face-to-face conversations by measuring and analysing short and long blink 
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duration and frequencies in high resolution using motion capture. The authors found 

that long blinks from a listener were related to changes in the conversation topic from 

the speaker and suggested that the long blink might signal ‘please move to a new 

topic’. This suggests that even subtle non-verbal signals such as eye blinks may be 

perceived as meaningful by others. In a follow up study, Hömke, Holler, and 

Levinson (2018), developed a novel experimental paradigm using virtual reality 

technology to selectively manipulate blink duration in a virtual listener. The 

participants were asked to have a conversation with three different virtual characters 

and to respond to open questions (e.g., “How was your weekend, what did you 

do?”). While participants were answering, the virtual character produced different 

types of visual feedback, or backchannels, which was triggered secretly by a 

confederate via video link whenever they felt appropriate to signal understanding. In 

some trials, those triggers produced a short blink (~200 ms), and in other trials they 

produced a long blink (~600 ms). The aim of their study was to experimentally test 

the claim that long blinks signal ‘please change topic’ by observing how participants 

would react when the virtual characters gave a long blink. The results showed that 

participants spoke less following a long blink compared to a short blink, consistent 

with their earlier hypothesis. This approach of using correlational data from close 

observation of naturalistic behaviour to build a good hypothesis, followed by testing 

with strong experimental control using a virtual character was crucial to determining 

the meaning behind long blinking as a backchannel behaviour. In the following 

sections, we will narrow our focus to head nods, and use a similar approach to 

explore the meaning of these signals. 
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1.2 Interpersonal Coordination of Head Nods 

The way people move their head when they speak and listen to each other is an 

interesting form of communication to study because of the diversity of meanings that 

could be present. Researchers usually study head movements from two different 

perspectives: their role in speech production, and their communicative functions 

(McClave, 2000). From the perspective of speech production, Hadar, Steiner, Grant, 

and Rose (1983) found that when speaking the head moved a lot compared to when 

someone was listening, and that there was a correlation between head movement 

and verbalisations. The authors also showed that head movements play an 

important role in putting emphasis on important parts of the speech utterance, and 

on improving the auditory speech perception. Other functions of head movements 

during speech production include self-affirmation and managing speech planning 

and hesitation about what to say (Boholm & Allwood, 2010). 

On the other hand, looking at head movements from the perspective of 

communicative function can tell us something about the way the movement might 

be, or intended to be perceived by others. Listeners head nods have been of 

particular interest to many researchers. Linguists, for example, have long recognized 

that listener head nods can be non-verbal backchannels that provide feedback to a 

speaker in an interactive way (McClave, 2000). Head nods can also function as 

stress markers, and head turns can have a deictic function (Birdwhistell, 1970). 

Boholm and Allwood (2010) considered the functions of repeated head movement, 

such as head nods, jerks, shakes, and tilts with co-occurring speech, and found that 

their main function, especially nods and shakes, was to provide communicative 

feedback. The power of head and facial movements to control interpersonal 

coordination even in the absence of speech was described by Kendon (1990). 
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Following the work from Kendon, research show that many other important non-

verbal signals during conversation are centred around the head. Smiles for example 

are frequently reciprocated behaviour where people respond to their partners’ smiles 

with smiles (Heerey & Kring, 2007; Hess & Bourgeois, 2010). Failing to reciprocate 

smiles can even affect what others think of you as they may find it to be aversive 

behaviour. It is not surprising then that listeners’ attention is drawn to the speaker’s 

head and face during conversation (Argyle & Cook, 1976).  

Within the general context of head movements (Hadar, Steiner, & Rose, 1985; 

Kendon, 2002; McClave, 2000; Heylen, 2006; Cerrato, 2005), head nodding has 

been studied because of its central role in face-to-face conversations as an 

important source of social information (Argyle & Trower, 1979; Birdwhistell, 1970). 

The frequency of head nodding in face-to-face interactions has been shown to reveal 

personal characteristics or predict outcomes. For example, job applicants that head 

nod more in employment interviews are perceived as more employable than 

applicants who do not (Gifford & Wilkinson, 1985; McGovern, Jones, & Morris, 

1979). In most cases, people producing the head nods are not even aware of the 

social signal they send as they are often the result of implicit processes.  

It is important to note that the way social signals work can be different depending 

on a lot of factors, which may or may not be determined by a combination of 

functions. Thus, social signals are ambiguous, as they may correspond to more than 

one meaning. Head nodding, for example, is regarded as a distinct social signal that 

is particularly sensitive to conversational demands and can convey several different 

meanings, such as confirmation, agreement, and approval (Poggi, Errioco & Vincze, 

2010), to signalling attention and understanding (Hadar et al., 1983; Kendon, 2002), 

and requests for information and passing or claiming turns (Duncan, 1972). 
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For this thesis, we will limit our investigations to the domain of non-verbal 

behaviour, and more specifically to one subset of non-verbal behaviour, namely 

head nods. A head nod typically consists of multiple up and down movements of the 

head. Poggi et al. (2010) define a nod as a vertical head movement in which the 

head, after a slight tilt up, bends downward and then goes back to its starting point. 

This is the theoretical definition of a head nod we are using in this thesis. It should be 

kept in mind that non-verbal signals and head nods is just one window through which 

we observe and measure social interaction, but that these signals are measured 

within the context and experimental framework of multimodal social interaction, 

including verbal communication. In other words, our experimental setup is built to 

capture and record a large variety of modalities, but we choose to analyse only head 

nodding behaviour in this thesis. This choice to delimit our work will naturally lead to 

consequences for interpretation, which we will cover at the end of the thesis. In the 

following sections, we will explain head nodding in conversations within the 

framework of behavioural mimicry and backchannel signals in respect to speaker-

listener roles. 

  

 

1.2.1 Head Nods as Mimicry  

A long tradition of research into human interpersonal coordination describes patterns 

of synchrony or mimicry as integral non-verbal behaviours in dyadic social interaction 

(Bernieri, Steven, & Rosenthal, 1988; van Baaren, Janssen, Chartrand, & 

Dijksterhuis, 2009). As noted by Ramseyer and Tschacher (2006), the distinction 

between ‘synchrony’ and ‘mimicry’ is important as these concepts have recently 

been regarded as two distinct phenomena that have occupied separate research 
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fields. However, both perspectives apply the same reasoning and theory. For a 

simple interaction between two people, we can imagine different mechanisms at play 

that match with different timing properties. Mimicry occurs when one person 

performs an action and another performs the action afterwards, which implies a time 

lag between the two actions. Time lags are typically more than 300 ms (the limit of 

reaction times) but could be up to 10 seconds (Chartrand & Bargh, 1999). 

Synchronous behaviour (e.g., rhythmic walking, musical coordination), on the other 

hand, are those behaviours that are matched in time and occur simultaneously with 

no time lag (e.g., 0 ms) (Bernieri & Rosenthal, 1991). As such, synchrony and 

mimicry behaviour can be observed simultaneously during social interactions, and 

much research has focused on comparing their different causes and effects 

(Chartrand & Lakin, 2013; Hove & Risen, 2009). In this thesis we will use the term 

‘mimicry’ to refer to behavioural mimicry with a time lag of head nodding. 

In face-to-face social interactions (e.g., interviews or conversations), early 

research observed mimicry behaviour during clinical therapy sessions, and made a 

link to affiliation, empathy, and rapport (e.g., Scheflen, 1963). However, these types 

of studies were often based on single cases and anecdotal accounts. As we 

discussed earlier, after Chartrand and Bargh (1999) published their work on 

experimentally manipulating mimicry (i.e., the chameleon effect), many researchers 

started using confederate paradigms to study mimicry (Stel et al., 2011; van Baaren 

et al., 2004), which led to the hypothesis that behavioural mimicry facilitates liking 

and affiliation between people to help them bond (Lakin et al., 2003). Head nodding 

is one of the behaviours studied by Chartrand and Bargh (1999), but they also 

considered others, like general head movements, postures, gestures, and various 

other body movements and non-verbal mannerisms.   
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However, dyads in real-world interactions had seldom been assessed directly. In a 

study by Ramseyer and Tschacher (2011), based on sessions during psychotherapy, 

the researchers hypothesized that automated analyses of video might be able to 

detect mimicry in head and body movements. They used a motion energy analysis 

and found that coordination was more pronounced in the psychotherapy condition 

where the data come from the same interaction, compared to a control condition of 

pseudo-interactions, where the data come from different interactions generated by 

shuffling time structures. This automated method allowed a more detailed 

understanding of the patterns of mimicry in a real-world conversation. However, the 

resolution of video analysis will always be limited because one video recording 

provides only a flat image of the people (i.e., no 3D data).   

Hale, Ward, Buccheri, Oliver, and Hamilton (2020) recently measured head nods 

using motion capture to achieve a greater level of detail, and to determine the 

precise parameters and timing of mimicry. 30 dyads completed a structured 

conversation where they took turns to describe a picture to their partner while head 

nodding was recorded. They calculated the wavelet coherence (i.e., coordination) of 

these head movements within dyads as a measure of their non-verbal coordination. 

They found that mimicry occurred as a low frequency (<1.5Hz) nodding behaviour in 

the listeners, following the speaker’s head nodding with a time lag of only 600 ms. 

This is consistent with a reactive mechanism, as implied by simple reactive mimicry 

mechanisms (Heyes, 2011). The present thesis will build on the work of Hale et al. 

(2020) to explore mimicry across contexts and in a broader social context.  

An alternative way to examine the role of head nodding mimicry in conversation is 

to manipulate mimicry in Virtual Reality (VR). VR is a popular tool for research on 

social interaction because people usually react to virtual characters similarly to how 
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they would with real people (Bailenson, Blascovich, Beall, & Loomis, 2003). Using 

this idea, Bailenson and Yee (2005) created a method for virtual mimicry where 

participants wore a head mounted display (HMD) that tracked their head movements 

while the virtual character either mimicked their movement or made head 

movements recorded from a previous participant. They report that participants 

preferred interacting with the virtual character who mimicked and suggest that a time 

lag of 4 seconds between the movement of the participant and that of the virtual 

character is optimal, though this was not systematically tested. 

The VR method has the advantage of high experimental control over mimicry 

manipulation. Virtual humans can be artificially created to only perform the 

necessary behaviours, such as speaking, blinking, or nodding. In addition to 

overcoming many of the challenges associated with traditional paradigms, virtual 

mimicry could be used to test competing hypotheses about how people respond to 

mimicry or the impact of individual behaviours. For example, it could be used to 

manipulate the precise time lag of head nodding behaviour between the participant 

and the virtual character. 

 

 

1.2.2 Head Nods as Backchannels 

Head nodding is likely to be a major communication backchannel, that is a feedback 

signal from the listener in a conversation to indicate that one has understood or 

taking note of what the speaker is saying (Allwood & Cerrato, 2003; Duncan, 1972; 

Yngve, 1970). In addition to receiving or understanding, some researchers have also 

considered the head nod as a backchannel signal that can indicate acceptance or 

agreement with what someone is saying (Cerrato, 2005; Heylen, 2006; McClave, 
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2000). Sometimes, we nod to the speaker only because they are saying something 

that we had previously said or thought, so we are nodding not just to the speaker but 

to ourselves as a form of ‘back-agreement’, or we nod to say ‘yes’ to ourselves to 

confirm that we understood what exactly the speaker means as a form of ‘processing 

nod’ (Poggi et al., 2010). The speed and manner of the backchannel response may 

carry meaning as well. Backchannel nodding is usually considered to be fast and can 

communicate engaged attentiveness with the speaker (Clark, 1996). 

In addition to the low frequency (<1.5Hz) nodding behaviour found in listeners 

following the speaker’s head nodding with a time lag of 600 ms, Hale et al. (2020) 

also found an unexpected pattern of high frequency (>1.5Hz) nodding behaviour 

from the listeners. They hypothesized that this could be a newly identified social 

signal with a different meaning to the low frequency mimicry behaviour they found. 

These results provided a step towards the quantification of real-world human 

behaviour in high resolution. The quantification of high frequency fast nodding is 

useful for testing different hypotheses about the meaning of head nodding in 

conversations. For example, the high frequency nodding is produced mainly when 

participants are listening, which suggests this is likely to be a backchannel 

behaviour. It is a very quick head nod that is visible but very subtle, and usually not 

something people notice during conversations, unless someone were to point them 

out. Behavioural mimicry, on the other hand, is thought to be a slower type of 

nodding in the low frequency range. 

Some open questions that come from this distinction of two types of nods, include 

how these different nodding behaviours – fast and slow – change with context. In 

Chapter 2, we will examine this in more detail and try to determine what these 

different signals might mean and how they are used across different conversational 
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contexts. For such use of nodding to be meaningful it is important to have a robust 

understanding of when and why people engage in fast nodding and slow nodding. 

Context provides an important way to understand the meaning of social signals, 

because we would expect some signals to remain constant across contexts, while 

others might change. This may also allow us to determine if there are robust 

individual differences in nodding behaviour. Another interesting question to ask is if 

head nodding behaviour are related to conversational outcomes, like other cognitive 

factors. Based on results from Chapter 2, Chapter 3 will examine if coordination 

between two people in a conversation might be related to measurable outcomes of 

the conversations, including how much the two people remember new information. In 

other words, we will see if we can find a correlation between head nodding and 

memory, or the information learnt in a conversation. Based on results from Chapter 

3, Chapter 4 will examine both the fast and slow nodding behaviours using VR to test 

competing hypotheses about how people respond to these different behaviours. We 

also have methodological motivations to study head nodding, and in the following 

sections of the thesis, we will cover our approach in detail.  

 

 

 

1.2.3 Approaches to the Study of Interpersonal Coordination  

Hömke et al. (2017, 2018) provide a good example of a modern approach to 

studying interpersonal coordination. In their studies, they first measure real-world 

blinking, and analyse blinks in relation to dyadic conversation, and then they 

artificially generate a virtual character who could blink to test how people respond to 

blinks. This thesis will follow the same approach. Both Hömke’s studies and this 
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thesis rely on the idea that specific social behaviours can be identified and 

understood in terms of ‘behaviour rules’ (Hadley, Naylor, & Hamilton, 2022) 

The idea behind this approach is that a series of simple behavioural rules that 

guide how behaviour are generated are sufficient to explain some complex social 

interactions. For example, the coordinated movement of schools of fish appears 

sophisticated and complex but has a very simple basis where the behaviour can be 

explained by combining the rules ‘avoid those too near’, ‘align with those at an 

intermediate distance’, and ‘move towards those further away’ (Huth & Wissel, 

1994). Like the idea of a dynamic system, which has a cascading number of possible 

non-linear interactions, which implies that a small change in the initial conditions may 

have widespread effects throughout the system, so too can these simple rules at the 

individual level of a single fish result in apparently complex collective coordination at 

the group level of the school (Couzin, 2009).  

Characterizing human social interaction in terms of behaviour rules then, might 

provide a good explanation for interpersonal coordination since the behaviour of one 

individual is linked to the behaviour of their partner. In this thesis, we are using this 

approach to identify and analyse head nodding behaviour. For example, people tend 

to mimic head movements with a delay of 600 ms (Hale et al. 2020). Thus, a simple 

rule of ‘copy his head with 600 ms delay’ might be enough to create naturalistic head 

mimicry behaviour (Hale et al., 2020). A behavioural rule like this is then relatively 

easy to implement in a virtual character (Bailenson & Yee, 2005), making it testable. 

In other words, it is possible to test how participants respond to these virtual 

characters with or without the behaviour rule. 

In this thesis, we want to 1) Measure real-world head nodding using high 

resolution motion capture to identify a behaviour rule based on hypotheses about the 
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meaning behind behavioural mimicry and backchannel signals. We then want to 2) 

Analyse these head nodding rules in relation to dyadic conversation in speaker-

listener roles. Lastly, we want to 3) Artificially Generate this behaviour rule in a virtual 

character that can then enact and engage in conversation with participants so that 

we can test how people respond in a conversation that includes this rule. 

There are some subtle differences between this work and the studies by Hömke et 

al., particularly in the Artificially Generate stage. In their study with a virtual human 

(Hömke et al., 2018), the behaviour rule was implemented by an experimenter who 

controlled the virtual character. However, we aim to fully implement head nodding 

rules without needing human intervention. Implementing the behaviour rule in the 

virtual character that the participants interact with, will enable us to use the timing 

and frequency properties of head nodding to build highly responsive characters to 

make the coordination seem natural. This in turn can help demonstrate their 

sensitivity or how subtle social signals can be. Similarly, identifying where these 

behaviour rules break down can give us clues whether certain behaviours require 

more sophisticated rules or other cognitive models altogether (Hadley et al., 2022). 

For example, manipulating the social context could allow us to identify whether a 

behaviour rule breaks down or not under certain conditions. 

This approach highlight how new technologies and experimental designs can be 

used to address fundamental theories and the formulation of hypotheses in social 

interaction. New methods of measuring and analysing social interaction are enabling 

a more detailed picture of behaviour and understanding this picture during real-world 

social behaviour can help in the development of the next generation of virtual 

characters to artificially generate interpersonal coordination, and effectively reverse-

engineer social interactions to understand its underlying cognitive basis.  
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In the next three sections, we will cover all three aspects of this approach in more 

detail. This will require of us to first review some challenges associated with existing 

approaches to Measuring (Section 1.3), Analysing (Section 1.4), and Artificially 

Generating (Section 1.5) interpersonal coordination, before we introduce the 

research aims and overview of the experimental studies in the thesis (Section 1.6). 
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1.3 Measuring Interpersonal Coordination 

As experiments in social neuroscience are striving toward more ecologically valid 

environments using naturalistic stimuli and paradigms, it becomes more and more 

important to capture the richness of social interaction in a manner which preserves 

the dynamic nature of multimodal non-verbal signals. Traditional cognitive 

approaches to understanding social interaction involve studying isolated participants 

responding to stimuli on a computer screen or interacting with confederates. Such 

designs tightly control the variables involved and isolate targeted behavioural or 

cognitive constructs. However, it is increasingly recognized that this is a poor model 

of real-world social interaction, as in many ways these studies do not resemble the 

complexity and dynamic nature of stimuli and behaviours in real life (Krakauer, 

Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017; Risko, Richardson, & 

Kingstone, 2016). Real world conversations involve rich multimodal and dynamic 

coordination between individuals in which the behaviour of each person is strongly 

interdependent with those of their conversation partner. Natural mimicry, for 

example, occurs in a rich context of other coordinated actions, non-verbal signals, 

and speech. It has therefore been challenging to measure and model mimicry in 

these contexts. Psychologists and neuroscientists are now trying to understand 

dynamic social interaction, in which two people respond to each other in real time 

(Heerey, 2015; Schilbach et al., 2013). This could be very important for determining 

natural parameters in social interaction, such as its timing or rhythmic properties, 

since research has shown that these patterns cannot be accurately represented in 

non-naturalistic paradigms when one participant is replaced with an experimenter or 

confederate (Bevalas & Healing, 2013; Kuhlen & Brennan, 2013). In the following 

section we will review how methods for recording movement have rapidly developed. 
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1.3.1 Recording Interpersonal Coordination in Dyads  

Manual Coding. Researchers have traditionally used several approaches to 

measure interpersonal coordination in dyads, but many use cumbersome manual 

audio-visual annotation methods, which yield low resolution data and is very time 

consuming. Early research involved recording video of natural conversations, which 

were then coded, frame-by-frame, to manually detect changes in speech, posture, or 

facial expressions (Bernieri, Gillis, Davis, & Grahe, 1996; Condon & Ogston, 1966; 

Kendon, 1970). Although these early experiments have been instrumental with 

detailed descriptive analyses revealing the fundamentals of social behaviour, they 

have not been able to capture the full richness of a social interaction in a precise and 

quantifiable manner. Moreover, annotating and interpreting video is an intensely 

manual process that generally must be performed in real-time as the video plays, 

requiring frequent pauses and playback. This was a major limitation and could result 

in analysis that is prone to human errors when many different behaviours are coded 

at the same time (Cappella, 1981; Grammer, Kruck, & Magnusson, 1998). 

Automatic Recording. More recently, researchers have begun to use automated 

and quantitative measures to identify, and track coordinated non-verbal behaviours 

between people, which makes possible the discovery of very subtle and transitory 

patterns. This lets the researchers gather a lot more data to make better statistical 

analyses, like identifying behaviour rules. These methods are also faster and less 

labour intensive. An example of such a method is to use image processing 

techniques to calculate frame-to-frame differences in people’s body movements from 

video to calculate their overall ‘motion energy’ during naturalistic conversations 

(Fujiwara & Daibo, 2016; Paxton & Dale, 2013; Ramseyer & Tschacher, 2010; 

Schmidt, Morr, Fitzpatrick & Richardson, 2012). Another example is to use computer 
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vision analysis (Dunbar, Jensen, Tower, & Burgoon, 2014). However, these methods 

lack the resolution to capture specific data from individual body parts or to capture 

movement in depth (relative to the camera). To achieve this level of measurement, 

another option is to use modern motion capture technologies to directly record the 

movements of each participant. 

Motion capture (Bouaziz, Wang, & Pauly, 2013) provides more objective and 

detailed data about an interaction, and has been employed in a number of recent 

studies to study the specific modality of body movement in different scenarios (e.g., 

Feese, Arnrich, Tröser, Meyer, & Jonas, 2011; Hale et al., 2020; Poppe, Zee, 

Heylen, & Taylor, 2013), and with focus on specific body parts, like fingers (Oullier, 

Guzman, Jantzen, Lagarde, & Kelso, 2008), hands (Schmidt, O’Brien, & Sysko, 

1999), and heads (Ashenfelter, Boker, Waddell, & Vitanov, 2009; Hale et al., 2020).  

There are several different types of motion capture technologies. For the 

experiments in this thesis, we use an optical system which triangulates the position 

of retroreflective (passive) markers on the participant’s body using a multi-camera 

setup (Optitrack, NaturalPoint Inc.). With proper calibration, the position of the 

markers can be translated to the position of the joints, and the position and rotation 

of skeleton segments calculated from the triangulation. With this system, there is the 

option to use light-emitting (active) markers. There are also magnetic systems, which 

use a weak magnetic field to detect markers (Feese et al., 2012), as well as cheaper 

options using 3D-camera systems like the Kinect (Won, Bailenson, Stathatos, & Dai, 

2014). Optical systems generally have the disadvantage that markers can easily 

become obscured or occluded from the cameras’ view (especially in the presence of 

more participants) and will require additional post-processing, whereas magnetic 

systems tend to be more precise and require less calibration.   
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The development of automated measures of recording behaviour is opening the 

way to new studies of social interaction, but also provides a new challenge in 

analysing it. In the following section we discuss how further advances in wavelet 

analysis (Issartel, Bardainne, Gaillot, & Marin, 2015; Schmidt, Nie, Franco & 

Richardson, 2014) can be used to understand social coordination in better detail. 

More specifically, we will demonstrate how it can help us quantify the relationship 

between the motion patterns of head nods to analyse the level of interpersonal 

coordination, or coherence, between people.   

 

 

1.4 Analysing Interpersonal Coordination 

The data we get when capturing body movement and its temporal progression is 

difficult to quantify and interpret. The head can move in different directions (i.e., yaw, 

pitch, roll), and with high or low frequency and amplitude. The interpretation of the 

head trajectory might also become more complex when we have a long time-course 

with two or more people interacting. To make sense of a biological trajectory or 

behaviour over time we must analyse time-series data. Recent analytical methods 

can deal with this non-linearity of movements and interpersonal coordination across 

multiple timescales. Time-series can be analysed according to the timing, frequency, 

or both timing and frequency of movement (Fujiwara & Daibo, 2016; Grinsted, 

Moore, & Jevrejeva, 2004; Issartel, Marin, Gaillot, Bardainne, & Cadopi, 2006). Next, 

we will cover a range of analytical methods as a guide to what each method are 

capable of and what its limitations are. We begin with temporal analysis methods, 

including Cross-Correlation and Cross-Recurrence Quantification Analysis. This is 
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followed by frequency analysis methods, including Fourier Transform, Windowed 

Fourier Transform, Wavelet Transform, and Cross-Wavelet Coherence Analysis. 

Cross-correlations (Boker, Xu, Rotondo, & King, 2002; Rotondo & Boker, 2002) 

are the most common approach to measure the timing between two time-series of 

movement and observing at what time-lag the two time-series are most highly 

correlated. This peak correlation would indicate the timing at which the two 

participants match each other’s movements (Fujiwara & Daibo, 2016). In other 

words, a correlation coefficient (r) is calculated for each relative time-lag between the 

two time-series. A lag of 0 would indicate mutual synchrony, whereas a lag of -1 

would shift one time-series by one increment, decided by the length of the window 

that is applied (Figure 1-1). For example, while the movement of participant A is at 

time t, the movement of participant B is at t + 1, at which point the correlation is 

performed again. If two participants’ movements are synchronized, r will peak at a 

lag of 0, representing that changes in their motion coincide (Ashenfelter et al., 2009). 

 

 

 

 

 

 

 
Figure 1-1. Windowed cross-correlation. Measures the timing between two time-series of movements 

(e.g., participants). A sliding time window observes at what time-lag the two have the highest peak 

correlation, or at what time the two participants match each other’s movements.   

 

Another method for analysing the temporal aspects, or the amount of 

coordination, in a dyadic interaction, is known as Cross-Recurrence Quantification 
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Analysis (CRQA) (Marwan, Romano, Thiel, & Kurths, 2007). This method originates 

as a non-linear analysis used to compare the temporal patterns of complex systems 

(Coco & Dale, 2014), and has shown to explain some properties of time-series data 

that linear methods, such as cross-correlations, cannot (Marwan, 2008). CRQA has 

two steps – first the researcher must identify ‘system states’ which occur repeatedly 

during an interaction. Within the field of interpersonal coordination these states 

represent the points in time that the social signals show similar patterns of change 

(Demos, Chaffin, & Kant, 2014). Secondly, CRQA can then test how often these 

states are visited and if there is coordination between the state of the two people in 

the interaction. A high rate of recurrence reflects a high temporal coordination of 

behaviours. CRQA can also measure patterns that are far apart in time to observe 

the similarity or influence those two signals can have on each other. This can work 

well for discrete measures of an interaction like word use or single gestures. 

However, for many continuous measures like head movements, the first step is 

challenging. There is no clear-cut way to identify states in head nodding for example, 

which makes it hard to use CRQA. In the following section, we will examine in more 

detail an alternative to temporal analysis methods known as frequency analysis 

methods, where we can measure the frequency, or the combination of time and 

frequency, of coordination. 

   

 

1.4.1 Frequency Analysis   

The frequency of movements, or the number of occurrences of a movement, can be 

observed using frequency analysis to mathematically transform the data in various 

ways from a time-amplitude signal into either a frequency-amplitude or time-
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frequency representation of the signal. Taking our analysis of head nods as an 

example, the raw signals we get (i.e., head pitch rotation in degrees) are time-

domain signals. When we plot these signals, we obtain a time-amplitude 

representation of the signal (e.g., degrees of head pitch on the y-axis, and the time-

series on the x-axis). However, this representation is not always the best 

representation, and sometimes the most interesting information is hidden in the 

frequency content (i.e., spectral components) of the signal. The frequency is 

measured in cycles/second, or Hertz (Hz), and to measure or find the frequency 

content of a signal, we need to apply mathematical transformations to obtain 

information that is not readily available in the raw signal (Issartel et al., 2006). 

Fourier Transform (FT). The most used transform is the Fourier Transform (FT). 

This frequency analysis provides a description of the frequency content of a time-

series (Issartel et al., 2015). By applying the FT, we get a frequency-amplitude 

representation of that signal. This tells us how much of each frequency exists in the 

signal. However, it does not tell us when these frequency components exist. Thus, 

unless we are only interested in what frequency content exist in the signal, the FT is 

not a suitable method for non-stationary signals that change frequently, like in most 

biological signals (e.g., ECG, EEG). For example, the FT assumes that the time-

series follows repetitive patterns and stable frequencies over time and can therefore 

be more suited for studying synchrony where participants make repetitive 

movements, such as rhythmic walking or musical coordination.  

Windowed Fourier Transform (WFT). Methods have been created to account for 

both the time and frequency content of a time-series. By dividing the signal into 

segments, or windows, we could assume each window to be stationary (Figure 1-2). 

This method, known as Windowed Fourier Transform (WFT), though allowing for the 



 
 

44 
 

detection of sudden changes in the frequency content, suffers from a resolution 

problem which creates temporal ambiguity. What we can know are the time-intervals 

in which frequency bands exist. Thus, the problem with WFT has to do with the width 

of the window used. For example, a small window would not allow for the detection 

of an event larger than the window while maintaining a good localization in time. On 

the other hand, a large window will consider the long-term event (frequency domain) 

but with high imprecision in the temporal domain (Issartel et al., 2015). 

Wavelet Transform (WT). When the time localization of the frequency component 

is needed, another transform giving us the time-frequency representation of the 

signal is the Continuous Wavelet Transform, or simply the Wavelet Transform (WT), 

which tells us what time a specific frequency component occurs (Morlet, 1983). We 

need the WT to analyse non-stationary signals and to overcome the resolution 

problems related to the WFT. Unlike the WFT which has a constant resolution at all 

times and frequencies (the width of the window is selected once for the entire 

analysis), the WT gives a variable resolution that changes the width of the window as 

the transformation is computed for every single frequency component (Figure 1-2). 

  

 

 

 

 

 

 
Figure 1-2. Time-Frequency analysis resolution. The Wavelet Transform (WT) gives a variable 
resolution that changes the width of the window as the transformation is computed for every single 
frequency component. This gives us good time (t) and poor frequency (f) resolution at high 
frequencies, and good frequency (less spectral ambiguity) and poor time resolution (more temporal 
ambiguity) at low frequencies. 
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Solving the resolution problem makes the WT efficient in the study of non-

stationary (e.g., biological) signals that dynamically vary in frequency, and allows the 

detection of small changes and to analyse the temporal evolution of each frequency 

component. This in turn makes the WT more suitable for studying coordination in 

spontaneous or non-repetitive social interactions such as having a real-world 

conversation (Fujiwara & Daibo, 2016; Issartel et al., 2006). Take head nodding, for 

example, the time-amplitude representation of the signal (i.e., degrees of head pitch 

at different times) are transformed into the time-frequency domain (i.e., frequency of 

head nodding at different times).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3. Continuous wavelet transform (WT). Measures the time-frequency component of the time-

series (i.e., signal). The head pitch trajectories for both participants (A, B) are subject to a wavelet 

transform to get the time-frequency component (C, D). The magnitude of wavelet power is 

represented by color, where blue is low power, and yellow is high power. The time is represented on 

the x-axis (200s) and each frequency on the y-axis (0-16 Hz). 
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1.4.2 Cross-Wavelet Coherence Analysis   

Cross-Wavelet Coherence (CWC) is a time-frequency based analysis following a 

wavelet transform, that allows us to consider the degree of similarity between two 

sets of data – or time-series, and the progression in time of this interaction (Grinsted 

et al., 2004). It can be useful to think of CWC as the correlation between two wavelet 

transforms. As such, this analysis evaluates the cross-frequency of two signals 

across time, and hence can uncover how the time-localized coherence at different 

frequency ranges (timescales) changes across the course of a trial. A cross-wavelet 

plot (Figure 1-4) displays the coherence (correlation between the speaker and 

listener in a dyad). In general, high coherence is interpreted as a high degree of 

coordination because it indicates that two people are moving with the same 

frequency in the same time window, but are not necessarily nodding synchronously 

(i.e., at exactly the same time). 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

47 
 

Figure 1-4. Cross-wavelet coherence (CWC). The CWC (E) is calculated between the two 
transformed time-frequency signals (C, D). The magnitude of wavelet power and wavelet coherence 
is represented by color, where blue is low power, and yellow is high power. The time is represented 
on the x-axis (200s) and each frequency on the y-axis (0-16 Hz). The coherence value (R2) is then 
averaged over time and over all trials to obtain the overall frequency of coherence. 
 

 

CWC gives us two measures of an interaction – a coherence measure (R2) which 

tells us if two people move at the same frequency within the same time-window, and 

a phase measure which tells us the precise temporal relationship (i.e., time lag) 

between them. These measures can, for example, indicate whether one person led 

or followed the other at a specific frequency and for how long (Issartel et al., 2015).  

Understanding the timing and at which frequencies all these behaviours occur can 

help us answer how and why we use these signals. While CWC analysis is a 

relatively new tool for studying social interactions (Issartel et al., 2015), several 

proof-of-concept studies using CWC have found that it can be applied to time-series 

data on body movements in a dyadic interaction. Varlet, Marin, Lagarde, and Bardy 

(2011) reported that dyads engaged in a visual tracking task influenced each other 

and produced spontaneous postural coordination. The researchers also used the 

phase measure to evaluate the occurrence of postural coordination. A similar 

coordination of postural sway was also reported (Sofianidis et al., 2012). In another 

study using CWC, Washburn et al. (2014) recorded movement data in dance 

settings and reported a higher level of coherence in trained dancers compared to 

non-dancers when they performed with their confederate dance partner. Walton, 

Richardson, Langland-Hassan, and Chemero (2015) also demonstrated that CWC 

could show the dynamics of movement coordination between improvising musicians.  

Further studies in more social settings have also revealed that interpersonal 

coordination occurs at multiple timescales (Schmidt et al., 2014), and frequencies 

(Fujiwara & Daibo, 2016). In the study by Schmidt et al. (2014), they investigated 
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how bodily coordination is distributed across different nested timescales in a joke 

telling task during structured conversation. Dyads performed knock-knock jokes 

while the researchers recorded their movement using a Kinect camera. To assess 

the degree and pattern of participants’ movement coordination at individual 

timescales, they used CWC and calculated both the coherence and phase measures 

for the whole trial, as well as at the minor timescales of the whole joke, the setup of 

the punch line, the turn-taking exchange, and the utterance. The coherence analysis 

revealed a greater than chance coordination (high coherence) of the joke teller’s 

(speaker) and joke responder’s (listener) movements at all timescales. In addition, 

the phase measure analysis revealed that the joke teller’s movements led those of 

the joke responder at the longer timescales, which shows that their coordination are 

in-phase rather than anti-phase. These results demonstrate that complex 

interpersonal coordination is constructed from a set of rhythms associated with 

nested timescales within a structured social interaction. 

 Fujiwara & Daibo (2016) followed this up with a similar methodology using CWC 

but did not employ a specific task. Instead, they focused on unstructured 

conversations. In this type of scenario, the turn-taking between the participants in the 

dyad are not controlled. The researchers examined whether coordination of hand 

and head movements represented in the time-frequency plane would be observed 

even in such unstructured or free flowing conversations. To test this, they used a 

pseudo-pairing experimental paradigm first proposed by Bernieri and Rosenthal 

(1991). In this paradigm, video clips of dyads are isolated and re-combined in a 

random order. The coordination of these pseudo-pairs is then compared to the real 

pair. By using CWC, Fujiwara and Daibo (2016) hypothesized that the amount of 

coherence would be higher in the real pairs than in the pseudo-pairs. They 
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discovered a high degree of coherence at low frequencies (<0.25 Hz) and less 

coherence at high frequencies (>4Hz), which supports the validity and possible utility 

of using CWC to evaluate the structure of social interactions. However, Fujiwara and 

Daibo (2016), and researchers using similar pseudo-pairing paradigms before them, 

only tested whether their coherence pattern was present in the pseudo interactions 

between the pairs, and not within the same pairs. Moreover, none of the studies 

mentioned have recorded motion frequency in detail using motion capture to isolate 

the different movement coordinates of the head trajectory (i.e., pitch, yaw, roll).  

Recently, Hale et al. (2020) improved on both these aspects – they used motion 

capture to isolate the different movement coordinates of the head trajectory, as well 

as provide pseudo-pairings within dyads to provide a stronger test where the pseudo 

pairs have the same general movement characteristics as the real pairs. They 

measured mimicry using single head motion sensors. A sample of 26 dyads (n=52) 

was engaged in a structured conversation where each participant took turns to 

describe a picture of a complex social scene to each other. They used CWC analysis 

to calculate levels of interpersonal coordination in real trials compared to a pseudo 

dataset created by matching data from different trials within the same pairs. What 

they found was different results for slow and fast head nods. The results showed a 

positive coherence at frequencies below 1.5 Hz, but also to their surprise, the real 

interactions showed lower than chance coordination of head movements at 

frequencies between 1.5 – 5 Hz. This unexpected finding suggests a systematic 

decoupling of head movements at higher frequencies, similar to findings of 

divergence in dialogue where people systematically diverge from one another in their 

use of syntactic constructions (Healey, Purver, & Howes, 2014).    
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These are interesting findings, and Hale et al. (2020) hypothesize that it could 

potentially be different signals carrying distinct social information. More specifically, 

head nodding behaviour in the high frequency range are quick and spontaneous, 

with a reported decoupling of head nodding that is driven by the listener. This ‘fast 

nodding’ could potentially contain different social information from the slower head 

nods in the low frequency range, since this frequency range is consistent with 

traditional observations of mimicry behaviour where modelling shows this behaviour 

is generated by a mechanism with a 600 ms time lag between speaker and listener. 

Thus, Hale et al. (2020) interpret these results in the framework of two types of 

coordination, which they refer to as ‘mimicry’ and ‘fast nodding’. They refer to 

mimicry as events where two people perform the same movement shortly after each 

other (e.g., one person nods and the other nods shortly after), which is a slower type 

of nodding behaviour. Fast nodding occurs when one person makes a small high 

frequency nod, and the other person typically does not move in this way. This thesis 

will explore the hypothesized distinction between these signals, as it is still not clear 

whether they are two distinct social signals.  

The quantification of these two types of signals is also useful for allowing us to 

identify them as two separate behaviour rules based on different frequency ranges of 

head nodding. These behaviour rules can then be programmed in virtual characters 

to test our hypotheses about their meaning by having participants respond to these 

virtual characters with or without the behaviour rules. To artificially generate such 

interactive virtual characters, we have in this thesis taken steps to first measure and 

analyse social signals in a person’s behaviour using motion capture technology and 

CWC (Section 1.3 and 1.4). In the next section (1.5), we will discuss how to 

artificially generate interpersonal coordination in more detail. 
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1.5 Artificially Generating Interpersonal Coordination 

To artificially generate interpersonal coordination in virtual characters, we must first 

capture and understand natural interpersonal coordination. In previous sections, we 

have demonstrated how to do this and to identify behaviour rules. We now want to 

use these behaviour rules in combination with virtual reality technology to create 

highly responsive virtual characters that can interact and coordinate more naturally. 

The main challenge here is to generate animation that is highly responsive without 

unnatural jerkiness and that matches current models of coordination behaviour. 

Previous studies have also used various techniques to create such characters that 

can generate simple social behaviours such as body postures (Gillies, Kleinsmith, & 

Brenton, 2015), hand gestures (Kopp & Bergmann, 2013), or head nods (Huang, 

Morency, & Gratch, 2010). Such systems traditionally replay the measured 

movements with good timing but cannot yet create the detailed coordination found in 

real social interaction, nor have they been linked to psychological theory. Using 

motion capture technology to build better simulations of interpersonal coordination 

with a grounding in psychology has the potential to greatly improve the realism of 

social interaction with virtual characters. Hypothesis testing can then also benefit 

from seeing how people respond to these virtual characters, so that we can use 

virtual reality as a tool to further test and challenge our psychological theories.  

In the next couple of sections, we cover how the virtual environment, including the 

visual appearance of the virtual characters, are created (1.5.1). Second, we describe 

how to generate realistic motion with high resolution motion capture data and 

mapping that on an interactive virtual agent (1.5.2). We will then present the 

research aims of the thesis and an overview of the experimental chapters (1.6). 
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1.5.1 Creating a Virtual Environment 

To create a virtual experimental framework and display virtual environments to a 

participant, we need two components – a hardware and a software system. 

Researchers now have access to advanced computer graphics software that allow 

the creation of rich virtual environments. A graphics engine that is widely used in the 

research community today is Unity (Unity Technologies, 2022). Other graphics 

engines like Vizard (WorldViz, 2022) may have the same capacity to render virtual 

environments, but for the virtual reality experiment in this thesis, we are using Unity. 

The hardware part is known as virtual reality headsets, or head-mounted displays 

(HMDs), which display stereoscopic images that is optically converged into a single 

image and updated in real-time. The recent popularity of HMDs has extended the 

reach of Unity to include the development of VR-compatible content that can use the 

HMDs ability to track the participants head movements to update the view. Thus, the 

rendering of the scene inside the HMD is determined by the head position and 

orientation of the participant. To add realism, HMDs often come with headphones to 

provide audio feedback and sometimes hand-tracking controllers that can provide 

haptic feedback. These can add significantly to the reality of what is being perceived 

and increases the likelihood that the participants would respond realistically.  

However, how realistic must the visual appearance of the virtual characters we 

create as part of the virtual environment be to work in an experimental setting? The 

concept of the ‘uncanny valley’ was introduced by Masahiro Mori in 1970. He 

suggested that there is a non-linear relationship between how realistic a virtual 

character looks and how people perceive it and proposed that characters with near-

realistic appearances are judged as ‘uncanny’ (Mori, MacDorman, and Kageko, 

2012). A recent study suggest that this uncanniness occurs when there is an 
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incongruency between the characters appearance and behaviour (Saygin, 

Chaminade, Ishiguro, Driver, & Frith, 2012). For example, a highly realistic character 

that behaves in a strange way, can still be perceived as more uncanny than a 

cartoon character behaving in a similar fashion. Other studies suggest choosing a 

middle ground between a stylized and realistic looking character (Zell et al., 2015).  

However, to generate socially realistic virtual characters, they need to be socially 

interactive, and in the next section we will describe how this can be achieved by 

generating interactive virtual agents, that can display non-verbal behaviour. 

 

 

 

1.5.2 Generating an Interactive Virtual Agent  

It is nowadays widely emphasized that social cognition is embodied in a living 

organism and extended into our technological and social environment (Clark, 2013). 

This has led to the prominence of “second-person neuroscience”, which studies the 

real-world interaction between two people (Shilbach et al., 2013). The most 

important form of face-to-face communication is the conversation, as it provides a 

forum or arena for all our social interactions. We have also seen that non-verbal 

signals are a crucial part of face-to-face conversations. 

With virtual reality technology, we can manipulate the social interaction by 

changing the visual cues or signals to represent the behaviour of the virtual 

character that we want the participants to be able to observe. Hence, by 

programming behaviour rules into the behaviour of the virtual characters, they 

transform from being simply virtual ‘characters’ to being interactive virtual ‘agents’, 

allowing them to participate and enact in conversations in a more natural way or fulfil 
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certain social roles. Creating believable virtual characters and generating interactive 

behaviour is a great challenge for computer scientists (Pan, Gillies, Barker, Clark, & 

Slater, 2012; Rizzo & Talbot, 2016). 

To generate interactive social signals, the virtual agent must first be able to detect 

the behaviour of the participant, for example by utilizing the positional head-trackers 

or microphones implemented with the HMD. The ‘Unity’ software can then be used to 

program specific responses (e.g., behaviour rules) conditional on the participants’ 

behaviour. For example, knowing the location of the participant’s head means that a 

virtual agent can be programmed to use behaviours such to copy the head 

movements (Bailenson & Yee, 2005; Hale & Hamilton, 2016b) or follow the gaze 

(Forbes, Pan, & Hamilton, 2016) of the participant. 

Studies using virtual reality as a tool have shown that people keep appropriate 

social distance from virtual agents (i.e., proxemics) (Bailenson et al., 2003), and 

mimic their behaviours (Vrijsen, Lange, Becker, & Rinck, 2010). A range of studies 

have also successfully replicated psychological constructs with virtual reality, 

including rapport (Hale & Hamilton, 2016b; McCall & Singer, 2015), prosociality 

(Hale et al., 2020), and social anxiety (Pan et al., 2012) among others. 

In the study by Hale and Hamilton (2016b), they used motion capture (Polhemus 

magnetic motion tracker) and virtual agents displayed on a projector screen to test 

the ‘social glue hypothesis’ that mimicry leads to increased rapport. The participants 

interacted with two virtual agents in an interactive picture description task commonly 

used in confederate studies (Chartrand & Bargh, 1999; van Baaren et al., 2009). In 

this task, one agent copied the head and torso movements of the participants after a 

specific delay (1 and 3 seconds), while the other agent showed pre-recorded natural 

head and torso movements without mimicry. The participants interacted with the 
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mimicking and non-mimicking agents one after the other, in a within-subjects design, 

and rated feelings of rapport toward the agents. The results showed no effects of 

mimicry on rapport, and the researchers conclude that being mimicked does not 

necessarily increase rapport. They argue that we should be careful in accepting the 

‘social glue hypothesis’ and be cautious about the fragile effects of being mimicked. 

Some of the future directions that the researchers present with this study include 

more rigorous methods, as they only use a single magnetic marker to measure head 

and torso movements with the Polhemus motion tracker, as well as not utilizing fully 

immersive virtual HMDs to present their virtual agents. 

With high resolution motion tracking technology (Section 1.3) we can capture the 

actual non-verbal behaviour displayed by real people and use this to create 

behaviour rules to drive the behaviour of virtual agents in a controlled manner. I like 

to emphasize the word ‘controlled’ here because experimental frameworks in virtual 

reality typically specify a certain behaviour or focus only on a small subset of the 

behaviours compared to real-world social interaction. This is due to the high 

computational demand of simulating a fully responsive multimodal and dynamic 

conversation. Nevertheless, even very basic forms of social interactions can be 

enough to be perceived as realistic, which makes the use of simple behaviour rules 

ideal for using in virtual reality experiments as they are both perceivable and 

testable. For example, both behavioural (Wilms et al., 2010) and neuroimaging 

(Schilbach et al., 2011) studies show that very basic but contingent eye gaze 

behaviour can be enough to elicit a sense of realism for participants interacting with 

virtual agents. Similar results have also been demonstrated with eye blinks 

(Bailenson & Yee, 2005), and head nods (Huang et al., 2010), showing that these 

simple behaviours might be enough to elicit naturalistic real-world behaviour. 
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Blascovich et al. (2002) emphasize that a general assumption that seems 

conspicuous in all psychological research is that experimental manipulations of 

perceived (i.e., real-world) and imagined (i.e., written scenarios) stimuli are 

essentially equivalent for understanding psychological processes. Experimental 

manipulations of imagined stimuli cost less, require less effort, and provide a greater 

degree of experimental control (i.e., precise manipulation of variables). However, a 

greater degree of experimental control often comes at the cost of ecological validity 

(i.e., the extent to which an experiment is like situations encountered in everyday 

life). Thus, a trade-off typically exists between experimental control and ecological 

validity. Technological advances in both motion capture and virtual reality systems 

have allowed researchers to lessen this trade-off by facilitating an increase in 

ecological validity without entirely sacrificing experimental control (Blascovich et al., 

2002), or vice versa. We have already seen how virtual reality increases the 

ecological validity by creating more immersive and realistic scenarios, while 

maintaining a high degree of experimental control by being able to manipulate the 

virtual environment and generating interactive virtual agents.  

In the next and final section of this chapter, we will summarise the research aims 

and give a brief overview of the experimental studies in this thesis.   
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1.6 Research Aims and Overview of Experiments 

In this chapter we have reviewed previous work on interpersonal coordination and 

conversation behaviour. We have specifically focused on head nodding behaviour as 

a social signal during interpersonal coordination. Limitations in the current literature 

are partly attributed to methodological challenges, and in this chapter, we have 

reviewed several major challenges associated with existing approaches to 

measuring, analysing, and artificially generating interpersonal coordination. New 

methods and technologies are needed to test cognitive theories of interpersonal 

coordination and real-world social interactions. Recent advances in motion capture 

technology (Bouaziz et al., 2013) for measuring behavioural data and new methods 

for analysing the data (Fujiwara & Daibo, 2016; Issartel et al., 2015; Schmidt et al., 

2014) in dyads and real-world interactions, together with artificial generation of virtual 

agents, make it possible to study interpersonal coordination and social interaction in 

much higher resolution. These advances allow researchers today to investigate how 

to quantify simple interaction behaviour and test hypotheses with high experimental 

control. However, to advance in the field it is important that these methods are 

guided by precise and well-specified psychological or cognitive theory to work (Pan 

& Hamilton, 2018). Together, method and theory will build on each other to create 

new testable hypotheses, which will lead to the development of new theories, which 

can then be challenged with new methods and models. 

In this thesis, we aim to use this approach of measuring, analysing and artificially 

generating head nodding signals in dyadic social interactions, which will allow us to 

first “reverse-engineer” head nodding by picking the behaviour apart to determine 

which parameters are necessary for improving current theories, and then use these 

parameters to “engineer” head nodding in virtual reality to test our hypotheses about 
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the meaning of head nodding as a communicative signal. This will guide better 

research on virtual reality and provide fundamental new insight and directions for 

research into interpersonal coordination.  

More specifically, in this thesis we will be working within the methodological 

framework to 1) Measure real-world head nodding in dyadic social interaction using 

high resolution motion capture to identify behaviour rules based on hypotheses 

about the meaning of two types of head nodding signals closely related to 

behavioural mimicry and backchannel signalling. We then want to 2) Analyse the 

time-frequency series of these head nodding rules across speaker-listening roles in 

the dyads. Lastly, we want to 3) Artificially Generate this head nodding behaviour in 

virtual agents that can interact with participants to test how they respond to the rules. 

The convergence of research questions in both psychology and computing thus 

sets the scene for the studies presented in this thesis, which draws together these 

diverse research areas, combining cognitive and psychological hypothesis testing 

with new advances in motion capture, signal analysis, and virtual reality to provide a 

new level of understanding of dyadic social interaction. Next, we will give a brief 

overview of the experimental chapters in this thesis, and what drives the hypotheses 

and methods in each. 

In Chapter 2, the aim is to capture two patterns of head nodding signals – fast 

nods and slow nods – and determine what they mean and how they are used across 

different conversational contexts. Context provides an important way to understand 

the meaning of social signals, because we would expect some signals to remain 

constant across contexts, while other might change. For example, the affiliation 

signal ‘I like you’ might be relatively unchanged across different types of 

conversation (e.g., about pictures versus movies), while other signals might change. 
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A secondary aim in Chapter 2 is to understand if there are reliable individual 

differences in social signalling behaviour. While some previous studies imply that 

some people show more mimicry than others (Salazar-Kämpf et al., 2017), there is 

little data to quantify this. Our large-scale data collection will provide an opportunity 

to explore individual differences. The results from this study suggest that fast nods 

are a signal of having received new information and that it has different meaning to 

that of slow nods. It also shows that nodding is consistently driven by context but is 

not a useful measure of individual differences in social skills.  

In Chapter 3, the aim is to investigate the relationship between memory and 

learning and head nodding behaviour. We aimed to determine if the moment-by-

moment coordination between two people in a conversation might be related to 

measurable outcomes of the conversation, including how much the two people 

remember new information and how they relate to each other in terms of self-other 

processing. This exploratory study provided initial hints that there might be a 

relationship between head nodding behaviour and performance on a later memory 

test, though further analyses were less clear. 

In Chapter 4, we built on the preliminary result of Chapter 3 and aimed to test if 

head nodding behaviour in a virtual agent relates to memory performance. We 

created a virtual human who can show our head-nodding behaviour rules and test 

how much people remember from a conversation with the agent. In addition, in this 

study we also aim to examine if interactive head nodding can be used to measure 

how much we like the virtual agent, and whether we learn better from virtual agents 

that we like. The results from this study demonstrate no causal link between memory 

performance and interactivity and reports no significant results between measures of 

liking with no reliable correlations to head nodding or memory. 
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In Chapter 5, we analyse data from Chapters 3 and 4 together with new data from 

a video-based conversation task. We aim to summarise how the level of interactivity 

in different contexts (i.e., conversation with a real human, conversation with a virtual 

human, task with an unresponsive video) impacts on the memory performance of the 

participants. The results show that the level of interactivity supports memory and 

learning during conversations.  

In Chapter 6, we will widen the scope and discuss both the methodological and 

theoretical implications and developments of this thesis, as well as its limitations. 
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Chapter 2. Why Do People Nod in 

Conversation? Head Nodding as a Social 

Signal Across Different Social Contexts 
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2.1 Abstract 

Social interaction involves rich and complex behaviours where verbal and non-verbal 

signals are exchanged in dynamic patterns. Our overall aim is to explore new ways 

of modelling this coordinated behaviour as it naturally occurs in social interactions. 

This chapter explores the role of head nodding in different types of conversation, to 

define why people show this behaviour and what different types of nodding signals 

might mean. We present results on how people coordinate their head nodding 

behaviour across three different conversational contexts: a structured one-way 

information sharing task, an unstructured shared recall task, and an unstructured 

two-way joint planning task. We used high resolution motion capture to record head 

movements and wavelet coherence analysis to understand the dynamic patterns of 

head nods, testing if coordination is seen at different frequencies. 

We find that dyads show coherence in slow nodding, but only in a structured one-

way information sharing context, which implies that this behaviour is not a universal 

signal of affiliation but is context driven. We also find robust fast nodding behaviour 

in the two contexts where novel information is exchanged, but not when shared 

information is recalled. This suggests that fast nods are a signal of having received 

new information and that it has different meaning to that of slow nods. 

Finally, we show that nodding is consistently driven by context but is not a useful 

measure of individual differences in social skills. These results will help us 

understand the role of nodding in human conversation and especially in the current 

era of social distancing, help us build virtual agents who engage in realistic nodding.  
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2.2 Introduction  

Conversation is fundamental to social interaction, and people engaged in a 

conversation have access to many different modes of interaction, both verbal and 

non-verbal, which all help shape the complete experience of a social encounter. In 

this chapter we are interested in learning more about head nodding during face-to-

face dyadic conversations in naturalistic settings. Previous work suggests that 

people may mimic head nods at some points in a conversation but may also show 

backchannel behaviour (Hale et al., 2020). To understand these social signals, it is 

helpful to have detailed high-resolution data recordings and to analyse this with 

appropriate methods. However, many current methodological frameworks are limited 

by time-consuming and low-resolution data collection methods, which cannot capture 

the full richness of a dyadic social interaction. Using multimodal data collection of 

dyadic face-to-face conversation, our aim with this study is to explore new ways of 

modelling coordinated behaviour as it naturally occurs in social interactions to 

understand in more detail the meaning of head nodding as a social signal.  

Both verbal and non-verbal behaviours have been studied extensively by linguists 

and psychologists alike, trying to reveal the social signals that may be hidden behind 

them. A social signal is here defined as a communicative message that, either 

voluntarily or involuntarily, conveys information between people (Maynard-Smith & 

Harper, 2003). Experimental studies of conversation have primarily focused on 

verbal coordination, but it is now widely recognized that non-verbal coordination is 

important in face-to-face interaction. Despite the subtle nature of these signals, we 

can produce and read them in an efficient way, and to decode from them a surprising 

amount of social information. Non-verbal signals come in many varieties, ranging 

from gaze (e.g., direction, blinks, pupil dilation) (Argyle & Cook, 1976; Kendon, 
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1967), body-movements like gestures (Kendon, 2004), posture (Condon & Ogston, 

1971), and head movements (Cerrato, 2005), to facial speech expressions (Ekman & 

Friesen, 1972). Social interaction is thus naturally multimodal in the sense that we 

rely on a variety of modes of interacting to send and receive social signals. 

Understanding how and why non-verbal signals are coordinated between people 

remains unclear and limits our ability to theorise about the underlying cognitive 

mechanisms. One valuable approach to this problem is the study of interpersonal 

coordination, which draws on a long tradition that aims to quantify and understand 

face-to-face conversations (Argyle & Trower, 1979). Given the large variety of 

signals that each modality can produce, in this study we limit our investigation to the 

meaning of head nodding and its use in face-to-face conversations.   

 

 

2.2.1 Head Nodding as a Social Signal  

A long tradition of research into human interpersonal coordination describes patterns 

of synchrony or mimicry as integral non-verbal behaviours in dyadic social interaction 

(Bernieri et al., 1988). From early work (Chartrand & Bargh, 1999; Kendon, 1970) to 

more recent studies (Ramseyer & Tschacher, 2011) it has been demonstrated that 

people coordinate their heads and bodies with one another during conversations in 

various ways, including synchronizing rhythms (Richardson & Dale, 2005), 

structuring their turn-taking behaviour (Duncan & Fiske, 1977), and assuming 

complementary roles (Garrod & Pickering, 2004). 

Many non-verbal signals during a conversation are centred around the head (e.g., 

eye-gaze, blinks, facial expressions, and head movements). It is not surprising then 

that listeners’ attention is drawn to the speaker’s head and face during conversation 



 
 

65 
 

(Argyle & Cook, 1976). Head nodding has been studied extensively because of its 

central role in conversations as an important source of social information 

(Birdwhistell, 1970). Head nodding is also regarded as a distinct social signal that is 

particularly sensitive to conversational demands and can convey a lot of different 

meanings (Poggi et al., 2010), from signalling attention and understanding (Hadar et 

al., 1983), to requests for information and passing turns (Duncan, 1972). 

Recent work from our lab has developed an automated method which can identify 

and quantify two distinct types of nods – fast nods and slow nods (Hale et al., 2020). 

This quantification is useful to allow us to build virtual characters who show these 

behaviours and may allow us to measure nodding in different people to quantify 

features of an interaction (e.g., affiliation, liking, interest) or as part of a clinical 

assessment (Pan & Hamilton, 2018). For such use of nodding to be meaningful, it is 

important to have a robust understanding of when and why people engage in fast 

nodding and slow nodding behaviours, that is, what social signals are being sent? It 

is also important to know if there are robust individual differences in nodding 

behaviour, that is, could nodding be useful as a clinical indicator?   

To address these two questions, it can be useful to consider the impact that social 

context can have on nodding behaviour. If the amount of nodding someone engages 

in is to be used as a clinical measure, it should be robust across different 

conversational contexts and consistent within an individual. If nodding is a social 

signal, then the meaning of the signal can be inferred by how nodding changes 

across such contexts. Here we will consider three potential meanings of a head nod: 

(1) a head nod can act as a communication backchannel, or a feedback signal from 

the listener in a conversation, (2) it can be the result of joint attention or simple gaze 
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following, and (3) it can be that we use it to mimic each other, which in turn acts as a 

‘social glue’ to facilitate bonding and affiliation (Lakin et al., 2003). 

Backchannelling. Descriptions of conversation behaviour often distinguish 

between the primary channel of information, from the speaker to the listener, and a 

secondary channel or backchannel where information flows from listener to speaker. 

There are both verbal and non-verbal backchanneling signals. Verbal backchannels 

are often represented as linguistic vocalizations such as ‘uh-uh’ (Sacks et al., 1974), 

and in the visual modality they are usually associated with certain eye-contact, or a 

smile. A non-verbal example of a backchannel is a head nod. Throughout a 

conversation, the listener may nod their head to show that they are listening, or even 

to indicate that one is agreeing with what the speaker is saying (Allwood & Cerrato, 

2003; Duncan, 1972). In previous research (Hale et al. 2020), results show that a 

high frequency fast nod is produced mainly when participants are listening, which 

suggests this is likely to be a backchannel. This is relevant because it can let us test 

different hypotheses about the meaning behind these different head nodding signals, 

for example “What does fast nodding mean?”. 

Joint Attention. A head nod could also be the consequence of joint attention or 

following someone’s gaze (Richardson et al., 2007). For example, as one person 

looks down at an object, the other person either follows the downward direction of 

that person’s gaze or attends toward the same object by looking down. More 

specifically, joint attention has been defined as the capacity to coordinate attention 

with a social partner and can either be regarded as attending toward the same 

direction, or toward the same object or event, that another person is attending 

(Emery, 2000). A head nod then, much like a head turn, might just be the product of 

coordinating gaze with one’s conversation partner. It can therefore be important to 
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distinguish between a backchannel signal and the behaviour of joint attention 

because they could have different social meanings.  

Mimicry. A head nod could also be a copy of someone else’s head nod. Humans 

mimic each other in a variety of ways (e.g., facial expressions, gestures, moods). 

This imitation, termed behavioural mimicry (Lakin & Chartrand, 2003), arises 

spontaneously during a social interaction, for example one person touches her hair 

and the other does the same shortly after. Mimicry differs from more goal-directed 

imitation (Hale & Hamilton, 2016a) where one person might copy to learn a skill or 

achieve a particular goal. It is further believed that this behaviour can act as a ‘social 

glue’ to facilitate bonding and affiliation between people (Lakin et al., 2003).  

How can we tell if the head nod of person A turned their attention in the downward 

direction of the gaze of person B, or if person A was mimicking the downward head 

movement of B? In other words, how can we differentiate between simple gaze 

following and genuine mimicry? In addition, how can we separate mimicry or joint 

attention from backchannel behaviour? These are the type of questions we are 

interested in answering in this study, and the way we differentiate between these 

behaviours is using social context. We created three tasks with different 

conversational context, which allowed us to manipulate the structure of the turn-

taking behaviour between people to be either structured or unstructured, and how 

information is shared between people. To disentangle the different meanings behind 

head nodding behaviour, we used high resolution motion capture and advanced 

signal analysis to measure the interpersonal coordination of head nods between two 

people engaged in naturalistic conversation. In the following section, we review 

different methods that have been used leading up to this study. 
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2.2.2 Methods for Measuring Interpersonal Coordination 

As experiments in social neuroscience are striving toward more ecologically valid 

environments using naturalistic stimuli and paradigms, it becomes more and more 

important to capture the richness of interaction in a manner which preserves the 

dynamic nature of multimodal non-verbal signals. Traditional cognitive approaches to 

understanding social interaction involve studying isolated participants responding to 

stimuli on a computer screen or interacting with confederates. Such designs tightly 

control the variables involved and isolate targeted behavioural or cognitive 

constructs. However, it is increasingly recognized that this is a poor model of real-

world social interaction, as in many ways these studies do not resemble the 

complexity and dynamic nature of stimuli and behaviours in real life (Krakauer et al., 

2017; Risko et al., 2016). Psychologists and neuroscientists are now trying to 

understand dynamic social interaction, in which two people respond to each other in 

real time (Heerey, 2015; Schilbach et al., 2013). Real world conversations involve 

rich multimodal and dynamic coordination between individuals in which the 

behaviour of each person is strongly interdependent. 

Researchers have traditionally used several approaches to measure interpersonal 

coordination in dyads, but many are limited by time-consuming and low-resolution 

manual audio-visual annotation methods. Although these early experiments have 

been instrumental with detailed descriptive analyses revealing the fundamentals of 

social behaviour (Bernieri et al., 1988; Kendon, 1970), they have not been able to 

capture the full richness of a social interaction in a precise and quantifiable manner.  

More recently, researchers have begun to use automated measures to calculate 

motion energy or other parameters from video (Fujiwara & Daibo, 2016; Paxton & 

Dale, 2013; Ramseyer & Tschacher, 2010; Schmidt et al., 2012). However, this 
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method lacks the resolution to capture 3D data as it is limited to a flat image of the 

people. Motion capture technology (Bouaziz et al., 2013) provides much higher 

resolution and has been employed in a few recent studies to study body movement 

in different scenarios (e.g., Feese, et al., 2011; Hale et al., 2019; Poppe et al., 2013). 

Automatic recording of behaviour like this can provide more objective and detailed 

data about an interaction. For example, with motion capture we can automatically 

extract facial expressions and detailed body movement between two people in real 

time. These developments are opening the way to new studies of social interaction, 

but also provides a new challenge in analysing it.  

In the following section we discuss how further advances in wavelet analysis 

(Issartel et al., 2015; Schmidt et al., 2014) is used to understand social coordination 

in better detail – for example how it can help us to quantify the relationship between 

motion patterns to analyse interpersonal coordination.  

 

 

2.2.3 Motion Capture Data Analysis 

The data we get when capturing human movement and its temporal progression is 

often difficult to quantify and interpret. For example, the head can move in different 

directions (i.e., yaw, pitch, roll), and with high or low frequency and amplitude. In 

addition, our interpretation of the head's trajectory might become more complex 

when we have a long time-course with two people interacting. To make sense of a 

biological trajectory or behaviour over time we must analyse time-series data. 

Wavelet Analysis is a spectrum analysis that transforms a time-series from the 

time-amplitude into the time-frequency space, which tells us what time a specific 

frequency component occurs (Morlet, 1983). This method is efficient in the study of 
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non-stationary (i.e., biological) signals that dynamically vary in frequency. It permits 

us to detect small changes and to analyse the temporal evolution of each frequency 

component in more detail. Cross-Wavelet Coherence (CWC) is a quantitative 

method in signal processing that allows us to consider the degree of similarity 

between two sets of data – or time-series, and the progression in time of this 

interaction (Grinsted et al., 2004). It can be useful to think of CWC as the correlation 

between two wavelet transforms. In general, high coherence is interpreted as a high 

degree of coordination because it indicates that two people are moving with the 

same frequency in the same time-window, but are not necessarily nodding 

synchronously (i.e., at exactly the same time).  

CWC gives us two measures of an interaction – a coherence measure (R2) which 

tells us if two people move at the same frequency within the same time-window, and 

a phase measure which tells us the precise temporal relationship (i.e., time lag) 

between them. These measures can, for example, indicate whether one person led 

or followed the other at a specific frequency and for how long (Issartel et al., 2015).  

Proof-of-concept studies using cross-wavelet methods have found that it can be 

applied to time-series data on body movements in a dyadic interaction (Issartel et al., 

2006; Varlet et al., 2011; Walton et al., 2015). Further studies have also revealed 

that interpersonal coordination occurs at multiple timescales (Schmidt et al., 2014), 

and frequencies (Fujiwara & Daibo, 2016). In the study by Fujiwara and Daibo (2016) 

they compared the amount of motion coordination, averaged over all frequency 

components, to the amount calculated from pseudo interactions where members of 

different dyads were randomly paired together. They split the data into two frequency 

ranges and found a high degree of coherence at low frequencies (<0.25 Hz) and less 

coherence at high frequencies (>4Hz). However, the authors did not test whether this 
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pattern was also present in data calculated from pseudo interactions within the same 

pairs. The studies mentioned have also not examined motion frequency in detail 

using motion capture to isolate the movement coordinates (i.e., pitch, yaw, roll). 

In a recent study from our lab, Hale et al. (2020) revealed the importance of head 

nods as a mechanism for coordinating during conversation. Here they measured 

mimicry using single head motion sensors. A sample of 26 dyads (n=52) was 

engaged in a structured conversation where each participant took turns to describe a 

picture of a complex social scene to each other. They used CWC analysis to 

calculate levels of interpersonal coordination in real trials compared to a pseudo 

dataset created by matching data from different trials within the same pairs. What 

they found was different results for slow and fast head nods. The results showed a 

positive coherence at frequencies below 1.5 Hz, but also to their surprise, the real 

interactions showed lower than chance coordination of head movements at 

frequencies between 1.5 – 5 Hz. This unexpected finding suggests a systematic 

decoupling of head movements at higher frequencies. The authors hypothesize that 

these could potentially be different signals carrying distinct social information. 

The authors further interpret these results in the framework of two types of 

coordination, which they refer to as ‘mimicry’ and ‘fast-nodding’. They refer to 

mimicry as events where two people perform the same movement shortly after each 

other (e.g., one person nods and the other nods shortly after). Fast nodding occurs 

when one person, typically the listener, makes a small high frequency nod, while the 

speaker typically does not. In the next section we present the current study. In this 

study we want to examine whether social context may cause changes in how the 

mimicry behaviours and fast nods are used. In turn this may tell us what these 

different social signals might mean for the people involved in the conversation.  
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2.3 The Present Study 

The study described above (Hale et al., 2020) identified two specific social 

behaviours – mimicry of nods and fast-nodding – which were seen during one 

particular type of structured conversation. The aim of the present project is to identify 

what these social signals mean and how they are used across different 

conversational contexts. We chose to use three different conversational contexts 

which differ in how information is shared between people and how tightly the 

conversation is structured. First, we replicated the picture description task used by 

Hale et al. (2020). Second, we implemented a novel ‘video discussion task’ and an 

established ‘meal planning task’ (Chovil, 1991; Tschacher et al., 2014). These tasks 

allow us to manipulate the structure of the turn-taking behaviour between people to 

be either structured or unstructured, and how information is shared between people. 

In the following section, we will describe and compare these two variables across the 

three different contexts or tasks that were designed for this study.  

 

2.3.1 Conversational Contexts 

In the Picture Description Task (Figure 2-1A), participants were asked to take turns 

at describing a picture of a complex social scene to each other and later discuss its 

content. The task was divided into two parts. During the first part (monologue), the 

speaker describes the picture while the other participant just listens. During the 

second part (dialogue), both participants have a free conversation about the picture. 

For example, at this point the listener could start asking questions about the picture. 

Both parts of this task represent a structured conversation, which contains clearly 

defined turns of who is speaking and when. The dialogue phase is less structured 
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than the monologue, but even here the listener is most often asking questions about 

the content of the picture and waiting for the speaker to answer. Thus, this was a 

rather artificial and highly structured interaction, with one person speaking for most 

of the time. This slow alternation of turns is reflected in the sample turn-taking shown 

in the middle panel of Figure 2-1A. The Picture Description Task is also an example 

of a one-way information sharing context, where one participant had access to the 

picture and was sending information to the other participant.  

Hale et al. (2020) have so far only examined coherence patterns during structured 

conversations of this type. In this context, participants naturally move their heads 

when alternating between looking down at the picture and at the other participant. 

This behaviour could reflect mimicry (i.e., copying) as a means to form a social 

connection (Lakin et al., 2003). However, it could also reflect joint attention 

behaviour because the speaker has an important gaze target (the picture in her 

hands), and the listener might follow her gaze towards the picture. Thus, for head 

nods in particular, the Picture Description Task is unable to discriminate between 

social mimicry and simple gaze following or joint attention towards the picture. 

In preparation for the Video Discussion Task (Figure 2-1B), participants watch a 

children’s cartoon (Roberts, 2011). The video was a 3-minute animation with no 

words, in which a drawn line creates obstacles for a character called DipDap. Our 

reasoning was to re-create a scene of remembering shared events with others. So 

later during the session after which the participants had been engaged in other 

tasks, both participants are instructed to recall the events of the video; they could 

freely discuss what happened and help each other remember as much detail as 

possible. This task allowed participants to have natural unstructured conversation 

with no exchange of novel information. Both participants watched the video together, 
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so they had access to the same information and had to work together to recall it in 

detail. Typically, this task involves a loosely structured conversation which may 

include long pauses, shown in the sample turn-taking behaviour in Figure 2-1B.  

 For the Meal Planning Task (Figure 2-1C), participants had five minutes to come 

up with a menu together, consisting of an appetiser, main course, and dessert. 

However, they could only use ingredients that they both dislike, which introduced a 

fun cooperative element. This task was a natural conversation which typically 

involves laughter, interruptions and overlapping speech (Figure 2-1C) in a loose 

structure. As both participants were sharing information about their own meal 

preferences, the task enabled a two-way exchange of information which must be 

dynamically regulated. Summarised in Figure 2-1, the tasks differ in the amount of 

structure imposed, the type of information exchange, and the use of objects.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

Video Discussion B Meal Planning C Picture Description A 

Figure 2-1. Conversational tasks. (A) Picture Description; structured one-way information transfer 

holding an object. (B) Video Discussion; unstructured shared recall. (C) Meal Planning; unstructured 

two-way information transfer. Graphs (middle) shows a sample of the turn-taking structure for each task 

in this experiment, highlighting the order and how often yellow and blue participants passed their turns.  
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2.3.2 Aims, Hypotheses and Predictions 

In this study we are aiming to explore the social meaning behind head nods in 

naturalistic dyadic social interactions. We are looking to answer specific questions 

such as “What does fast nodding mean?”, and “What does slow nodding coherence 

mean?” across different social contexts. By varying the degree of (1) turn-taking, and 

(2) information sharing across three distinct conversational contexts, we can see if 

they differ in their patterns of coherence, which in turn will let us test different 

hypotheses about the meaning behind these head nodding signals. We will be 

testing four hypotheses related to the meaning of head nodding:   

  

H1: Fast head nods are a signal of having received novel information.   

H2: Coherence of slow head nods is a signal of bonding and affiliation.  

H3: Coherence of slow head nods is a product of joint attention or gaze following. 

H4: Fast and slow head nods are stable features of a person and may be linked to  

     personality traits. 

 

The first hypothesis (H1) claims that fast nods are a signal of having received 

novel information and is based on the findings by Hale et al. (2020) that the 

coherence pattern of fast head nods could be a different social signal from that of the 

mimicry pattern associated with slow head nods. The authors based their hypothesis 

on results from motion analysis which showed more fast nods in the listeners 

compared to speakers, and more so when the speaker was verbalising. Testing this 

first hypothesis, we predicted (P1) that fast nods should change across contexts. 

More specifically, If H1 is true, then we expect the coherence pattern associated with 

fast head nods to only be present in the Picture Description and Meal Planning 
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Tasks (Figure 2-1A, C) because these tasks both involve an element of novel 

information transfer, which promotes using a backchannel. In the Video Discussion 

Task (Figure 2-1B), participants have less reason to use a backchannel to signal 

anything because they already share the same information. 

The second hypothesis (H2) claims that coherent slow nodding signals bonding 

and affiliation and is based on the finding of coherent patterns of slow nods between 

two people, and the idea that these could be a form of social mimicry that acts as a 

‘social glue’ to facilitate affiliation between people (Lakin et al., 2003). Testing the 

second hypothesis, we predicted (P2) that the emotional attitudes of bonding and 

affiliation should be similar across the different tasks. More specifically, if H2 is true, 

then the positive coherence pattern associated with slow head nods should be 

present across all tasks, because the motivation to form a social bond should be 

equally present across all three conversational contexts.   

 In contrast, the third hypothesis (H3) claims that coherent slow nodding is not 

related to behavioural mimicry, but rather the joint attention or simple gaze following 

behaviour between participants. Distinguishing between H2 and H3 will help us 

determine the meaning of the slow nodding coherence pattern. This pattern arises in 

the specific context of the Picture Description Task where one person is holding a 

picture on their lap. This context encourages the speaker to alternate gaze up and 

down between the picture and the face of the listener; the listener could then share 

the speaker’s attention by also gazing down at the picture. If (H3) is true, this leads to 

the prediction (P3) that slow nodding coherence should change across contexts. 

More specifically, we expected the positive coherence pattern associated with slow 

head nods to be present only in the Picture Description Task since the Video 

Discussion and Meal Planning Tasks do not have a picture to draw attention. 
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The fourth hypothesis (H4) claims that both fast and slow nodding are stable 

features of a person and may be linked to personality traits. This hypothesis is based 

on the idea that some people might be more prolific head nodders and show strong 

nodding across all contexts, while others might show little nodding. In other words, it 

tests the possibility that head nodding patterns could be used as a measure of 

individual differences in social behaviour or could be related to personality factors. If 

the propensity to engage in nodding is a fixed personality trait that is stable across 

contexts, we might also expect these individual differences in nodding to relate to 

measures of social skill. Testing the fourth hypothesis, we predicted (P4) that fast 

and slow head nods should be similar across tasks within individuals and should 

correlate with the questionnaire measures of social behaviour. That is, we expected 

the coherence patterns of slow and fast head nods to be linked to fixed traits and not 

change depending on the social context. If we identify consistent nodding within 

participants and across tasks, we will have evidence that nodding can be used to 

quantify individual differences. 

 

 

 

 

 

 

 

 

 

 



 
 

78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Methods 

2.4.1 Participants  

62 participants (Mage=24) were recruited from the UCL Psychology Subject Pool and 

the ICN Subject Database. Exclusion criteria included subjects that were not fluent in 

English. All participants were recruited and tested in pairs (31 dyads) and were 

randomly paired to arrive at the same time. On arrival, participants were asked to 

remove eye-makeup, bulky clothes, and jewelry as to not interfere with the recording 

equipment. The participants did not have any previous experience with the tasks and 

were unaware of the purpose of the experiment. Ethical approval for video, audio, 

and motion capture recordings was arranged via the UCL Research Ethics 

committee, and all participants gave their written informed consent. A monetary 

reimbursement was offered for participating in the study at a rate of £7.50/hour. 
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2.4.2 Equipment  

In the present study we performed multimodal recordings from 31 pairs of 

participants (dyads) engaged in three different tasks with varied conversational 

structures. Each person in a dyad was randomly assigned to be either the 'Yellow' or 

'Blue' participant and sat one meter apart on stools. Audio instructions, together with 

audio cues indicating the start and stop of a recording, were given to the participants 

via two speakers placed on the floor next to them. The video stimuli (Roberts, 2011) 

were shown on a projector screen next to them. Two LED lights were also stationed 

next to the participants to better illuminate their facial features. Curtains separated 

the participants from the experimenter, who remained in the room, but did not 

interact. Behind the curtains we had three computers that coordinated the whole 

experiment (Figure 2-2A, B, C). In this setup, one computer (A) acted as a client, 

which sent commands to the two server computers (B, C).  

Motion Capture. Dyads were recorded with high resolution motion capture 

(Optitrack, NaturalPoint Inc., v.1.10), consisting of eight cameras (4 × Prime 13 and 

4 × Prime13W) at a sampling frequency of 120 Hz. The system tracks a participant's 

body movements by detecting the position and rotation coordinates of retroreflective 

markers placed on their body. Each participant wore an upper-body suit with a set of 

25 pre-determinately placed markers using the system specific software Motive.  

Eye and Face Tracking. Mobile eye-tracking headsets (Pupil Labs Inc.) were 

used to track participants gaze and facial expressions. Calibrated for both members 

prior to recording, the eye-tracker outputs 2D gaze direction at a sampling frequency 

of 120 Hz. To identify and analyse facial expressions we used the free and open-

source face recognition software OpenFace (Baltrusaitis, Robinson, & Morency, 

2016). We do not report any eye or face tracking data in this thesis. 
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Audio and Video Recordings. Alongside the non-verbal elements, wearable 

microphones connected to an audio mixer were attached to each participant's chest 

and used to collect the verbal component of the interaction. Each participant's voice 

was recorded on two separate channels of a single audio file using the Audacity 

software. A Logitech webcam was also used to record video of the whole session.  

We do not report any audio or video data in this thesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-2. Lab setup. Equipment included motion tracking cameras (Optitrack Prime 13 & 13W), a 
projector, speakers, wearable microphones connected to an audio mixer, eye- and face trackers 
(Pupil Labs), and a curtain to separate the three computers running the experiment. Computer A 
acted as the client computer, that communicated with the two computers B and C acting as servers.  
 
 
 

Recording Setup. The central requirement for multimodal data collection is the 

processing of multiple streams in a manner which preserves both the temporal and 

the spatial nature of the interaction. To capture all different data streams, we used 
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three computers (Figure 2-2A, B, C) running the recording software (Figure 2-3) with 

built-in socket compatibility across a local network. This was required to handle data 

being recorded from the various capture sources. This setup was designed to let us 

start and stop the different recording software within milliseconds of each other. To 

achieve this, we implemented a system-wide logging process that generated precise, 

machine-specific timestamps for each recording. We also instructed participants to 

perform a synchronised action (i.e., 3 hand claps) at the start of each phase of the 

task. The timing of these hand claps is visible in the audio, video, motion capture, 

and eye-tracker data, allowing us to check for synchronisation across all the different 

recording systems, and help localize certain events when analysing the data.  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2-3. Recording software. Top left and right: Eye- and face tracking (Software: Pupil Player) 
from the perspective of the world camera on each participant; Bottom left: Voice recordings (Software: 
Audacity) from the wearable microphones; Bottom right: Motion capture (Software: Optitrack Motive) 
from the eight cameras tracking the retroreflective markers on the participants upper-body suits. 
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2.4.3 Procedure  

Participants arrived at the lab and were shown all the equipment and informed of the 

procedures. They signed the informed consent, and then put on the motion capture 

suits, eye-trackers, and microphones. We then completed the calibration procedures 

for the motion capture and the eye-trackers. Each person in the dyad was randomly 

assigned to be either the ‘Yellow’ or ‘Blue’ participant, and sat one metre apart on 

small stools, before beginning the experimental tasks. As a pre-task in each 

recording block, the participants watched the DipDap video together. After watching 

the video, participants engaged in three tasks, each repeated once except for the 

third, for a total of five recordings per dyad (see Figure 2-4 for details). 
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Figure 2-4. Task order and sequencing. The procedure consisted of a pre-task (watch video), followed 
by three tasks (Block 1). The Picture Description and Video Discussion tasks completed twice (Block 
2), whereas the Meal Planning Task completed only once. This was due to its unrepeatable design in 
that participants by the end of the first block were familiar with each other’s meal preferences. 
Repeating two of the tasks once provided us with the opportunity to collect more data and discover 
potential effects caused by familiarity and assess test-retest reliability. There was a total of five 
recordings per dyad.  

 

Picture Description Task. Participants completed the Picture Description Task 

(Figure 2-1A) adapted from earlier behavioral studies (Chartrand & Bargh, 1999). 

This task is a form of one-way information sharing in which the participants were 

asked to take turns at describing a picture to each other and later discuss its content. 

Each trial was divided into two parts. During the first part (monologue), the speaker 

held a picture of a complex social scene and were instructed to describe it for 45 

seconds while the other participant just listened. During the second part (dialogue), 

both participants were instructed to have a free conversation about the picture for 

another 45 seconds. At this point the listener could start asking questions about what 

had been described to them. Audible cues signaled the start and end of each trial, as 

well as the transition from monologue to dialogue. All dyads completed 8 trials in 

each of the two blocks for a total of 16 trials, taking turns in the role of speaker.  

Video Discussion Task. Second, participants completed a Video Discussion 

Task (Figure 2-1B), in which they were instructed to recall a short three-minute video 

of a kid’s cartoon (Roberts, 2011) that they had seen previously, and later discuss its 

content. It is a non-verbal short animation about a character called DipDap. This task 

could be described as unstructured shared recall where both participants had a free 

conversation for two minutes about the content of the video, and where they could 

help each other remember as much details as possible of what happened. This task 

does not require sharing new information between the participants. All dyads 

completed a single two-minute trial in each of the two blocks, for a total of 2 trials.   
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Meal Planning Task. Lastly, participants completed the Meal Planning Task 

(Figure 2-1C), based on Chovil (1991), and recently adapted by Tschacher et al. 

(2014). In this task the participants have five minutes to come up with a menu 

together consisting of an appetizer, main course, and dessert. However, they can 

only use ingredients that they both dislike, which introduces a fun cooperative 

element to the conversation. Like the Video Discussion Task, this is an unstructured 

conversation, but with two-way information sharing or joint planning. Participants 

completed a single five-minute trial in the second recording block.     

Questionnaires. After the tasks, the participants completed four questionnaires. 

The Liebowitz Social Anxiety Scale (LSAS) (Liebowitz, 1987) assesses the range of 

social interactions that creates social anxiety. The scale features 24 questions 

relating to performance anxiety in social situations (e.g., “Eating in public places”). 

The Toronto Alexithymia Scale (TAS-20) (Taylor, Ryan, & Bagby, 1986), is a 

measure of deficiency in understanding, processing, or describing emotions. It has 

20 statements (e.g., “I often don’t know why I’m angry”) rated on a five-point Likert 

scale. The Adult Autism Spectrum Quotient (AQ) (Woodbury-Smith, Robinson, 

Wheelwright, & Baron-Cohen, 2005) aims to assess whether adults of average 

intelligence have features of various autism spectrum conditions. It consists of 50 

statements (e.g., “It does not upset me if my daily routine is disturbed”), each of 

which is a forced choice between “definitely agree or disagree”, “slightly agree or 

disagree”. The final one was the Experience of Gaze Questionnaire (unvalidated), 

which was created by two colleagues, Roser Cañigueral and Paul Forbes, 

measuring the participants subjective experience of eye contact. It consists of 20 

statements (e.g., “I need to think about whether or not to make eye-contact”), with a 

forced choice on a five-point scale between “strongly agree” to “strongly disagree”. 
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2.5 Data Analysis 

By selecting the pre-defined marker-set “25 Upper-Body” in the Motive software, the 

25 retro-reflective markers auto-label and divide the skeleton model into different 

bone segments (head, torso, etc.). We selected the head bone-segment of each 

skeleton model (Figure 2-5), which gave us three data channels specifying its 

position in x, y, and z coordinates, as well as three channels specifying its rotation 

(yaw, pitch, roll) in degrees. The rotation signals roughly correspond to head turning, 

nodding, and tilting. Each channel was recorded at a sample frequency of 120 Hz. 

In this study, we are interested in answering specific questions relating to the slow 

and fast head nodding behavior during dyadic social interaction, and we focus solely 

on exporting the head pitch data (i.e., degrees of rotation in the y-plane). Besides 

fitting our research questions, this rotation signal is interesting because it has been 

shown to be the most informative signal based on data from Hale et al. (2020).  

 

 

 

 

 

 

 

 

 
 
 
Figure 2-5. Motion capture data format. The head and hand bone-segments for each participant are 
highlighted in yellow. The raw head-pitch signal was exported from the center of each head bone-
segment. Auto-labelled marker positions are color-coded according to left and right body parts. 
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2.5.1 Data Pre-Processing 

A loss of marker tracking or incidents of misidentification where certain markers 

swap labels with each other will often result in jerky movements of the skeleton 

models. In such cases, we manually labelled these markers to correct this issue and 

ensure high quality data. We used the ‘quick-label’ mode in Motive with default 

settings. In specific cases of extensive marker swapping, we also used the edit tools 

to implement linear interpolations between the affected markers. In a minority of 

trials where the edit tools could not fix the loss of marker tracking, the wavelet 

toolbox in Matlab was unable to calculate the wavelet transform. Such trials were 

excluded from all analyses and reported as missing data (28/248 picture description 

trials; 5/62 video discussion trials; and 3/31 meal planning trials). The final head pitch 

signal ranged between -180 and 180 degrees, with no instances of a sudden switch 

from -180 to 180 found in the data. Thus, there was no need for circularity correction.  

 

2.5.2 Cross-Wavelet Coherence Analysis 

We carried out the following pipeline (Figure 2-6) using the Matlab Toolbox from 

Grinsted et al. (2004) to identify the wavelet power in the head pitch signals and to 

calculate cross-wavelet coherence. The input to this analysis is the raw head pitch 

trajectories for both participants with the head rotation in the y-plane in degrees (y-

axis) as a function of time (x-axis) (A, B). We calculated the wavelet transform for 

each trial to get the time-frequency representation of each time-series (C, D). In total 

there were 133 wavelet scales using the Morlet wavelet (periods ranged from 0.1 – 

19 Hz on the sampled data). Next, we calculated the cross-wavelet coherence 

between each of the two wavelet transforms (E), which gave us a measure of the 

time-frequency coordination between their movements.  
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Figure 2-6. Cross-wavelet analysis pipeline. For each trial, the head pitch trajectories for both the 
Yellow and Blue participants (A, B) are subject to a wavelet transform (C, D). Then, the cross-wavelet 
coherence is calculated between the two participants (E). The magnitude of wavelet power and 
wavelet coherence is represented by color, where blue is low power, and yellow is high power. The 
time is represented on the x-axis (200s) and each frequency on the y-axis (0-16 Hz). The coherence 
value (R2) is then averaged over time (F) and over all trials to obtain the overall frequency of 
coherence in head pitch between the two participants. 
 
 
 

To ensure that the analysis was free from the influence of edge effects (influence 

on the wavelet from the discontinuities at the start and end of recordings), we 

Wavelet Transform Wavelet Transform 

Cross-Wavelet Coherence 

A B 

F 

C D 

E 
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calculated the ‘cone of influence’ (COI) (opaque grey areas in the corners of Figure 

2-6C, D, E) and zeroed any data outside it. We also applied cone-of-influencing 

zeroing around the monologue-to-dialogue transition in the Picture Description Task, 

this helped to minimize the influence of stimuli outside the dyad. We discarded data 

that was outside the 0.1 – 19 Hz range. In the final step, we averaged the cross-

wavelet coherence (R2) over the time-course of each trial to obtain a measure of the 

frequency of coherence without regard to the specific time at which it occurred (F). 

 

2.5.3 Interpersonal Coherence in Real vs. Pseudo Interactions 

To understand the patterns of head movement present in each task, it is helpful to 

compare the wavelet coherence values from the dataset to a baseline. A good 

measure or baseline test of interpersonal coordination is to compare coherence in 

real trials, where the two datasets come from the same interaction, with coherence in 

pseudo trials where the two datasets come from different interactions (Bernieri & 

Rosenthal, 1991; Fujiwara & Diabo, 2016). Earlier studies that have used this 

approach have created pseudo trials by matching datasets from different 

participants. A previous study from our lab has used a more rigorous approach by 

matching datasets from different trials within the same dyad (Hale et al., 2020). 

We adopt the same approach here, where we match up the yellow participant’s 

signal from one trial with the blue participant’s signal from a different trial within the 

same dyad (Table 2-1). This gives us a strong test where the pseudo trials have the 

same general movement characteristics as our real trials, and any differences in the 

coherence levels between them must be due to a genuine live social interaction and 

will not be attributed to any individual differences between them. 



 
 

89 
 

Table 2-1 

Example of generating pseudo trials for the picture description task. 

Block-Trial True Match Pseudo Match 1 Pseudo Match 2 Pseudo Match 3 

1-1 

1-2  

1-3 

1-4 

2-5 

2-6 

2-7 

2-8 
   

 

Note.  S = Speaker (Strong Colour); L = Listener (Light Colour). 

  

In the Picture Description Task, each dyad completed 2 blocks of 4 trials, 

alternating between speaking and listening. For each real trial, we end up with 3 

pseudo trial combinations, resulting in 24 pseudo trials per dyad (Table 2-1). In the 

Video Discussion Task, we had 2 blocks of 1 trial each, so we counterbalanced the 

two existing trials. In the Meal Planning Task, we had 1 block with 1 trial. To be 

consistent, we split the trial into two equal segments and counterbalanced the two. 

We carried out wavelet analysis on the pseudo-data using the same pipeline as in 

the real trials. This gave us a set of coherence values for each real and pseudo trial 

of each dyad. Separately for the real dataset and the pseudo dataset, we averaged 

the coherence values across all trials for all dyads. We then calculated a coherence 

difference for each dyad, representing the average coherence in real interactions 

minus the average coherence in pseudo interactions, and performed t-tests on the 

coherence differences at each frequency (90 tests, one for each wavelet scale). To 

correct for multiple comparisons, we used a False Detection Rate (FDR) of 0.05 

(Benjamin & Hochberg, 1995). By comparing real and pseudo trials in this way, we 

can see if interpersonal coordination that occurs in real conversations is different 

from the same people just speaking. 
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Following this, we aimed to define parameters to represent the fast and slow 

nodding behaviour in each dyad. Fast nodding is a behaviour shown by an 

individual, so we defined and quantified fast-nodding as the mean wavelet power for 

each individual participant in the frequency range of 2.6 – 6.5 Hz. However, to avoid 

circular analysis, or “double dipping”, we chose these frequency ranges from data 

presented by Hale and colleagues (2020). This is an individual measure equivalent 

to averaging the values in a horizontal band spanning the full time-range and the 

frequencies from 2.6 – 6.5 Hz on the two individually wavelet-transformed signals in 

Figure 2-6C (i.e., blue participant) and 2-6D (i.e., yellow participant). Thus, we obtain 

a single value for each participant which represents how much that person engages 

in fast-nodding behaviour. To emphasize, this is not a coherence measure, because 

fast nodding differs between speakers and listeners. 

In contrast, coherence of slow nodding is a property of pairs of participants and 

emerges only in the analysis of the dyadic interaction. Thus, to characterise and 

quantify slow nodding, we calculated the mean wavelet coherence in the frequency 

range of 0.2 – 1.1 Hz. Again, these values were based on data from Hale and 

colleagues (2020) to avoid circular analysis. This is a dyadic measure equivalent to 

averaging all the values in a horizontal band spanning the full time-range and the 

frequencies form 0.2 – 1.1 Hz in Figure 2-6E. Thus, we obtain a single value for each 

dyad showing how much that dyad engages in coherent slow nods. Coherence (R2) 

ranges on a scale of 0 to 1. We used these quantifications of fast and slow nodding 

for the next analyses.  
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2.5.4 Self-Report Questionnaires 

First, we aimed to test if the tendency to engage in fast or slow nodding behaviour is 

a fixed personality trait that differs between people and is consistent across tasks. 

Thus, we correlated the fast-nodding score across tasks for each participant. 

Similarly, we aimed to test if the tendency to show coherence slow nods is a stable 

characteristic of dyads that is consistent across tasks, so we correlated the slow nod 

scores across tasks for each dyad. Finally, we calculated if either fast nodding 

scores or slow nodding scores were related to the subjective reports from four 

questionnaires at the end of the experiment. 

 

2.5.5 Methods Summary 

In the present study, the overall aim was to explore the temporal characteristics of 

head nodding in naturalistic dyadic interaction in different contexts to uncover the 

meaning behind the signal. Understanding the timing and at which frequencies head 

nodding behaviours occur can help us answer how and why we use these signals. 

So far it has been difficult to make firm predictions about the frequencies at which 

people naturally coordinate, both from a methodological and a design perspective. 

We set out to implement high resolution multimodal data capture along with 

sophisticated analysis methods to understand the fine-grained temporal patterns in 

relation to different hypotheses about the meaning of the head nodding signals. 

Each dyad was engaged in different conversations across three tasks with varying 

structures of turn-taking and information sharing behaviour between the participants. 

These contexts were then analysed and compared to discover any differences in 

their pattern of coherence. From the pre-processed data, we calculated the wavelet 
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transforms (Figure 2-6C, D), where each capture of the participants head pitch (nod) 

is represented in terms of a wavelet in different frequencies and time points. Next, 

we calculated the cross-wavelet coherence (Figure 2-6E), which is a quantitative 

method in signal processing that enables us to compare specific characteristics from 

the interaction of two time-series, and the progression in time of this interaction 

(Grinsted et al., 2004). The coherence value (R2) was averaged over time and over 

all trials. As a baseline test to the true interactions, we analysed the cross-wavelet 

coherence for pseudo interactions by shuffling the trials within each dyad. This test 

controls for any variables that may depend on individual differences and reveals 

features of movement that are specific to a genuine interaction. 

At the end of the experiment, data from four questionnaires were collected. We 

analysed these by first testing if participants show a reliable pattern of fast or slow 

nodding by correlating these across tasks. We also tested if the tendency to nod is 

related to the personality traits measured in the questionnaires by performing 

correlations between these measures and relevant frequency bands of the wavelet 

data (i.e., high frequency fast nods and low frequency slow nods) for each task. 

 

2.6 Results 

2.6.1 Cross-Wavelet Coherence in Real vs. Pseudo Interactions 

Results are shown separately for each task or conversational context (Figure 2-7). 

Graphs A, B and C show the mean and standard error of coherence (R2) for real 

(red) and pseudo (blue) interactions. High coherence means a high degree of 

coordination, as it indicates that two people are moving with the same frequency. To 
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assess the difference in coherence between real and pseudo interactions, we 

performed t-tests (90 tests) at each frequency and calculated the effect size. Graphs 

D, E and F show the effect sizes (Cohen’s d) calculated from the average coherence 

in real interactions minus the pseudo interactions. The dots indicate frequencies 

where there is a significant difference of coherence between real and pseudo 

interactions. Red dots represent points on the frequency range that pass a p<0.05 

FDR significance threshold, while blue represent significant differences that did not. 

 

 

 

 

 

 

 

 

 
 
Figure 2-7. Cross-wavelet coherence. Graphs A, B, and C show the mean and standard error of 
coherence (R2) for real and pseudo interactions across the three tasks. Graphs D, E, and F show the 
effect sizes (Cohen’s d) for the difference between the real and the pseudo interactions. The dotted 
line indicates frequencies where there is a significant difference of coherence between real and 
pseudo interactions. Red dots represent points on the frequency range that pass a p<0.05 FDR 
threshold, while blue dots represent significant differences that did not pass this threshold. 
 

On the above graphs we can observe two distinct patterns of coherence across 

the range of frequencies. These patterns are divided into two frequency ranges, 

Picture Description Task Video Discussion Task Meal Planning Task 

A B C 

D E F 
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above and below 1.5 Hz, as indicated by the dashed vertical line (Figure 2-7D, E, F). 

In the low frequency range (<1.5 Hz) results show greater coherence in the real 

compared to the pseudo interactions for the Picture Description Task. However, this 

pattern was not observed in the Video Discussion and the Meal Planning Tasks. In 

the high frequency range (>1.5 Hz) results show less coherence in real compared to 

pseudo interactions in the Picture Description and Meal Planning Tasks but did not 

reach significant FDR corrected thresholds for the Video Discussion Task. 

 

 

 

2.6.2 Individual Differences  

We tested if the participants show a reliable pattern of fast or slow nodding by 

correlating these across tasks (Figure 2-8). The results show that there is no reliable 

positive relationship between fast nodding behaviour in any one task paired with any 

other task. There was also no reliable positive relationship between slow nodding 

coherence in any one task paired with any other task. There was a significant 

negative correlation, r=-0.43, p=.003, in slow nodding coherence in the Meal 

Planning and Picture Description Task, but it did not survive FDR correction. 

In addition, we also tested if the tendency to nod is related to any of the 

personality traits measured in the questionnaires by performing correlations of the 

measures with relevant frequency bands of the wavelet data (high and low frequency 

nods) for each task separately (Figure 2-9). The questionnaires included the 

Liebowitz Social Anxiety Scale (Anx-Avoidance/Fear), the Toronto Alexithymia Scale 

(TAS), the Adult Autism Spectrum Quotient (AQ), and the Experience of Gaze 

Questionnaire (Gaze). The results show no correlations between the nodding 

measures and the questionnaire scores that survive a correction. 
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Figure 2-8. Across tasks correlation matrices. Red correlation scores indicate if the correlation is 
significantly (p<0.05) different from zero. The axis values for fast nods is the average power in the 2.6 
– 6.5 Hz frequency band at the individual level (one data point for each participant). The axis values 
for slow nods is the degree of coherence (R2) at the dyad level (one data point for each dyad).     

 

 

 

 

 

 

 

 

 

Figure 2-9. Within tasks correlation matrices. Red correlation scores indicate if the correlation is 
significantly (p<0.05) different from zero. The x-axis values for fast nods is the average power in the 
2.6 – 6.5 Hz frequency band at the individual level (one data point for each participant). The x-axis 
values for slow nods is the degree of coherence (R2) at the dyad level (one data point for each pair of 
participants). The y-axis values are the average questionnaire scores. 

Picture Description Task Video Discussion Task Meal Planning Task 
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2.7 Discussion  

Previous studies have identified patterns of fast nodding and slow nodding 

coherence in conversations but have not shown what this means. For example, 

recent work from our lab has shown that there are two distinct types of nodding 

behaviour – fast nodding and slow nodding (Hale et al., 2020). But for these 

measures to be meaningful and used to quantify features of an interaction, it is 

important that we understand why people engage in these behaviours. For instance, 

if nodding is a social signal, then the meaning of the signal can be inferred by how 

nodding changes across such contexts. Moreover, to use these nodding measures in 

clinical assessments, it is also important to know if there are individual differences 

between them. For example, if the amount of nodding someone engages in is to be 

used as a clinical measure, it should be robust across different conversational 

contexts as well as consistent within an individual. 

This study tracked how these head nodding behaviours change across different 

conversational contexts, to understand the meaning of nodding as a social signal. 

More specifically, we considered three potential meanings behind a head nod: (1) a 

head nod can act as a communication back-channel, or a feedback signal from the 

listener in a conversation, (2) it can be the result of joint attention or simple gaze 

following, and (3) it can be that we use it to mimic each other, which in turn acts as a 

‘social glue’ to facilitate bonding and affiliation (Lakin et al., 2003).  

Consistent with previous work (Hale et al., 2020), we observe two distinct patterns 

of coherence across the range of frequencies. We define these as ‘coherent slow 

nodding’ (<1.5 Hz), and ‘fast nodding’ (>1.5 Hz). Examining the slow nodding 

behaviour, we find that dyads show greater coherence in the real interactions 
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compared to the pseudo interactions in the Picture Description Task. However, this 

pattern was not observed in the Video Discussion and Meal Planning Task. 

Examining the fast nodding behaviour, the results show less coherence in real 

compared to pseudo interactions in the Picture Description and Meal Planning Task 

but did not reach FDR corrected thresholds in the Video Discussion Task. We will 

proceed to explore the possible interpretations of these nodding patterns from the 

framework of the two frequency ranges, after which we will discuss the results 

relating to individual differences in nodding behaviour, followed by some 

methodological implications and limitations of the study. 

 

2.7.1 Exploring the Coherent Slow Nodding Behaviour 

We analysed slow nodding as the pattern of head pitch in the 0.2 – 1.1 Hz range. 

Our results reveal a positive above chance coherence of low frequency (i.e., slow) 

head nods between participants in the real vs. pseudo interactions during the Picture 

Description Task (Figure 2-7). This frequency range has traditionally been linked to 

behavioural mimicry (Chartrand & Bargh, 1999; Stel et al., 2009), which suggests 

that participants are mimicking each other’s slow head nods during the Picture 

Description Task. However, the positive coherence does not mean that the 

participants are necessarily mimicking each other, but rather that one performs a 

head nod after which the other person nods within the time-window of the cross-

wavelet analysis. This result is consistent with earlier studies that have used a 

similar paradigm (Fujiwara & Daibo, 2016; Schmidt et al., 2014), and effectively 

replicates the findings from Hale et al. (2020) using a higher resolution motion 

capture system. We did not observe any slow nodding coherence in the Video 
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Discussion and Meal Planning Tasks. This shows that slow nods changes across the 

different conversational contexts and cannot be generalized to all forms of social 

interaction. These results contradict the hypothesis (H2) that slow head nods could 

be a form of social mimicry that facilitates bonding and affiliation between people 

(Lakin et al., 2003). Because if H2 were true, the coherence of slow nods should 

have been similar across the different conversational contexts due to the equal 

motivation to form social bonds during conversation.  

Instead, these results rather seem to support our third hypothesis (H3) that slow 

head nods are a product of joint attention or simple gaze following, which according 

to our prediction (P3) arises in the specific context of the Picture Description Task 

where one person is holding a picture as a gaze target. This context encourages the 

speaker to alternate gaze up and down between the picture and the face of the 

listener; the listener could then share the speaker’s attention by also gazing down at 

the picture. This is probably why we only see this behaviour in the Picture 

Description Task, and not in the Video Discussion and Meal Planning Tasks, 

because in these tasks there is no object to draw attention away. An exploratory 

analysis to further support this hypothesis is provided in the appendix to the thesis. 

Based on this, we conclude that coherence of slow nodding is most likely not a 

general form of mimicry found across all contexts, but rather indicates that nodding is 

linked specifically to gaze targets. A prediction from this is that, if participants were in 

a context where a shared gaze target was located beside them, rather than in one 

person’s hands, then we would instead see coherence of ‘head shaking’ as they turn 

their heads towards the target. It is possible to consider gaze following to be a 

subset of mimicry behaviour, in which the coherent head movements arising from 

following a person’s gaze could be classified under a more general rubric of 
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‘interpersonal coordination’ or interaction. Indeed, some studies which score mimicry 

behaviour on observation of interpersonal coordination may not distinguish between 

gaze following and mimicry (Salazar-Kämpf et al., 2017). However, we suggest that 

it can be useful to make this distinction, because the two actions could have different 

social meanings. Gaze following is specific to the target of gaze (if an object is 

located on the left of A and on the right of B, then gaze following implies that A looks 

leftwards and B looks rightwards), whereas mimicry might be defined according to 

body-centred coordinates (I mimic a right-hand action with my right hand) (Liepelt, 

von Cramon, & Brass, 2008). This also shows the importance of understanding why 

people engage in specific head nodding behaviours, so we can figure out if the 

behaviour is used as a social signal, and if so what the exact meaning behind it is. 

Next, we will discuss the high frequency pattern of fast nodding.  

   

2.7.2 Exploring the Fast Nodding Behaviour 

In a secondary analysis by Hale et al. (2020), they demonstrated that the fast 

nodding behaviour is related to each participant’s speaking or listening behaviour by 

identifying a specific high frequency pattern between 2.6–6.5 Hz that is more 

prevalent when listening compared to speaking. This led them to the idea that fast 

nodding might be a backchannel signal related to listening. However, they were not 

able to properly test this idea. In the present study, we were able to test for the 

presence of fast nodding across different conversational contexts to determine if it 

really is being used as a backchannel to signal understanding. We analysed fast 

nodding as the pattern of head pitch in the 2.6–6.5 Hz range. Our results (Figure 2-7) 

reveal a less-than-chance coherence of high frequency fast head nods between 
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people in the real vs. pseudo interactions in the Picture Description Task and Meal 

Planning Task but did not reach significant FDR thresholds for the Video Discussion 

Task. These results positively replicate the results from Hale et al. (2020) in the task 

that they used (Picture Description Task), and we also found a similar fast nodding 

pattern in the Meal Planning Task, but not in the Video Discussion Task.  

When we contrast the two hypotheses about the nature of the fast nodding 

behaviour, results from the real vs. pseudo comparisons (Figure 2-7) show that fast 

nods change across the different conversational contexts and cannot be generalized 

to all forms of social interaction. More specifically, these results support our 

hypothesis (H1) that fast nodding are a signal of having received new information 

and that it is a different social signal to that of slow nodding coherence. In line with 

our prediction (P1) fast nodding can only be observed in the Picture Description and 

Meal Planning Tasks, both of which involve a novel transfer of information. 

From this we conclude that fast nodding most likely does not have the same 

meaning as slow nodding coherence and cannot be generalized to all forms of social 

interaction. Specifically, our results seem to indicate that fast nodding is a 

backchannel behaviour to signal that one has received new information. The Picture 

Description Task is a one-way information sharing context where the speaker is 

sharing new information to the listener about the picture. Similarly, the Meal Planning 

Task is a two-way information sharing context in which both participants are unaware 

of the other’s meal preferences, while also having to share their own preferences. In 

both tasks, such exchange of new information promotes using a backchannel to 

signal to the other that you have received their message and are paying attention to 

what they are saying. On the other hand, the Video Discussion Task is about shared 

recall between members of a dyad and creates less motivation for them to use a 
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backchannel to signal that they have received any new information. This is probably 

because they both know they have acquired the same information regarding the 

video and believe that there is nothing meaningful to be learned from signalling when 

they have shared knowledge, or “common ground” (Clark, 1996). In this way, the 

lower-than-chance coherence pattern of fast nodding may only be present during 

conversations when there is a reason for people to signal that they have received 

new information and if they believe there is something meaningful to be learned. 

Because both these tasks that promote using a backchannel involve an element 

of novel information transfer, we can begin to speculate as to whether changes in 

social signals can provide us with clues about our cognitive processes, such as 

predicting memory performance. At the very least, we could assess that fast nodding 

indeed seems to have a different meaning to that of coherent slow nods, and that 

these different social signals are used in different ways by the people involved. 

 

 

2.7.3 Exploring Individual Differences in Nodding Behaviour 

As an exploratory analysis, we used this dataset to test if the tendency to engage in 

fast or slow nodding behaviour is a fixed personality trait that differs between 

individuals. First, we tested if participants show a reliable pattern of fast or slow 

nodding by correlating these across tasks (Figure 2-8). That is, if a participant nods a 

lot in the Meal Planning Task, does that person also nod a lot in the Video 

Discussion and Picture Description Tasks? Second, we tested if the tendency to nod 

is related to any of the personality traits measured in questionnaires by correlating 

individual scores on fast nodding and coherent slow nodding with the questionnaire 

measures (Figure 2-9). If reliable individual differences in nodding behaviour could 
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be identified, this would motivate us to test in future studies if the tendency to nod 

reflects broader social skills. The four questionnaires included the Liebowitz Social 

Anxiety Scale (Anx-Avoidance/Fear), the Toronto Alexithymia Scale (TAS), the Adult 

Autism Spectrum Quotient (AQ), and the Experience of Gaze Questionnaire (Gaze).  

In general, we did not find any evidence for reliable individual differences in 

nodding behaviour. Fast nodding behaviour in one task did not correlate with fast 

nodding in another task, nor did it correlate with any questionnaire measures. Slow 

nodding coherence in one task did not correlate with the same measure in a different 

task, and nor did it correlate with any questionnaire measures. Because we did not 

find any evidence of reliable individual differences, we did not further assess test-

retest reliability for this analysis. This also means we can reject the hypothesis (H4) 

that head nodding is linked to fixed personality traits, as it does not support our 

prediction (P4) that fast and slow head nods should correlate with the subjective 

measures and show similar correlations between the tasks. Instead, our results 

rather seem to indicate that head nodding is dependent on the conversational 

context. The limitation here is that each person only appears in one dyad, so we are 

not able to quantify each person’s behaviour independent of their interaction partner, 

as done by Salazar-Kämpf et al. (2017). However, at present there is no strong 

reason to use fast or slow nodding behaviour as a measure of an individual’s social 

skills or as a clinical assessment. This is particularly relevant because studies are 

attempting to use automated analyses of interactive behaviour to identify and even 

diagnose disorders of social interaction such as autism (Georgescu et al. 2019). In 

the following section, we will discuss some limitations of the present study, and how 

future studies can extend the contribution. 
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2.8 Limitations and Future Directions 

Limitations regarding data from the questionnaire measures presents a challenge for 

researchers who want to understand individual differences in social skills to identify 

the isolated contribution of everyone within a social interaction. This is difficult 

because data from naturalistic interactions are not independent but depend on the 

way people adapt their behaviours over time. Whereas social interactions have 

characteristics in addition to those of the individuals involved, the interaction might 

nonetheless be influenced by individual differences. In future studies, it is perhaps 

important to design questionnaire measures where such interactional parameters are 

sensitive to individual differences. Moreover, the data we have on this is based on a 

relatively small sample (i.e., 62 participants). 

Secondly, we have no data on the temporal relationships between different 

movements, which makes us unable to make any inferences based on the timing 

between participants. As explained earlier on the data analysis for the motion 

capture data (Section 2.2.3), the Cross-Wavelet Coherence Analysis can give us two 

measures of an interaction – a coherence measure (R2) which tells us if two people 

move at the same frequency within the same time-window, and a phase measure 

which tells us the precise temporal relationship (i.e., time lag) between them. 

In addition to examining the coherence measure (R2), Hale et al. (2020) also 

looked at the time lags using a simple cross-correlation measure between each 

participant’s head pitch signal across a range of time lags to find a peak correlation 

of 0.6 seconds. This would indicate the timing at which the two participants matched 

each other’s movements. This time lag data was backed up with further CWC-

analysis of the phase relationships between the participants at every time-frequency 
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point, where they ended up with an optimal model revealing close to the same time 

lags as the cross-correlation measure (0.588 sec). This implies that the listener 

tends to match the head movements of the speaker with around 600 ms delay. 

Initially we wanted to examine the timing of the frequency behaviour by performing 

cross-correlations between each participant’s head pitch signal across all three 

conversational contexts to see if we got different results and to further strengthen our 

hypotheses. However, cross-correlation based lag analysis only makes sense if two 

people are, or are close to, moving in synchrony with one another – where one 

person’s movement closely follows the other, like in a structured form of 

conversation with distinct turns between who is speaking and listening. Since the 

Video Discussion and Meal Planning Tasks are unstructured forms of conversation 

with a lot of overlap between who is speaking and listening, we considered using a 

method used by Tschacher et al. (2014) where they use the absolute values of each 

time-series. The use of absolute values means that both positive and negative cross-

correlations contributes positively to the measure. This strategy yields values that 

are more representative of a dynamic unstructured dyadic interaction with more 

overlapping turn-taking behaviour. However, by using absolute values the 

researchers are essentially disregarding the sign of each value, giving different 

means and peak correlations. Moreover, the timing is also not as relevant for the fast 

nodding pattern as it is for the mimicry pattern because if one person is nodding 

quickly, the other is less likely to nod at all. For these reasons, we ultimately decided 

not to further investigate the temporal relationships using cross-correlations or phase 

analysis in this dataset. Such analysis is beyond the scope of this thesis.    

We set out with the aim to improve upon the traditional approach of collecting 

unimodal data by implementing a multimodal setup that could capture dyadic social 
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interaction in higher resolution. This approach turned out to be a challenge with huge 

cognitive and computational demands. One of the difficulties in devising a 

multimodal data collection protocol is properly controlling for behavioural outcomes 

to ensure that the effects seen are not merely driven by effects created by the setup 

or the equipment itself. For example, care must be put into placing video stimuli and 

speakers so as not to influence where people look and move their heads. Having 

mobile eye-trackers equipped can also catch peoples gaze because it is not a 

natural thing to have on your face. Another disadvantage is that a setup like this is 

very obtrusive and requires specialized equipment and a dedicated recording space. 

Care when designing multimodal experiments are needed, but we believe that these 

more complex and contextually dependant setups will help to extend our knowledge 

of the interactive dynamics that regulate our social life. 

This is not the first dataset to address multimodal dyadic social interaction. 

However, the inclusion of high-resolution motion capture, wide synchronization of 

socially relevant data and advanced analysis methods may provide us with many 

new opportunities to study social behaviour. In this study we created an integrated 

framework to account for the large variety of possible modalities that can interact to 

produce unique social signals in different contexts. This can be important for studies 

of the social brain and of disorders of social interaction by improving the automatic 

detection of social signals. It can also be important for creating computational 

models of realistic social behaviour, with the development of socially realistic virtual 

characters. In addition, we also implemented an analysis of comparing real 

interactions with pseudo interactions, renewed by Fujiwara and Daibo (2016), and 

improved upon by Hale et al. (2020). Here, we compare the real trials to a pseudo 

dataset created by matching randomized data from different trials within the same 
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pair of participants. By comparing real and pseudo trials in this way instead of 

between pairs, it enables us to observe if interpersonal coordination that occurs in 

real conversations between the same two participants is different from the same 

people just speaking without the context of the real interaction, they were involved in. 

This is a strong analysis that we believe should be used more often with data from 

dyadic interactions. For example, imagine that one dyad in the study is very 

energetic and the participants move about a lot, whereas in a second dyad both 

participants are quiet and mostly still. Comparing real trials within dyad to pseudo-

trials across dyads might suggest a difference, but this might be driven only by the 

overall energy levels of the dyad and might not be specific to the social interaction. 

By using within-dyad pseudo-trials, we can control for the unique behaviour of each 

individual and identify only the coordination patterns which are specific to the live 

interaction of the participants.  

A direction that we want to explore with the next study involves memory and 

learning during dyadic social interactions. In the present study, we have showed that 

fast nodding is represented more in conversational contexts in which there is a 

transfer of new information between participants. From these results, we can pose 

the question if fast head nods could be a backchannel signal from the listener in the 

conversation to inform the speaker that they have received this information? And if 

so, could head nodding behaviour somehow be associated with memory? These are 

interesting questions since studying memory involves quantifiable outcomes from a 

conversation that we will try to test and measure using a new memory task. Memory 

and learning constitute a behavioural measure of acquired information and paired 

with our high resolution setup could provide useful insights into the natural 

parameters of head nodding in conversations, and its relationship to memory. 
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2.9 Conclusions 

Previous studies have identified patterns of fast nodding and slow mimicry in 

conversation behaviour but have not shown what these could mean. With the use of 

high resolution motion capture and wavelet coherence analysis we tracked how 

these behaviours change across three different conversational contexts, in order to 

increase our understanding of the meaning of head nodding as a social signal. 

First, we show supporting evidence that fast head nods are a signal of having 

received new information and that it is indeed a different signal to that of slow head 

nods in terms of facilitating the transfer of new information during conversations. 

Second, we show that slow head nods change across conversational contexts and 

find support for the hypothesis that slow nodding coherence are not a form of 

mimicry behaviour, but rather a consequence of having a shared gaze target, or 

simply following the gaze of another person. Third, we show that, in general, fast and 

slow head nods are not linked to stable personality traits that differ between people 

but are dependent on the conversational context. This implies that, at present, there 

is no strong reason to use fast or slow nodding behaviour as a measure of an 

individual’s social skills or as a clinical assessment. 

Our findings will be useful to explore if head nodding coordination might be related 

to measurable outcomes of a conversation, like memory and learning. It can also be 

used to measure nodding in different people to quantify features of an interaction 

(e.g., affiliation, liking, interest), and allow us to build virtual characters who show 

these behaviours. For such use of nodding to be meaningful, it is important to have a 

robust understanding of when and why people engage in fast nodding and slow 

nodding behaviours, which we have demonstrated with this study. 
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We try to demonstrate in this study that we need to continue to measure complex 

interactions between people in naturalistic settings and capture the coordination 

using new integrated frameworks. Still, there are problems with elaborate multimodal 

setups like this when it comes to controlling for all the behavioural outcomes. But 

with some extra care when designing multimodal experiments, we believe that these 

contextually dependant setups will help us capture social interaction in higher detail 

than before, and to extend our knowledge of the interactive dynamics that regulate 

our social life. Such knowledge could impact research on disorders of the social 

brain, automatic detection or sensing of social signals, and computational models of 

realistic or virtual social behaviour. It may even turn out to be more important in this 

new era of social distancing following the recent coronavirus (COVID-19) pandemic. 
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Chapter 3. Nodding Along as you 

Learn: Head Nodding in Conversation 

Predicts Memory? 
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3.1 Abstract 

In our previous study (Chapter 2), we demonstrated that fast nodding behaviour is 

found more in conversational contexts in which there is a transfer of new information 

between participants. In this study we aim to investigate if encoding new information 

is associated with fast nodding. We collected a new dataset and tested if different 

types of head nodding frequencies during conversation could predict performance on 

an outcome measure in the form of a memory test. Using high-resolution motion 

capture, wavelet analysis, and multilevel modelling, we examine two hypotheses 

related to fast-nodding and slow-nodding behaviour respectively, namely if encoding 

new information is associated with fast nodding behaviour (H1) and if Self-other 

overlap is associated with slow nodding behaviour (H2). 

Our results are ambiguous, depending on what statistical approach we 

implemented. We cannot conclusively claim that head nodding can be correlated 

with learning during conversations, but some analysis suggests that head nodding 

behaviours might be related to memory recall during unstructured conversations. 

The findings of this study can provide useful insight into the natural parameters of 

head nodding behaviour and its relationship to memory. This can in turn allow us to 

build virtual agents who can simulate these natural backchannels to test how people 

respond to different types of interactions and drive the development of new and 

improved psychological theories of social interaction. 
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3.2 Introduction  

In a recent study, Hale et al. (2020) developed an automated method which can 

identify and quantify two distinct types of nods – fast nodding and coherent slow 

nods. We used high resolution motion capture and wavelet analysis techniques to 

further explore the meaning behind these head nodding signals in different 

conversational contexts (Chapter 2). By shifting analysis away from the individual 

and widening the focus to the dyad, we began to explore the behavioural and 

cognitive dynamics that emerge from the contextual constraints of a dyadic 

interaction, such as the specific task or type of conversation. 

Understanding the way in which people changed their behaviour in different social 

contexts provided us with important clues on how information is shared between 

people. We showed supporting evidence that fast head nods are a signal of having 

received novel information, as indicated by an increase in backchannel nodding 

behaviour in conversational contexts in which there is a transfer of new information 

between participants. We also found evidence that slow nodding coherence change 

across these different contexts. This challenged the ‘Social Glue Hypothesis’, which 

states that low frequency slow nodding, or mimicry, is closely related to social 

bonding and the desire to get on well with others (Lakin et al., 2003), and should 

therefore create the same motivation to form a social bond across all three 

conversational contexts. We interpreted this as favouring an interpretation of slow 

nods as a form of joint attention rather than a mimicry behaviour, and we concluded 

that fast nods are indeed a different signal to that of coherent slow nods, first 

hypothesized by Hale et al. (2020). However, it should be noted that the ‘social glue 

hypothesis’ is a very general hypothesis. It is not a narrow and strong hypothesis, 

and researchers are still uncertain about what mechanisms are involved to sustain it. 
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This chapter examines how non-verbal behaviour in a conversation relates to the 

outcomes of the conversation in terms of successfully remembering the information 

that was discussed. First, we review previous studies that link non-verbal behaviour 

to memory and learning outcomes. 

   

3.2.1 Linking Conversational Behaviour to Outcomes 

Pentland (2010) has described non-verbal signals as not just a complement to 

language, but as a separate communication network. If we understand this old 

channel of communication, he claims, we can predict the outcomes of many social 

situations. It is important to know if and how the social signals we have detected – 

fast and slow nodding – are related to conversational outcomes. A variety of studies 

have tried to link non-verbal behaviours in conversation to a range of outcomes, and 

this section summarises some studies in relation to memory and learning.  

Previous studies that have used social signals to predict outcomes in social 

interactions include studies measuring attention and engagement in student 

classrooms to reveal the benefits for learning and e-learning (Chen, Wang, & Yu, 

2015; Pinzon-Gonzalez & Barba-Guaman, 2021; Sümer et al., 2021). For example, 

Pinzon-Gonzalez and Barba-Guaman (2021) used computer vision techniques in 

classrooms and measured their head position as an index of social attention. They 

found that head position estimation can be used to detect levels of attention. A 

similar study also used a Kinect camera to measure levels of attention in classroom 

settings to predict memory in this context and to provide automated analytical tools 

of the learning process (Zaletelj & Košir, 2017). Specific focus has also been on 

head movements and how they are coordinated with the teacher’s motion, which 

serves as a reliable predictor of the students’ level of attention (Sümer et al., 2021). 
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Eye-movements have also provided insight into memory storage. During storage 

and retrieval of information, a link between interpersonal coordination and eye gaze 

patterns have been shown to influence the types of information that is stored 

(Richardson & Spivey, 2000). For example, people will make eye movements to 

empty regions of space when retrieving information from memory (Richardson & 

Kirkham, 2004). Because the success of a linguistic interaction is often dependent 

on a successful coordination of attention (Clark & Krych, 2004), Richardson and Dale 

(2005) predicted that the degree of eye movement coordination will reflect the 

degree to which the listener understood the speaker. Using cross-recurrence 

analysis, they showed that the more coordinated a listener’s eye gaze were with the 

speaker in a conversation, the better the listener did on a comprehension test. 

There is little work on specifically head nodding behaviour in relation to memory 

and learning outcome, and this study could demonstrate that different frequencies of 

head nods can be correlated with memory and be used to enhance teaching 

strategies. As we have seen, head nodding is particularly sensitive to conversational 

demands and can convey several different meanings (Poggi et al., 2010), such as 

signaling attention and understanding (Hadar et al., 1983; Kendon, 2002). Attention 

in human communication is needed for transmitting knowledge from one person to 

another and is closely related to learning performance (Chen & Huang, 2014; Chen, 

et al., 2015). According to Hedges et al. (2013) attention may be connected to the 

learning attentiveness of students to the teacher’s instruction throughout a lesson. 

However, Smith, Colunga and Yoshida (2010) noted that effective learning depends 

on sustained attention, which plays a major role in acquiring knowledge. A related 

study also highlighted the importance of sustained attention in cognitive psychology, 

owing to its strong correlation with learning performance (Steinmayr, Ziegler, & 
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Träuble, 2010). In relation to this, researchers have also tried to use eye and head 

movement to predict student learning and selling software (Krithika & Priya, 2016). 

The authors could analyse if students felt bored or interested in a topic, thereby 

providing a continuous feedback mechanism for instructors to change their teaching 

styles. In all these studies, non-verbal behaviour is taken as an index of ‘attention’ or 

‘listening’ (in contrast to boredom or mind wandering), and thus is expected to 

predict learning outcomes (i.e., memory). This links to our interpretation of fast nods 

in head movement as a potential backchannel signalling listening. Backchannels to 

indicate comprehension are a fundamental component of communication between 

people (Kendon, 2002), which help establish ‘common ground’ (Clark, 1996) 

between two people in a conversation to make the social interaction run smoothly. 

An alternative approach to understanding non-verbal behaviour in social 

interaction can be found in the ‘social glue hypothesis’, which predicts that 

coordination should be related to liking and affiliation. Several studies have shown 

that being engaged in a conversation which includes mimicry can change one’s liking 

for the partner and may even change the sense of self.  

Social bonds are critical for our well-being, which forms the basis for much of 

social interaction. By creating a feeling of closeness to another person, interpersonal 

coordination can be seen as the glue that bonds social relationships. This has led to 

the theory that mimicry acts as a ‘social glue’ to facilitate liking and affiliation to help 

people bond with members of our social groups (Lakin et al., 2003). Research has 

also shown that behavioural mimicry appears to influence or affect the self-construal 

of the person being mimicked (Ashton-James, van Baaren, Chartrand, Decety, & 

Karremans, 2007). Participants who were mimicked also felt closer to others when 

completing an ‘Inclusion of Other in the Self Scale’ (IOS) (Aron, Aron, Tudor, & 
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Nelson, 1991). During behavioural mimicry, the boundary between self and other is 

argued to be blurred (Georgieff & Jeannerod, 1998), and Ashton-James et al. (2007) 

have proposed that behavioural mimicry induces a sense of self-other overlap, 

where people feel closer or more like the other, leading to more altruistic and 

prosocial tendencies. Thus, a self-other overlap between people generally assumes 

that the more they coordinate and mimic each other, the more they see the other as 

like them, which leads to them acting in a more prosocial manner towards the other 

person. Ashton-James et al. (2007) also demonstrated that being mimicked makes 

people behave prosocial towards others in general, and not just the person 

mimicking. Furthermore, being mimicked is shown to induce cognitive changes in 

feelings of interdependence (Stel et al., 2011). Taken together, this research 

suggests that behavioural mimicry also affects the way people think and behave. 

While some studies investigate the idea that being mimicked increases self-other 

overlap (Hale & Hamilton, 2016a), this relationship has also been demonstrated to 

be bidirectional. That is, greater self-other overlap can induce more mimicry 

behaviour (Maister & Tsakiris, 2016). 

‘Item memory’ and ‘self-other overlap’ are interesting as potential outcomes of a 

conversation. In this study we are specifically interested to examine if and how fast 

and slow nodding behaviour relates to these two conversational outcomes. For 

example, does fast nodding predict how much one person remembers of the other 

person’s speech? And can slow nodding predict how much self-other overlap there is 

between people during a conversation? 

The first goal of this study is to examine if fast head nods could be a backchannel 

signal from the listener in the conversation to inform the speaker that they have 

received or processed some new information. As such, we expect that participants 
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are more likely to engage in fast nodding when they recall more information from a 

conversation, and from this we could predict memory by correlating the fast nodding 

behaviour with an increased recall on a memory test. 

The second and more exploratory goal of this study is to further explore the 

relationship between slow nodding coherence and a larger self-other overlap in 

terms of how close we feel to another person. In other words, such an interpersonal 

overlap should correlate with increased slow nodding coherence which is believed to 

signal liking and affiliation between people. We want to test this prediction by 

correlating the slow nodding coherence behaviour with how biased the participants 

are towards themselves compared to other on a memory test. 

In the next sections, we will cover the two conversational outcomes in relation to 

memory research. The first section examines how memory relates to social learning 

(3.2.2), and the second examines how memory relates to self-other overlap (3.2.3). 

 

 

 

3.2.2 Memory and Social Learning  

Learning new information often occurs in social contexts. However, most research 

on learning examines isolated participants in front of computer screens, or through 

observational learning, where participants watch another person via video link. 

Learning as part of a real-world social interaction has been shown to be particularly 

valuable in studies with children (Kuhl, Tsao, & Liu, 2003), but has rarely been 

systematically studied in adults. In this study, we will investigate adult social learning 

– in particular the process of acquiring new information and factual knowledge – to 

gain a better understanding of how non-verbal social signals are linked to memory. 
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Social learning in humans refers to the acquisition of new information that is 

influenced by observation of, or interaction with, another individual (Heyes, 2012). 

Learning mechanisms are cognitive processes that encode information for long-term 

memory storage (Heyes, 2012). However, previous research has also suggested 

that when information received from the interaction with others is encoded for long-

term storage (i.e., social learning), the encoding is achieved by the same cognitive 

processes that are responsible for the long-term storage of information received 

through other channels that are not distinctively social in nature (Sterelny, 2009). 

After the information has been encoded and stored, it can be recalled from 

memory. Episodic memory is the ability to recollect previous experiences from long-

term memory (Tulving, 1984). Episodic memory is distinguished from semantic 

memory, which is the ability to store general knowledge about the world without the 

involvement of personal experiences. In other words, episodic memory involves 

information about where, when, and to whom an event occurred (Tulving, 1984). 

Long-term memory (i.e., both episodic and semantic memory), can be further 

categorized into explicit (i.e. declarative) and implicit (i.e., non-declarative) memory 

(Cohen & Squire, 1980). Declarative memory involves the recall of events and facts 

that can either be episodic (related to an associated event that you have personally 

experienced) or semantic (conceptual knowledge of an event). In contrast, non-

declarative memory involves implicit skill learning and conditioning. Some areas in 

memory research would also consider the concept of ‘learning’ to be a more 

elaborate process where the goal is the acquisition and development of new abilities, 

skills, values, understanding, and preferences. These capacities in turn depend on 

socio-cognitive and environmental circumstances (Schwartz, 1992; Tulving, 1972). 

Together, episodic and semantic memory constitute explicit or declarative memory, 
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which is part of long-term memory. Episodic memory involves a person’s recollection 

of temporally dated information of specific details of the event such as in what 

context (e.g., time and place), or to whom it happened. 

In this study, we focus on different measures of declarative episodic memory 

which have been acquired through social learning. First, we are interested in the 

general recall rates of the participants and how much they have learned in terms of 

being able to remember if a fact they are presented with on a memory test is an old 

fact (i.e., one they could remember discussing with their partner) or a completely 

new fact (i.e., one they could not remember discussing with their partner). Secondly, 

we are interested in the self-preferential encoding of information associated to the 

self, and source memory confusion towards the self. In this study, recalling a fact 

counts as an episode and is not a factual semantic recollection. This is because (1) 

we have the participants interact in social learning in a dyadic real-world 

conversation, and (2) we have a post-hoc memory test that prompts the participants 

to recall their discussion with the other participant, which links the recollection to an 

event that they personally experienced (i.e., “Is this something I’ve heard from our 

discussion?”). Hence, in this study we are limiting our investigations to measuring 

declarative episodic memory. In the next section we will look at how memory relates 

to self-other overlap and how we measure it. 

 

 

3.2.3 Memory and Self-Other Overlap 

The ‘social glue hypothesis’ proposes an explanation for why behavioural mimicry 

may be an effective means of feeling closer to someone, conceptually presented as 

a larger self-other overlap. Less research has focused on explanations of how such 
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consequences of mimicry might occur. The term ‘self-construal’ is often used to 

define the interactive relationship of the self with others (Brewer & Gardner, 1996), 

and is the extent to which people define themselves, or construe their identity with 

reference to their social roles, groups, status, or relationships. For example, 

someone with an independent self-construal might identify themselves by their 

individual skills and attributes (e.g., “I am tall”), whereas someone who has an 

interdependent self-construal would be more likely to define themselves by their 

relationships with others (e.g., “I am a sister”). As such, people with an 

interdependent self-construal generally feel closer to others, both emotionally, 

psychologically, and physically (Aron, Aron, & Smollan, 1992; Holland, Roeder, van 

Baaren, Brandt, & Hannover, 2004). Thus, an interdependent self-construal is 

associated with a more other-focused, and hence prosocial orientation. Research on 

self-construal has inspired the view that mimicry helps increase the interdependence 

of one’s self-construal, which lead to a larger self-other overlap between people and 

more positive social consequences (Ashton-James et al., 2007). Recent findings 

challenge this view. For example, Cross, Turgeon, and Atherton (2019) suggest that 

interpersonal coordination in general is a result of categorization processes, where 

we self-identify as a group member, rather than feelings of closeness. This highlight 

the fact that the mechanisms linking mimicry and self-other overlap are still debated.  

As we mentioned previously, the concept of ‘self-other overlap’ was first measured 

using the Inclusion of Other in the Self Scale (IOS) (Aron et al., 1991). The scale 

measures overlap between self and other in terms of how close two people feel but 

cannot distinguish between whether the self is being included in the other, or vice 

versa. However, in their ‘self-expansion’ model, Aron et al. (1991) argue that close 

relationships are characterized by including the other in one’s own mental self-
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representation. One of the difficulties in much of the early work about the self was 

that it depended on subjective reports. Hogeveen, Chartrand and Obhi (2014) also 

found that mimicry did not lead to increased self-other overlap using the IOS scale. 

Moreover, most research using self-report measures to explore self-other overlap 

and prosocial behaviour has focused on the individuals’ observations of their recently 

mimicked conversation partners and their subsequent relationships (Hove & Risen, 

2009; Wiltermuth & Heath, 2009). Relatively few studies have explored how we 

perceive ourselves during a conversation with someone – that is, how mimicking or 

being mimicked can affect our self-construal, or our sense of identity relative to the 

other person. Looking at aspects of an individual’s self-construal might prove to be a 

useful paradigm to explore the relationship between mimicry and self-other overlap. 

In this study, we aim to use more behavioural measures of memory recall in relation 

to two well known memory effects associated with the idea of self-construal.  

The Self-Reference Effect (SRE). The SRE in memory research refers to the 

preferential encoding of information associated to the self compared to others (Klein, 

2012; Symons & Johnson, 1997). For example, if you go out to have lunch together 

with a friend, you are more likely to remember what you had yourself rather than 

your friend. The SRE has been demonstrated with a wide range of different types of 

stimuli (e.g., faces, traits, geometric shapes) and tasks (e.g., perception, memory, 

decision making) and are linked to distinct patterns of neural activity (Klein, 2012; 

Macrae, Moran, Heatheron, Banfield, & Kelley, 2004; Powell, Macrae, Cloutier, 

Metcalfe, & Mitchell, 2010). This illustrates the broad range of self-reference effects 

on information processing. The term self-reference can be rather misleading, and 

what researchers mean when using the term is information being associated to or 

linked to the self, rather than just information referring to the self.  
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In their seminal study, Rogers, Kuiper, and Kirker (1977) presented trait adjectives 

to participants who self-rated the adjectives on how well they described themselves. 

The participants were later asked to recognize the adjectives from a list of words as 

either “old” (a word on the list) or “new” (not on the list). They counted the number of 

times that the participants incorrectly selected “old” (false alarm rate) and found a 

correlation between the number of false alarms and self-reference from the ratings, 

which meant that they had good memory of adjectives that they had judged in 

relation to themselves rather than other people.  

The SRE has been replicated in subsequent studies. Maki and McCaul (1985) 

compared the memory recall of trait adjectives to that of nouns and showed patterns 

of the SRE based on the stimuli materials used: when traits adjectives were used 

recall was highest when the words were describing themselves, but when nouns 

were used recall was higher when the nouns were describing someone else. The 

reason was thought to be that traits are part of the self-schema (Markus & Kitayama, 

1991), but nouns are not, hence only traits are encoded in a self-reference task.  

Cunningham, Turk, Macdonald, and Macrae (2008) investigated this further in 

dyadic interactions with children by presenting them with pictures of their own or 

another child’s face along with an object. On a subsequent memory test, the children 

not only demonstrated better recall on objects judged in relation to themselves, but 

they also remember better which face the remembered object was presented with. 

These results beg the question of whether the SRE not only reflects an underlying 

memory process but can also bind the elements within an episode, like binding the 

memory to its source (i.e., who), and when it was processed in relation to the self 

(i.e., when). Whereas the benefits of the SRE are supported, less is known about 

this ‘who’ question, which leads us into an area related to ‘source memory’. 
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Self-Bias Effect (SBE). In a classic study by Russell and Jarrold (1999), instead 

of being tested on their ability to recall self-related information, a group of children 

with autism were tested on their ability to distinguish who (i.e., “self” or “other”) made 

an action to place a specific set of cards down on a table. A significant bias was 

observed, in which the participants were more likely to claim “I placed it” even if the 

other person had. As such, the Self-Bias Effect (SBE) is about the misidentification 

of the origin of a memory towards the self or another person (Schacter, 2001). The 

SRE, in comparison, can increase our attention to self-related events, engaging 

processes that increase recognition, without binding the event to the self – a process 

which would be necessary to enhance source memory and elicit a self-bias. Again, 

imagine going out to have lunch with a friend, and instead of being more likely to 

remember what you ordered rather than your friend, you ask yourself: “Did I mention 

the weekend trip to the sea, or did my friend say that?”. Here you are making a 

source memory judgment. Recent research shows that observing another person’s 

action can lead people to mistakenly recall that they have performed the action 

themselves (Schain, Lindner, Beck, & Echterhoff, 2012). Similarly, an example of a 

SBE is when you make the judgement if it was you or your friend who mentioned the 

weekend trip yesterday, you can be biased in claiming that it was your idea or 

statement, when in fact it may not have been.  

Research on the SRE has established that inputs from the environment that are 

perceived to be related to the self are difficult to ignore (Bargh, 1982). In other 

words, the input from the environment specifies what people will and will not 

remember. With the SBE, rather than recalling self-related input, in a way it is more 

about self-related output in the form of recalling who performed a specific action and 

being biased, for example by claiming another person’s action as your own (saying ‘I 
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did it’ even if you didn’t). This idea is closely related to the concept of ‘destination 

memory’, which is about remembering to whom one has told what or remembering 

from whom one has received information (Gopie & MacLleod, 2009). 

In the next section we will present the current study. In this study we have two 

goals, each aiming to investigate if and how the social signals we have observed are 

related to conversational outcomes. The first goal is to investigate if encoding new 

information is associated with fast nodding, and the second goal is to explore the 

potential relationship between slow nodding coherence and self-other overlap. We 

collected a new dataset and tested if these different types of head nodding 

frequencies – fast and slow – during conversation could predict performance on an 

outcome measure in the form of a memory test. This will hopefully give us clues as 

to whether we recall more information when interacting with others using head 

nodding in conversations. We also used both the SRE and SBE as two behavioural 

measures in an exploratory fashion to see if real-world behavioural mimicry is 

associated to any self-other effects. 
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3.3 The Present Study 

In our previous study (Chapter 2), we demonstrated that fast nodding behaviour is 

found more in conversational contexts in which there is a transfer of new information 

between participants. From these results, we posited that fast head nods could be a 

backchannel signal from the listener in the conversation to inform the speaker that 

they have received this new information. In this study, we suggest that measuring 

changes in social signals like head nodding during conversation can provide 

researchers with clues about our cognitive processes, such as predicting memory 

performance. Thus, the main goal of this study is to investigate if fast head nods 

could be a backchannel signal from the listener in the conversation to inform the 

speaker that they have received or processed some new information. If this is the 

case, we predict that if fast nodding is seen during a conversation, participants are 

more likely to recall information from that conversation in a later memory test. That 

is, can we find a relationship between the fast nodding behaviour and an increased 

recall on a memory test.  

In our previous study (Chapter 2) we also found evidence to support the idea that 

the slow nodding behaviour changes across different conversational contexts, in 

favour of being a form of joint attention rather than a mimicry behaviour. Seeing as 

both joint attention and mimicry can be interpreted as a form of social glue that make 

people feel closer to each other, we are interested to explore the potential 

relationship between a larger self-other overlap in terms of how close we feel to the 

other person, and the slow nodding coherence pattern. We will test this prediction by 

correlating the slow nodding coherence with how biased the participants are towards 

themselves compared to other in a memory test, using the SRE and SBE measures 

described above.    
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3.3.1 Conversation Task and Memory Test   

We created a new conversation task, which is similar in structure to the Picture 

Description Task used in the previous study (Chapter 2). We wanted to keep the 

turn-taking structure from the Picture Description Task, but have explicit, yet 

uncommon, facts to remember so that we could create a sensible memory test and 

measure recall of each fact both speakers and listeners in a dyad. In this task, the 

participants are referred to as either speakers or listeners. A ‘speaker’ is a participant 

that during the task is reading the facts and conveying the information to their partner 

by speaking, and a ‘listener’ is the one receiving the information. It is difficult to 

define a good memory test using pictures as they can be interpreted in different 

ways depending on what person is receiving the visual stimuli and are often more 

specific. As such, they are often used more as a prompt to conversation rather than 

as an explicit measure. During this task, the facts that the speakers read were 

designed to be uncommon to increase the likelihood that the participants would not 

recognize them and see them as new facts. For example, the most well-known facts 

were omitted in favour of less known ones. 

This study aimed to assess how well participants remember different facts relating 

to American states. The conversation task that they had to engage in was a form of 

one-way information sharing in which they were asked to take turns at reading a set 

of cards to each other, each of which contained three quirky facts associated with an 

American state to provoke comments. Each trial was divided into two parts. During 

the first part (monologue), the speakers held the card in front of them while they read 

the facts aloud for 45 seconds, while the other participant listened. During the 

second part (dialogue), both participants had a free conversation about the facts for 

30 seconds. For example, at this point the listener could start asking questions about 
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the facts. A total set of 16 cards were used, split up into two piles for each recording 

session, and each card, or trial, referred to a different American state. 

Following each recording session, the participants were asked to complete a 

surprise memory test on two separate computers in order to assess: (1) How many 

facts they remember from the conversation (i.e., general recall); (2) if they remember 

more facts when speaking compared to listening (i.e., SRE); and (3) if they are 

biased in claiming that it was them reading a fact even if it was not (i.e., SBE). 

At this point, the facts about the American states that the participants would have 

spoken or listened to during the task will no longer be new to them during the 

memory test at the end of the experiment. At the point of the memory test, both 

speakers and listeners were asked to make a judgement on a prompt to recall if a 

fact was Old (i.e., a fact they could remember) or New (i.e., a fact they did not 

remember) in relation to the task. This is similar to what Rogers et al. (1977) did 

when they presented trait adjectives to participants who later were asked to 

recognize them from a list of words as either “old” (a word on the list) or “new” (not 

on the list). This judgement was relevant for assessing the participants general recall 

rates and the self-reference effect (SRE). If, and only if, the participants recalled and 

answered that it was an old fact on the first question, a second question followed, 

prompting them to make a source memory judgement to decide whether it was them 

(i.e., “Self”), or the other participant (i.e., “Other”) who read that fact. This follow-up 

question was relevant for assessing the participants self-bias (SBE). For more 

details on this procedure, see Methods, Section 3.4.3. 
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3.3.2 Aims, Hypotheses, and Predictions 

We use our data to test if different types of head nodding frequencies (i.e., fast, and 

slow) could predict performance on an outcome measure in the form of a memory 

test. Specifically, we will test two different hypotheses, each based on one of the two 

head nodding frequencies: 

 

H1: Encoding new information is associated with fast nodding behaviour.  

H2: Self-other overlap is associated with slow nodding coherence behaviour. 

 

Our first hypothesis (H1) claim that encoding new information is linked to fast 

nodding, and is based on our findings from Chapter 2, that fast nodding behaviour is 

found more in conversational contexts in which there is a transfer of new information 

between participants. From this we hypothesize that encoding new information is 

associated with more fast nods because they are used as backchannels to signal to 

the other person that we have received and encoded the information. More 

specifically, if H1 is true, then we expect that if fast nodding is seen during a 

conversation, participants are more likely to recall information from that conversation. 

Testing this hypothesis, we predicted (P1) that fast nodding should correlate with 

increased general recall on the memory test (Figure 3-1, P1), measured by how 

many facts they remember.  

Our second hypothesis (H2) claim that self-other overlap is linked to coherent slow 

nodding, and is based on the idea that the coherence of slow nodding is related to 

social bonding and the desire to get on well with others, either through mimicry or 

joint attention (i.e., ‘social glue hypothesis’). From this we hypothesize that a larger 

self-other overlap between people should be associated with more slow nodding 
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coherence because such head nodding frequencies are used to signal liking and 

affiliation. More specifically, if H2 is true, then we expect participants to be more likely 

to engage in coherent slow nodding behaviour when they feel a greater self-other 

overlap (i.e., increased feeling of closeness), and this could in turn be correlated with 

self-related effects and biases. For example, the larger the self-other overlap is 

between people, the more confused we should become at distinguishing between 

who said what during the conversation (i.e., source memory), which in turn makes us 

more prone to mistakenly claim an idea as our own (i.e., SBE). Testing this 

hypothesis, we predicted (P2) that slow nodding coherence should correlate with a 

SBE on the memory test (Figure 3-1, P2), measured by how biased they were in 

claiming that it was them reading a fact even if it was not. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3-1. Box diagram of hypotheses and predictions. From the conversational contexts used in the 
first study (Chapter 2) (orange box) we found a correlation (orange arrow) between tasks that involved 
a novel information transfer and fast nodding behaviour (green box). In this study, we hypothesize 
(H1) that encoding new information is associated with fast nodding behaviour by predicting (P1) a 
correlation between fast nodding and increased general recall on the memory test (green arrow). We 
also hypothesized (H2) that self-other overlap is associated with slow nodding coherence behaviour, 
by predicting (P2) a correlation between slow nodding coherence and greater memory performance 
for the SBE measure on the memory test (purple arrow). 
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3.4 Methods 

3.4.1 Participants  

60 participants (Mage=25) were recruited from the UCL Psychology Subject Pool and 

the ICN Subject Database. Exclusion criteria included subjects that were not fluent in 

English. All participants were recruited and tested in pairs (30 dyads) and were 

randomly paired to arrive at the same time. On arrival, participants were asked to 

remove eye-makeup, bulky clothes, and jewelry as to not interfere with the recording 

equipment. The participants did not have any previous experience with the tasks and 

were unaware of the purpose of the experiment. Ethical approval for video, audio, 

and motion capture recordings was arranged via the UCL Research Ethics 

committee, and all participants gave their written informed consent. A monetary 

reimbursement was offered for participating in the study at a rate of £7.50/hour. 

 

 

3.4.2 Equipment  

In the present study, we took multimodal recordings from 30 pairs of participants 

(dyads) engaged in a conversation task, followed by a post-test measure. Audio 

instructions, together with audio cues indicating the start and stop of a recording, 

were given to the participants via two speakers placed on the floor next to them. Two 

LED lights were stationed next to the participants to better illuminate their facial 

features. Curtains separated the participants from the experimenter, who remained 

in the room, but did not interact. Behind the curtains we had three computers that 

coordinated the whole experiment (Figure 3-2A, B, C). For further details on the 

components used in this study, see Chapter 2, Section 2.4.2. 
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3.4.3 Procedure  

Participants arrived at the lab and were shown all the equipment and were informed 

of the procedures. They signed the informed consent, and then put on the motion 

capture suits, eye-trackers, and microphones. We then completed the calibration 

procedures for the motion capture and the eye-trackers. Each person in the dyad 

was then randomly assigned to be either the ‘Yellow’ or ‘Blue’ participant, and sat 

one meter apart on small stools, before beginning recording the experimental task.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3-2. Lab setup. Equipment included motion tracking cameras (4x Optitrack Prime 13 & 4x 
Prime 13W), audio speakers, wearable microphones connected to an audio mixer, eye- and face 
trackers (Pupil Labs), LED lights, and a curtain to separate the three computers running the 
experiment. Computer A acted as the client that communicated with the two computers B and C 
acting as servers. For further details on each of the components, see Chapter 2, Section 2.4.2.  
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Conversation Task. This task was a form of one-way information sharing task in 

which the participants were asked to take turns at reading a set of cards to each 

other, each of which contained three facts associated with an American state (Figure 

3-3B). Each trial was divided into two parts. During the first part (monologue), the 

speakers held the card in front of them while reading the facts out loud for 45 

seconds, while the other participant just listened. During the second part (dialogue), 

both participants had a free conversation about the facts for 30 seconds. For 

example, at this point the listener could start asking questions about the facts. 

Audible cues signaled the start and end of each trial, and the transition from 

monologue to dialogue (Figure 3-3A).  

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3-3. Trial timeline. (A) Conversation task with turn-taking order of monologue [M] and dialogue 
[D] over 16 trials between the yellow and blue participant. (B) Example card of facts from one state. 
 

 

A total of 16 cards were used for each recording session, and each card, or trial, 

referred to a different American state. The selected states and facts on each card 

were chosen with the intention of minimizing prior knowledge of American states. For 

example, the most well-known states and facts were omitted in favour of less known 

ones. The 16 states were equally divided into two sets, which represent the two piles 

A B 
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of 8 cards that each participant in the dyad received in a random order. The sets 

given to the blue participant was alternated from dyad to dyad (i.e., Set 1 was given 

to the blue participant on odd dyads, and Set 2 on even dyads). The participants had 

a short break in the middle of the session, after they had completed 8 trials. See 

Table 3-1 for a complete list of the 16 states divided by set.   

 

Set 1  Set 2 

Massachusetts 
Illinois 
Georgia 
Pennsylvania 
Arkansas 
Idaho 
Oregon 
Delaware 

Maine 
Ohio 
Florida  
New Hampshire 
Maryland 
Wyoming 
Indiana  
Mississippi 

 

 

Memory Test. Following the recording session, the participants were assisted in 

removing the equipment and moved to separate tables where they were instructed to 

individually complete a memory test on a computer. The test was created with the 

graphics toolbox Cogent for Matlab 2018b to assess their memory on the state facts 

(Figure 3-4). The test included a total of 96 facts, 48 of which were the real facts 

presented to them during the task, and the other 48 which were new ones. All facts 

were presented in a random order and the participants were instructed to decide if it 

was an “old” fact – one they could remember discussing, or if it was a completely 

“new” fact – one they did not remember discussing during the task.  

After deciding whether the fact had been discussed during encoding, and only if 

they answered that it was an old fact, a subsequent question followed, prompting the 

participant to make a source judgment about the encoding task to decide whether it 

was them (“Self”), or the other participant (“Other”) who read the fact. This follow-up 

question was relevant for assessing the participants self-bias (i.e., SBE). 

Table 3-1. States divided by set. The 16 

American states divided by set of cards (Set 1 

and Set 2), which represent the two piles of 8 

cards that each participant in the dyad received 

in a random order. The sets given to the blue 

participant was alternated from dyad to dyad 

(i.e., Set 1 was given to the blue participant on 

odd dyads, and Set 2 was given to the blue 

participant on even dyads).   
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Figure 3-4. Memory test. A timeline of the screens presented to the participants. The nouns “Yule 
Marble” and “Frog” refer to state facts. The “Old” or “New” labels refer to the decision that the 
participant had to make regarding those facts of whether it was something they remembered 
discussing during the task or not. The “Self” and “Other” labels refer to the follow-up judgement the 
participant had to make if they previously answered “Old”, of whether it was them or the other 
participant who read the fact. The First judgment assessed the general recall and the SRE, whereas 
the second assessed the SBE.    
 
 
 

   

3.5 Data Analysis 

Our aim was to record and measure the interpersonal coordination of head nodding 

patterns found in both the high and low frequency bands, and link these to memory 

performance. For the analysis of the head nodding data, we employed the same 

wavelet analysis approach used in Chapter 2 (See Section 2.2.3 for an introduction 

to wavelet analysis, and sections 2.5.1–2.5.2 for details on extracting the signals and 

analysing the head nodding patterns). In the following sections I will present how we 

analysed the memory performance measures (3.5.1), and how we matched the head 

nodding data to the memory data using a mixed-effects model analysis (3.5.2), 

followed by a short summary of the methods (3.5.3).   



 
 

134 
 

3.5.1 Analysis of Memory Performance  

This study aimed to assess participants’ (1) general recollection, (2) the SRE, and 

(3) the SBE, in relation to different facts about American states. Memory decisions 

were categorized into one of four response categories based on the “old/new” or 

“self/other” status of the fact and the given response: hit, miss, false alarm, and 

correct rejection. Among these, hits and correct rejections are considered correct 

responses, whereas misses and false alarms are considered incorrect. 

General Memory Recall. If information was recalled, participants gave an “Old” 

response to indicate that they remember the fact from the conversation. If no 

information was recalled, a “New” response was given as participants were not able 

to recognize the fact. The participants’ ability to discriminate Old from New facts on 

the memory test was calculated by considering the number of hits and correct 

rejections (i.e., the sum of Old/New responses correctly identified as Old/New), 

presented as a percentage of correct recall (hits + correct rejections divided by 2).  

We further calculated the distance between the Old and New response 

distributions using D-prime (d’) as a sensitivity measure on how well the participants 

were able to discriminate between Old and New responses. This was attained by 

transforming the hits and false alarm rates (i.e., the sum of New responses identified 

as Old, as a proportion of the total number of responses) into z-scores, and 

subtracting the z(false alarm) from z(hit). A larger d’ represents a greater 

discrimination ability between the two chosen distributions – or better memory recall.  

Self-Reference Effect (SRE). Another way to quantify the relative contributions of 

self- and other-related information when judging general recall responses is to 

analyse each participant’s general memory recall based on whether they were 

speaking or listening. For example, if the participants remember more facts when 
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speaking compared to listening, it will give us the indication that people are more 

likely to remember (i.e., better encode) information that relates to themselves, 

regardless of how accurately they are able to identify the source of who did the 

encoding (SBE). The SRE was calculated by taking the number of correctly recalled 

facts between speaking and listening trials, based on which set of cards the 

participants started with, and comparing the means using a paired samples t-test. 

Self-Bias Effect (SBE). For each fact that the participants responded “Old”, they 

got a follow-up question prompting them to identify whether it was them (“Self”) or 

their partner (“Other”) who read the fact during the conversation. The participants’ 

ability to discriminate Self from Other on the memory test was calculated by the 

number of hits (i.e., the sum of Self responses correctly identified as Self), presented 

together with correct rejections, misses, and false alarms. However, because the 

participants could only give a response if they already decided it was an Old fact, a 

separate index was calculated and defined as the proportion of facts correctly 

identified as Old that were also correctly identified as Self or Other. 

Same as with the general recall, we calculated the distance between the Self and 

Other response distributions using D-prime (d’) as a sensitivity measure on how well 

the participants were able to discriminate between Self and Other responses. Finally, 

we also analysed the participants response bias on their willingness to claim that it 

was them reading a specific fact. We describe our results in terms of the bias 

estimate ‘criterion’ (c) (Macmillan, 1993), a widely used measure given as the 

opposite of half the sum of the z-converted hit and false alarm rates. A negative 

value of c indicates a criterion to the self- and other-item distributions and a bias to 

respond ‘self’. A positive value means that they are biased to respond ‘other’ and 

require stronger evidence before claiming to have read the fact themselves.  
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3.5.2 Mixed-Effects Model Analysis 

After extracting the signals from the head nodding behaviours and analysing the 

memory performance data, we aimed to correlate the two types of head nodding 

behaviours – fast nodding and slow nodding coherence – with the memory 

performance measures. We calculated the number of correct answers that the 

participants got for each state (i.e., 0–3 correct facts for each of the 16 states) and 

divided it into speaking and listening trials. However, we were not able to do a full 

trial-by-trial analysis on the Self-Bias Effect (SBE) because of uneven trials. For 

instance, when the participants made their first judgment on whether they remember 

discussing the fact during the conversation (i.e., Old/New), all responses were 

balanced, with 4 possible responses for each state (i.e., 0-3). On the other hand, the 

source memory responses, whether they remember being the one reading the fact or 

not (i.e., Self/Other) depended on the participants recalling the fact to begin with (i.e., 

responding “Old”). This resulted in the source memory data ending up with some 

trials only having 1 or 2 responses. Future studies or further analysis would benefit 

from equating the number of responses for each state.  

Figure 3-5 shows the pipeline of the wavelet analysis of the head nodding data 

used in Chapter 2 (see Section 2.5.2 for further details). The raw head pitch 

trajectories for both participants (A, B) were transformed using wavelet transforms to 

get the time-frequency representation of each time-series (C, D). Next, we calculated 

the cross-wavelet coherence between each of the two transformed signals (E), and 

as the final step averaged the coherence (R2) over the time-course of each trial (F).   
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Figure 3-5. Selection of head nodding frequency bands. Fast nodding behaviour was selected from 
the high frequency band of the individual wavelets (green). Slow nodding coherence was selected 
from the low frequency band of the cross-wavelet coherence (purple). 
 

 
 

Data on the head nodding behaviour were selected from two different stages of 

the wavelet analysis (Figure 3-5). Because fast nodding has shown to be a high 

frequency backchannel behaviour from the listener to the speaker in a conversation, 

it can be analysed on the participant level. Hence, for the fast nodding behaviour we 

selected data from the high frequency band of the individual wavelets (Figure 3-5C, 

D) before performing the cross-wavelet coherence. On the other hand, slow nodding 
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is more spontaneous and overlapping in terms of turn-taking and has been shown to 

be related to mimicry and joint attention behaviour. What this means is that slow 

nodding must be analysed as a coordinated behaviour on the dyadic level. Hence, 

for the slow nodding behaviour we selected data from the low frequency band of the 

cross-wavelet coherence (E). To avoid circular analysis, or “double dipping”, we 

used the frequency ranges presented by Hale et al. (2020). This included coherence 

(R2) at 0.2–1.1 Hz for slow nodding and the average power at 2.6–6.5 Hz for the fast 

nodding. However, a higher average power in the high frequency range means that 

the participants are not necessarily making more fast-nods but are putting more 

energy into their fast nodding. This measure can be interesting, but for our analysis 

we want to measure fast nod count of individual nods. 

 

 

 

 

 

 

 

 
 
 
Figure 3-6. Fast nod detector. The graphs show the magnitude of the power from the selected high 
frequency band (2.6-6.5 Hz) averaged over each time point (i.e., period). The blue triangles on the 
peaks of the signal represents a fast nod, which was identified using a peak detection algorithm. 

 

To calculate the average fast nod count, we sum up the average power for each 

time point (i.e., period) in the selected frequency band (i.e., 2.6–6.5 Hz) of the 

individual wavelets. We then used a peak detection algorithm called findpeaks in 

Matlab 2019b to identify the number of peaks (nods) across the signal (Figure 3-6). 
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In addition to the steps taken when pre-processing the head motion data in the 

previous study (Chapter 2, Section 2.5.1), we excluded 7 dyads in this dataset during 

post-processing due to extensive marker swapping, which created too many 

unnatural spikes or slopes in the signals. In cases of minor dropped signals, we used 

linear interpolation between the signals to remove NaNs so that the wavelet toolbox 

in Matlab was able to calculate the wavelet transforms. In total, this affected 

approximately 500 / 100.000 (0.5%) datapoints in each of the affected samples. 

The final sample was used to create five models (M1–M5) that consisted of 46 

participants (23 dyads) sorted into speaking and listening roles; with 16 trials sorted 

by Set (Table 3-1), for a total of 96 facts per dyad. The data included in the mixed-

effects model were the memory recall responses (i.e., 0-3 recalled facts), the fast 

nod count calculated from the average power in the 2.6–6.5 Hz frequency band, and 

slow nods as the degree of coherence (R2) in the 0.2–1.1 Hz frequency band: 

 

M1: Memory ~ (1 | Participant) 

M2: Memory ~ Fast Nodding + (1 | Participant) 

M3: Memory ~ Slow Nodding Coherence + (1 | Participant) 

M4: Memory ~ Fast Nodding + Slow Nodding Coherence + (1 | Participant) 

M5: Memory ~ Fast Nodding * Slow Nodding Coherence + (1 | Participant) 

 

We estimated the models of the sample using multilevel statistical modelling, and 

a model comparison approach (Judd, McClelland, & Ryan, 2008). Prior to model 

comparison, we performed a linear multilevel regression for both speakers and 

listeners for all models, except for M1 which was the null model (i.e., compact model). 

We used two-level models with the head nodding frequencies as predictors (level 1) 
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nested within participants (level 2). We had no interest in analysing the grouping 

variable of participant as a random effect but needed to factor this out for individual 

variation in the model parameters. The dependent variable was the memory 

performance (the number of correct answers for each state). The models M2 and M3 

were created to test whether fast nodding and slow nodding coherence behaviour 

would individually predict memory performance. Model M1 was the null model 

(compact model) that was used to compare the goodness of fit and parameter 

estimates of M2 and M3. We also combined the two factors into a single saturated 

model M4, using both fast and slow nodding to predict memory performance. The 

final model, M5, was created to test for an interaction between fast and slow nodding 

on the dependent variable. Furthermore, speaking and listening were treated in 

separate models. This decision was based on evidence from Hale et al. (2020) 

showing that nodding looks different during speaking and listening. Using separate 

models means that each model is simpler and easier to interpret.  

In recent decades, statisticians and psychologists have developed methods of 

model comparison that go beyond traditional significance testing (i.e., NHST). We 

use one such approach, called the model comparison approach (Judd et al., 2008). 

From the model comparison approach, we compare the explanatory power of the 

five models that we created, with the goal of both identifying the model that best 

explains variance in our dependent variable (i.e., goodness of fit), as well as to 

estimate the parameters of interest in each model that best support or contradicts 

our proposed hypotheses. The essence of the model comparison approach to 

statistical testing is that it conceives of statistical tests of experimental effects as a 

comparison between two alternative models of the data that differ in the assumptions 

that they make. The nature of these assumptions of the two compared models 
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determines which research question is targeted (Prins & Kingdom, 2018). For 

example, at the bottom of the hierarchy is a null model M1. Above the null model are 

two models with a single covariate: M2 with the main effect of fast nodding and no 

other effects; M3 with the main effect of slow nodding and no other effects. At the top 

of the hierarchy is model M5 with the fast and slow nodding interaction as well as the 

main effects.  

We used the function fitlme in Matlab 2019b to perform all the analyses and 

model comparisons. This function allows us to fit our linear mixed effects models 

which gives us more accurate results for grouped data, as the p-values for fixed 

effects coefficients do not generalize across levels of the random factors, which in 

our case are the participants because each has a different ability to recall information 

from memory. We then used the function compare in Matlab 2019b to test the 

goodness of fit with the Akaike’s Information Criterion (AIC), and to estimate the 

parameters of interest between the different linear mixed effects models with 

Theoretical Likelihood Ratio Tests. These tests are the standard approach to 

evaluating mixed (i.e., multilevel) models. 

The best-fit model according to AIC is the one that explains the greatest amount 

of variation using the fewest possible parameters, which means that low AIC scores 

are better because it requires less information to predict with almost the same 

precision. So, if two models explain the same amount of variation, the one with less 

parameters will have a lower AIC score and will be the better-fit model. When 

comparing models using AIC-scores, if a model is more than 2 units lower than the 

other, then it is considered significantly better. We also looked at the maximum 

likelihood estimate to represent the likelihood that a model could have produced the 

observed memory performance. From the perspective of the model comparison 
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approach, the best-fit model is immediately interpretable: The evidence for the effect 

of a factor is in the comparison to the null model. As AIC values are not “tests” but 

measure the goodness of fit, Theoretical Likelihood Ratio Tests instead focus 

explicitly on decision thresholds and can be interpreted with the model comparison 

approach as the likelihood or probability of seeing the data you collected given your 

model. The benefit of this approach is that we can tailor the model precisely to match 

our hypotheses, providing more ways to compare the data than is possible with 

standard ANOVA procedures (Rouder, Engelhardt, McCabe, & Morey, 2016). 

However, interpreting p-values for the likelihood ratio test (i.e., LTStat) for mixed 

models are not as straightforward as they are for the linear model. There are multiple 

approaches with differing opinions about which approach is the best and if there’s 

even a correct way (Hox, Moerbeek, & van de Schoot, 2010; Winter, 2013). Here, we 

present two major analyses of our data (i.e., the multi-level modelling and the model 

comparison approach) for fairness and completeness.  
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3.5.3 Methods Summary 

In the present study, the aim was to investigate if different types of head nodding 

frequencies (i.e., fast and slow) could predict performance on an outcome measure 

in the form of a memory test. Specifically, we will test two different hypotheses, each 

based on one of the two head nodding frequencies. 

Dyads were recorded with motion capture and engaged in a new conversation 

task, followed by a post-test measure to assess participants’ memory performance 

relating to facts about American states. Various analyses of the memory data were 

performed to assess (1) general recollection, (2) the SRE, and (3) the SBE.  

We used wavelet analysis to measure the two types of head nodding behaviours. 

The frequency bands for fast nodding and slow nodding coherence were selected 

from different stages of the wavelet pipeline. Fast nodding was measured by running 

a fast nod detector to calculate the fast nod count in the 2.6–6.5 Hz band, and slow 

nodding was measured as the degree of coherence (R2) in the 0.2–1.1 Hz band. 

To get a more detailed picture of the link between memory and head nodding, we 

correlated the measures of the two head nodding behaviours with the memory 

performance. We estimated five mixed-effect models and performed a linear 

multilevel regression for speakers and listeners on all parameters. We also 

compared the models using AIC for goodness-of-fit and Likelihood Ratio Tests to 

observe the probability of observing the collected data.  
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3.6 Results  

3.6.1 Mean Memory Performance 

Figure 3-7A shows the % of general memory recall across speaking and listening 

conditions (See Section 3.6.2 for the full analysis). A paired-samples t-test shows 

that there is a significant increase in general memory recall when speaking (M = 

0.93, SD = 0.09) compared to listening (M = 0.72, SD = 0.19), t(90) = 6.9, p < .001. 

This result shows that people are more likely to remember information they produced 

themselves, giving support to the existence of the SRE in memory. 

Figure 3-7B shows the percentage of the Self-Other response rates across the 

four response categories. We can observe a high response rate of hits (92%) and 

correct rejections (98%), with low rates of misses (8%) and false alarms (2%). This 

indicates that people are good at remembering who was speaking during the 

encoding process. However, a result of 93% Old facts correctly identified as Old for 

example, does not necessarily mean that the participants have successfully 

discriminated between Old and New facts on the memory test – they could have just 

responded randomly when they weren’t sure of the answer. In other words, the test 

is not sensitive to why any particular response was given. To support these results, 

we calculated the participants response sensitivity, or their ability to discriminate Old 

from New facts on the memory test using d-prime as a sensitivity index (Figure 3-

7C). A higher d-prime represents the participants’ ability to discriminate between 

their responses, and the results indicate that the participants show good sensitivity to 

the Old-New responses (d’=3.24) and what they can remember from the 

conversation. We also calculated d-primes for the Self-Other responses and the 

results demonstrate a similarly good sensitivity (d’ 5.08) to express how good they 

are at remembering the source from the conversation. 
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Finally, to examine the SBE, we analysed the participants response bias on their 

willingness to claim that it was them reading a specific fact. Negative values of c 

indicate a bias to respond ‘self’, but the results indicate that they are biased in 

answering ‘other’ (c=0.65). However, because the participants could only give a 

response if they already decided it was an Old fact, a separate index was calculated, 

which resulted in uneven trials between the two decisions, with some trials having 

fewer responses. Thus, because the two distributions have unequal variance, it limits 

our interpretations of a continued trial-by-trial analysis of these results. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7. Mean memory performance. Barplot (A) 
shows the percentage of general memory recall 
across speaking and listening conditions. The 
difference between the two conditions represents the 
SRE and shows that the participants are more likely 
to remember information they produced themselves. 
*p < 0.001. Barplot (B) shows the percentage of the 
Self-Other response rates. From this we calculated 
the participants response bias and describe our 
results in terms of the bias estimate ‘criterion’ (c) 
given as the opposite of half the sum of the z-
converted hit and false alarm rates. The results 
indicate that the participants are biased in answering 
‘other’. Barplot (C) shows the response sensitivity 
between the different response distributions (i.e., Old-
New and Self-Other) calculated with d-prime as the 
index. This shows the participants ability to 
discriminate between the different responses. 
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3.6.2 The Effect of Memory Performance on Head Nodding 

Figure 3-8 show scatter plots of the degree of head nodding as a function of memory 

recall for both speaking and listening members of the dyad. The y-axis values for the 

fast nods represent the fast nod count of individual nods in the 2.6–6.5 Hz frequency 

band; and the values for slow nods represent the degree of coherence (R2) in the 

0.2–1.1 Hz frequency band. The x-axis values represent the number of correctly 

recalled facts for each trial, with the data points jittered in the y-axis. The red and 

blue dots represent the sample median, with the red line showing the key trend from 

2 to 3 correctly recalled facts. The dashed blue line shows the trend from 0 to 2 

correctly recalled facts but should be interpreted with caution because of the limited 

number of samples. The unfilled blue circles show outliers. 

The trend of the medians for both fast nodding and slow nodding coherence seem 

to increase with the number of correctly recalled facts – except for the listening 

condition during fast nods – which would indicate that certain head nodding 

behaviours correlate with memory performance. We used medians instead of means 

here because otherwise the between subject variance would mask the within subject 

variance, which makes it difficult to observe the correct trends. In addition, we 

removed the one trial in each of the speaking conditions that resulted in 0 recalled 

facts as there were too few trials for analysis here. 

The data on the memory performance was further analysed using multilevel 

statistical modelling. Prior to model comparisons, we performed a linear multilevel 

regression on all models for both speakers and listeners. We used two-level models 

with head nodding frequency as predictors (level 1) nested within participants (level 

2). The results from the analysis of the full mixed-effect model are presented in 

Tables 3-2, 3-3, and 3-4 for both speaking and listening trials. 
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Figure 3-8. Violin scatter plots for general memory recall. The plots show the degree of head nodding as a function of general recall across speaking and 
listening conditions. The y-axis values for fast nods represent the fast nod count of individual nods in the 2.6–6.5 Hz frequency band; the values for slow nods 
represent the degree of coherence (R2) in the 0.2–1.1 Hz frequency band. The x-axis values represent the number of correctly recalled facts for each trial. 

Fast Nod Count Slow Nod Coherence 
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Table 3-2 

Mixed-effects model comparisons for general recall. 

Coloured arrows represent the best fit model for each comparison measured by differences in AIC-scores, and if 
the alternative model was accepted (Green) or rejected (Red) in favour of the compact model measured by the 
likelihood ratio, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Note: M5 includes the fixed effects of fast and 
slow nodding, as Matlab automatically calculates those when running the interaction model. 

 

Table 3-2 shows the mixed-effects model comparisons for general memory recall, 

divided by speaking and listening. Results show that, when speaking the inclusion of 

fast nodding (Arrow A, diff-AIC=5.85, p=.005) and slow nodding coherence (Arrow B, 

diff-AIC=17.64, p<.0001) significantly improved model fit compared to the null model 

(M1). Similarly, when listening the inclusion of fast nodding (Arrow F, diff-AIC=14.28, 

p<.0001) and slow nodding coherence (Arrow G, diff-AIC=47.12, p<.0001) 

significantly improved model fit compared to M1. 

For a more robust comparison, we compared both fast nodding (M2) and slow 

nodding coherence (M3) with a saturated model (M4), which had the combined fixed 

effects to provide a more natural baseline. These comparisons showed that, when 

Speaking Mixed-Effects Model Comparisons 

M1 

M2 

M3  

M4 

M5 

Recall ~ Participant 

Recall ~ Fast Nodding + Participant 

Recall ~ Slow Nodding Coherence + Participant 

Recall ~ Fast Nodding + Slow Nodding Co. + Participant 

Recall ~ Fast Nodding * Slow Nodding Co. + Participant 

Listening Mixed-Effects Model Comparisons 

M1 

M2 

M3  

M4 

M5 

Recall ~ Participant 

Recall ~ Fast Nodding + Participant 

Recall ~ Slow Nodding Coherence + Participant 

Recall ~ Fast Nodding + Slow Nodding Co. + Participant 

Recall ~ Fast Nodding * Slow Nodding Co. + Participant 

E 

G 
F 

H 

B 
A 

C 
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speaking the inclusion of slow nodding coherence (Arrow C, diff-AIC=11.39, 

p=.0002) significantly improved model fit, but the inclusion of fast nodding did not 

(Arrow D, diff-AIC=0.4, p=.2). Similarly, when listening, the inclusion of slow nodding 

coherence (Arrow H, diff-AIC=31.37, p<.0001) significantly improved model fit, but 

the inclusion of fast nodding did not (Arrow I, diff-AIC=1.47, p=.47). 

The last comparisons we made was between the saturated model (M4) and a fifth 

model (M5) which added the interaction effect between fast nods and slow nods in 

addition to the main effects of fast and slow nods. These comparisons showed that, 

when speaking there is no interaction effect between fast and slow nodding (Arrow 

E, diff-AIC=1.05, p=.32). Similarly, when listening, there is no interaction effect 

between fast and slow nodding (Arrow J, diff-AIC=0.57, p=.23). The fixed effects 

estimate for all five models are listed in Tables 3-3 and 3-4. 

 

Table 3-3 

Results of the generalized linear mixed models for the predicted fixed effects during speaking 

Models Fixed Effects β SE t AIC p 

M1: Recall ~ 1 + (1 | ppt) 

M2: Recall ~ 1 + fastnod + (1 | ppt) 

 

M3: Recall ~ 1 + mim + (1 | ppt) 

 

M4: Recall ~ 1 + fastnod + mim + (1 | ppt) 

 

 

M5: Recall ~ 1 + fastnod * mim + (1 | ppt) 

Intercept  

Intercept  

Fast Nods 

Intercept  

Slow Nods 

Intercept 

Fast Nods 

Slow Nods 

Intercept  

Fast Nods 

Slow Nods 

Fast * Slow 

2.8 

2.4 

.004 

2.8 

.037 

2.4 

.004 

-.005 

3.94 

-.012 

-5.34 

.054 

0.04 

0.34 

.003 

0.16 

0.52 

0.34 

.003 

0.52 

1.6 

0.02 

5.4 

0.05 

74.5 

8.02 

1.31 

17.8 

0.07 

7.1 

1.27 

-.009 

2.47 

-0.72 

-0.99 

0.99 

460 

454 

 

443 

 

443 

 

 

444 

 

 

 

8.4e-224 

1.5e-14 

.188 

1.15e-50 

.943 

4.4e-12 

.204 

.992 

.0138 

.472 

.324 

.322 
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Table 3-4 

Results of the generalized linear mixed models for the predicted fixed effects during listening 

Models Fixed Effects β SE t AIC p 

M1: Recall ~ 1 + (1 | ppt) 

M2: Recall ~ 1 + fastnod + (1 | ppt) 

 

M3: Recall ~ 1 + mim + (1 | ppt) 

 

M4: Recall ~ 1 + fastnod + mim + (1 | ppt) 

 

 

M5: Recall ~ 1 + fastnod * mim + (1 | ppt) 

Intercept  

Intercept  

Fast Nods 

Intercept  

Slow Nods 

Intercept 

Fast Nods 

Slow Nods 

Intercept 

Fast Nods 

Slow Nods 

Fast * Slow 

2.19 

2.45 

-.002 

2.61 

-1.45 

3.0 

-.003 

-1.44 

-.584 

.003 

11.07 

-.123 

0.08 

0.55 

.005 

0.26 

0.87 

0.6 

.005 

0.87 

3.05 

.03 

10.4 

0.1 

26.3 

4.48 

-0.5 

9.8 

-1.66 

5.01 

-0.73 

-1.65 

-0.19 

1.05 

1.05 

-1.19 

856 

842 

 

809 

 

811 

 

 

811 

 

 

2.1e-86 

1e-05 

.613 

3.5e-20 

.096 

8.3e-07 

.467 

.099 

.848 

.294 

.291 

.231 

 

Looking at the fixed effects when participants were speaking, we find that neither 

fast (M2, β = .004, t = 1.31, p = .188) nor slow (M3, β = .037, t = 0.07, p = .943) 

nodding correlates with memory recall. Looking at the fixed effects when participants 

were listening, we observe similar results for both fast (M2, β = -.002, t = -0.5, p = 

.613) and slow (M3, β = -1.45, t = -1.66, p = .096) nodding. From the fixed effects of 

the saturated model when participants were speaking, we find that neither fast (M4, β 

= .004, t = 1.27, p = .204) nor slow (M4, β = -.005, t = -.009, p = .992) nodding 

correlates with memory recall. Looking at the fixed effects when participants were 

listening, we observe similar results for both fast (M4, β = -.003, t = -0.73, p = .467) 

and slow (M4, β = -1.44, t = -1.65, p = .099) nodding. We did not find an interaction 

effect between fast and slow nodding when the participants were speaking (M5, β = 

.054, t = 0.99, p = .322) or listening (M5, β = -.123, t = -1.19, p = .231). 
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3.7 Discussion  

In chapter 2, we identified head nodding patterns that were repeatable across 

participants and meaningfully related to task performance. We also showed that fast 

nodding behaviour is found more in conversational contexts in which there is a 

transfer of new information between participants in a dyad. We hypothesized that 

fast head nods could be a backchannel signal from the listener in the conversation to 

inform the speaker that they have received new information. We also found evidence 

to support the idea that the slow nodding behaviour changes across different 

conversational contexts, and that slow nods were a different signal to fast nods.  

In this chapter, we have presented a study that investigates if memory for facts is 

associated with different types of head nodding behaviours during conversations. We 

collected a new dataset with a new task to test if different frequency patterns of head 

nodding behaviour could predict performance on an outcome measure in the form of 

a memory test. We present results based on the two main hypotheses relating to the 

fast and slow nodding behaviours. We find ambiguous results depending on what 

approach we take when it comes to interpreting the relatively novel statistical 

analysis. We cannot conclusively claim that head nodding correlate with memory 

during conversations, but some analysis seems to reflect on its importance. In 

addition, we also explored the potential relationship between slow nodding 

coherence and self-other overlap during conversations. 

We will consider the possible interpretations for our two hypotheses from the 

framework of the two types of head nodding patterns. We will then proceed to 

discuss the theoretical implications and limitations of the study, what this could mean 

for social learning, and how future directions can extend the contribution. 
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3.7.1 Can Fast Nodding Predict Memory?   

In our first hypothesis (H1) related to fast nodding, we predicted that if this behaviour 

is a listening and backchannel signal for the transfer of new information, it should 

correlate with increased general recall on the memory test. The results from the 

model comparison approach using the AIC-scores and Likelihood Ratio Tests for 

general memory recall (Table 3-2) reveal that the inclusion of fast nodding 

significantly improved model fit and likelihood ratio compared to the null model, both 

when speaking and listening. However, for the saturated model M4, which included 

every parameter, this comparison showed that the inclusion of fast nodding when 

speaking and listening did not significantly improve compared to the less complex 

model M3, which only included slow nodding coherence as a parameter. From the 

perspective of the model comparison approach, both fast and slow nodding 

behaviour seem to matter for memory, because the model which includes these 

behaviours provides a substantially or significantly better fit than the null model (M1). 

Such results would partly support our first hypothesis (H1) that fast nodding as a 

listening behaviour and backchannel signal for the transfer of new information, 

correlates with learning during conversation as measured on a memory test. In 

addition to the fast nodding behaviour, the inclusion of slow nodding coherence 

when speaking and listening significantly improved model fit and likelihood ratio 

compared to the null model. From the model comparison approach, this also implies 

that slow nods seem to matter. The model which includes slow nodding provides a 

substantially or significantly better fit than the null model.  

Closer inspection of the model comparisons to the saturated model supports this 

claim by showing that the inclusion of slow nodding coherence in model M4 

significantly improved model fit and likelihood ratio compared to both model M2 and 
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M3, whereas the inclusion of fast nodding did not. This tells us that adding fast 

nodding to the model did not increase the maximum likelihood enough to counter the 

effects of the increase in the number of estimated variables, whereas adding slow 

nodding coherence did, which hints at slow nods introducing less trivial information 

than fast nods to M4.  

Lastly, we also investigated whether there is an interaction between fast and slow 

nodding behaviour on memory recall using M5 which included both the fixed effects 

of fast and slow nodding along with an interaction term, to compare it to M4, which 

did not include the interaction term. This comparison showed that the inclusion of an 

interaction term did not significantly improve model fit compared to the less complex 

model. This would mean that, from a model comparison approach, on average for 

both speaking and listening, more fast nods and more slow nodding at the same time 

does not seem to be associated with more effective memory recall. In other words, 

fast and slow nodding does not seem to depend on each other. 

Unfortunately, interpreting p-values for likelihood ratio tests in mixed models are 

not as straightforward as they are for the linear model. There are multiple 

approaches with differing opinions about which approach is the best and if there is 

even a correct way (Hox et al., 2010; Winter, 2013). The model comparison 

approach (Judd et al., 2008) interprets mixed models as a way to estimate the 

parameters of interest in each model that best supports or contradicts our proposed 

hypotheses using the Likelihood Ratio Test as a way to express an alternative model 

as significantly better fit than a null model without any fixed effects. However, 

researchers have also criticized this approach saying that the p-values obtained 

using the likelihood ratio test can be conservative when testing for the presence or 

absence of random-effects terms and anticonservative (i.e., high Type I error rate) 
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when testing for the presence or absence of fixed-effects terms (Hox et al., 2010; 

Winter, 2013). Considering such critique, the likelihood ratio tests may reflect overall 

goodness of fit but does not show why one model is better than another. For 

example, the model that includes fast nodding may be considered “less bad” than 

the model without fast nodding, but we have no way to tell whether the models have 

a better fit due to increased or reduced nodding, or some other reason.  

A second approach is to fit a full mixed model and examine the parameter effects 

for the individual factors. Here (See Table 3-3, 3-4), we find that when the 

participants were speaking, neither fast nor slow nodding correlates with memory 

recall in any of the models. When the participants were listening, we similarly find 

that neither fast nor slow nodding correlates with memory recall. When comparing 

the fixed effects results with the scatter plots (See Figure 3-8), we observe a 

negative trend in the beta estimates of the slow nodding behaviour in listening trials 

compared to speaking trials, which seems also to be reflected by the trend of the 

blue line in the scatter plot. However, this trend is not statistically significant. 

We can also observe that when the participants are speaking, we seem to get 

more ceiling effects than when they are listening. For example, a high proportion of 

the participants remembering 3 out of 3 facts correctly could make the memory 

discrimination at the top end of the measure impossible. Being more attentive while 

reading and having access to visual memory of seeing the words written on the 

cards might explain this. However, looking at the trends for when the participants 

were listening, we observe greater variance among the number of recalled facts 

compared to when they were speaking. 

In the saturated model M4, the inclusion of the fixed effects of fast nods and slow 

nodding coherence for both speaking and listening, was not significant. We also did 
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not find a significant interaction effect in model M5, which shows that when the 

participants engaged in both fast and slow nodding at the same time, it does not 

seem to be associated with more effective memory recall. 

Looking at the fixed effects from each model without comparing them using the 

model comparison approach, these results do not support our first hypothesis (H1) 

that fast nodding as a listening behaviour and backchannel signal for the transfer of 

new information correlate with memory recall during conversation. We conclude that 

we have ambiguous results that would benefit from different data studies without 

ceiling effects, but that we can see some indications from the model comparison 

approach that head nodding might be related to memory recall during conversations. 

For example, from the perspective of the model comparison approach, we can say 

that fast nodding does not seem to be an isolated predictor for general memory 

recall, and that the results rather seem to reflect the importance of the overall 

engagement of interactive head nodding. In other words, the coordination of both 

fast nodding and slow nodding coherence during conversations can be associated 

with general memory recall. However, from a standard mixed-model approach, we 

find ambiguous results when looking at the individual models fixed effects estimates. 

Thus, we cannot conclusively claim that head nodding can be correlated with 

memory during conversations, but some analysis seems to reflect on the importance 

of head nodding patterns during unstructured conversations.  

However, if future studies can provide further insight into this, then using head 

nods in a conversation can potentially signal to the other person involved that the 

conversation is working and that we are learning as we nod along. The other person 

can then use this as a prediction to help change the strategy of the interaction. 

These potential findings would lend support to the belief that changes in social 
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signals like head nodding can provide us with clues about our cognitive abilities, and 

that the different frequencies of head nodding behaviour can predict other cognitive 

outcomes, such as for example better memory performance. That could in turn lead 

to the investigation of what other kind of learning and memory processes are 

associated with various social behaviours. For example, in his book “Honest Signals” 

Pentland (2010) describes these subtle involuntary non-verbal patterns as not just a 

complement to language, but as a separate communication network which provides 

a window into our intentions, goals, and values. If we understand this old channel of 

communication, he claims, we can predict the outcomes of many social situations. 

In the introduction to this chapter, we mentioned a few studies that have used 

social signals to predict outcomes in social interactions, for example during lectures 

(Chen et al., 2015; Pinzon-Gonzalez & Barba-Guaman, 2021; Sümer et al., 2021), 

and with job employment (Gifford & Wilkinson, 1985; McGovern et al., 1979). 

Researchers have also tried to use non-verbal behaviour to predict student learning 

and selling software used to provide feedback for instructors to change their teaching 

styles (Krithika & Priya, 2016). Much of this research rely on the concept of attention, 

since it is closely related to learning performance (Chen et al., 2015). The benefits of 

attention for engagement and learning are clear, but the term ‘attention’ is closely 

related to many different neurological and cognitive processes, which are beyond the 

scope of this thesis to cover. Thus, different forms of attention backchannels (i.e., 

gaze, head nods) can result in different information being received and encoded. For 

example, Richardson and Dale (2005) demonstrated a link between interpersonal 

coordination and eye gaze patterns, which influenced the type of information that 

was stored. These variations in different types of attention backchannels and levels 

of information, that can be stored within any given modality, is an area or research 
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that needs to be addressed to organise how information is sent and received 

differently depending on social context. We have investigated one such aspect in this 

study, namely if fast nodding is a listening and backchannel signal for the transfer of 

new information. Our results are ambiguous, which partly show that frequencies of 

head nods can be correlated with memory using the model comparison approach, 

but also that no such correlation exists when we examine the mixed effects model.  

To find ‘common ground’ (Clark, 1996) in a conversation with the use of 

backchanneling, we must then acknowledge not just the multimodal nature of social 

interactions, but also what pre-determined knowledge people bring to the 

conversation. For example, as the participants in our study arrive with the 

predetermined knowledge that this is an experiment, they may go into the 

conversation less engaged and interested than what they would be if it was a real 

goal-directed conversation. This may in turn affect their level of attention, and 

consequently they may use fast head nodding just to signal fake engagement 

because they want to get the task done quickly and with as little effort as possible. 

Hence, both participants in a dyad may just “play along” with the interaction, which is 

one way to explain the non-significant results in our mixed effect model.  

Even if the participants indeed are engaged and attentive to what is being 

discussed, how can we measure if they agree or not? Agreement occurs when they 

achieve some form of common ground, but the way this study was set up, it did not 

leave much room for the participants to have opinions about the facts presented until 

the second part of the task (i.e., dialogue). For example, one participant may not 

agree about facts unless the other participant challenges this as a belief with his or 

her own opinion. This opinion, determined by the participants beliefs and goals, is 

not shared but must be transferred to the other participant, which may or may not 
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receive this information as new to them. And since this opinion is not necessarily just 

about the fact, but embedded in their beliefs and goals, it can be difficult to know if 

the listening participant is nodding to signal being attentive, engaged, or if they agree 

with what is being said. In other words, it may be difficult to know if the listening 

participant nods because he signals receiving new information, or if he nods 

because he agrees with old information.  

While verbal signals are defined with a set of rules needed for their understanding, 

non-verbal signals usually do not have a clearly defined vocabulary, which raises the 

uncertainty and ambiguous nature of decoding such signals (Vinciarelli et al., 2012). 

As such, we think that additional contextual information is needed to understand 

head nodding as an intrinsically ambiguous channel for social signals. However, we 

think the best way to do this is to measure multiple verbal and non-verbal signals 

extracted from multiple modalities and channels and find ways to integrate and 

examine relationships between them. This way we can find out whether a person 

dedicate several channels to the same source (e.g., listening and gazing at the same 

person). Within the scope of this thesis, we are presenting the analysis of a single 

modality (i.e., head nodding), but this signal is captured from a rich multimodal setup 

where we recorded other modalities (i.e., gaze, facial expressions, and speech). This 

means that our head nodding signals are performed and captured in a more 

naturalistic setting and social context than previous studies that only look at head 

movements in isolation. More research on the relation between memory and head 

nodding behaviour is needed, and since we have a rich multimodal dataset to work 

from, we are presented with the option to go back and analyze the relation between 

head nodding and gaze behaviour, facial expressions, or speech, in future studies. 
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3.7.2 Can Slow Nodding Predict Self-Related Memory Encoding? 

Our second hypothesis (H2) related to the coherence of slow nodding, is based on 

the idea that because slow nodding coherence is believed to be used to socially 

bond or get on well with others, either through mimicry or joint attention (i.e., the 

‘social glue hypothesis’), it should lead to a larger self-other overlap (i.e., increased 

feeling of closeness) between people. From this we predicted that slow nodding 

coherence should correlate with self-related effects and biases, measured by how 

biased they are in claiming that it was them reading a fact even if it was not (i.e., 

SBE). By examining the results in Figure 3-7, we can see patterns of SRE and SBE. 

Self-Reference Effect (SRE). We quantified the relative contributions of self vs. 

other referenced information by dividing the general recall responses into speaking 

and listening trials. The results show that there is significantly more general memory 

recall when speaking compared to listening (Figure 3-7A), which indicates that the 

participants are more likely to remember information that is linked to themselves, 

giving support to the existence of the SRE for memory. However, it is also possible 

that this effect can come from being more attentive by having access to the visual 

memory of seeing the words written on the cards. This allows for more opportunities 

to make associations to new information thus facilitating more elaborate encoding. 

On the other hand, having access to visual memory can also act to relieve the 

burden of memory for speakers as they are prone to the experimental and social 

pressure of not making mistakes when reading as opposed to understanding the 

facts being read (i.e., passive reading). Since we used a surprise post-hoc memory 

tests instead of telling the participants that they were going to do a memory test at 

the end, this effect may have been especially prominent in the monologue part of the 

task. However, the participants knew they had to engage in dialogue eventually.    
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Some theories postulate that linking information to the self should be affected by 

goal-directed dynamics (Conway, 2005). That is, information is more likely to be 

remembered when receiving information consistent with long or short-term goals. In 

terms of the SRE then, facts that one is reading should be more memorable because 

information associated to the self is important and should not be forgotten. 

Self-Bias Effect (SBE). The results from the mean memory performance (Figure 

3-7B) show that the participants are good at identifying who was reading during the 

encoding process, with high response rates for correct responses (i.e., hits and 

correct rejections) and low response rates for incorrect responses (i.e., misses and 

false alarms). However, it is possible that the participants could have just responded 

randomly when they were not sure of who was reading during the encoding process. 

In addition, the speakers could also have been more attentive, similar as with the 

SRE, by having access to visual memory when reading the facts. 

To test their sensitivity to why they gave a specific response, we calculated their 

ability to discriminate between their answers of ‘Self’ or ‘Other’, and the results from 

this analysis showed that the participants demonstrate very good sensitivity to the 

measure (Figure 3-7C). From the response rates, we also analysed the participants 

willingness to claim that it was them reading a specific fact when it was not. The 

results showed a positive response bias (i.e., criterion), which means that the 

participants were biased in answering ‘Other’ rather than ‘Self’. This result is the 

opposite to what Russel and Jarrold (1999) found in their study, where they reported 

a significant bias towards the ‘Self’, where the participants were more likely to claim 

“I placed it” even if they did not. In contrast to their study, our results show that our 

participants identify themselves more with the ‘Other’ and have a more 

interdependent self-construal (Brewer & Gardner, 1996). People with an independent 
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self-construal generally feel closer to others (Aron et al., 1992; Holland et al., 2004). 

Studying aspects of an individual’s self-construal can prove to be useful when 

exploring the relationship between mimicry and self-other overlap. One of the 

difficulties in much of the early work about the self was that it depended on 

subjective reports, like the Inclusion of Other in the Self Scale (IOS) (Aron et al., 

1991). In this study, we used more behavioural measures of memory recall in 

relation to two well known memory effects associated with the idea of self-construal. 

This has proven to be useful and improves upon the subjective measures in the field. 

We also wanted to test, in an exploratory fashion, whether real-world mimicry, or 

slow nodding coherence is associated with these self-related effects and biases.  

However, because the participants could only give a response if they already 

decided it was an Old fact, a separate index had to be calculated, which resulted in 

uneven trials between the two decisions, with some trials having fewer responses. 

Thus, because the two distributions had unequal variance, we were not able to 

perform a full trial-by-trial analysis on this data.  

According to the Source Monitoring Framework (Johnson, Hashtroudi, & Lindsay, 

1993), it is also possible that the SBE can be influenced by the SRE in the sense 

that recalling ‘who’ could also be related to how well the encoding process binds or 

encourages attention to self-associated features of the facts, such that they later can 

serve as cues for correct source identification. For example, if during encoding a 

specific self-association is created (reading a fact) it might later be activated when 

prompted with the question to recall the source during the encoding. This way, the 

SBE could instead of being identified as an action performed by either the self or the 

other, simply be identified as an action performed by either the self or not-the-self.  
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Furthermore, throughout this chapter, we have referred to the participants as 

‘speakers’ or ‘listeners’ to either new or old facts about American states. This may 

have consequences for interpretation as speakers can be seen as ‘readers’ of facts 

that are ‘known’ to them. To clarify the distinction, a ‘speaker’ is the same as a 

‘reader’ only that they are conveying the information to their partner by speaking. At 

this point during the participants’ task, all facts were considered ‘new’ to them. That 

is, we did not control for the participants knowledge of American states, even though 

we tried to limit this by designing the facts to be uncommon. When it was time for the 

memory test, both speakers and listeners were asked to make a judgement on a 

prompt to recall if a fact was Old (a fact they could remember from the task) or New 

(a fact they did not remember from the task). This is similar to what Rogers et al. 

(1977) did when they presented trait adjectives to participants who later were asked 

to recognize them from a list of words as either Old (i.e., a word on the list) or New 

(i.e., a word not on the list).  
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3.8 Limitations and Future Directions 

Our data has some methodological limitations and implications. In relation to our first 

goal, episodic memory as we have used it in this study is an all-or-nothing measure, 

which could result in ceiling effects. For example, a high proportion of the 

participants remembering 3 out of 3 facts correctly could make the memory 

discrimination at the top end of the measure impossible. Memory tasks may also 

introduce primacy effects and recency effects (Morrison, Conway, & Chein, 2014) 

because participants may be more likely to remember the first or last fact than the 

middle fact when taking the memory test. This means that item order could have 

been included as a random effect in the models to account for the order that each 

fact was presented to the participants.      

In relation to our second goal, there are some important design implications which 

we have learnt about in the present study, and which will help with future studies. As 

previously mentioned, it was not possible to explore the second hypothesis H2 using 

multilevel statistical modelling, which limited the interpretations of our results. 

Instead, we decided to focus our efforts on the main goal of testing H1. This study 

could thus benefit from future studies on how to equate the number of responses for 

each trial to properly test H2. 

We should also not forget that what people remember is almost always a product 

not just of the original encoding process, but also the events happening in between 

the encoding and the recall process. Hence, any act of remembering must be viewed 

as having a social history. Such history often includes input and output from multiple 

modalities that is dynamically integrated over time. We employed the same 

multimodal data collection framework to the one we used in Chapter 2, with high-
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resolution motion capture and wide synchronization of socially relevant data. In this 

study, we focus only on head nodding behaviours, but having a rich multimodal 

framework to work from make this dataset a valuable tool for potential future studies. 

However, having such an extensive multimodal setup also introduces some 

degree of errors when it comes to labelling the data, but so does manual annotation 

methods to a greater extent. We excluded 7 dyads because of extensive errors. 

However, this loss can be compensated for by the large number of datapoints in the 

remaining sample. With the use of linear interpolation between the signals to remove 

NaNs so that the wavelet toolbox in Matlab could post-process the wavelet 

transforms, the errors in the remaining sample only affected approximately 500 out 

of 100.000 (0.5%) datapoints. Hence, by using this more automated method, we get 

a lot of data in the final analysis compared to manual annotation methods. 

It is important to note that the hypotheses in this study are based around 

correlating measures. As such, we cannot claim any causal connections between the 

variables. For example, the AIC values are simply a way of ranking the models, and 

while a best model was found and a relationship between head nodding and memory 

performance was estimated using Likelihood Ratio Tests, we are unable to claim that 

learning causes nodding, or vice versa; that the absence of nodding equates to no 

learning. Analysis of the fixed effects coefficients also gives us conflicting results 

when it comes to making any firm conclusions regarding the role of fast and slow 

nodding behaviour and its relationship to memory performance, but the model 

comparison approach seems to reflect the importance of head nodding patterns 

during unstructured conversations.  

Future studies can perhaps illuminate this issue, and our results could help 

generate computational models of more socially realistic virtual agents. It could also 
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be applied to improve the automatic detection of social signals, and to create an 

algorithm to artificially generate natural backchannels as behaviour rules. By 

programming head nodding signals to be used by virtual agents that can interact with 

participants, we can find ways to test how they respond to these behaviour rules to 

drive the development of new and improved psychological theories for social 

interaction. This will be the focus of the next study in this thesis (Chapter 4), where 

we continue to investigate the role of head nodding behaviour and memory by 

manipulating virtual interactive engagement. The aim is to find evidence to support 

the idea that changes in non-verbal social signals like head nodding can provide us 

with clues about our cognitive abilities, which in turn can lead to the ability to predict 

the outcomes of many social situations.  

The experiment used in this study also utilizes non-structured (i.e., free flowing) 

conversation in addition to more structured conversations, whereas most of the 

previous work have used strictly structured conversations. Structured conversations, 

when the participants have predefined actions, have the benefit of better control of 

the conversational roles (i.e., speaker/listener), but results from such tasks are often 

not applicable to more free-flowing conversations between two people, and does not 

translate well to experimental setups using virtual agents. Unstructured 

conversations better represent how people interact and has the potential to capture 

different conversational dynamics between participants. In future studies we could 

consider when the nods occur during a conversation by going back to the recordings 

to manually transcribe verbal phrases from the participants. By doing this, we could 

look at what time a nod occurs during a phrase and if, for example, a nod at the end 

of a phrase signals the end of a turn. This may also account for the ambiguous 

results found in this study but was beyond the scope of this thesis.     
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Together with our high-resolution experimental setup used in Chapter 2 and here 

again in Chapter 3, we can capture these fine-grained non-verbal behaviours. 

Chapter 4 will give further insight into creating simple behavioural rules from head 

nodding signals and use these in virtual agents to manipulate the social interaction. 

 

 

 

3.9 Conclusions 

From the results in our previous study (Chapter 2), we posited that fast head nods 

could be a backchannel signal from the listener in the conversation to inform the 

speaker that they have received this new information. In this study, we explored this 

idea by investigating whether we are more likely to engage in fast nodding when we 

recall more information from a conversation, by testing if different patterns of head 

nodding behaviour correlate with memory performance. The second goal was also to 

explore the link between slow nodding coherence and the idea that it is used to 

socially bond and get on well with others through a larger self-other overlap. 

We present results based on these two hypotheses related to both head nodding 

patterns, and we find ambiguous results depending on what statistical approach we 

implemented. We cannot conclusively claim that head nodding can be correlated 

with learning and memory during conversations, but some analysis suggests that 

head nodding behaviours might be related to memory during conversations. Despite 

the limitations of not being able to fully explore the relationship between slow 

nodding coherence and self-other overlap, we found that people are more biased in 

claiming that their partner was reading a specific fact as opposed to themselves. 
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The findings of this study can provide useful insights into the natural parameters 

of head nodding behaviour in unstructured conversations, and its relationship to 

memory. We also demonstrate methodological solutions to identify a specific social 

behaviour, and link that to a fundamental cognitive function. This can in turn allow us 

to build interactive virtual agents who can simulate these natural backchannels to 

test how people respond to different types of interactions and drive the development 

of new and improved psychological theories of social interaction. 
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Chapter 4. Artificially Generating Head 

Nodding Signals in Virtual Agents to 

Test if Interactive Engagement 

Promotes Learning and Liking 
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4.1 Abstract 

In Chapter 3, we found ambiguous results and could not conclusively claim that head 

nodding could be used to predict memory performance, but some analysis gave us 

indications that some head nodding frequencies might be related to memory during 

conversations. In this study we continue this investigation and demonstrate the 

benefits of using virtual reality to artificially generate behaviour rules in interactive 

virtual agents based on real-world behaviour data to test a causal link between 

interactive engagement and memory. 

To test this, the participants interacted with both an interactive and non-interactive 

virtual agent. To drive the behaviour of the interactive agent, we programmed and 

generated measured head nodding parameters under different behaviour rules so 

that they could generate high resolution head nodding behaviour based on natural 

backchannels and mimicry behaviour when interacting with the participants. As a 

control condition, the other virtual agent was non-interactive, only driven by pre-

recorded motion. This was further carried out as a Wizard of Oz (WoZ) experiment. 

We obtain two outcome measures – learning facts about American states and 

liking ratings for the two virtual agents. We found no significant effect of agent-

interactivity between interactive and non-interactive agents. However, we did find 

that people that are speaking are up to three times more likely (i.e., odds ratio) to 

remember information during a conversation compared to those who are listening. 

However, the effect seems less prominent than during real interactions. Further 

results show no significant differences in feelings of rapport between the interactive 

and non-interactive virtual agents, and no reliable correlations between ratings of 

liking and memory performance was found. 
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4.2 Introduction 

In Chapter 3, we used high resolution motion capture, wavelet analysis, multilevel 

statistical modelling, and a model comparison approach to explore whether 

participants were more likely to engage in fast nodding when they recall more 

information from a conversation by testing if such patterns of head nodding 

behaviour could predict memory performance. We found ambiguous results and 

could not conclusively claim that head nodding could be used to predict memory 

performance, but some analysis gave us indications that some head nodding 

frequencies might be related to memory during conversations. However, we built this 

study on the preliminary results of Chapter 3, which initially showed a correlation 

between head nodding and memory. The aim of the present study was therefore to 

further investigate a causal link between interactive engagement with a virtual agent 

and memory performance. Further analyses did not support a correlation between 

fast nodding and memory performance, but for transparency we are presenting the 

idea of this chapter on the assumption that such a correlation exists, and that it was 

what initially led us to the methods of testing a more causal link between head 

nodding and memory. This is important as it is consistent with how we use our 

approach to reverse-engineering interpersonal coordination by measuring and 

analysing behaviour to determine which parameters (i.e., behaviour rules) are 

important, and then use these parameters or rules to engineer or artificially generate 

that behaviour in a virtual agent to test our hypotheses. For example, finding a 

correlation between two measures can guide our search for finding behaviour rules 

based on real-world behavioural data that we can then use to manipulate in virtual 

agent models to systematically test our hypotheses.  
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Using virtual reality, it is possible to create virtual agents who have different 

motion patterns and characteristics (Pan & Hamilton, 2018). Here, we can use the 

movement data from our previous studies to build a virtual human with high 

resolution head nodding behaviour based on natural backchannels and different 

behaviour rules. In conjunction with a Wizard of Oz (WoZ) system for conversation, 

this will allow a virtual agent to have the role of ‘conversation partner’ in the 

American-states discussion task used in Chapter 3. We can then evaluate if people 

learn more from virtual agents who show natural or interactive nodding behaviour. 

Changing non-verbal behaviour of virtual characters, such as eye gaze and 

mimicry, has been shown to have significant effects on people’s perception and 

attitude toward them (Bailenson & Yee, 2005). Thus, the distinction between our 

previously established fast and slow head nodding patterns can perhaps also be 

used to measure how much we like a virtual agent. The second aim of this study is 

therefore to investigate if interacting with an interactive virtual agent, driven by 

natural head nodding, can enhance feelings of rapport, or is preferred, over a non-

interactive virtual agent with pre-recorded motion. Following this, we also want to 

answer the question of whether we learn better from virtual agents that we like, by 

investigating a link between feelings of rapport and memory performance. 

This research can advance virtual agent technologies beyond previous studies 

(Bailenson & Yee, 2005; Pan, Gillies, & Slater, 2008; Verberne, Ham, Ponnada, & 

Midden, 2013), leading to more realistic simulations of virtual agents with a 

grounding in psychology. Hypothesis testing can then also benefit from seeing how 

people respond to these virtual agents. This highlight how new technologies and 

experimental designs can be used as a tool to further test and challenge our theories 
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in the field. In the next sections, we review how virtual head nodding are generated 

(4.2.1), and how to use interactive virtual agents to test our hypotheses (4.2.2). 

 

 

4.2.1 Artificially Generating Head Nodding Signals 

 
One of the most immersive experiences in virtual reality is one that involves social 

interaction with virtual agents. Such agents, although they are only simulating real 

appearances and behaviours, can interact with real people in a way in which they 

can appear to be alive. The rapid emergence of consumer virtual reality is driving a 

need for virtual agents, which can use social signals such as body movement and 

facial expressions. Probabilistic graphical models (Koller & Friedman, 2009) have 

traditionally been used to generate virtual agents that respond in a more natural way, 

corresponding to how a real person would interact during social interaction. The 

main challenge is to dynamically generate animation that is highly responsive without 

unnatural jerkiness, and which matches current models of coordination behaviour.  

Previous studies have also used various techniques to create characters that can 

generate simple social behaviours such as body postures (Gillies et al., 2015), hand 

gestures (Kopp & Bergmann, 2013), and head nods (Huang et al., 2010). Such 

systems traditionally replay the measured movements with good timing but cannot 

yet create the detailed coordination found in real social interaction, nor have they 

been linked to psychological theory.  

With high resolution motion tracking technology (See Section 1.3) we can capture 

the actual head nodding behaviour displayed by real people and use this to drive the 

head nods of virtual agents in a controlled manner. In combination with virtual reality 

technology, we then have the ability to manipulate the social interaction by changing 
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the visual cues or signals in order to represent the behaviour of the virtual agent that 

we want the participants to be able to observe. By using the positional head-trackers 

of the VR-headset, we can also program specific responses of the virtual agents that 

is conditional on the participants’ behaviour – for example to copy a head nod. 

However, the theories behind these virtual responses are often undefined, which 

makes it difficult to use these virtual agents as models for hypothesis testing. That is, 

when trying to implement natural backchannel responses most research papers 

focus on the timing on the behaviour, but do not describe the behaviour. As we have 

shown, differences in the frequency of head nods have different meanings and 

should thus be implemented under different behavioural rules to the virtual agent. 

These behavioural rules, which govern the transition from the movement data to 

the generated virtual behaviour is covered in more detail in Section 4.4.2. In short, 

the decision on how the behaviour is implemented in the virtual characters is based 

on two rules: (1) If the virtual agent is listening or when the participant is speaking, it 

performs fast nodding to simulate a natural backchannel; and (2) based on research 

that we mimic head nods with a 600 ms delay (Hale et al., 2020), if the participant 

does a big nod, the agent will nod after a 600 ms delay simulating natural mimicry.  

 

  

4.2.2 Hypothesis Testing using Interactive Virtual Agents   

 
Along with a corresponding rise in “second-person” neuroscience, which studies the 

brains of two people in real-time interaction, the study of social neuroscience in more 

embodied and extended reality settings has been gaining in prominence in recent 

years (Schilbach et al., 2013). This field of research expands on the belief that is so 

common to experimental social psychology, that human social signals are not 
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restricted to the real world. For example, behaviours exhibited by virtual characters 

in virtual environments involve social signals, although perhaps of a different nature. 

Blascovich et al. (2002) emphasise that a general assumption that seems 

conspicuous in all psychological research is that experimental manipulations of 

perceived (i.e., real-world) and imagined (i.e., written scenarios) stimuli are 

essentially equivalent for understanding psychological processes. Manipulating 

imagined stimuli costs less, requires less effort, and provides a greater degree of 

experimental control (i.e., precise manipulation of variables). However, a greater 

degree of experimental control often comes at the cost of ecological validity (i.e., the 

extent to which an experiment is like situations encountered in real life). Thus, a 

trade-off typically exists between experimental control and ecological validity. Recent 

technological advances in both motion capture and virtual reality systems have 

allowed researchers to lessen this trade-off by facilitating an increase in ecological 

validity without entirely sacrificing experimental control, or vice versa.  

Studies using virtual reality as a tool have shown that people keep appropriate 

social distance from virtual agents (proxemics) (Bailenson et al., 2003), and mimic 

their behaviours (Vrijsen et al., 2010). Given these reactions, we can use VR to test 

conversational outcomes of social interaction. For example, a range of studies have 

successfully replicated psychological constructs with virtual reality, including trust 

(Hale & Hamilton, 2016b; McCall & Singer, 2015), prosociality (Gillath, McCall, 

Shaver, & Blascovich, 2008; Hale et al., 2020), and social anxiety (Pan et al., 2012). 

Virtual reality has also been used to study behavioural mimicry. Mimicry emerges 

during infancy and has important roles for social learning and affiliation (Over & 

Carpenter, 2013). It is also widely believed that mimicking another person has 

positive consequences for social interaction and has therefore been described as a 
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‘social glue’ (Lakin et al., 2003). Bailenson and Yee (2005) have demonstrated 

positive effects of being mimicked in virtual reality. In their study, they tracked the 

participants’ head movements and programmed the virtual character to either mimic 

their movements or made head movements of their own that were previously 

recorded from another experiment. Participants who were mimicked rated the 

character as more likeable. However, they did not provide any explanation on how 

these mimicry ratings were weighted. In another study on virtual mimicry (Verberne 

et al., 2013), the authors found a positive effect of trust for one of their virtual agents 

that mimicked the participants’ head movements. However, with another agent the 

same mimicry manipulation did not lead to any positive effects. These studies 

provide mixed results between mimicry and liking, which follow the same patterns as 

ratings of liking in traditional research settings where human confederates were 

trained to mimic participants (Chartrand & Bargh, 1999; van Baaren et al., 2004). 

However, there are many reasons to be cautious of accepting these naturalistic 

studies of mimicry at face value. First, both effect sizes and experimental power in 

many previous studies have been small, and false positives may be present in the 

literature (Hale & Hamilton, 2016a). 

A study by Hale and Hamilton (2016b) aimed to establish a similar paradigm in 

which participants could be mimicked by a virtual agent and use that to test the 

parameters that are important for social interaction, such as the timing and spatial 

form of mimicry, as well as various social characteristics of the mimicker. They 

reported mixed results in line with previous studies of mimicry using virtual reality in 

favour of no significant effects of virtual mimicry on rapport. This finding casts doubt 

over a strong version of the social glue theory, in which all types of mimicry have 

positive social effects. These results led them to the conclusion that we cannot make 
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the claim that being mimicked leads to changes in social evaluation, and we should 

take caution in accepting this dominant view and take note of its fragile effects. 

In this study, similarly to what Hale and Hamilton (2016b) did, we want to follow up 

on previous results using virtual reality to see if there is a way of implementing our 

previously established head nodding patterns onto a virtual agent and use this as a 

model to test whether there is a causal link between interactive engagement and 

memory performance. We also want to investigate if interactive head nodding can be 

used to measure how much we like a virtual agent, by taking inspiration from 

Bailenson and Yee (2005), who has demonstrated that changing patterns of eye 

gaze and mimicry have significant effects on people’s perception and attitude 

towards them. If we find support for this in terms of head nodding behaviour, we 

could use it to predict and quantify how much we like a virtual agent. Lastly, we want 

to follow up on this by trying to answer the question of whether we learn better from 

agents that we like by finding a link between feelings of rapport and better memory. 

 

  

 

 

 

 

 

 

 

 

 



 
 

177 
 

4.3 The Present Study 

In Chapter 3, we found conflicting evidence regarding whether participants were 

more likely to engage in fast nodding when they recall more information from a 

conversation and whether this relates to memory performance. We found ambiguous 

results and could not conclusively claim that head nodding could be used to predict 

memory performance, but some analysis gave us indications that some head 

nodding frequencies might be related to memory during conversations. In this study 

we continue this investigation from preliminary results of Chapter 3, which initially 

showed a correlation between fast nodding and memory. In this study, we aim to test 

a causal link between the two previously correlated measures. Within a virtual reality 

paradigm, we can use the movement data we gathered in our previous studies to 

generate high resolution head nodding behaviour based on natural backchannels 

and different behaviour rules. 

To test our hypotheses about social interaction, we set up two virtual agents to 

take part in a conversation about American states, matching the task used in 

Chapter 3 (See Section 4.4.2 for more details). In this task the participants, together 

with the virtual agents, alternated turns to read cards with facts on them relating to 

American states, presented on virtual tablets. The participants interacted with both 

the interactive and non-interactive virtual agent, in a counterbalanced within-subject 

design (See Section 4.4.3 for more details). 

One agent was programmed to be fully interactive driven by the nodding 

behaviours found in our previous studies. As a control condition, the other virtual 

agent was non-interactive, only driven by pre-recorded motion. Both agents have the 

same pattern of gaze and lip-syncing behaviour, as well as pre-recorded synced-up 

speech segments from two voice actors. This means that we can systematically and 
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specifically manipulate the behaviour rules of head nodding behaviour, while keeping 

the other behaviours constant. To drive the behaviour of the interactive agent, we 

programmed and replayed the measured head nods under different behaviour rules 

so that they could perform social behaviours when interacting with the participants. 

This was carried out as a WoZ experiment, which is a paradigm in which the 

participants interact with a virtual agent that they believe to be autonomous, but 

which is being partially controlled by a human being. In this study, the human is the 

experimenter, who is controlling the verbal component of the interactions to make 

the dialogue flow as naturally as possible. This paradigm comes with its own set of 

limitations, which will be discussed later. Overall, this approach means that we can 

create more naturally behaving virtual agents who are able to maintain a 

conversation on set topics and show gaze and head nodding behaviour. Our 

experimental design manipulates nodding behaviour, so that participants meet one 

agent with the natural nodding behaviour which is contingent on the participant’s own 

speech and actions, while the control agent has pre-recorded head motion. 

In this study, we obtain two outcome measures – learning facts about American 

states and liking ratings for the two virtual agents. These allow us to examine three 

hypotheses, which we will cover in the next section (4.3.1). We then compare how 

participants interact in a conversation with these virtual agents and measure their 

performance with a post-hoc memory test (See Section 3.4.3 for more details) to 

assess how many facts they remembered correctly from the conversation.  
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4.3.1 Aims, Hypotheses and Predictions   

The first aim of this study is to find a way of implementing our previously established 

head nodding patterns on a virtual character, and use this character (i.e., interactive 

agent) as a model to test against the non-interactive agent whether there is a causal 

link between interactive engagement and memory. The second aim of this study is to 

investigate if interactive head nodding can be used to quantify how much we like a 

virtual agent, and to answer the question of whether we learn better from agents that 

we like. We will be testing three hypotheses based around these aims: 

 

H1: Interactive engagement promotes the encoding of new information. 

H2: Interactive engagement promotes liking.  

H3: Liking is linked to learning.  

 

The first hypothesis (H1) claim that interactive engagement promotes the encoding 

of new information and is based on a continued investigation of findings from 

Chapter 3, that some head nodding behaviours relate to learning new information 

during conversations. Testing this hypothesis, we predicted (P1) that the 

conversation with the interactive virtual agent with interactive head nodding 

behaviour should lead to increased general recall on the memory test compared to 

the non-interactive virtual agent, measured by how many facts the participants 

remember. More specifically, if H1 is true, then we expect that participants will be 

more likely to encode new information from a conversation when they use head 

nodding as a signal and should reflect the degree to which we learn more through 

interactive engagement. Important to note is that due to the difficulty of manipulating 

head nodding in the participants, this is an indirect manipulation of head nodding 
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behaviour since we manipulate the virtual agent and its visual signals, rather than 

the participants’ head nodding behaviour directly. By doing this, we change the 

dynamic of the conversation, and consequently the response (i.e., head nodding) 

from the participants. This is similar to what we did with the pseudo controls in 

Chapter 2 when we matched data from different trials within the same pairs of 

participants. Using pseudo-matching changed the dynamic of the conversation, and 

consequently how the participants behaved, while still maintaining the participants 

individual movement characteristics. Thus, we are both looking at the role of head 

nodding as visual feedback during conversation, but also investigating how head 

nodding movements impact the engagement in interaction between the human 

participant and the virtual agent. 

The second hypothesis (H2) claim that interactive engagement promotes liking 

and is based on the idea that changing non-verbal behaviour of virtual agents, such 

as eye gaze and mimicry, has been shown to have significant effects on people’s 

perception and attitude (Bailenson & Yee, 2005). Testing this hypothesis, we 

predicted (P2) that the virtual agent with interactive head nodding behaviour should 

lead to increased feelings of rapport compared to the non-interactive virtual agent, 

measured by the sum of the questionnaire ratings for each agent. 

The third hypothesis (H3) claim that liking is linked to learning, and states that we 

learn better from virtual agents that we like. Testing this hypothesis, we predicted 

(P3) that there should be a link between feelings of rapport and increased general 

recall on the memory test, measured by correlating ratings of liking on the 

questionnaire with how many facts the participants remember. More specifically, if H3 

is true, then we expect to be able to use measures of how much we like a virtual 

agent to predict how much we learn from them. 
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4.4 Methods  

 

4.4.1 Participants  

32 participants (Mage=24) were recruited from the UCL Psychology Subject Pool and 

the ICN Subject Database. Exclusion criteria included subjects that were not fluent in 

English. The participants did not have any previous experience with the tasks and 

were unaware of the purpose of the experiment. Ethical approval was arranged via 

the UCL Research Ethics committee, and all participants gave their written informed 

consent. All participants were informed about the potential side-effect of motion 

sickness from wearing the headset, and that they could end the experiment at any 

time. A monetary reimbursement was offered for participating at a rate of £7.50/hour. 

 

 

4.4.2 Equipment 

Virtual Reality System and Environment. All participants were engaged in a 

virtual conversation task with two virtual agents named Anna and Beth. Dr. Nadine 

Aburumman created the virtual environment and the characters using the Unity 3D 

graphics engine (Unity Technologies, 2020). Her report on the pilot study is 

published in (Aburumman, Gillies, Ward, & Hamilton, 2022). The participants sat at a 

desk in front of a projector screen (Figure 4-1A, B), and the virtual characters were 

programmed to appear seated on the other side of the desk facing them (Figure 4-

1C, D). We used an HTC Vive Pro Eye VR Headset to display the virtual 

environment to the participants. The headset has built-in stereo headphones where 

they could hear the characters speak and get audio instructions. 
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Two female virtual characters were created for the experiment, named Anna and 

Beth. The characters appearances (Figure 4-2) were rendered similar to the average 

age as the participant population. Apart from Anna having brown and Beth having 

blonde hair, both were similar in appearance, with big cartoonish eyes.  

 

 

 

 

 

 

The reason for creating the characters in a cartoonish style comes from what we 

discussed in the introduction of the thesis about the ‘uncanny valley’ (Section 1.5.1). 

For example, how realistic can a virtual character be before we start perceiving them 

Figure 4-1. Lab Setup. The experimental 

setup (A). Third person view of a participant 

wearing the HMD (B). The participants view of 

the virtual room with Anna (C) and Beth (D).      

A 

B 

C 

D 

Figure 4-2. Virtual character 

appearances. Anna (left) has 

brown hair and brown eyes. 

Beth (right) has blonde hair 

and blue eyes. Both characters 

were programmed to be similar 

to the average age as the 

participant population (i.e., 24). 
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as uncanny? Designing believable virtual characters is challenging, and in a study by 

Zell et al. (2015) the authors demonstrate how we can get out of the uncanny valley 

by relying on stylization to increase the appeal of a character by exaggerating or 

softening specific features (Figure 4-3). Thus, to make our characters appear as less 

uncanny, we chose to render them with a more cartoonish stylization.   

 

 

 

 

 

 

 

 

 

 
 

Figure 4-3. Three levels of stylization. Baseline styles are shown on the diagonal highlighted in red. 

Off-diagonal styles are created by mismatching shape and texture (material). The graphs show a 

decrease in the appeal of a character as they become more realistic. Borrowed from Zell et al. (2015). 

 

Virtual Agents. After rendering the appearances of Anna and Beth, the 

characters were programmed to perform social behaviours when they interacted with 

the participants. In this way, Anna and Beth go from being just virtual ‘characters’ to 

becoming virtual ‘agents’ that can participate in conversations in a natural way. More 

specifically, both the interactive and the non-interactive agents were programmed to 

generate, in real time, both verbal and non-verbal social signals to effectively be able 

to have a realistic conversation with the participants. The non-verbal signals included 

eye gaze, blinks, lip-syncing, and head nodding. Eye-gaze and blinks were animated 
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as naturally as possible to enhance the realism of the agents. The lip movement 

were synced-up with the pre-recorded speech segments from the two voice actors. 

For the verbal behaviour of the virtual agents, we scripted the monologue of each 

card, which were pre-recorded from two female voice actors with native British 

accents. We also pre-recorded several speech segments of potential dialogue 

options, which was triggered manually by the experimenter in Unity. This paradigm is 

commonly described as a ‘Wizard of Oz’ method because the verbal behaviour 

appears to come from the virtual agent but is actually monitored and driven by a 

human ‘wizard’ (Thórisson, 1994). Both agents were also programmed to move their 

lips according to the amplitude of the pre-recorded speech, so that it looked as if 

they were speaking. Lastly, the speech audio was presented from speakers behind 

the projector screen, so that the agents’ voices came from their virtual location. 

To drive the head nodding of the interactive agent, we generated head nods with 

appropriate timings under two different behaviour rules. For these to work, the 

interactive agent first must be able to detect the behaviour of the participant. Here 

we use the positional head-trackers or audio channels of the HMD. The HMD utilizes 

a sensor mounted on the participant’s head, which allows for accurate head motion 

detection. The participant’s speech was detected based on the audio from the 

microphone input of the HMD. Unity was used to program specific responses 

conditional on the participants’ behaviour, as follows:  

(1) If the interactive agent is listening or the participant is speaking, the agent 

periodically (approx. 15-20% of the total speaking time) performs high frequency fast 

nodding (4.5-6.5 Hz) to simulate a natural backchannel as visual feedback for the 

participants. Such a fast nod movement consists of 2-3 fast nodding peaks, with a 

where the velocity of the pitch rotation was in the interval [r⋅16.33, r⋅40.84], where r is 
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a radius, given by the distance from the center of the virtual agent’s neck joint to the 

chin. This rule is based on our previous findings that participants tend to fast nod this 

way when listening (Hale et al., 2020; Chapter 2). 

(2) if the participant does a “big” nod (which is any head movement where the 

velocity of the pitch rotation was in the interval [r⋅1.25, r⋅6.91]), then the interactive 

agent will nod 600 ms after the detected end of the head nod with the same value of 

pitch rotation velocity, to simulate natural mimicry (Hale et al., 2020). Their 

appearances were then used as either the interactive or non-interactive model, 

counterbalanced across participants. 

To drive the head nodding behaviour of the non-interactive agent, we used pre-

recorded movement data from a pilot participant which provides natural head motion 

that is not contingent on the participant’s speech or actions in any way. Virtual 

agents with slightly different appearances were then used as either the interactive or 

non-interactive character, counterbalanced across participants.  

 

 

4.4.3 Procedure  

Participants arrived and were shown the equipment and informed of the procedures, 

after which they signed the informed consent. They were seated at a desk in front of 

a projector screen (Figure 4-1A, B) and given more detailed verbal instructions from 

the experimenter, after which they were fitted with the VR-headset. Inside the virtual 

room, the participants could see a virtual desk and a screen with written instructions 

in front of them. The participants were given a moment to become accustomed to the 

environment while watching a video example of the task. After watching the video, 

they were instructed they were going to meet two virtual people named Anna and 
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Beth and have a conversation with them. When ready, they were asked to press a 

button on one of the controllers to begin the task. Anna and Beth were both 

programmed to greet the participant (e.g., “Hi, I’m Anna, nice to meet you”). 

Virtual Conversation Task. The participants, together with the virtual agents, 

took turns to read cards with facts on them relating to different American states (See 

Section 3.4.3), presented on virtual tablets. Whenever the agents spoke, they 

alternated between looking down at the card they were reading and looking up at the 

participant to meet their gaze. The difference in behaviour between the two agents 

was that the interactive agent was driven by the behaviour rules mentioned above, 

whereas the non-interactive agent acted as a control with pre-recorded head 

nodding from a pilot participant. The participants completed the task with both the 

interactive and the non-interactive agent one after the other, in a within-subjects 

design. Which virtual agent acted as the interactive one depended on which group 

each participant belonged to, which was based on what set of cards they were 

reading from (See Table 3-1). After completing 16 trials in two blocks (Anna and 

Beth), they were moved to a separate table to complete the memory test. 

Likeability Questionnaire. After the participants had completed the memory test, 

they were given a questionnaire about their experience of Anna and Beth, containing 

46 items. They indicated their agreement with statements on a Likert scale, ranging 

from 1 (strongly disagree) to 7 (strongly agree). The first 4 statements assessed how 

real or immersive the participants felt the virtual environment was (“I felt that I was in 

the presence of another person in the virtual room”). The next 36 statements 

assessed the likeability (“I find Anna confident”) and realism (“Beth was aware of my 

existence”) of the virtual agents. The last 6 statements assessed direct likeability 

between the two virtual agents (“I felt that Anna was maintaining eye-contact with me 
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more than Beth”). At the end of the experiment, after finishing the questionnaire, 

participants were debriefed about their experience to determine whether they had 

noticed if either Anna or Beth had been mimicking them or otherwise guessed the 

purpose of the experiment (“Did you notice anything unusual about your interaction 

with Anna and Beth?”, “Did you notice if Anna or Beth mimicked your behaviour in 

any way throughout the experiment?”). In the following section I will present how we 

analysed the data based on the three hypotheses that were stated. 
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4.5 Data Analysis  

The first aim of this study, based on preliminary correlation measures, was to further 

investigate a causal link between interactive engagement with a virtual agent and 

memory performance. The second aim of this study was to test if head nodding can 

be used to quantify how much we like a virtual agent and follow this up by examining 

if there is a link between liking and learning. 

 

 

4.5.1 Analysis of Memory Performance 

We performed a basic analysis of general memory recall, similar to the ‘real’ 

interactions in Chapter 3. The memory decisions were categorized into one of four 

response categories based on the “Old/New” status of the fact and the given 

response: hit, miss, false alarm, and correct rejection responses on the memory test 

(See Section 3.5.1). The performance was calculated by considering hits and correct 

rejections and presented as a % of correct recall (hits + correct rejections divided by 

2) across speaking vs. listening, and interactive vs. non-interactive engagement. 

 

 

4.5.2 Multilevel Binary Logistic Regression Model Analysis 

After the basic analysis on memory performance, we aimed to test if interactive 

engagement promotes the encoding of new information (H1) by testing whether the 

conversation with a virtual agent with interactive head nodding behaviour could lead 

to increased general recall on the memory test compared to a non-interactive virtual 

agent. We calculated the dichotomous outcome measure of memory on a trial-by-
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trial basis whether the participants got the correct answer for each fact (0 = not 

correct and 1 = correct). The final sample was used to create a logistic multilevel 

model that consisted of 32 participants sorted into speaking and listening roles. 

There were 3 ‘real’ facts for each of the 16 trials sorted by Set (Table 3-1), which 

together with the ‘new’ facts resulted in 96 facts per participant, and a total of 3072 

datapoints. The data used in the model [Memory ~ Agent + Role + (1|Participant)] 

included the memory recall (1 = correct, 0 = incorrect), and the dummy codes for 

Agent (1 = interactive, 0 = non-interactive), Role (1 = speaking, 0 = listening), and 

Participants (1-32). 

We used a two-level model with Agent (interactive vs. non-interactive) and Role 

(speaking vs. listening) as predictors (Level 1) nested within participants (Level 2). 

We had no interest in analysing the grouping variable of ‘participant’ as a random 

effect but needed to factor this out for individual variation in the model parameters. 

We fitted this model to the data by performing a multilevel binary logistic regression. 

The aim of this analysis is to estimate the odds that the participants remember a fact 

correctly (1) or incorrectly (0) while taking the dependency of data into account for 

each level. Using this approach enable us to take both the between-stimuli and 

between-participant variations into account (Judd, Westfall, & Kenny, 2012). In other 

words, we could for example observe the probability or likelihood that a participant 

remembers a fact correctly when engaged interactively and while reading (rather 

than being told) a fact. This model is well suited for testing the relationship between 

our dichotomous outcome variable and our categorical predictors. The logistic model 

was evaluated using standard F-tests, and likelihood (odds ratio) tests for estimating 

the significance of each predictor. All tests were based on an alpha level of 0.05. 
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4.5.3 Likeability Questionnaire Ratings 

After scoring the likeability ratings, we aimed to examine if interactive engagement 

promotes liking (H2) by testing whether the conversation with the virtual agent with 

interactive head nodding behaviour could lead to increased feelings of rapport 

compared to the non-interactive agent. We calculated the outcome measure of the 

overall ratings for both Anna and Beth and matched that to whatever agent had the 

corresponding interactive or non-interactive behaviour for that session. We then 

compared the mean ratings between the agents with a paired-samples t-test. 

In addition, based on a recent study (Aburumman, Gillies, Ward & Hamilton, 

2022), we performed the same analysis for three specifically chosen questions which 

had shown positive results. These were the questions: Q1) “I believe Anna/Beth was 

maintaining eye-contact with me”; Q2) “I felt that Anna/Beth’s head movement was 

natural”; and Q3) “I believe Anna/Beth showed attention to what I was saying”. In this 

analysis, we similarly wanted to look at the differences between the interactive and 

non-interactive versions of these questions and compare the two means. 

Analysing the likeability ratings further we also aimed to examine if liking is linked 

to learning (H3) by testing a link between feelings of rapport and increased general 

recall on the memory test. We correlated the sum of the overall ratings for the 

interactive and non-interactive questions with the general memory recall which was 

divided into interactive and non-interactive recall rates across both speaking and 

listening trials. A Bonferroni correction was carried out for multiple comparisons.  

 

 

 

 



 
 

191 
 

4.6 Results 

4.6.1 Mean Memory Performance   

We carried out a basic analysis of the participants’ general memory recall, presented 

as a percentage of correct recall across both speaking and listening trials. The mean 

results when speaking shows 92% correct recall for interactive, and 94% for non-

interactive engagement. When listening, the results show 84% for interactive, and 

82% for non-interactive engagement. The results are presented in Figure 4-4 below.  

 

  

 

 

 

 

 

 

 

 

4.6.2 The Effect of Interactive Engagement on Memory     

We performed a multilevel binary logistic regression analysis to test whether having 

a conversation with a virtual agent with interactive head nodding behaviour could 

lead to increased general recall on the memory test compared to a non-interactive 

virtual agent. The results are presented in Table 4-1 below.  

 

Figure 4-4. Mean Memory 

Performance. The mean general 

recall rates in percentages when 

speaking and listening across both 

interactive and non-interactive 

engagement in virtual reality. 

Mean Memory Performance 
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Table 4-1 

Multilevel binary logistic regression results   

Parameter Estimation β SE β F df p Odds Ratio 

Overall Model Evaluation 

Agent (1 = Interactive) 

Role (1 = Speaking) 

– 

0.007 

1.075 

–   

0.1360 

0.1661 

21.369 

0.002 

41.882 

2 

1 

1 

.0001 

.961 

.0001 

– 

1.007 

2.929 

Note. Memory ~ Agent + Role + (1|Participant). The random effect of participant was factored out in the 
regression (level 2) for individual variation in the model parameters. 

 

 

The results of the overall model evaluation (p<.0001) shows that together the 

fixed effects are significant predictors of memory recall. The results for the individual 

predictors show no significant effect (p=.961) of agent-interactivity. Trials performed 

with the agent with interactive head nodding, are equally likely (odds ratio=1.007) to 

fall into the category of correctly being able to recall a fact as those interacting with 

the non-interactive agent. However, a significant effect (p<.0001) of role could be 

observed, and trials where participants read a fact and share the information with the 

agent are three times more likely (odds ratio=2.929) to fall into the category of 

correctly being able to recall a fact than trials where the participant is listening to one 

of the agents reading a fact. In other words, given the same interactive nature of the 

virtual agents, listening instead of speaking to a virtual agent during a conversation 

makes it less likely that you will remember something from the interaction. 

 

 

4.6.3 The Effect of Interactive Engagement on Liking  

We performed a paired-samples t-test of the overall likeability ratings between the 

interactive and non-interactive agent questions on the questionnaire in order to test if 

having a conversation with the virtual agent with interactive head nodding behaviour 
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can lead to increased feelings of rapport over that of the non-interactive agent. The 

results for the overall ratings show that there was no significant increase in feelings 

of rapport when interacting with the interactive virtual agent (M=87, SD=16.9) 

compared to the non-interactive agent (M=82.3, SD=18.1), t(31) = 1.12, p=.27. 

Moreover, based on previous reports (Aburumman et al., 2022), we also performed a 

paired-samples t-test for three specific questions (See Section 4.5.3 for details), 

which likewise were not significant, t(31) = 1.08, p=.29. 

 

 

 

 

 

 

 

 

 

 
Figure 4-5. Mean Likeability Ratings. (A) shows the mean ratings across interactive (Score: 88) and 
non-interactive (Score: 82) conditions. (B) shows the mean ratings for the three specific questions 
(See Section 4.5.3) across interactive (Score: 15) and non-interactive (Score: 14) conditions. 

 

4.6.4 The Effect of Liking on Learning 

We further correlated the sum of the overall ratings for the interactive and non-

interactive questions with the general memory recall, divided into interactive and 

non-interactive recall percentage across both speaking and listening trials to test if 

Mean Likeability Ratings 

A B 
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there is a link between feelings of rapport and increased general recall. The four 

memory conditions include Interactive Speaking (IS), Interactive Listening (IL), Non-

Interactive Speaking (NS), and Non-Interactive Listening (NL). 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 4-6. Correlation matrices. Red correlation scores indicate if the correlation is significantly 
(p<0.05) different from zero. The x-axis values represent the general memory recall in percentage. 
The y-axis values represent the sum of the question ratings. Each data point represents a participant. 

Overall Likeability Ratings 

3-Question Likeability Ratings 
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For the overall ratings, the results presented in Figure 4-6 show that there is no 

reliable positive link between the interactive questions paired with any of the memory 

conditions (IS, p=.12; IL, p=.18; NS, p=.11; NL, p=.88). There was no reliable 

positive relationship between the non-interactive questions paired with any of the 

memory conditions (IS, p=.19; IL, p=.14; NS, p=.51; NL, p=.13). 

For the 3-question ratings, the results presented in Figure 4-6 show that there is 

no reliable positive link between the interactive questions on the questionnaires 

paired with any of the memory conditions (IS, p=.33; IL, p=.27; NS, p=.07; NL, 

p=.82). Similarly, there was no reliable positive relationship between the non-

interactive questions paired with any of the memory conditions (IS, p=.06; IL, p=.24; 

NS, p=.31), except for a negative correlation, r=-0.46, p=.008, in the non-interactive 

listening (NL) condition. However, this negative correlation did not survive a 

bonferroni correction for multiple comparisons.    

 

 

 

 

 

 

 

 



 
 

196 
 

4.7 Discussion 

In Chapter 3, we found ambiguous results of whether we were more likely to engage 

in fast nodding when we recall more information from a conversation and use this to 

predict memory performance. Some analysis patterns gave us indications that some 

head nodding frequencies might relate to memory during unstructured 

conversations. In this chapter we aimed to continue this investigation and test if there 

is a causal link between interactive engagement and memory performance. 

To test our hypotheses, we set up two virtual agents with eye-gaze, blinks, and 

lip-syncing non-verbal actions together with a WoZ speech system. One of these 

agents was programmed to show interactive natural head nodding behaviours based 

on our earlier findings. As a control condition, the head movements of the other 

virtual agent were non-interactive, only driven by pre-recorded motion. We then 

compared how the participants engaged in a conversation with these virtual agents 

and measured their performance with a post-hoc memory test. 

The second goal of this study was to observe if head nodding could be used to 

change how much we like a virtual agent. For example, can interacting with 

interactive virtual agents, driven by natural head nodding behaviour, enhance 

feelings of rapport compared to non-interactive virtual agents? Following from this, 

we also looked at whether the participants learn better from virtual agents that they 

like, by examining a link between feelings of rapport and memory performance. 

Next, we will explore the possible interpretations of the three hypotheses. We will 

then proceed to discuss the implications and limitations of the study, what this could 

mean for hypothesis testing using interactive virtual agent technology, and how 

future directions can extend the contribution of this approach. 
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4.7.1 Does Interactive Engagement Promote Learning?   

With our first hypothesis (H1), we predicted that the conversation with the virtual 

agent with interactive head nodding behaviour should lead to increased general 

recall on the memory test compared to the non-interactive virtual agent. The results 

show that there is no significant effect of agent-interactivity between the interactive 

and non-interactive agents, which fails to support our first hypothesis (H1). We used 

the same task and measures from Chapter 3, with the difference that it was 

implemented in VR. Hence, the design is prone to the same kind of limitations. For 

example, there is the possibility of ceiling effects in the recall measure, with a high 

proportion of the participants remembering all facts correctly. In addition, the virtual 

agents and the participants are reading facts from a virtual tablet instead of a 

physical card, which results in the same limitations of having to interchangeably 

switch gaze direction between the tablet and one’s virtual conversation partner.    

Moreover, a conversation with a virtual agent comes with its own limitations as it 

neglects a lot of the parameters that are present in a naturalistic conversation. For 

example, we focus only on manipulating head nodding behaviours, while also 

controlling other highly important nonverbal behaviours like eye-blinking, gaze, and 

facial expressions in a simplistic fashion compared to real behaviour. This leaves out 

more detailed facial expressions, language parameters, posture, etc, which remain 

challenges and not very well supported with VR technology. Instead of trying to 

implement everything, we opted to delimit and focus on making the interaction 

between the virtual agent and the participant work as good as we could by designing 

all the non-essential features of the virtual agents, including the order of interacting, 

their visual appearance, and the voice lines, counterbalanced across participants so 

that we could investigate just the impact of the interactivity. 



 
 

198 
 

As we hypothesized in Chapter 3, it is likely to be the participant who is performing 

the fast nodding that have learned something from the interaction. However, it is very 

difficult to manipulate the head nodding of the participants directly. Thus, it is 

important to note that the first hypothesis in this study is an indirect manipulation of 

head nodding behaviour because we manipulate the virtual agent and its visual 

signals, rather than the participants’ head nodding behaviour directly. This design 

decision impacts whether we can make a claim about interactive engagement 

promoting (i.e., causal) the encoding of new information (i.e., memory). However, by 

doing an indirect manipulation of the virtual agent’s head nodding behaviour, we 

change the dynamic of the conversation, which in turn changes how the participants 

respond to the virtual agent with both fast and slow nods. This is similar to the 

pseudo controls we performed in Chapter 2 when we matched data from different 

trials within the same pairs of participants. Using pseudo-matching similarly changed 

the dynamic of the conversation, and consequently how the participants behaved, 

while still maintaining the participants individual movement characteristics. 

This also brings us to the point about how we implement the behaviour rules. 

Since we are both looking at the role of head nodding as visual feedback and how it 

impacts the interactive engagement between the participant and the virtual agent, 

future studies could benefit from collecting the head nodding data from the HMD. For 

example, because the interactive virtual agent must detect the behaviour of the 

participant by using the HMD input for head motion and speech, future studies could 

use that data to analyse how it relates to memory performance, or some other 

measurable cognitive outcome. 

Specific responses of the interactive virtual agent, based on behaviour rules, were 

programmed to be conditional on the participant’s behaviour. The first rule was that 
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the agent performed high frequency fast nodding to simulate a backchannel as visual 

feedback for the participants. Each fast nodding event consisted of 2-3 fast nodding 

peaks, which is consistent with the theoretical definition of a nod from the 

background literature (Poggi et al., 2010) where it typically consists of multiple up 

and down movements, including an initial vertical movement, after a slight tilt up it, 

bending downward, and then going back to its starting point. The virtual agent 

performed these nodding events approximately 15-20% of the time the participant 

was speaking or when the agent was listening. This rule was based on our previous 

findings that participants tend to fast nod this way when listening (Hale et al., 2020; 

Chapter 2). The second rule that the virtual agents were programmed to perform was 

behavioural mimicry (Chartrand & Bargh, 1999). If the participants were listening and 

performed a nod within a certain range to count as a “big” nod, then the interactive 

agent would nod 600 ms after the detected end of the head nod. This 600 ms time 

lag was first revealed by Hale et al. (2020) and is used as a good rule to simulate 

natural mimicry behaviour.  

A point worth mentioned is that the pre-recorded movements that were used for 

the non-interactive agent are captured from a single pilot participant. While we were 

careful to select these movements to be small and slow to not appear odd, having a 

larger sample for these movements available would be useful to ascertain the non-

interactive agent as more representative of the population.  

The WoZ design that we chose for the facial expressions and during the dialogue 

interaction has its limitations. However, most other studies that use similar virtual 

reality paradigms also use WoZ and a standard in the field (Jain, Pecule, 

Matsuyama, & Cassell, 2018). What it provides is a non-structured (i.e., free flowing) 

conversation in a VR setting. Using human controlled virtual characters (i.e., avatars) 
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or WoZ-controlled virtual agents enable us to better represent how people interact 

and has the potential to capture different conversational dynamics. In our 

experiment, both the virtual agents’ voices were recorded by native English-speaking 

actresses, and we prepared a lot of phrases related to different conversational 

topics, including some stock phrases, and accompanying facial expressions, so that 

the wizard (i.e., experimenter), who was blind to the conditions, could provide a more 

or less natural conversation with the participant after some training. 

 However, even if all this preparation amounts to better experimental control, it still 

suffers from a lack of ecological validity, and the fact that participants will not behave 

in the same way when conversing with a virtual agent compared to a real person. 

That said, there is a growing body of research aimed at analysing social signals with 

the goal of building applications and interfaces, based on models of human 

behaviour, that limits the trade-off between experimental control and realism in VR 

(Burgoon, Magnenat-Thalmann, Pantic, & Vinciarelli, 2017).  

While our results fail to support our first hypothesis, we do however observe a 

significant effect of ‘role’, showing that participants that are speaking, or reading, a 

fact are up to three times more likely (i.e., odds ratio) to remember the information. 

Thus, listening during a conversation makes it less likely that you will remember, or 

learn something from the interaction compared to when you are speaking. This gives 

us a good indication that these results replicate the self-reference effect (SRE) from 

the study in Chapter 3. However, this effect can still come from being more attentive, 

by having access to visual memory, which allows for more opportunities to make 

associations to new information. In Chapter 5 we will examine this further. Next, we 

will discuss if head nodding can be used to change how much we like a virtual agent, 

or if we learn better from virtual agents that we like. 
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4.7.2 Does Interactive Engagement Promote Liking?   

With our second hypothesis (H2), we predicted that having a conversation with the 

virtual agent with interactive head nodding behaviour should lead to increased 

feelings of rapport over the non-interactive virtual agent. The results from the 

questionnaire ratings show that there is no significant increase in feelings of rapport 

when interacting with the interactive virtual agent compared to the non-interactive 

agent, which fails to support our second hypothesis (H2) that interactive engagement 

promotes liking during conversations. 

This result is consistent with previous research using human and virtual 

mimickers, which have reported mixed results on the idea that mimicry of head nods 

can act as a social glue to increase affiliation and liking between people. For 

example, Bailenson and Yee (2005) demonstrated positive effects on participants’ 

impression of being mimicked in virtual reality, whereas Verberne et al. (2013) used 

the same mimicry algorithm and found inconsistent results across a range of 

measures. It is also worth pointing out that ratings of liking show inconsistent effects 

of mimicry in traditional research settings where human confederates were trained to 

mimic participants (Hale & Hamilton, 2016a). In the study by Hale and Hamilton 

(2016b) they similarly found no significant effects of virtual mimicry on rapport, which 

cast doubt over a strong version of the ‘social glue hypothesis’, in which all types of 

mimicry have positive social effects. It could be that the positive effects of nodding 

are more subtle, but despite positive results from studies using interactive agents to 

support the social glue theory, we continue to find no significant effects in support for 

the idea that interactive engagement promotes liking towards a virtual agent.  

We have extended previous WoZ paradigms using interactive virtual agents by 

implementing an unstructured and interactive conversation in which the agents follow 
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behavioural rules extracted from real world head nodding behaviour. Using this novel 

design, this study demonstrates that the ‘social glue hypothesis’ is difficult to 

replicate in virtual reality. Participants show no significant effects of liking when they 

are engaged in interactive head nodding behaviour with a virtual agent.  

 

 

4.7.3 Do We Learn Better from Virtual Agents We Like?   

With our third hypothesis (H3), we predicted that increased feelings of rapport should 

be linked to increased general recall on the memory test. The results from the overall 

questionnaire ratings, as well as the three specific questions, show that there is no 

reliable positive link between the interactive and the non-interactive questions on the 

questionnaires paired with any of the memory conditions, which fails to support our 

third hypothesis (H3) that liking is linked to learning. However, looking at Figure 4-4 

we can observe an increasing trend on the interactive questions and a decreasing 

trend on the non-interactive questions. We like to emphasize that the data we have 

on this is based on a relatively small sample (i.e., 32 participants) and more 

conclusive research with larger sample sizes would be needed to make any 

recommendations about using measures of liking to predict learning. 
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4.8 Limitations and Future Directions 

It could be argued that these findings reflect a failure of virtual interactions to achieve 

the same effects as real social interactions, which is something we will explore 

further in the next chapter of this thesis. We acknowledge that current virtual reality 

paradigms are far from perfect as participants in this study were aware they were 

interacting with a virtual agent and not a real person. However, studies have 

successfully replicated psychological constructs when interacting with virtual agents 

before, ranging from joint attention (Schilbach et al., 2009), proximity effects (McCall 

& Singer, 2015), and audience effects (Slater, Pertaub, Barker, & Clark, 2006) 

demonstrating that this approach can generate socially realistic interactions. 

One issue with this study is the measures of likeability, which asks the participants 

to retrospectively rate how much they like a virtual agent on a likert scale. This is a 

well-known issue with using questionnaires since there are known dissociations 

between what people say about their own (and other’s) behaviour and the factors 

influencing them (Nisbett & Wilson, 1977; Haidt, 2001). This could be improved on 

by including behavioural measures, like proximity effects (McCall & Singer, 2015).   

A second issue concerning the verbal component of the interactions is that even 

though the WoZ method provides a degree of experimental control and some useful 

insights into how the participants interact, it is not without its problems. For example, 

because it is difficult to provide consistent responses across sessions, this method 

requires significant training so that the experimenter, or ‘wizard’, can respond in a 

way that is credible. We used several pre-recorded speech segments of dialogue 

options and behavioural instructions to minimize this effect. Since the experimenter 

played the role of the wizard, there is an added risk of the experimenter-expectancy 

effect, where the researcher’s cognitive bias could have unconsciously influenced 
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the participant’s behaviours. Playing the wizard is also exhausting, meaning that the 

researcher’s reactions may change across sessions. Consequently, having more 

than one ‘wizard’ could have improved the experimental design of this study.   

In this study we have demonstrated the benefits of artificially generating 

interpersonal coordination by generating behaviour rules in interactive virtual agents 

based on behavioural data from real social interactions to test our hypotheses. We 

currently lack detailed knowledge on many of these behavioural parameters during 

naturalistic interactions but using interactive virtual agents as models to for 

hypothesis testing provides us with a test of simple behaviours, because it allows us 

to specifically manipulate one type of body movement (head nods) while keeping all 

other body movements the same (eye-gaze, blinks, lip motion). However, real-world 

social interaction is complex and dynamic. Non-verbal behaviour is highly 

changeable and can depend on the topic of the conversation, the surrounding 

context, and the person with whom we interact. Current interactive virtual agents are 

not yet able to display this kind of range. 

One way to improve and complement the lack of such advances is using virtual 

reality together with machine learning. Machine learning is a computing method 

associated with cognitive simulation, or artificial intelligence (Michalski, Carbonell, & 

Mitchell, 2013). It involves programming algorithms that can learn from and make 

predictions from datasets without having to manually code everything in detail. It 

allows researchers to automatically detect occurrences and model interactive 

patterns of data. In the context of modelling social interactions, this method can 

generate probabilistic models that predict behaviour over time of one person based 

on the other. For example, if the models derived by machine learning techniques are 

used to drive the behaviour of an interactive virtual agent, then the virtual agent will 
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be able to respond appropriately to the participant’s behaviour in real-time. In this 

way, machine learning may be able to generate virtual agents that closely 

approximate real behaviour without the need to manually extract and code individual 

parameters (Gillies, 2009). This kind of data-driven approach to generating social 

interaction, in combination with the development of well-specified theoretical 

frameworks, will continue to require strong interdisciplinary collaboration. 

 

 

 

 

 

 

 

4.9 Conclusions 

Some analysis patterns from Chapter 3 gave us indications that some head nodding 

might be related to memory during unstructured conversations, and in this chapter, 

we aimed to continue this investigation to test if there is a causal link between 

interactive engagement and memory. We found no significant effect of agent-

interactivity between interactive and non-interactive agents, which failed to support 

our hypothesis that interactive engagement promotes the encoding of new 

information. However, we did find that people that are speaking are up to three times 

more likely (i.e., odds ratio) to remember information during a conversation compared 

to those who are listening, effectively replicating the SRE during virtual 

conversations. However, the effect seems less prominent than during real 

interactions, which is something we want to explore further in the next chapter. 
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The second goal of this study was to observe if head nodding can be used to 

change how much we like a virtual agent. We found no significant differences in 

feelings of rapport between the interactive and non-interactive virtual agents, which 

failed to support our hypothesis that interactive engagement promotes liking during 

conversations. This result is consistent with previous research reporting that mimicry 

of head nods does not always act as a social glue to increase affiliation and liking. 

Our third goal with this study was to observe if feelings of rapport is linked to 

increased general recall of the memory test. We found no reliable correlations 

between ratings of liking and memory performance, which failed to support our 

hypothesis that liking is linked to learning. 

We have tried to demonstrate with this study the benefit of using virtual reality to 

artificially generate behaviour rules in interactive virtual agents based on real-world 

behavioural data, as models to test our hypotheses about memory and liking. The 

external validity and limitations of these virtual models is something we want to 

investigate further in the next chapter. 
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Chapter 5. Memory of Information 

Across Real, Virtual, and Video 

Interactivity: A Cross-Experimental 

Study 
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5.1 Abstract 

In this study, we collected additional data where people acquire information in the 

context of video recordings, aimed at investigating the way that we learn new 

information depending on the level of interactivity from different mediums (i.e., real, 

virtual, and video). Across the three studies investigating learning in this thesis, 

Chapter 3 focused on ‘real’ interactions with a high level of interactivity; Chapter 4 on 

‘virtual’ interactions with a moderate level of interactivity; and this chapter (5) on 

video recordings with no interactivity. In this cross-experimental study, we show that 

the level of interactivity supports memory and learning during conversations. First, 

the results confirm the existence of a ‘video deficit’ in memory compared to real 

interactions when speaking and show that real social interaction is important for 

learning and memory. Secondly, we also found a ‘video deficit’ in memory compared 

to virtual interactions, which shows that virtual agents can help enhance learning 

over video teaching. Lastly, this is supported by a surprising finding that we 

remember more when engaged with interactive virtual agents compared to real 

interactions when listening. In this study, we demonstrate the benefits of exploring 

social interaction in different online settings, which may prove to be valuable when 

creating tools for online education amid a changing landscape for teaching. 
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5.2 Introduction 

In this new era of online social interaction following the recent coronavirus (COVID-

19) pandemic, it is important to understand what makes an interaction work and how 

we can best implement the benefits of real social interactions in an online setting.  

So far, this thesis has examined what people remember from a conversation in a 

real-world face-to-face setting and in a virtual reality setting. Here, we collected 

additional data where people acquire information in the context of video recordings, 

aimed to explore the differences in memory across three experiments with varying 

levels of interactivity (i.e., real, virtual, and video). This will allow us to investigate the 

way that we learn new information depending on the level of interactivity from 

different mediums. 

Most of the research on learning and memory examines either asocial learning 

(i.e., the student is alone) or observational learning (i.e., the student watches another 

individual but does not interact). Observational learning involves acquisition of 

information through passive exposure to the material (e.g., learning from a pre-

recorded video) (Laland & Rendell, 2019). In contrast, interaction-based learning 

requires mutual feedback between student and teacher (Shamay-Tsoory, 2021). In 

other words, in observational learning, we learn from others, while in interaction-

based learning we learn with others. Thus, these forms of social learning mainly 

differ based on the level of interactivity. 

It has been shown that there are differences between learning from real-world 

interactions compared to video recordings of real people. This suggests that children 

learn better from real social interactions compared to when they watch the same 

person on video (Kuhl et al., 2003). In their study, nine and ten-month-old infants 

were assessed on their ability to learn a foreign language (Mandarin Chinese). Over 
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a course of 4 weeks, the children attended 12 sessions in which they were exposed 

to both Mandarin and English speakers. While some infants had direct or “real” 

interactions with the speakers, the two remaining groups where either exposed to the 

speaker through audio-visual recordings or could only hear the speaker through 

audio recordings alone. Following testing to determine how much the infants had 

learned, the authors concluded that phonetic learning could only be seen in the 

group that were directly exposed to the foreign language speakers. In fact, the 

learning of the other two groups was noted as similar to the English control group. 

This mismatch in learning has been defined in the literature as a “video deficit” 

(Anderson & Pempek, 2005). The basis of this concept is supported by studies with 

evidence that real social interaction is important for learning (Krcmar, Grela, & Lin, 

2007; Roseberry, Hirsh-Pasek, Parish-Morris, & Golinkoff, 2009). 

Although the evidence of a video deficit has been replicated in certain bird species 

(Baptista & Petrinovich, 1986; Eales, 1989), it is still unclear whether this effect is 

also seen in human adults, and why this should be true. In a study by Schreiber, 

Fukuta and Gordon (2010), they compare learning from students who attended a live 

lecture and those that watched a recording of the same lecture. A sample of 100 

students were randomly assigned to two groups, and then performed the experiment 

in a within-subject design, switching between the two conditions. Following this, the 

students were given a test to see how much they learned from each version of the 

lecture. Unlike in young children where a video deficit was noted, no significant 

difference in learning was found between when the participants attended the live 

lecture and when they watched the video recordings. Similar results have also been 

observed in other studies with students either attending live lectures or watching 

digital lectures (Davis et al., 2007; Solomon, Ferenchick, Laird-Fick, & Kavanaugh, 
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2004; Vaccani, Javidnia, & Humphrey-Murto, 2016). In the study by Solomon et al. 

(2004), they found that despite the mean scores being equal between the two 

conditions, the variation among the scores of students who watch the digital lectures 

was almost twice as large as for students that attended the live lectures. It is 

possible that this effect could stem from some methodological inconsistencies in 

their study, like small and uneven sample sizes within and between each group; the 

fact that they used a non-validated local test to measure learning; technical problems 

in the presentation of the digital lectures; not controlling for exposure time (e.g., 

recorded material could be replayed multiple times, whereas the live session was 

only played once). These issues would make a direct comparison between learning 

from ‘real’ interactions versus from ‘video’ recordings difficult and in need of further 

investigation. 

In a recent study by De Felice, Vigliocco, and Hamilton (2021), they investigated 

how adults learn information about unknown objects from live versus recorded 

lectures and found that interaction-based learning is more effective than 

observational learning. They also found that when the teacher’s face and hands 

were fully visible, playing an active role in the interaction, improve learning over 

yoked observations of the same sessions. This shows that the presence of non-

verbal signals affected learning new information differently depending on whether 

teaching was interactive or not.  

Social interaction is cognitively demanding (Kourtis, Jacob, Sebanz, Sperber, & 

Knoblich, 2020) and could impact learning in different ways. It might impair learning 

by increasing cognitive load (Hertel, Brozovich, Joormann, & Gotlib, 2008), but it 

might also increase learning, as seen in children (Kuhl et al., 2003). As such, the 

relationship between the level of interactivity in the different tasks in this study and 
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learning could go in either direction. For example, a high level of interactivity (i.e., 

‘real’ interactions) could increase cognitive load, and/or distract learners (Kajopoulos, 

Cheng, Kise, Müller, & Wykowska, 2021). In addition, non-verbal signals, such as 

eye-gaze (Morotta, Lupiáñez, Martella, & Casagrande, 2012), and gestures from a 

teacher (Wakefield, Novack, Congdon, Franconeri, & Goldin-Meadow, 2018) could 

benefit learning by facilitating interpersonal coordination between student and 

teacher. The importance of interactivity in social learning that de Felice et al. (2021) 

demonstrated not only raises the question of which aspects of the interaction 

contributed to learning, a question which we have examined in Chapter 3, but also 

what other types of social interactions provide a learning context that depends on the 

way in which information is delivered.  

In addition to ‘real’ interactions, which elicit interaction-based learning, and ‘video’ 

recordings, which elicit observational learning, we can consider a third level of 

interactivity between these two types of learning. This level is ‘virtual’ interactions, 

which elicit interaction-based learning, but similar to videos are not real face-to-face 

interactions. According to popular wisdom, humans never relate to a computer or 

people on various forms of media in the same way they relate to another human 

being. However, research by Reeves and Nass (1996) showed that real 

communication transfers to human-media communication. For example, their study 

shows that people are polite to computers; that large faces on a screen can invade a 

person’s personal space, and that motion on a screen affects physical responses in 

the same way that real-world motion does. They theorised that the human brain has 

not evolved fast enough to assimilate 20th century technology and believed that the 

mechanisms of social cognition might even transfer to “non-humans”. Later studies 

using non-human, or computer animated characters, confirmed their external validity 
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with that of video recordings of real people (Bente, Krämer, Petersen, & Ruiter, 

2001). In this study, the researchers recorded video of dyadic interactions and 

compared them with animated characters based on movement transcripts of the 

same interactions in a between-subject design. The participants socio-emotional 

impressions were assessed, and the data showed remarkable similarities between 

both conditions, indicating that most of the relevant social information available to 

them in the video recordings was also conveyed by the animated characters. 

However, the generalizability of virtual reality to the real world is something that has 

not been explored in much detail. Hence, we decided to investigate this in this cross-

experimental study. 

In the next section we will present the current study. In this study we aim to 

improve upon previous studies in the field both in the methods in which the video 

recordings are presented, as well as introduce data from three tasks together and 

compare three different levels of interactivity and their effects on memory.  

 

 

5.3 The Present Study 

Previous studies have not systematically examined the level of interactivity as a 

contributing factor in learning. Taking these clues from previous research we can 

build a hypothesis which states that there should be differences in the way that we 

learn new information depending on the level of interactivity from different mediums. 

To test this, we collected new data from video recordings to compare memory 

performance on a post-hoc memory test across three experiments in this thesis that 

have utilized different levels of interactivity (i.e., real, virtual, and video).  



 
 

214 
 

The ‘real’ interactions are presented in Chapter 3 and constitute interaction-based 

learning with a high level of interactivity, where the participants interact with another 

human being in real time. The task in that study contains both a monologue and 

dialogue part of the conversation. The ‘virtual’ interactions are presented in Chapter 

4 and constitute interactive-based learning with a moderate level of interactivity, 

where the participants interact with virtual agents. In that study we found no 

differences in memory performance between interactive and non-interactive virtual 

agents. The task in that study also contain both a monologue and dialogue part of 

the conversation. The aim of the present study is to investigate ‘video’ recordings, 

which constitute observational learning with no interactivity, where the participants 

watch pre-recorded videos. Consequently, the task in this study only contains the 

monologue part of the conversation. The overall aim of this study is then to contrast 

all three levels of interactivity, where ‘real’ interactions involve a high level of 

interactivity between participants; ‘virtual’ interactions which involve a moderate and 

artificially generated level of interactivity; and ‘video’ recordings which involve no 

interactivity, in a cross-experimental design to investigate the way that we learn new 

information depending on the level of interactivity from different mediums. 

Understanding how learning is affected by different types of social interactions is 

important for education and training in many contexts. This has become even more 

important during the COVID-19 pandemic, where social interactions have been 

constrained across all domains of our lives. This research could be beneficial when 

creating tools for online learning and to understand how we can best implement the 

benefits of real social interactions in an online or virtual setting. In the next sections 

we will describe the tasks used to present the ‘video’ condition in more detail. 
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5.3.1 Conversation Task and Memory Test 

In this study we employed the same task that was used in Chapter 3 about American 

state facts (See Section 3.4.3 for details). But instead of a real-world conversation it 

was performed on an individual basis where participants took turns to read cards 

when engaged with pre-recorded video clips of other participants doing the task (See 

Section 5.4.3 for details). Following this task, the participants were asked to 

complete a surprise memory test on a separate computer to assess how many facts 

they remember correctly from the conversation (See Section 3.4.3 for details). 

 

 

 

 

 

5.4 Methods 

5.4.1 Participants  

36 participants (Mage=26) were recruited from the UCL Psychology Subject Pool and 

the ICN Subject Database. Exclusion criteria included subjects that were (1) not 

fluent in English (2) not between the ages of 18-35, and (3) did partake in the study 

presented in Chapter 3. The participants did not have any previous experience with 

the tasks involved and were unaware of the purpose of the experiment. Ethical 

approval was arranged via the UCL Research Ethics committee, and all participants 

gave their written informed consent. A monetary reimbursement was offered for 

participating in the study at a rate of £7.50/hour. 
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5.4.2 Equipment  

In this study, we employed the same task that was used in Chapter 3 (See Section 

3.4.3 for details). However, this time it was performed on an individual basis where 

participants took turns to read cards to camera or to watch pre-recorded video clips 

of other participants doing the task. The video clips were recorded when we tested 

the first 12 dyads from the study presented in Chapter 3. A video camera was 

positioned out of sight behind the yellow participant. The camera was positioned to 

provide participants in this study with a similar camera angle to what the yellow 

participant could see. In addition, the frame of the camera only included the blue 

participant’s head and shoulders, restricting the social signals that may have aided 

learning. As only the blue participant was video recorded, the set of 8 cards given to 

blue was alternated from session to session the same way as in Chapter 3.  

Prior to testing, the 12 video recordings of the blue participants were edited by 

MSc student Jessica Kankram, using Microsoft Photos. The videos were shortened 

to 8 clips of 1 minute, which each contained the blue participant reading the facts 

from each card (the monologue section from the task used in Chapter 3). These clips 

were then combined to make a longer video. After each clip, two screens instructing 

the participants what to do were seen before the next clip began to play (Figure 5-1). 

 

 
 
Figure 5-1. Storyboard for the video. The first image (left) represents the pre-recorded video of the 
blue participant reading the facts on a card. The second box shows the screen that followed (middle). 
This screen was accompanied by an audio beep which signaled the beginning of the 1 minute. The 
final screen (right) was again accompanied by an audio beep. This storyboard was repeated 8 times 
with a different card read by the blue participant each time and compiled into one video.      
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5.4.3 Procedure   

Participants arrived at the lab and were informed of the procedures, after which they 

signed the informed consent. Participants were seated at a desk in front of a laptop 

with 8 cards placed face down in front of them. The edited audio-visual recording 

was played in full screen mode, with onscreen instructions guiding the participant. 

Video Task. The task in this study followed a similar format to that in Chapter 3 

but performed individually with pre-recorded video clips. Like the study in Chapter 3, 

each participant was assigned 8 cards. However, instead of going through the 

procedure with a real conversation partner, or a virtual agent as in Chapter 4, the 

participants were asked to watch one of the edited audio-visual recordings. The 

recordings were divided on a 3 to 1 basis, such that each blue participant from 

Chapter 3 was watched by 3 participants in this experiment, for a total sample of 36 

participants. This means that our results should generalise across different videos 

and are not specific to the use of one particular video recording as a stimulus. The 

participants taking part in this experiment thus alternated between reading their 

assigned cards aloud (i.e., speaking) and watching pre-recorded clips of the 

monologue section from 12 of the blue participants in the study presented in Chapter 

3 (i.e., listening). No time was assigned for discussion. In summary, the video began 

by playing a 1-minute section of the clip of a blue participant reading a card while the 

participant listened. The participant was then given 1 minute to read one of their 

assigned cards from the pile. Following this, the video returned to the blue participant 

reading the next card and so forth until all 16 cards had been covered. After 

completing all trials, the participant was moved to a separate table to complete the 

memory test (See Section 3.4.3).   
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5.5 Data Analysis 

5.5.1 Analysis of Memory Performance 

We performed a basic analysis of the participants’ general memory recall, like the 

‘real’ interactions in Chapter 3, and the ‘virtual’ interactions in Chapter 4. The 

memory decisions were categorized into one of four response categories based on 

the “Old/New” status of the fact and the given response: hit, miss, false alarm, and 

correct rejection responses on the memory test (Section 3.5.1). The participants’ 

ability to discriminate Old from New facts on the memory test was calculated by 

considering the number of hits and correct rejections (i.e., the sum of Old/New 

responses correctly identified as Old/New) and presented as a percentage of correct 

recall (hits + correct rejections divided by 2) across both speaking and listening trials. 

 

 

5.5.2 Mixed-Effects Model Analysis 

After performing the basic analysis of general memory recall, we aimed to test the 

way that we learn new information depending on the level of interactivity from 

different mediums. The final sample across all chapters was used to create three 

models (M1–M3) that consisted of 114 participants in total. The data included in the 

mixed-effects models were the percentage of memory recall responses (0-1), and 

the dummy codes for Experiment (1 = Real Interactions; 2 = Nodding VR 

Interactions; 3 = No nodding VR Interactions; 4 = Video Interactions), Role (1 = 

speaking, 0 = listening), and the unique code for each participant across all three 

experiments (1-146, note: the 32 participants in the nodding VR interactions also 

participated in the no nodding VR interactions): 
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M1: Recall ~ Role + (1 | Participant) 

M2: Recall ~ Experiment + Role + (1 | Participant) 

M3: Recall ~ Experiment * Role + (1 | Participant) 

 

We estimated the data of the sample using multilevel statistical modelling, and a 

model comparison approach (Judd et al., 2008). Prior to model comparison, we 

performed a linear multilevel regression for all models. We used two-level models 

with Experiment (real, interactive VR, non-interactive VR, video) and Role (speaking, 

listening) as predictors (level 1) nested within participants (level 2). We had no 

interest in analysing the grouping variable of ‘participant’ as a random effect but 

needed to factor this out for individual variation in the model parameters. The 

dependent variable was the memory performance (% correct recall). Model M1 was 

used as a baseline model to compare the goodness of fit of M2 and M3. We 

combined the two factors into a single saturated model M2, using both Experiment 

and Role to predict memory performance. The final model, M3, was created to test 

for an interaction between Experiment and Role on the dependent variable. We 

follow the same reasoning as we did in Chapter 3 for the mixed-effects model 

analysis patterns (See Section 3.5.2 for more details). We present two major 

analyses of our data (i.e., the multi-level modelling and the model comparison 

approach) for fairness and completeness. Furthermore, instead of analysing the 

fixed effects parameter estimates of the mixed-effects model using dummy codes for 

our categorical variables like we did in Chapter 3 with the continuous variables, an 

ANOVA was performed on M3 to explore the factors Experiment (real, interactive VR, 

non-interactive VR, video) and Role (speaking, listening) on memory recall, as well 

as any factor interactions. 
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5.6 Results 

5.6.1 Mean Memory Performance  

We performed a basic analysis of the participants’ general memory recall, presented 

as a percentage of correct recall across both speaking and listening trials. The 

results can be seen in Figure 5-2, together with the results from Chapters 3 and 4. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-2. Mean memory performance across experiments. The barplot shows the percentage of 
general memory recall for both speaking and listening conditions across the three experiments. The 
‘virtual’ interactions from Chapter 4 are further split into interactive and non-interactive engagement. 
 
 

 
We can observe a higher recall rate when speaking compared to listening across 

the experiments, indicating that participants are more likely to remember information 

when reading aloud instead of listening. Independent-samples t-tests were 

conducted to compare memory recall across experiments. The results show that 
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when speaking there is a significant increase in memory recall in real interactions (M 

= 0.93, SD = 0.08) compared to the video condition (M = 0.81, SD = 0.11), t(80) = 

5.25, p<.0001. However, no significant difference was observed between the real 

interactions (M = 0.73, SD = 0.19) and the video condition (M = 0.67, SD = 0.13) 

when listening, t(80) = 1.64, p=.1. These results confirm the existence of a ‘video 

deficit’ compared to real interactions, but only when speaking which indicates that 

participants recall less when talking in the video condition. 

We found a significant increase in memory recall in both virtual interactions (M = 

0.93, SD = 0.08) compared to the video condition (M = 0.81, SD = 0.11) when 

speaking, t(66) = 4.47, p<.0001. Here we also found a significant increase in 

memory recall in virtual interactions (M = 0.83, SD = 0.1) compared to the video 

condition (M = 0.67, SD = 0.13) when listening, t(66) = 6.05, p<.0001. These results 

confirm a ‘video deficit’ when compared to virtual interactions as well. 

This gives us reason to think that virtual interactions have more in common with 

real interactions than the video condition. Comparing them reveal no significant 

increase in memory recall in the virtual interactions (M = 0.93, SD = 0.08) compared 

to the real interactions (M = 0.93, SD = 0.08) when speaking, t(76) = 0.42, p=.674. 

However, a significant increase in memory recall was observed in the virtual 

interactions (M = 0.83, SD = 0.1) compared to the real interactions (M = 0.73, SD = 

0.19) when listening, t(76) = 3, p=.003. Interestingly, this shows that participants 

generally recall more information when listening to virtual agents compared to what 

they do when they listen to participants in real face-to-face conversations.  
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**** 

*** 

5.6.2 Memory Across Experiments and Roles 

To give a more detailed analysis of memory performance across the experiments, 

we used multilevel statistical modelling and a model comparison approach. Prior to 

model comparisons, we performed a linear multilevel regression on all models. We 

used two-level models with Experiment (real, interactive VR, non-interactive VR, 

video) and Role (speaking, listening) as predictors (level 1) nested within participants 

(level 2). The results from the analysis are presented in Tables 5-1 and 5-2. 

 

Table 5-1 

Mixed-effects model comparisons for general recall. 

Coloured arrows represent the best fit model for each comparison measured by differences in AIC-scores, and if 
the alternative model was accepted (Green) or rejected (Red) in favour of the compact model measured by the 
likelihood ratio, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Note: M3 includes the fixed effects of 
Experiment and Role, as Matlab automatically calculates those when running the interaction model. 

 

 

When comparing the baseline model ‘Role’ (M1) with the saturated model (M2), the 

results show that the inclusion of ‘Experiment’ (Arrow A, diff-AIC=32.76, p<000.1) 

significantly improved model fit. Furthermore, when comparing the saturated model 

(M2) with model (M3) which added the interaction effect between Experiment and 

Role in addition to the main effects of Experiment and Role, the results showed that 

there is an interaction effect between the level of interactivity of the experiment and 

what role the participants had in terms of speaking or listening (Arrow B, diff-

AIC=8.92, p=.001). The ANOVA on model (M3) is listed in Table 5-2 below. 

Model Comparison Mixed-Effects Models  

M1  

M2 

M3 

Recall ~ Role + (1 | Participant) 

Recall ~ Experiment + Role + (1 | Participant) 

Recall ~ Experiment * Role + (1 | Participant) 
B 

A 
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Table 5-2 

Results of the ANOVA for the generalized linear mixed model M3 

Model Term FStat df1 df2 pValue 

M3: Recall ~ 1 + exp * role + (1 | ppt) Intercept  

Experiment 

Role 

Exp * Role 

1231.2 

4.1871 

107.53 

5.2386 

1 

3 

1 

3 

284 

284 

284 

284 

2.92e-105 

.006 

1.41e-21 

.001 

 

The ANOVA show a significant main effect of Experiment, F3, 284 =4.187, p=.006, 

and Role, F1, 284 =107.5, p<.0001, on memory recall. A significant interaction effect, 

F3, 284 =5.238, p<.001, was also observed. 

 

 

 

5.7 Discussion 

In this study, we collected new data where participants acquire information from 

video recordings, aimed to explore the differences in memory across three 

experiments. This has allowed us to investigate the way that we learn new 

information depending on the level of interactivity from different mediums (i.e., real, 

virtual, and video). Chapter 3 focused on real interactions with a high level of 

interactive-based learning; Chapter 4 on virtual interactions with moderate level of 

interactive-based learning; and this chapter on video recordings with observational 

learning with no interactivity. In this cross-experimental study, we found significant 

differences between the experiments and the level of interactivity, as well as who 

spoke and listened during the conversation. 
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Consistent with results from Chapter 3, we observe an overall higher recall rate 

when speaking compared to listening, indicating that people are more likely to 

remember information when they are reading the facts aloud instead of listening. 

This is supported by a significant main effect of role (Table 5-2), and that the 

speaking condition is driving the effect (Figure 5-2). The model comparisons also 

reveal that the inclusion of ‘Experiment’ significantly improved model fit compared to 

a baseline model without this factor (Table 5-1). This is supported by a significant 

main effect of experiment (Table 5-2) which shows that there are differences 

between the experiments and the level of interactivity we engage with. These results 

suggest that the level of interactivity from the different mediums, as well as if the 

participants are speaking or listening, influences how much the participants 

remember from the conversation. Furthermore, the model comparisons reveal that 

the inclusion of an interaction term significantly improved model fit compared to the 

saturated model without this term (Table 5-1). This is further supported by a 

significant interaction effect between the two factors (Table 5-2) which shows that we 

must be careful when interpreting the main effects of the level of interactivity and if 

the participants were speaking or listening since the two factors depend on each 

other. In the following paragraphs we discuss the effects between the experiments. 

Real > Video Interactivity. Although we made no specific predictions on the 

direction of these effects, a closer look reveals that participants engaged in real 

social interactions were seen to remember more than those engaged with the video 

recordings when speaking, but not when listening. Consistent with previous studies 

(Anderson & Pempek, 2005; Krcmar et al., 2007; Roseberry et al., 2009) our results 

help confirm the existence of a ‘video deficit’ and the evidence that real social 

interaction is important for memory and learning. This is also consistent with studies 
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that both children (Kuhl et al., 2003) and adults (de Felice et al., 2021) learn better 

from real social interactions compared to when they watch the same person on 

video. However, we only find this effect when speaking and not when listening. Thus, 

when listening to video recordings, these results are more in line with previous work 

on adults that shows mixed results with no difference between interaction-based 

learning and observational learning (Davis et al., 2008; Schreiber et al., 2010; 

Solomon et al., 2004; Vaccani et al., 2016). 

One explanation for the video deficit during speaking is that the participants in real 

social interactions can better connect with their conversation partners by increasing 

active participation and the multimodal coordination of both verbal and non-verbal 

social signals. As a result, active engagement in real interactions may have 

enhanced learning compared to video. Moreover, the added social pressure by 

having another person physically present during real interactions may have also led 

to an increase in the attention on the task. This may in turn have led to enhanced 

learning compared to the pre-recorded video task where there is no such social 

pressure. For example, as we saw in Chapter 3, when participants take part in 

interactive-based learning, they may engage in joint attention or finding common 

ground to connect with their conversation partners, which may allow information to 

be shared more effectively.  

Virtual > Video Interactivity. We also find that participants engaged in virtual 

interactions were seen to remember more than those that engaged in the video 

interactions, both when speaking and listening. These results also confirm the 

existence of a ‘video deficit’ compared to virtual interactions and suggests that 

learning via interaction with virtual agents is more like that in real interactions. This 

makes sense and might be attributed to the increased ecological validity of the 
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interaction compared to pre-recorded videos. In other words, because virtual agents 

are responsive, they have more natural verbal and non-verbal social signals 

compared to video stimuli, which suggests that having a conversation with a virtual 

agent is closer to engaging with naturalistic stimuli. Because interaction matters, and 

people have more sensorimotor experiences with real human stimuli over non-

human stimuli during development, human perceptual features may elicit stronger 

responses than stimuli with non-human perceptual features. 

Virtual > Real Interactivity. Lastly, we find that participants engaged with 

interactive virtual agents remember more when listening compared to real 

interactions. By the logic of the previous argument, this finding is surprising in the 

sense that real interactions should elicit stronger responses than stimuli with non-

human perceptual features. There may be several possible explanations for this 

finding, but the most obvious ones relate to differences in social pressure between 

the two types of interactions. First, virtual interactions may have fewer social 

distractions compared to real interactions. For example, in real interactions we often 

ask ourselves questions such as “does she like me?” or “is he judging me?”. This 

type of social pressure might add distractions to the conversation, which 

consequently make it more difficult to remember what is being said. Secondly, 

instead of the real interactions adding social pressure and contributing to an increase 

in attention to the task, another type of pressure arises when engaging with virtual 

agents because they can sometimes behave awkwardly, and the participants often 

focus more on the conversation to monitor such interactions. What this means is 

that, as the participants work harder to monitor the conversation, they pay more 

attention to the task and remembers more from what is said when they feel they are 

not getting any help from the other person to drive the conversation forward. This 



 
 

227 
 

increased monitoring of the virtual agent is cognitively demanding as the participant 

is carrying more of the load. This goes against the theory of least collaborative effort 

which asserts that people in a conversation try to minimize the total effort spent on 

the interaction, both when speaking and listening (Clark & Wilkes-Gibb, 1986). 

The results of this study support the conclusion that interaction-based learning is 

more effective than observational learning, and that the level of interactivity of the 

medium we engage with enhances memory and learning in social contexts. This 

suggests that different neural and cognitive mechanisms may support interaction-

based and observational learning (Rice & Redcay, 2016; Seuren, Wherton, 

Greenhalgh, & Shaw, 2021).  

 

 

 

5.8 Limitations and Future Directions 

A factor which may have accounted for the differences in memory performance 

between the experiments is that while previous studies have studied intentional 

learning, the studies in this thesis test unintentional learning. As participants were 

unintentionally learning when asked to read the facts, their attention may have been 

focused on not making mistakes while reading as opposed to trying to understand 

the facts being read (i.e., passive reading). Similarly, when the participants were 

listening, they may have been able to focus more of their attention on what was 

being said (i.e., active listening). 

A second issue concerning the structure of the tasks between the experiments is 

the lack of a dialogue section in the video task. The addition of a dialogue section in 

the real and virtual conversational tasks meant that the participants conversation 
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partner could have reminded them of some of the information and consequently 

strengthened their memory of certain facts. Moreover, the conversation during the 

dialogue section of the tasks in the real and virtual interactions could not be 

controlled. This could have created an unfair bias with participants remembering the 

more interesting and/or more discussed facts over the others. 

However, the video task used in this study goes beyond previous studies by using 

a carefully matched design aimed to increase its ecological validity, which allows the 

participants to feel like they are exchanging information by speaking and listening to 

another participant, while still lacking the interactive element from engaging with 

video recordings. This makes this observational learning task a ‘no-interactivity’-level 

condition, where the learner is passively decoding an interaction that feels present 

and engaging. It may be that watching video recordings accentuates both the sense 

of engagement and the sense of disengagement, depending on whether a listener 

feels the speaker is directly interacting with them, and vice versa. 

Understanding how learning is affected by social interaction is important for 

education and training in many contexts. This has become even more important 

during the recent coronavirus (COVID-19) pandemic, where social contact has been 

constrained across all domains of our lives and online education has moved learning 

online. The findings from this study that learning can vary in terms of the level of 

interactivity, will thus prove to be beneficial when creating tools for online learning 

that can implement the benefits of real social interactions in an online setting. For 

example, this study has demonstrated that virtual agents can help enhance learning 

over video teaching, and that there is even some untapped potential using virtual 

agents over real interactions. These findings can help educational institutions to 
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effectively transform formal education into online education with the help of virtual 

classes and other online tools in this shifting educational landscape.  

However, further studies are needed to disentangle what mechanisms from real 

social interactions extend to virtual interactions (e.g., turn-taking, rapport building, 

and information sharing). Furthermore, seeing as there are different types of people 

who learn differently depending on several factors (e.g., visual learners, social 

learners), future studies could look at individual differences across different levels of 

interactivity. For example, some people might not be as affected by the social 

pressure of having a real interaction, while others learn better from video recordings. 

In real-world education, teaching typically occurs in classes with larger groups of 

people. In these contexts, the teacher does not actively engage with each student 

throughout the lecture. However, interaction-based learning requires mutual 

feedback between student and teacher (Shamay-Tsoory, 2021). Learning in a 

classroom – either offline or online – implies learning in the presence of others. In 

other words, you learn with others, instead of from others. Consequently, the role of 

attention may be even more impactful in online teaching since it is fundamental to 

successfully acquire new information. However, just as learning in a classroom 

setting in the presence of other students can modulate arousal, attentional, and 

motivational processes (Guerin, 1986), so can the feeling of presence with another 

participant lead to improved learning (Lytle, Garcia-Sierra, & Kuhl, 2018), or make it 

more difficult (Skuballa, Xu, & Jarodzka, 2019). That said, given that our design only 

involves two participants in dyadic social interactions, the results in this study do not 

generalize beyond the dyad to larger groups or classroom settings. 

Online interactions and learning are also tightly connected to an aging population, 

where the elderly often have difficulties with both memory and new technology. 
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While this study did not include a demographic for age, we could benefit from future 

studies investigating if age plays a role when learning in video or virtual settings and 

if there is an interaction between the nature of the interaction and memory when it 

comes to an aging population. These kinds of questions are often explored in the 

field of social robotics (Cross, Hortensius, & Wykowska, 2019) to assess the quality 

of assistive care and psychological well-being of the elderly. 

 

 

 

 

5.9 Conclusions 

In this study, we collected additional data where people acquire information in the 

context of video recordings, aimed to explore the differences in memory across three 

experiments with varying levels of interactivity (i.e., real, virtual, and video). This 

allowed us to investigate the way that we learn new information depending on the 

level of interactivity from different mediums. 

We found significant differences between the experiments and their level of 

interactivity, as well as who spoke and listened during the conversation. When 

exploring the direction of these effects, we were able to confirm the existence of a 

‘video deficit’ in learning compared to real interactions when speaking and conclude 

that real social interaction is important for memory and learning. We were also able 

to find a ‘video deficit’ in learning compared to virtual interactions, which shows that 

interactive virtual agents can help enhance learning over video teaching. This is 

supported by a surprising finding that we remember more when engaged with 
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interactive virtual agents compared to real interactions when listening, which could 

be due to the added social pressure of having an awkward non-human present in 

need of help to drive the conversation, which results in closer monitoring of the 

conversation and better memory.  

We have shown that the level of interactivity supports memory and learning during 

conversations and improves information transfer across people. These findings 

contribute to our understanding of human adult learning and the importance of 

interaction-based learning over observational learning. Further exploration of the 

differences between social interaction in different online settings may prove to be 

valuable when creating tools for online learning amid a changing landscape for 

teaching due to the recent coronavirus (COVID-19) pandemic. 
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Chapter 6. General Discussion 
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6.1 Summary of Experimental Chapters 

The convergence of research questions in both psychology and computing sets the 

scene for the studies presented in this thesis, which draws together these diverse 

research areas, combining cognitive and psychological hypothesis testing with new 

advances in motion capture, signal analysis, and virtual reality to provide a new level 

of understanding of dyadic social interaction. Our methodological aim has been to 

measure, analyse, and artificially generate dyadic social interactions in real time. 

However, to advance in the field it is important that these methods are guided by 

precise and well-defined psychological or cognitive theory to work. The overall 

cognitive aim of this thesis has been to understand and learn more about head 

nodding behaviour during face-to-face dyadic conversations in a naturalistic setting. 

In Chapter 2, the aim was to capture two patterns of head nodding signals – fast 

nods and slow nod coherence – and determine what they mean and how they are 

used across different conversational contexts. We find that fast nodding is present in 

contexts when new information is exchanged and slow nodding only in a structured 

one-way information sharing type of conversation. This provides initial evidence that 

fast head nods are a signal of having received new information and that it has 

different meaning to that of slow nodding coherence. A secondary aim in Chapter 2 

was to understand if there are reliable individual differences in social signalling 

behaviour. We find that nodding is consistently driven by context but is not a useful 

measure of individual differences in social skills.  

In Chapter 3, based on the main findings from Chapter 2 that fast nods may be a 

signal of having received new information, the aim was to further investigate if head 

nodding between two people in a conversation might be related to measurable 

outcomes of the conversation, including how much the two people remember new 
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information and how they relate to each other in terms of self-other processing. This 

study provided initial hints that there might be a relationship between head nodding 

behaviour and memory performance, but further analyses were less clear. 

In Chapter 4, we built on the preliminary results of Chapter 3 that initially showed 

a correlation between fast nodding and memory and aimed to further investigate a 

causal link between interactive engagement with a virtual agent and memory 

performance. We created a virtual agent who could show our head nodding 

behaviour rules and tested how much people remember from a conversation with the 

agent. The results from this study demonstrate no causal link between the 

interactivity of the agent and memory performance. In addition, in this study we also 

aimed to investigate if interactive head nodding can be used to measure how much 

we like the virtual agent, and whether we learn better from virtual agents that we like. 

We report no significant results between measures of liking with no reliable 

correlations to head nodding or memory. 

In Chapter 5, we analysed data from Chapters 3 and 4 together with new data 

from a video-based conversation task. We aimed to summarise how the level of 

interactivity in different contexts (i.e., conversation with a real human, conversation 

with a virtual agent, task with an unresponsive video) impacts on the memory 

performance of the participants. The results show that the level of interactivity 

supports memory and learning during conversations. 

 In the following sections of this chapter, we will widen the scope and discuss the 

methodological (Section 6.2) and theoretical (Section 6.3) implications and 

developments of this thesis, as well as its limitations.  
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6.2 Methodological Implications and Developments 

A running theme throughout this thesis has been to use new methods for measuring, 

analyzing, and artificially generating social interaction. To advance the field and 

overcome the limitations associated with traditional studies of interpersonal 

coordination, we need to constantly adapt and refine new methodologies. In the next 

three sections we will discuss the implications of this thesis in terms of 

methodological improvements from previous studies and its limitations from the 

perspectives of Measuring (Section 6.2.1), Analysing (Section 6.2.2), and Artificially 

Generating (Section 6.2.3) interpersonal coordination. 

  

 

6.2.1 Measuring Interpersonal Coordination 

The first step in our approach was to measure interpersonal coordination in real time 

using high resolution motion capture. In this thesis, we have tried to demonstrate that 

current motion capture technologies can be valuable in collecting rich datasets, 

because they provide many opportunities for investigating interpersonal coordination 

at a variety of levels. In the following paragraphs we point out some of the 

improvements and limitations with our experimental setup.  

High Resolution Data Capture. Capturing behaviours in high resolution is the 

first step in reverse-engineering social interactions and picking apart the behaviours 

to determine which parameters are important to advance current theories (Hadley, et 

al., 2022). We use a motion capture system to identify potential behaviour rules 

based on the timing and frequency properties of head nodding from two different 

interpersonally coordinated behaviours – slow and fast nods.  
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This is a clear improvement on traditional approaches of using manual annotation 

methods, which often yield low resolution data and is very time consuming (Condon 

& Ogston, 1966; Kendon, 1970). Motion capture also provides more objective and 

detailed data in 3D about an interaction compared to previous studies using 

automated image-processing (i.e., 2D) methods like ‘motion energy analysis’ 

(Fujiwara & Daibo, 2016 Paxton & Dale, 2013; Ramseyer & Tschacher, 2010; 

Schmidt et al., 2012) or computer vision analysis (Dunbar et al., 2014).  

Motion capture studies often focus on recording specific body movements in 

different scenarios, and the most relevant study for this thesis has been the study by 

Hale et al. (2020). Here the researchers recorded head and torso coordination in 

dyadic interactions using a Polhemus magnetic motion tracking device. By only using 

a single sensor or marker placed on the participant’s forehead to record head 

movements in 60 Hz, they were able to detect two types of frequency head nods 

(i.e., fast and slow). The studies presented in this thesis improve upon this 

methodology to investigate dyadic social interaction using higher resolution full-body 

motion capture technology (Optitrack, NaturalPoint Inc., v.1.10), consisting of eight 

cameras (4 × Prime 13 and 4 × Prime13W) with a sampling frequency of 120 Hz. 

Instead of a single marker, each participant wore an upper-body suit with a set of 25 

pre-determinately placed magnetic markers. 3 out of those 25 markers are placed on 

a cap and triangulated to account for the individual shape of the participant’s head. 

This allows us to record head nodding in rich detail together with other body 

movements like hands and torso in a 3D space. This is important since head 

nodding should ultimately not be viewed and addressed in isolation from other 

behaviours.     
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Multimodal Data Capture. Most current research focuses on trying to capture 

and analyze a single modality only, with very few approaches presently trying to 

integrate more than one channel. However, taking into consideration multiple 

modalities can help to relieve ambiguity that is typical of unimodal communication. 

Within the scope of this thesis, we are presenting the analysis of a single modality 

(i.e., head nodding), but this signal is captured from a rich multimodal setup where 

we simultaneously recorded other body movements, along with gaze behaviour, 

facial expressions, and speech. What this means is that our head nodding signals 

are performed within the context of other modalities, both verbal and non-verbal, 

which makes them more naturally performed compared to a more constrained 

experiment. It also means that we could go back and analyze in future studies the 

data from different modalities, like we have done with gaze patterns (Dobre, Gillies, 

Falk, Ward, Hamilton, & Pan, 2021). Recording multimodal data also allow us to 

integrate different modalities and explore the relationships between them, and future 

studies need to address this challenge to fully understand social interaction.  

From this, various multimodal questions can arise. For example, what is the 

relationship between head nods and verbal turn-taking? In fact, nodding does not 

occur on its own. The relation between head movements and speech has been 

investigated numerous times (Duncan, 1972; Hadar et al., 1983; Kendon, 1970), and 

both non-verbal and verbal channels must be considered together to understand 

conveyed meanings during conversations. For example, a large body of research 

shows that gestures generated during speech are, along with the words, part of an 

integrated speech production system (Goldin-Meadow & Alibali, 2012). We believe 

that studying multimodal aspects of social interaction is an essential next step for this 

research area, and our multimodal data capture setup enable us to do that.  
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Synchronized Dyadic Data Capture. Synchronizing multimodal data intra- and 

interpersonally faces problems not found in traditional research areas studying 

isolated participants responding to stimuli or interacting with confederates. Recent 

research has called for a ‘second-person neuroscience’ aimed at understanding 

naturalistic social interaction, involving multiple modalities across different contexts 

and timescales (Heerey, 2015; Schilbach et al., 2013). 

In this thesis, although we analyze one specific modality in various scenarios, we 

are responding to this call by establishing a synchronized data collection protocol 

that can record multimodal data in naturalistic dyadic interactions. This setup is 

flexible enough to capture and synchronize body movements, eye-gaze, and speech 

between two or more people interacting. 

This is not the first dataset to address multimodal data collection, and there are 

many corpus studies out there aimed at providing information about the way different 

modalities shape the structure of a social interaction and convey the speakers’ 

cognitive and affective state in any given moment (including backchannel responses) 

(e.g., Vogel & Koutsombogera, 2018; Vinciarelli et al., 2012). So far, much effort has 

been devoted to recording facial expressions, body movement and speech data, but 

head movements have received less attention in relation to multimodal integration 

(Heylen, 2006). The importance of this signal in the turn-taking process and close 

relation with speech makes them important to include in the recording protocol, 

especially if aimed at recording real face-to-face conversations. The few multimodal 

corpora studies that include head movements (Aubrey et al., 2013; Carletta, 2007) 

do not capture the signals in high resolution within an experimental setting where 

speaking-listening roles or turn-taking structure can be manipulated.       
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In this thesis, we improve upon these previous studies by creating a high-

resolution multimodal data collection protocol with wide synchronization of socially 

relevant data, where we account for the temporal characteristics between the 

different modalities, as well as the coordination of these modalities between two 

people. This will allow for each modality to produce unique signals within the context 

of other signals in a more natural way and analyse how they are coordinated 

between people. However, even though we have an ambitious framework to work 

from, investigating multimodal integration is considered beyond the scope of this 

thesis, and instead we focus our analysis on the investigation of how a single 

modality (i.e., head nodding) is coordinated in dyadic social interactions.  

One of the difficulties in devising a multimodal data collection protocol is properly 

controlling for behavioural variables to ensure that the effects seen are not merely 

driven by effects created by the setup or the equipment itself. Another disadvantage 

is that a multimodal data capture system is very obtrusive and requires specialized 

equipment and a dedicated recording space. It can also be very costly and time-

consuming, but we believe that these more complex and contextually dependant 

experimental setups will help us in understanding the interactive dynamics of 

interpersonal coordination by leading us to more informed decisions when identifying 

our behaviour rules. However, these setups also provide us with new challenges in 

analysing the data.  

In the following section, we will discuss how we utilize advances in wavelet 

analysis to understand social coordination with better temporal detail and how we 

use our synchronized data to improve how we quantify the interpersonal coordination 

of head nodding between people.  
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6.2.2 Analysing Interpersonal Coordination  

The second step in our approach was to analyse interpersonal coordination and its 

temporal progression in relation to dyadic conversation using advanced wavelet 

analysis methods. This method is being used in studies on dyadic interaction data 

with interesting results (Issartel et al., 2015; Schmitd et al., 2014), and has allowed 

us to tease apart the frequencies within the head nodding signals as the interaction 

unfolds. In the following paragraph we discuss some improvements and limitations 

with our approach to analyzing the time-frequency coordination of our data. 

Wavelet Analysis. Social interaction can be seen as a dynamic system where 

each part or modality must be working in parallel with each other and where each 

part is subject to previous influence, as well as shapes future parts of the interactive 

system. Thus, social interactions gain their structure through a process of continuous 

adaptation in which the various parts involved, behavioural and cognitive, mutually 

influence and constrain each other within and across conversational partners. The 

word ‘dynamic’ can be used to describe such changes over time. 

A major challenge for modelling the dynamics of interpersonal coordination is how 

to integrate the data from different modalities and from different people across 

different timescales and frequencies (Fujiwara & Daibo, 2016; Grinsted et al., 2004; 

Issartel et al., 2006). The previous section should make clear that social interaction 

involves various dynamic patterns and that analyzing any social signal, or collection 

of signals, poses significant challenges. One method, which we have tried to 

demonstrate with the studies in this thesis, is to translate the data into a form that 

allows the analysis of the degree of similarity between two sets of data – or time-

series, and the progression in time of this interaction using cross-wavelet coherence 

analysis (CWC). With CWC we may be better prepared to explore how different 
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verbal and non-verbal communication channels change over the course of an 

interaction. While it is a relatively new tool for studying social interactions (Issartel et 

al., 2015), several proof-of-concept studies using CWC have found that it can be 

applied to time-series data on body movements in a dyadic interaction (Sofianidis et 

al., 2012; Varlet et al., 2011; Washburn et al., 2014). However, most of these studies 

involve interactions that have structured turn-taking behaviour. Fujiwara & Daibo 

(2016) followed this up with a CWC study that did not involve a specific task but 

focused on unstructured conversations. In this study the researchers also 

implemented a pseudo-pairing paradigm proposed by Bernieri and Rosenthal (1991), 

where they reordered video clips in a random order and then compared them to the 

real pairs with the idea that there would be more coordination in the real pairs than in 

the pseudo-pairs. 

Hale et al. (2020) improved upon the study by Fujiwara and Daibo (2016) by (1) 

instead of recording motion frequency with 2D video, they recorded in 3D using 

motion capture to isolate the different movement coordinates of the head (i.e., pitch, 

yaw, roll); and (2) instead of testing whether their coherence pattern was present in 

the pseudo interactions within the pairs, they tested between pairs, which provide a 

stronger test. Their results revealed two types of coherence patterns, one positive 

coherence pattern at low frequencies, and the other an unexpected lower than 

chance coherence at higher frequencies. This is similar to a finding by Healey et al. 

(2014) where they found that people in dialogue systematically diverge from one 

another in their use of syntactic constructions. Hale et al. (2020) hypothesized that 

the two patterns could be different signals carrying distinct social information. 

This thesis has explored the hypothesized distinction between these two 

coherence patterns, as it was not clear whether they were two distinct social signals. 
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The quantification of these two types of signals would also be useful for allowing us 

to identify them as two separate behaviour rules based on different frequency ranges 

of head nodding. When exploring this distinction, we improved on the study by Hale 

et al. (2020) by having a larger sample of dyads interacting in a full-body motion 

capture space to achieve greater (1) High resolution data capture; (2) multimodal 

data capture; and (3) dyadic data capture. We also used their improved pseudo-

matching paradigm to get a stronger test where the pseudo pairs have the same 

general movement characteristics as the real pairs. In other words, by using within-

dyad pseudo-trials, we can control for the unique behaviour of each individual and 

identify only the coordination patterns which are specific to the live interaction of the 

participants. We believe this is a strong analysis that should be used more often with 

data from dyadic interactions. 

However, compared to the previous studies (i.e., Fujiwara & Daibo, 2016; Hale et 

al. 2020), we only analysed the coherence measure (R2) which tells us if two people 

move at the same frequency within the same time-window, but not the phase 

measure (i.e., time lag) between the participants. This limits us in terms of looking at 

specific time lags of mimicry, for example. We initially aimed at performing cross-

correlations between each participant’s head pitch to compensate for the lack of 

phase measures, however, for reasons we discuss in more detail in Chapter 2, we 

decided not to further investigate either using a phase measure nor cross-

correlations, with or without absolute values. 

In this thesis, we have tried to integrate the benefits of measuring high resolution 

synchronized recordings with analyses that can tease apart the frequencies in the 

data. We believe that this approach opens exciting possibilities for new experimental 

paradigms and can help to artificially generate interpersonal coordination. 
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6.2.3 Artificially Generating Interpersonal Coordination 

The third and final step in our approach was to artificially generate interpersonal 

coordination using our behaviour rules in virtual agents that can enact and engage in 

conversation with participants. This method is then used to explore how the 

participants respond to different agents showing different behaviour rules to test our 

hypotheses. In the following paragraphs we discuss some improvements and 

limitations with our approach to artificially generating behaviour rules in the agents.  

Experimental Control. We currently lack detailed knowledge on many of the 

behavioural parameters during naturalistic interactions, and even less so when it 

comes to the interplay between multiple modalities. Hömke et al. (2017, 2018) 

provided a good example of a modern approach to studying interpersonal 

coordination. In their studies, they first measure real-world blinking, and analyse 

blinks in relation to dyadic conversation, and then they artificially generate a virtual 

agent who could blink to test how people responded to blinks. This thesis has 

followed the same kind of approach. Both Hömke’s studies and this thesis has relied 

on the idea that specific social behaviours can be identified and understood in terms 

of ‘behaviour rules’ (Hadley et al., 2022). 

Common to many experimental studies of social interaction is finding the right 

balance of ecological validity and experimental control; for example, by restricting 

tasks or assigning speaker and listening roles in advance. Using virtual agents as 

models provide us with strong manipulations of isolated behaviours to test our 

hypotheses, because it allows us to specifically control and manipulate one type of 

body movement (i.e., head nods) while keeping other body movements the same 

(eye-gaze, blinks, lip movement). In support of the two distinct frequency patterns of 

head nodding that Hale et al. (2020) found, we showed in Chapter 2 that these 
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patterns are indeed two different signals with different meanings. This is useful for 

allowing us to identify two plausible behaviour rules with different characteristics. 

These are (1) show fast nods to simulate natural backchanneling behaviour, and (2) 

show slow nods to simulate natural mimicry behaviour. A behavioural rule like this is 

then relatively easy to implement in a virtual agent to make it testable (Bailenson & 

Yee, 2005). Previous studies have mostly focused on the timing of these behaviours 

(e.g., backchannel responses). For example, Hömke et al. (2018) implemented 

behaviour rules as a WoZ method, where the experimenter controlled the timing of 

the inputs to the virtual character. In this thesis, we improved on these methods to 

increase experimental control by (1) programming the head nodding rules, along with 

all our other behaviours, into the virtual agents. This allows us to use both the timing 

and frequency properties of head nodding to build highly responsive agents based 

on real-world behaviour; and (2) by using the positional head sensors and audio 

feedback from the HMD, we also program the behaviour rules to be conditional on 

the participants behaviour. This allows us to implement the behaviour rules with full 

interactivity (i.e., “If the participant does X, the virtual agent should do Y at time Z”). 

Using this method, we also lessen the trade-off between the experimental control of 

being able to manipulate the behaviour of the virtual agents and its ecological validity 

in terms of how natural or close to real the social interactions feel to the participants. 

Ecological Validity. Creating believable virtual characters and generating 

interactive behaviour is a great challenge for computer scientists (Pan et al., 2012; 

Rizzo & Talbot, 2016), and are the two most important areas in which researchers 

can improve the ecological validity of their virtual reality experiments. In this thesis, 

we have tried to improve in both these areas of research by (1) creating our virtual 

characters based on a study by Zell et al. (2015) where they demonstrate how we 
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can get out of the ‘uncanny valley’ by relying on stylization to increase the appeal of 

a character by exaggerating or softening specific features (See Figure 4-3). Thus, to 

make our characters appear as less uncanny, we chose to render them with a more 

cartoonish stylization; and (2) the task on discussing American states was entirely 

rendered in a virtual environment using fully immersive virtual reality HMDs. This is 

an improvement in terms of greater ecological validity from earlier studies using 3D 

projector screens (e.g., Hale & Hamilton, 2016b).  

Having more natural behaviour represented by the virtual agents also leads to 

improved realism for the participants interacting with them, which is a good example 

for why virtual reality is a good tool to use in psychological experiments. In this 

thesis, we have improved upon the interactive behaviour of the virtual agents from 

previous studies in the field (Hömke et al., 2017, 2018) in two ways: (1) we have 

made the virtual agents behaviour conditional on the participant’s behaviour (e.g., to 

copy their head nods) and fully programmed into the virtual agents; (2) both the 

interactive and non-interactive agents were programmed to generate verbal and non-

verbal behaviour to enhance the realism of the conversation for the participants. 

These behaviours included gaze, blinks, lip-syncing, head movements, and speech. 

Speech was the only behaviour that we designed as a WoZ, where the experimenter 

controls what the agents are saying. For this we used a scripted monologue for the 

monologue part of the task, and speech segments of potential dialogue options for 

the dialogue part of the task. Both were pre-recorded from two female voice actors. 

Important to note is that head nodding was the only behaviour that was 

experimentally manipulated, and all other behaviours, verbal and non-verbal, were 

included to enhance the ecological validity of the interactions but did not change 

between different experimental conditions. The WoZ system has its limitations, but it 
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is standard in the field (Jain et al., 2018) and provide a way for the participants to 

have an unstructured conversation that better represent how people interact 

naturally. We prepared a lot of general phrases and responses related to different 

conversational topics with accompanying facial expressions for the virtual agents. 

This method required significant training so that the ‘wizard’ could respond in a 

natural way, but this comes with the risk the of experimenter-expectancy effect, 

fatigue effects and human error. Thus, having more than one person as the ‘wizard’ 

could have improved this study. Future studies could also benefit from collecting the 

head nodding data from the HMDs to use when analysing relational data.  

Experimental frameworks in virtual reality typically specify a certain behaviour or 

focus only on a small subset of the behaviours compared to real-world social 

interaction (e.g., Hale & Hamilton, 2016b; Hömke et al., 2018). This is due to the 

high computational demand of simulating a fully responsive multimodal and dynamic 

human social interaction. For example, in this thesis we have left out more detailed 

facial expressions, a multitude of language parameters, and posture to name a few. 

This is often decided based on what the current VR technology supports, which 

constrains what we can measure. Instead of trying to include everything, we chose to 

limit the behaviours to the ones that made the interaction between the agents and 

the participants work as naturally as possible. The VR method we have used in this 

thesis focus on one single modality to manipulate (i.e., head nodding), and does not 

make any claims beyond increasing ecological validity for the other verbal and non-

verbal behaviours that is generated. Nevertheless, even very basic forms of social 

interactions can be enough to be perceived as realistic, which makes the use of 

simple behaviour rules ideal for using in virtual reality experiments as they are both 

perceivable and testable. For example, both behavioural (Wilms et al., 2010) and 
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neuroimaging (Schilbach et al., 2011) studies show that very basic but contingent 

eye gaze behaviour can be enough to elicit a sense of realism for participants 

interacting with virtual agents. However, future studies would benefit from including 

more interactive behaviours into their virtual agents. 

Real-world social interaction is complex and dynamic. Non-verbal behaviour is 

highly changeable and can depend on the topic of the conversation, the surrounding 

context, and the person with whom we interact. Interactive virtual agents are not yet 

able to display this kind of dynamic range. Moreover, these behaviours are not static 

or temporally isolated events but evolve along with every interaction. Thus, the 

question we must ask is: How do we generate something that is constantly evolving? 

One way to approach this question is, as discussed, to perform integrated analysis 

on multiple levels. In this thesis we have been able to demonstrate how to analyse 

dyadic interaction (i.e., multi-person) and capturing data from a variety of 

interpersonal behaviours, verbal contributions, and contextual variables (i.e., multi-

modal). The next challenge is to address how to analyse the integrative and dynamic 

aspects to understand how these behaviours coordinate together over time.  

Another way to improve the ecological validity of virtual agents is to use machine 

learning methods. Machine learning is a computing method associated with cognitive 

simulation, or artificial intelligence (Michalski et al., 2013). It involves programming 

algorithms that can learn from and make predictions from datasets without having to 

manually code everything in detail. It allows researchers to automatically detect 

occurrences and model interactive patterns of data. In the context of modelling social 

interactions, this method can generate probabilistic models (Morency, de Kok, & 

Gratch, 2009) that predict behaviour over time of one person based on the other. For 

example, if the models derived by machine learning techniques is used to drive the 
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behaviour of an interactive virtual agent, then the virtual agent will be able to respond 

appropriately to the participant’s behaviour in real-time. In this way, machine learning 

may be able to generate virtual agents that closely approximate real behaviour 

without the need to manually extract and code individual parameters like we did in 

Chapter 4 of this thesis (Gillies, 2009). 

Other directions for future studies might involve looking at the neural correlates of 

social behaviours, because only when we can understand, model, and manipulate 

the system dynamics at the behavioural level can we begin to understand the roles 

that brain activity play in the creation of social signals. Two exciting neuroimaging 

methods that are being used to measure real-world social interaction include 

wearable neuroimaging systems like functional near-infrared spectroscopy (fNIRS) 

and brain-to-brain hyperscanning. fNIRS allows researchers to capture patterns of 

brain activation and mechanisms while people engage in naturalistic tasks like 

theatre acting (Hamilton, Pinti, Paoletti, & Ward, 2018). Several recent studies have 

also begun to investigate the interdependence of neural processes between two 

people as they interact using hyperscanning imaging methods (Konvalinka & 

Roepstorff, 2012). This allows researchers to monitor the brain activity of 

dynamically interacting participants, which will bring the research field closer to the 

study of real-world second person neuroscience (Schilbach et al., 2013). 

Measuring, analysing, and artificially generating all aspects of behaviour remains 

a challenging problem, but all technical limitations, big and small, impose critical 

constraints on what psychology studies can be carried out (Pan & Hamilton, 2018). 

In the following section, we will discuss the theoretical developments and limitations 

of this thesis within the context of the methodological approach that we have used.  
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6.3 Theoretical Implications and Developments 

With all these technological advances, it is sometimes easy to forget how essential it 

is to begin with developing a stable cognitive framework to ground our ideas in. As 

with any new method, it is best used to guide our research questions. Moreover, 

given the growing evidence of social coordination at different levels of analysis, we 

need to build coherent theoretical models that can explain the same phenomena. For 

example, motion capture or virtual reality data will require analysis that is different 

from that required by fNIRS or simple video analysis. However, the phenomenon to 

be explained is the same. A deeper understanding will arise as we bring together our 

methodological approach in conjunction with a good approach to theory. Together, 

method and theory will build on each other to create new testable hypotheses, which 

will lead to the development of new theories that can be challenged.  

The step-by-step theoretical approach (See Figure 6-1) we have taken in this 

thesis has been to first measure and analyse different head nodding patterns in 

different contexts to identify different behaviour rules based on correlations between 

social context and nodding (Chapter 2). Based on such correlational findings, we can 

continue to build hypotheses linking a cognitive process and a particular head 

nodding pattern and explore this hypothesis by making correlational predictions on 

an outcome measure (e.g., memory) (Chapter 3). In the last step, we artificially 

generate behaviour rules to manipulate and test this correlation for causality 

(Chapter 4). This is like imposing experimental manipulations before the 

conversation, such as giving participants a goal to try to remember or setting up 

expectations about how their partner interacts (e.g., anti-social or outgroup member). 

We could then test if these manipulations change the head nodding behaviour during 

the conversation. 
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Figure 6-1. Cognitive approach. This box diagram, presented in Chapter 3, provides an example of 
the step-by-step theoretical approach we use to ask informed questions and hypotheses based on 
correlational findings and predictions that can then be tested using virtual agents to find a causal link. 

 

 

The main objective of this thesis is to understand and learn more about head 

nodding behaviour during face-to-face dyadic conversations in a naturalistic setting. 

Specifically, we want to understand what two different type of head nodding patterns 

– fast nodding and slow nodding coherence – mean during different conversational 

contexts, how they are used, and if they relate to conversational outcomes like 

memory and liking. In the next two sections we will discuss the implications and 

larger developments of our findings for the field of interpersonal coordination from 

the perspectives of Fast Nodding and Backchanneling Signals (Section 6.3.1) and 

Slow Nodding and Behavioural Mimicry (Section 6.3.2).   
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6.3.1 Fast Nodding and Backchanneling Signals 

In previous research Hale et al. (2020) identified patterns of high frequency fast 

nodding and low frequency slow nodding coherence in conversations but did not test 

whether these were distinct social signals carrying different social meanings. They 

proposed, however, that the fast nodding pattern might be a backchannel signal 

related to listening. Consistent with Hale et al., (2020) we were able to replicate 

these two frequency patterns using higher resolution methods. However, for these 

measures to be meaningful and used to quantify features of an interaction, it is 

important that we understand why people engage in these types of head nodding 

behaviours. In Chapter 2, we were able to test for the presence of fast nodding 

across different conversational contexts to determine if it really is being used as a 

backchannel signal. This hypothesis made sense to us since research have long 

recognized that both verbal (Sacks et al., 1974) and non-verbal behaviour (Argyle, 

2013; Clark & Krych, 2004; Duncan & Fiske, 1977) from listeners could be 

backchannels that works as feedback to a speaker. McClave (2000) has further 

recognized head nodding specifically as a potential backchannel. In addition to this, 

Clark (1996) has reported that backchannel nodding is usually considered to be 

much faster type of nodding. It is a quick head nod that is visible but very subtle, and 

usually not something we notice. With our first study in this thesis, we had the 

opportunity to test if fast nods might be a backchannel signal. 

Context and Meaning. Much of the research with non-verbal backchannels has 

been dedicated to identifying the social meaning behind them. For example, Hömke 

et al. (2017) investigated long blinks as an additional type of backchannel that could 

serve as a social signal. Boholm and Allwood (2010) considered the meaning of 

head nods with co-occurring speech and found that their main function was to 
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provide communicative feedback. Attributing social meaning to behaviours implies 

that behaviours are meaningful, understandable signals. However, the meaning of a 

social signal can be different depending on a lot of factors, which can make the 

behaviour ambiguous. Head nodding, for example, is particularly sensitive to 

conversational demands and convey several different meanings (Poggi et al., 2010). 

For example, some researchers suggest that the meaning of head nodding is to give 

feedback via backchannels that one has understood what the speaker is saying 

(Allwood & Cerrato, 2003; Duncan, 1972; Yngve, 1970), while others go further and 

claim that the listener must also accept or agree with what the speaker is saying 

(Heylen, 2006; McClave, 2000). 

Context provides an important way to understand the meaning of social signals, 

because we would expect some signals to remain constant across contexts, while 

other might change. For example, if nodding is a social signal, then the meaning of 

the signal can be inferred by how nodding changes across such contexts. In other 

words, the meaning of a signal may change with context like the way the ambiguity 

of a word is generally overcome by considering the context it was uttered in. 

In Chapter 2, we created three different conversational contexts with varying turn-

taking structure (i.e., structured vs unstructured conversation) and how the 

information was shared between the participants in the dyad (i.e., shared information 

vs new information). Our results seem to indicate that fast nods might be a signal of 

having received new information during a conversation, as indicated from a 

significant increase in fast nodding behaviour in the contexts where there was a 

transfer of new information between participants. Such an exchange of new 

information may signal to the other that you have received their message and are 

paying attention to what they are saying. In the task where there was shared 
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information between participants, they may already have mutual understanding, or 

“common ground” (Clark, 1996) and find no use to signal “message received” to their 

partner since they share the same set of beliefs and knowledge. In a similar way, in 

the tasks where there was new information to be received, the participants may have 

used backchannel nodding to update their common ground or grounded the new 

information from their partner to build mutual understanding. However, 

communication is a complex multimodal system, and one of the areas this thesis has 

not touched upon is detailed verbal turn-taking. For example, an alternative 

explanation could be that in the task where the participants share information, they 

could have more equal turn-taking behaviour, which in turn might mean they do not 

need to produce as many nods as backchannels since producing a relevant next turn 

(i.e., verbalisation) also indicates understanding. However, looking at Figure 2-1B, 

we can see indications that the turn-taking behaviour is relatively varied.   

Hale et al. (2020) examined fast nodding only in the context of a structured 

conversation (i.e., picture description task). In this context, participants naturally 

move their heads when alternating between looking down at the picture and at the 

other participant. This reflects a joint attention behaviour because the speaker has 

an important gaze target (i.e., the picture) (Emery, 2000). This behaviour is a 

potential confound since it produced the same kind of nodding movement as the one 

we were trying to measure, namely a vertical head movement in which the head, 

after a slight tilt up, bends downward and then goes back to its starting point (Poggi 

et al. 2010). Thus, the picture description task is unable to discriminate between a 

head nod and simple gaze following or joint attention. In Chapter 2, we improved 

upon the design by Hale et al. (2020) and included two additional tasks with 

unstructured conversations with different information sharing context (i.e., shared 
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information vs. new information). This way we could try to tease apart what a head 

nod means in different contexts. A similar problem could occur from our experimental 

setup, in which there are moments where the participants turn their head to look at 

the empty projector screen where they last saw the video in the video discussion 

task. We did not control for if nods were present during these head turns by 

segmenting the head trajectory, but this could have combined or partially overlapped 

two kinds of movements with different meanings that usually occur on their own. 

A head nod can also integrate with other modalities for it to change its meaning. 

For example, a backchannel may not necessarily be the same if I nod while speaking 

(Boholm & Allwood, 2010), smiling, or shifting gaze (Evinger et al., 1994). Hömke et 

al. (2017) also noted that long blinks often co-occurred with other modalities. 

Furthermore, the meanings may be more complex depending on the way that the 

non-verbal signal is produced, for example if it is a single nod or repeated, or with 

different magnitudes (Poggi et al., 2010). 

The way people move their head when they speak is also an interesting confound 

because of the diversity of meanings that could be present. This is not the same as 

when speech co-occurs with a nod (Boholm & Allwood, 2010). While head nods may 

not be caused by speaking, a head nod may be a motoric consequence of speech 

production (McClave, 2000). Hadar et al. (1983) found that when speaking the head 

moved a lot compared to when someone was listening, and that there was a 

correlation between head movements and verbalisations. In addition to this, they 

also reported that head movements play an important role in putting emphasis on 

important parts of the speech utterance. However, because the experiments in this 

thesis were designed to test why listeners use fast nodding backchannels or slow 

nodding mimicry rather than speakers, this may not be a problem. However, this is a 
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confound to always look out for when it comes to analysing listener-speaker roles 

and turn-taking behaviour (Duncan & Fiske, 1977), especially in unstructured 

conversations where the turns happen quicker. Patterns of head movement in both 

the speaker and listener have been found in the turn-taking process. For example, 

Duncan (1972) observed that speakers turn away their head at the start of an 

utterance while they turn to their interaction partner to hand over the turn.  

In this thesis, we are not presenting any data on turn-taking behaviour (except 

from three graphs to highlight the difference between the structured and unstructured 

conversations in Figure 2-1). We have, however, collected data on listener and 

speaker turns in the speech part of our dataset, where each participant’s voice was 

recorded on two separate audio channels with machine-specific timestamps. Thus, 

turn-taking behaviour might be an interesting direction to take in future studies. For 

example, we can revisit the corpus data to examine speaking-listening roles in 

relation to speech. Furthermore, being able to examine turn-taking within the 

contexts of the different tasks would be interesting, seeing as the failure to follow the 

rules on how to decide who is speaking can also be considered a social signal. For 

instance, interrupting someone else’s turn may signal aggressiveness and 

dominance, whereas turn overlapping may signal competitiveness, or signal to 

people outside the conversation that it is becoming conflictual (Pesarin et al., 2011).  

Memory and Learning. Based on the results from investigating fast nodding in 

different contexts, we showed that it is represented more in conversational contexts 

in which there was a transfer of new information between participants. From these 

results, we can ask the question if fast head nods could be a backchannel signal 

from the listener in the conversation to inform the speaker that they have received 
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this information? And if so, might fast nods be seen more on trials when participants 

are learning more, which means fast nods might correlate with later memory scores.  

In Chapter 3, we used a new memory task to test and quantify this relation by 

trying to link the cognitive process (e.g., memory) to a particular head nodding 

pattern (e.g., fast nodding). From this we then can make correlational predictions on 

the outcome in terms of how much the participants remember from the information 

that was discussed. This exploratory study provided initial hints that there might be a 

relationship between head nodding behaviour and performance on a later memory 

test, though further analyses were less clear. It is important to emphasize that this 

hypothesis is based around correlating measures between the head nodding 

behaviour and a conversational outcome. There is not much research related to 

head nodding and ‘item memory’ as a learning outcome. However, several studies 

have tried to link non-verbal behaviours in conversation to a range of learning 

outcomes (Chen et al., 2015; Pinzon-Gonzalez & Barba-Guaman, 2021; Sümer et 

al., 2021). In these studies, non-verbal behaviour is taken as an index of ‘attention’ 

or ‘listening’ (in contrast to boredom or mind wandering), and thus is expected to 

predict learning outcomes (i.e., memory). Seeing as head nodding is sensitive to 

conversational demands, such as signalling attention and understanding (Hadar et 

al., 1983), this links to our interpretation of fast nods as a potential backchannel that 

signals listening or understanding (i.e., comprehension). Backchannels to indicate 

comprehension are a fundamental component of communication between people 

(Kendon, 2002). For example, Richardson and Dale (2005) showed that the more 

coordinated a listener’s eye gaze was with the speaker in a conversation, the better 

the listener did on a comprehension test. However, they did not investigate if this 

was the case for speakers as well, or in unstructured conversations. Furthermore, 
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most research on learning examines isolated participants in front of computer 

screens, or through observational learning. However, learning new information often 

occurs in social contexts, and in this thesis, we aimed to improve on this and include 

a behavioral measure of acquired information and factual knowledge (i.e., ‘item 

memory’) taken from a real-world dyadic interaction to gain a better understanding of 

the natural parameters of fast head nodding and its relation to memory. This can be 

especially important for real-world settings such as education or psychotherapy. 

An implication of measuring memory with our task is that participants are probably 

being more attentive while reading a fact by having access to visual memory and 

seeing the words written on the cards. This may create ceiling effects where 

participants remember all facts correctly. Also, relating back to our example of the 

two poker players, attention can also be easy to fake, and our participants can easily 

have signaled fake engagement just to get the task done. Thus, more research is still 

needed on the relation between head nodding behaviour and memory as a 

conversational outcome. 

Virtual Backchannels. In Chapter 4, we built on the preliminary result of Chapter 

3 and aimed to test if there is a causal link between interactive engagement and 

memory performance. To test this hypothesis, we created two virtual agents who 

could show our head nodding behaviour rules and test how much participants 

remember from a conversation with the agent (See Section 6.2.3 for more details on 

the limits of these agents). The results from this study show that there is no 

significant effect of agent-interactivity between the interactive and non-interactive 

agents, which demonstrate that there is no causal link between interactive 

engagement and memory. In the study by Hömke et al. (2018), they developed a 

similar experimental paradigm using virtual agents to selectively manipulate blink 
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duration in a virtual listener to test how participants would react to the visual 

feedback, or backchanneling, of either a short blink (~200 ms) or a long blink (~600 

ms). However, the researchers implemented the behaviour rules as a WoZ method, 

where the experimenter controlled the timing of the inputs to the virtual character. 

We improved upon this method and instead programmed the fast nodding 

backchannel behaviour, along with all our other behaviours, into the virtual agents to 

be conditional on certain behaviours from the participants. The only exception in our 

study was speech, which similar to what Hömke et al. (2018) did with blinks, was 

implemented as a WoZ method. However, since blinking was the variable that they 

manipulated in their study, and speech was only used to increase the ecological 

validity in our experiment, we believe this design choice may improve future studies 

on interpersonal coordination using virtual agents. 

However, when we manipulate a behaviour rule, either by programming it into the 

agents or using a WoZ method, and use this to test psychological hypotheses, we 

must be careful with how we build the hypotheses so that we are clear that what we 

are measuring relates to the participant and not the agents. This is crucial in terms of 

what conclusions we can make. For example, in our experiment, it is likely to be the 

participant who is performing the fast nodding that have learned something from the 

interaction. Since we cannot manipulate head nodding backchannels directly in 

participants, it is important to highlight that our manipulation of fast nodding 

backchannels is an indirect manipulation of the visual signals that the participant is 

getting ‘back’ from seeing the head nod. This in turn changes the interactive 

characteristics of the conversation and how the participants respond (e.g., nodding). 

This is similar to studies examining the virtual mimicry of ‘being mimicked’ rather 

than measuring the participant who is doing the ‘mimicking’ (Hale & Hamilton, 



 
 

259 
 

2016b). As such, in our experiment on memory and learning, we set out with the aim 

to investigate a causal link between memory and fast nodding under the assumption 

that this was an indirect manipulation of the interactivity of the virtual agent, and not 

a direct manipulation of the participants head nodding. 

While our results fail to support this hypothesis, we do however observe that 

participants that are speaking, or reading, a fact are up to three times more likely 

(i.e., odds ratio) to remember information from the interactive agent. This is likely a 

good indication that these results replicate the SRE with virtual agents, but this effect 

can still come from being more attentive and having access to visual memory, which 

allows for more opportunities to make associations to new information.  

In Chapter 5, we analyzed data from Chapters 3 and 4 together with new data 

from a video-based conversation task, where the aim was to summarize how the 

level of interactivity in different contexts (i.e., real, virtual, video) impacted on the 

memory performance of the participants. Previous studies had not systematically 

examined the level of interactivity as a contributing factor in learning, and this thesis 

had examined memory and learning in the context of real-world interactions and in a 

virtual reality setting. We found that the level of interactivity significantly changed 

memory and learning during conversations, and we confirmed the existence of a 

‘video deficit’ in both real and virtual interactions. This is consistent with previous 

studies showing that real social interaction is important for memory and learning 

(Anderson & Pempek, 2005; Krcmar et al., 2007; Roseberry et al., 2009), and that 

both children (Kuhl et al., 2003) and adults (de Felice et al., 2021) learn better from 

real interactions compared to when they learn from video. These results further 

support the conclusion that interaction-based learning is more effective than 
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observational learning due to a greater level of interactivity with natural verbal and 

non-verbal social signals in real and virtual interactions.  

Surprisingly, we also found that we remember more when engaged with 

interactive virtual agents compared to real interactions when listening. This effect 

may be attributed to the added social pressure of having another person physically 

present during real-world interactions, which can lead to increased attention and 

learning. On the other hand, real-world social presence can also lead to more 

distractions compared to virtual interaction and make it more difficult to focus on the 

task. Along these lines, there is also the possibility that the virtual agents can be 

perceived as awkward in their behaviour. This can make the participants work harder 

on the interaction with the virtual agents to make the conversation work without 

being awkward, which means that they will carry more of the load and remember 

more from the conversation.  

By design, the video-based task did not have a dialogue section, and apart from 

this being a non-interactive condition of observational learning, the addition of a 

dialogue section in the real and virtual interactions may have influenced the 

participants to remind each other of some of the information involved in certain facts, 

and consequently created some common ground that facilitated the memory of those 

facts. However, this study improved on the video-based task by using a matched 

design aimed to increase the ecological validity and allow the participants to feel like 

they are performing the task and exchanging information with someone via video 

link. In other words, compared to for example video lectures where the learner is 

passively acquiring information, the learner in this video-based task is decoding an 

interaction that feels present and engaging, but still lacks a real interactive element. 
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Understanding how learning is affected by social interaction is important for 

education and this kind of research can help in artificially generating virtual agents 

who can teach participants new information and act as a virtual tutor. The task on 

American states facts is well-suited to learning studies of this kind because it 

includes a set of uncommon facts that can be tested after the experiment as 

unintentional learning. There has been a growing body of research aimed at 

analysing social signals with the goal of building tools, applications, and interfaces 

for humans, based on models of human behaviour (Burgoon et al., 2017; Vinciarelli 

et al., 2009). This study contributes to this research by showing that learning can 

vary depending on the level of interactivity of tools for online learning that can 

implement the benefits of real social interactions in online educational settings and 

video conferencing using virtual agents over video teaching. However, we recognize 

that this could be driven by a series of cognitive processes (e.g., attention, cognitive 

load, backchanneling etc.) that may be absent in the non-interactive video task. 

 

 

6.3.2 Slow Nodding Coherence and Behavioural Mimicry  

Like the high frequency fast nodding pattern found by Hale et al., (2020), we were 

also able to replicate their low frequency slow nodding pattern and show that this 

signal carried different social meaning to fast nodding. Head movements occurring at 

<1Hz have sometimes been linked to behavioural mimicry, or the chameleon effect 

(Chartrand & Bargh, 1999; Stel, van Dijk, & Oliver, 2009). Hale et al. (2020) were 

able to use wavelet phase measures to determine the precise parameters and timing 

of this slow nodding mimicry behaviour. They reported that this nodding behaviour is 

generated by a mechanism with a 600 ms time lag between the speaker and listener 
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in a dyad. This is consistent with a reactive mimicry mechanism in which one 

participant sees the other’s head nod and then responds to it (Heyes, 2011).  

Context and Meaning. In Chapter 2, we aimed to build on the work of Hale et al. 

(2020) to explore mimicry across contexts and found that it changes based on the 

conversational context. We considered two possible theories for contextual effects 

on slow nodding. First, the ‘Social Glue Hypothesis’ states that low frequency slow 

nodding, or mimicry, is closely related to social bonding and the desire to get on well 

with others (Lakin et al., 2003), and should therefore create the same motivation to 

form a social bond across all three conversational contexts. Second, the ‘gaze 

following’ hypothesis suggests that slow nodding reflects the fact that people follow 

the gaze of their partner only in contexts where there is a potential gaze target (e.g., 

where one person is holding a picture, and not in other contexts). Some studies 

which score mimicry behaviour on observation of interpersonal coordination may not 

distinguish between gaze following and mimicry (Salazar-Kämpf et al., 2017). 

However, we suggest that it can be useful to make this distinction, because the two 

actions could have different social meanings. For example, in the raw motion capture 

data, the joint attention or gaze following pattern might look like a nodding action, 

which means it is important to consider the location of potential gaze targets when 

interpreting nodding behaviour. If we interpret this slow nodding in terms of joint 

attention, we suggest that the picture provided a gaze target for one participant who 

would alternate gaze between their partner’s face and the picture in their hands (i.e., 

an up-down head movement) while the partner shared their attentional state and 

thus copied their head movements with a delay, leading to coordinated slow 

nodding. If this interpretation is correct, then conversations in a different context 

without the picture should not show coordinated slow nodding behaviour. 
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Individual Differences in Nodding Behaviour. Collecting nodding data across 

contexts allowed us to explore if the behaviour of individual participants is consistent 

from one context to another, that is, do some people always engage in a lot of 

nodding regardless of context while other rarely nod? We were particularly interested 

to test if there are robust individual differences in slow nodding behaviour since the 

individual differences underlying mimicry remain largely unexplored. Previous 

studies have shown that although people have a general tendency to mimic each 

other (Chartrand & Bargh, 1999), certain features of the individuals involved 

influence how much they mimic each other (Chartrand & Lakin, 2013; van Baaren et 

al., 2009). In Experiment 3 from Chartrand and Bargh (1999) they also showed that 

empathic individuals exhibit mimicry to a greater extent than do other people (i.e., a 

social chameleon). It has also been suggested that some people show more 

spontaneous mimicry than others and that this is related to increased liking (Salazar-

Kämpf et al., 2017). There is not much data provided to quantify this, and we believe 

this is important to explore if we are to use nodding measures in clinical 

assessments. For example, if the amount of nodding someone engages in is to be 

used as a clinical measure, it should be robust across different conversational 

contexts as well as consistent within an individual. 

In Chapter 2, we tested this and found evidence to suggest that slow nodding 

mimicry (and fast nodding) is driven by context and show no reliable individual 

differences, which suggests that head nodding measures may have limited clinical 

validity. If we would have found individual differences, this would have motivated us 

to test if the tendency to nod reflects broader social skills in future studies. However, 

these results can be important because there have been recent attempts to use 

automated analyses of interactive behaviour to identify and diagnose disorders of 
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social interaction such as autism (Georgescu et al. 2019). The results could also 

support the development of automated methods that could discriminate personality.  

A limitation with our study is that each person only appears in one dyad, so we 

were not able to analyse each person’s behaviour independently of their 

conversation partner as (Salazar-Kämpf et al., 2017) did in their study. Then there 

are the typical limitations regarding data from subjective questionnaire measures in 

dyadic studies which have characteristics that are dependent on the way people 

coordinate and adapt their behaviour over time. This presents a challenge for 

researchers who want to understand individual differences, and future studies should 

design such questionnaires to be sensitive to these kinds of interactional 

parameters. For a subjective measure, the sample size in our study is relatively 

small (n=62). However, the slow nodding pattern that we have identified presents us 

with a way of disentangling the meaning behind the behaviour by studying it in 

different contexts. This enables a more comprehensive understanding of how 

mimicry is related to other conversational outcomes.  

Liking and Self-Other Overlap. Based on the results from investigating slow 

nodding in different contexts, we showed that it changes across different 

conversational contexts in favour of being a form of joint attention rather than a 

mimicry behaviour. From these results, seeing as both joint attention and mimicry 

can be interpreted as a form of social glue that make people feel closer to each 

other, we were interested to explore the potential relationship between a larger self-

other overlap in terms of how close we feel to the other person, and mimicry. In 

Chapter 3, we tested this prediction with a source memory test to discover how 

biased the participants are towards themselves compared to others. 
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The ‘social glue hypothesis’, which predicts that coordination should be related to 

liking and affiliation, gives us an explanation for why mimicry may be an effective 

means of feeling closer to someone, but less research has focused on explanations 

of how such consequences of mimicry might occur. Ashton-James et al. (2007) 

proposed that mimicry helps increase the interdependence of one’s self-construal 

(i.e., more ‘other’ focused), which lead to a larger self-other overlap between people 

and more positive social outcomes. Other researchers have joined in to test this idea 

on participants that are either mimicking or being mimicked (Hale & Hamilton, 2016a; 

Hove & Risen, 2009; Stel et al., 2011; Wiltermuth & Heath, 2009). However, these 

studies either use confederates to mimic participants, use low-resolution methods or 

subjective measures. Moreover, few of these studies test how we perceive ourselves 

during a conversation – that is, how mimicking or being mimicked can affect our self-

construal, or our sense of identity relative to the other person. 

In Chapter 3 we improved on these aspects by using (1) real-world dyadic 

conversations (2) high resolution methods, and (3) behavioural outcome measures 

related to two known memory effects (i.e., SRE and SBE). Since learning new 

information often occurs in social contexts, using these two memory effects as 

outcome measures in a dyadic interaction allowed us to link the recollection of the 

facts to real episodes or experienced events taken from the conversation instead of 

the facts being merely a semantic recollection.  

Our results first show that the participants remember more when speaking 

compared to listening, which indicates that they are more likely to remember 

information that is linked to themselves. This would effectively replicate the SRE for 

memory and is consistent with previous studies that find support for the SRE 

(Cunningham et al., 2008; Klein, 2012; Macrae et a., 2004; Maki & McCaul, 1985; 
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Powell et al., 2010; Rogers et al., 1977; Symons & Johnson, 1997). Secondly, our 

results unexpectedly show that when prompted to remember who read a fact, our 

participants were more likely to claim “the other said it” even if they did not. In other 

words, the participants may have a more interdependent self-construal (i.e., ‘other’ 

focused) and identify more with the ‘Other’ (Brewer & Gardner, 1996). This result is 

the opposite of what Russel and Jarrold (1999) found in their study, in which their 

child participants showed a significant memory bias toward the ‘Self’. The difference 

between ours and their study is that our participants were adults involved in 

unstructured dyadic conversations, which might affect their self-construal in a way 

that is more interactive and interdependent, leading to a feeling of closeness to 

others (Holland et al., 2004) or more self-other overlap. 

These results can prove to be useful when exploring the relationship between 

mimicry and self-other overlap. We initially intended to perform a similar analysis to 

what we did with the fast nodding behaviour. However, we encountered problems 

with uneven numbers of trials since the participants could only give a self-other 

response if they remembered a fact and this forced us to calculate a separate index 

with fewer responses. This design is something that can be improved upon in future 

studies. Overall, the mechanisms linking mimicry and self-other overlap are still 

debated and in need of further research.  

Virtual Mimicry. In Chapter 4, we aimed to test if interacting with interactive 

virtual agents, driven by natural mimicry behaviour, enhance feelings of rapport 

compared to non-interactive agents, and if we learn more from agents that we like. In 

other words, can slow nodding mimicry be used to change how much we like and 

learn from a virtual agent? To test this hypothesis, we created two virtual agents who 

could show our head nodding behaviour rules and test how much participants liked 
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and learned from the agents (See Section 6.2.3 for more details on the limits of the 

agents). First, the results related to liking the agents showed that there is no 

significant increase in feelings of rapport when interacting with the interactive agent. 

Secondly, the results related to learning from the agents show that there is no 

reliable positive link between agent-interactivity and memory performance. 

These results are consistent with previous research showing mixed results for the 

effect of virtual mimicry on rapport (Hale & Hamilton, 2016b; Verberne et al., 2013), 

and traditional research settings with human confederates (Chartrand & Bargh, 

1999; van Baaren et al., 2004). This casts doubt over a strong version of the ‘social 

glue hypothesis’. Bailenson and Yee (2005) who first demonstrated the positive 

effects on participants’ impressions of being mimicked in virtual reality, report that 

participants who were mimicked rated the agent as more likeable. However, the 

researchers of this study did not provide any explanation on how their mimicry 

ratings were weighted. Furthermore, both effect sizes and experimental power in 

many previous studies have been small, and false positives may be present (Hale & 

Hamilton, 2016a). Our results provide further support to the conclusion that we 

should use caution in accepting the social glue hypothesis in a virtual mimicry setting 

since it is difficult to replicate. 

The advantage with using virtual agents to test mimicry is that we get high 

experimental control over manipulating the precise time lags of the nods, as well as 

the benefit of making the nod conditional on the head nodding behaviour of the 

participants wearing the HMDs. This can also lead to the disadvantage that, given 

the importance of timing in dynamic social interactions, even a minor gap in the 

analysis of the signal or when generating the code to implement the behaviour rule in 

the virtual agent can prevent the correct signals to be sent. For example, an 
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incorrectly sent signal can be interpreted by the receiving participants as social 

ignorance or incompetence (Vinciarelli et al., 2009). In two influential studies 

(Bailenson & Yee, 2005; Gratch, Wang, Gerten, Fast, & Duffy, 2007) the researchers 

specifically addressed this issue of movement dynamics and the timing of non-verbal 

feedback for creating a feeling of rapport between participants and virtual agents. 

This issue makes the combination of high resolution motion capture and virtual 

reality especially effective since it produces the most realistic representations of 

movements (i.e., high ecological validity). 

Behaviour rules are an excellent starting point for the study of social interaction 

but might still be too simple to account for the richness of human social behaviour. 

Virtual agents that are governed only by simple behaviour rules will at some point 

begin to diverge from human behaviour. Thus, a critical question is when a 

behaviour rule breaks down. Virtual mimicry provides a good experimental setting for 

testing when a behaviour rule breaks down since researchers can systematically 

manipulate the time lag (e.g., 600 ms to 1200 ms) and observe when participant 

responses change. Future studies could also try to time virtual mimicry to the 

appropriate points of a participant’s speech to examine its temporal relationship. 
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6.4 Concluding Remarks  

This kind of data-driven approach to measuring, analysing, and artificially generating 

social interaction, in combination with the development of well-specified theoretical 

questions, will continue to require strong interdisciplinary collaboration. The 

concluding remarks, or the argument we like to make, is not that studying isolated 

behaviours is an invalid approach because of the absence of contextual and 

dynamic factors, but rather that we should use these findings to build more complex 

models that are able to handle dynamic multimodal interactions within the realm of 

two-person neuroscience. The current challenge is to come full circle and bring 

social neuroscience “out of the laboratory” to replicate complex and dynamic real-

world social interaction. Such an approach of the ‘big-data’ of social coordination will 

be critical in creating a new understanding of our everyday social behaviour and the 

mechanisms that support it.  
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Appendix: Exploratory Analysis 
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This section has been added for completeness, and to show some added support for 

the third hypothesis (H3) which stated that Coherence of slow head nods is a product 

of joint attention or gaze following. This is not part of what we consider the main 

analysis between real and pseudo pairings but is kept for exploratory purposes. 

We performed a 2×3 repeated measures ANOVA with Real (Real, Pseudo) and 

Task (Picture, Video, Meal) as within-subject factors. Results are shown separately 

for each main effect together with the interaction effect (Figure A). Graphs A, B and 

C show the mean and standard error of coherence (R2) of each effect. High 

coherence means a high degree of coordination, as it indicates that two people are 

moving with the same frequency. To assess the difference in coherence between all 

the conditions, we calculated the effect size as an indication of the % of variance 

between them. Graphs D, E and F show the effect sizes (partial eta-squared, ηp2). 
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Figure A. ANOVA cross-wavelet coherence. Graphs A, B, and C show the mean and standard error of 

coherence (R2) of each effect. Graphs D, E, and F show the effect sizes (partial eta-squared, ηp2). 

The dotted line indicates frequencies where there is a significant difference of coherence. Red dots 

represent points on the frequency range that pass a p<0.05 FDR significance threshold, while blue 

dots represent significant differences that did not pass this threshold.  

 

We observe two distinct patterns of coherence across the range of frequencies 

displayed. These patterns are divided into two frequency ranges, above and below 

1.5 Hz, as indicated by the dashed vertical line (D, E, F). In the low frequency range 

(<1.5 Hz) we observe a significant main effect of real interactions, and a significant 

main effect of task. However, we do not observe a significant interaction effect 

between the factors. In the high-frequency range (>1.5 Hz), results show no 

significant main effect of real interactions, but we observe a significant main effect of 

task. Again, no significant interaction effect between the factors was found. 

The results suggest that, averaged over the three tasks, slow nodding coherence 

during real interactions were significantly greater than pseudo interactions. 

Furthermore, results also showed that, averaged over real and pseudo interactions, 

slow nodding coherence across all three tasks were significantly greater. No 

significant interaction was observed between the two factors, indicating that the 

analysis of real vs. pseudo interactions did not lead to greater slow nodding 

coherence depending on which context they were in. This lack of interdependence 

can be valuable in informing our interpretation of this behaviour. 

The observed main effects further strengthen the third hypothesis (H3), as it 

shows that the participants are behaving differently across the tasks. Looking at the 

main effect of task (B) gives us an indication of the direction of this effect since we 

only compared the variance across all three tasks, but it looks as if we have less 

coherence in the Meal Planning Task than the other two tasks. The lack of an 
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interaction effect between the two factors indicates that it being a real or pseudo 

interaction did not necessarily lead to greater slow nodding coherence depending on 

which specific context they were in. A reason not to put too much weight on the 

interaction effect is perhaps that we see a much stronger main effect of task 

compared to real interactions. This can easily overshadow whatever is going on 

when estimating the interdependence between the two factors. 

The results also showed that, averaged over real and pseudo interactions, fast 

nodding across all three tasks was significantly greater. Similar to the slow nodding 

behaviour, no significant interaction was observed between the two factors, 

indicating that the analysis of real vs. pseudo interactions did not lead to greater fast 

nodding depending on which specific context the participants were in. 

Looking at the main effect of task (B) again gives us an indication of the direction 

of this effect, but for fast nodding it looks as if we have more coherence in the Video 

Discussion Task than the other two tasks. Based on the results from the real vs. 

pseudo interactions, this makes sense since the participants do not display the fast 

nodding pattern compared to the other two tasks, which consequently leads to the 

participants’ having more coherence at higher frequencies relative to the other tasks. 

However, for the same reasons that we cannot put so much weight on the direction 

of the results for the slow nodding behaviour in terms of the main effect of task and 

the interaction between the two factors, we have to be equally cautious when 

interpreting the results of the fast nodding behaviour.  

 


