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ABSTRACT 

 

Heteroskedasticity and autocorrelation-robust (HAR) inference in time series 

regression typically involves kernel estimation of the long-run variance. Conventional 

wisdom holds that, for a given kernel, the choice of truncation parameter trades off a 

test’s null rejection rate and power, and that this tradeoff differs across kernels. We 

formalize this intuition: using higher-order expansions, we provide a unified size-power 

frontier for both kernel and weighted orthonormal series tests using nonstandard “fixed-

b” critical values. We also provide a frontier for the subset of these tests for which the 

fixed-b distribution is t or F. These frontiers are respectively achieved by the QS kernel 

and equal-weighted periodogram. The frontiers have simple closed-form expressions, 

which show that the price paid for restricting attention to tests with t and F critical values 

is small. The frontiers are derived for the Gaussian multivariate location model, but 

simulations suggest the qualitative findings extend to stochastic regressors. 

  

JEL codes: C22, C32 

 

Keywords: heteroskedasticity- and autocorrelation-robust estimation, HAR, long-run 

variance estimator 
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1. INTRODUCTION 

 

Heteroskedasticity- and autocorrelation-robust (HAR) tests and confidence intervals 

are used in time series regression when the product of the regressors xt and the regression 

errors ut, t t tx u z≡ , is potentially serially correlated and ut is potentially heteroskedastic. 

Computing HAR standard errors entails estimating the long-run variance (LRV) of zt ,  

jj

∞

=−∞
Ω = Γ∑ , where cov( , )j t t jz z −= ′Γ ,  j = 0, 1, …. The challenge of HAR inference is 

that Ω depends on infinitely many autocovariances, but this infinite sum must be 

estimated using only T observations. 

The foundational papers on HAR inference in the econometrics literature are Newey 

and West (1987) and Andrews (1991). The Newey-West/Andrews method, which 

dominates empirical practice, estimates Ω using a kernel-weighted average of the first S 

sample autocovariances of ˆˆt t tz x u= , where ˆtu  are the OLS residuals. Andrews (1991) 

and Newey and West (1994) recommend choosing the truncation parameter sequence ST 

to minimize the mean squared error (MSE) of the LRV estimator Ω̂ . Under that 

sequence, Ω̂  is consistent and inference proceeds using standard normal or chi-squared 

critical values. Drawing on classical results in the spectral estimation literature, Andrews 

(1991) further suggests using the Epanechnikov (1969) kernel, also called the quadratic 

spectral (QS) kernel, which minimizes the asymptotic MSE of Ω̂  among kernel 

estimators that are positive semidefinite (psd). 

Unfortunately, tests using the MSE-optimal truncation parameter can have large size 

distortions (e.g., den Haan and Levin (1997)). In fact, Edgeworth expansions of rejection 

probabilities in the Gaussian location model formally show that the testing problem 

entails a bias-variance tradeoff, in contrast to MSE minimization which entails a tradeoff 

between squared bias and variance, so the testing-optimal sequence ST increases faster 

than the MSE-optimal sequence (Velasco and Robinson (2001), Sun, Phillips and Jin 

(2008)). The testing-optimal sequence introduces sampling variability in Ω̂  which leads 

to t-like behavior of the t-statistic. That variability can be handled using Kiefer and 
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Vogelsang’s (2005) “fixed b” (or “fixed smoothing”) critical values, which model the 

truncation parameter as increasing proportionally to T, i.e., ST = bT with b fixed; doing so 

provides a higher-order refinement to the null rejection rate of HAR tests (Jansson 

(2004), Sun, Phillips and Jin (2008), and Sun (2014b)). The lesson is thus to combine a 

testing-optimal bandwidth rate for ST with fixed-b critical values. This literature, 

however, has two loose ends. First, given a kernel, it suggests but does not formalize a 

tradeoff between size and power that depends on whether S, while growing at the testing-

optimal rate, is large or small (e.g., Kiefer and Vogelsang (2005, Section 5)). Moreover, 

there are no theoretical results on which kernel, if any, is optimal for testing. 

This paper fills this gap by using the asymptotic expansions of Velasco and Robinson 

(2001), Sun, Phillips, and Jin (2008), and Sun (2011, 2013, 2014b) for the Gaussian 

location model to study the tradeoff between the size distortion and power loss for HAR 

tests using fixed-b critical values and the testing-optimal rate for S. By size distortion, we 

mean the difference between the null rejection rate and the desired nominal significance 

level α.  Following Rothenberg (1984) and the literature on higher-order comparisons of 

tests, by power we mean size-adjusted power, that is, the rejection rate under the 

alternative when the test is evaluated using (generally infeasible) critical values that have 

been adjusted so that the rejection rate under the null is α.1 

 
1 The Neyman-Pearson Lemma ranks tests by their probability of rejecting a point 

alternative among tests with the same null rejection rate. This principle extends to the 

second-order comparison of tests based on Edgeworth expansions, which entails (i) 

obtaining expressions for second-order corrections to critical values, (ii) imposing those 

corrections so that tests have the same second-order size, then (iii) obtaining and 

comparing their size-adjusted power. Sun, Phillips, and Jin (2008, Corollary 5) use these 

three steps to derive a higher order approximation to the power of kernel HAR tests. The 

practice of using size-adjusted critical values is commonplace in Monte Carlo studies 

comparing competing tests; for example, see Kiefer and Vogelsang (2002), Sun (2013), 

Long and Ervin (2000), Ng and Perron (2001), and Clark and West (2007). 
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This paper makes four main contributions. First, we derive theoretical expressions 

characterizing the tradeoff between the size distortion ΔS and its size-adjusted power loss 

ΔP, that is, the difference between the local asymptotic power of the candidate HAR test 

and the infeasible oracle test with Ω known. 

Second, we derive the envelope of these size-power tradeoffs and show that this size-

power frontier is achieved by the QS kernel. Let max
P∆  be the maximum size-adjusted 

power loss of the test over all alternatives. For a 5% test in the one-dimensional Gaussian 

location model, the size-power frontier is, 

  1
2

max
( )

0.3368 ( )S
P o T

Tω
−∆

∆ ≥ + ,      (1)  

where ω(2) is the normalized curvature of the spectral density of zt at frequency zero (in 

the scalar case, the negative of the ratio of the second derivative of the spectral density to 

the spectral density at frequency zero). For the m-dimensional location model, the only 

change to (1) is that the constant increases with m.  

The frontier is plotted in Figure 1 for 5% tests for m = 1, 2, and 3. Choosing the 

sequence for b to equate the asymptotic rates at which ΔS and max
P∆  converge to zero in 

(1) yields ΔS, max
P∆  = O(T-2/3), and this rate is used to derive (1) and to scale the axes in 

Figure 1. For the Bartlett kernel used in the Newey-West (1987) test, equating these rates 

yields ΔS, ΔP = O(T-1/2), so the Bartlett kernel HAR test is asymptotically dominated. 

Third, we extend these results for kernel HAR tests to the family of weighted 

orthogonal series (WOS) tests and in the process provide unified expressions covering the 

two families. WOS estimators of Ω are weighted sums of the squared projections of ˆtz  

onto low-frequency orthonormal functions, typically the first B terms of a basis of L2[0,1] 

excluding the constant function. The WOS family includes weighted periodogram tests 

(for which the orthogonal series are Fourier series) and, in the location model, Ibragimov 

and Müller’s (2010) subsample estimator. If the weights are equal, WOS HAR tests have 

standard t and F fixed-b distributions (Brillinger (1975, exercise 5.13.25), Müller (2007), 

Phillips (2005), and Sun (2013)). Building on Sun (2013), we characterize the size-power  
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FIGURE 1. Higher-order frontier between the size distortion ΔS and the maximum power 

loss max
P∆  of HAR tests in the Gaussian location model with dimension m, for stationary 

processes with normalized spectral curvature ω(2). Solid line: all kernel and orthonormal 

series HAR tests; dashed: tests with standard t and F critical values. 

 

tradeoff for WOS tests and show that the bound (1) applies to WOS tests as well. 

Fourth, we derive the size-power frontier among HAR tests that have standard t and F 

fixed-b distributions. For a 5% test with m = 1, this frontier is, 

1
2

max
( )

0.3624 ( )S
P o T

Tω
−∆

∆ ≥ + .     (2) 

The frontier (2) is achieved by the equal-weighted periodogram (EWP) test and by the 

closely related equal-weighted cosine (EWC) test, in which Ω is estimated using the Type 

II cosine basis functions. As can be seen in Figure 1, the cost of this restriction to t or F 

inference is small. For example, the power loss of the EWP test using the first four 

periodogram ordinates, relative to the same-sized QS test, is at most 0.0074. 

The frontiers in Figure 1 are obtained under the sequence 2/3
0b b T −= , while the 
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tradeoff for the Bartlett kernel is obtained under 1/ 2
0b b T −= . Implementing the HAR tests 

studied here requires choosing b0, which is equivalent to choosing a point on the test’s 

size-power tradeoff curve. We briefly discuss possible criteria for determining this choice 

after providing our main results. A more complete treatment and recommendations for 

practical implementation are provided in a companion paper, Lazarus, Lewis, Stock, and 

Watson (LLSW, 2018). That paper proposes a loss function trading off size and power, 

which, using the formulas for the tradeoffs derived in this paper, is then minimized to 

obtain rule-of-thumb guidelines for HAR tests. LLSW also provide extensive Monte 

Carlo simulations (including for data-based designs), which corroborate the theoretical 

size-power tradeoffs and frontiers we establish in this paper. 

The remainder of the paper is organized as follows. Section 2 defines the kernel and 

WOS estimators. Section 3 provides unified expressions for their higher-order bias and 

variance. Section 4 provides the main results, and Section 5 concludes. Proofs are given 

in the Appendix and in the Online Supplement. 

 

2. MODEL, TESTS, AND LRV ESTIMATORS  

 

We consider two-sided HAR tests of β = β0 in the Gaussian location model, 

 yt = β + ut,  t = 1,…, T,       (3) 

where yt is m×1, β is the vector of means of yt, and ut is an m×1 vector of disturbances 

following a stationary Gaussian process that is potentially heteroskedastic and/or 

autocorrelated. We consider rejection rates both under the null, 0 0:TH β β= , and under 

the local alternative, 
1/ 2 1/ 2

1 0:T TH β β δ−= + Ω  ,        (4) 

where δ  is uniformly distributed on the real m-dimensional sphere centered at the origin 

and with radius δ, as in Sun (2013, 2014b). 

The LRV estimator Ω̂  is computed using estimated values ˆˆt t tz y y yβ= − = − , where 

y  is the sample mean of yt. For m = 1, the t-statistic testing β = β0 is 0
ˆ

Tt T z= Ω , 
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where 1
0 01

( )T
tt

z T z β−
=

= ∑ , zt(β0) = yt – β0, and Ω̂  is an estimator of Ω. For m > 1, as in 

Stock and Watson (2008) and Sun (2013), we consider the scaled F statistic, 

( )* ( 1)T TF B m B F− += , with 1
0 0

ˆ /TF Tz z m−′Ω=  and 1B b−=  (or its integer part). As 

discussed below, with this scaling, *
TF  is asymptotically distributed Fm,B-m+1 under fixed-b 

asymptotics when Ω̂  is an equal-weighted WOS estimator. 

 

2.1. KERNEL ESTIMATORS 

 

The kernel estimator of Ω sums the sample autocovariances, weighted by a kernel k: 
1

( 1)

ˆ ˆ( / )
T

SC
j

j T
k j S

−

=− −

Ω = Γ∑ ,  where 
min( , )

max(1, 1)

1ˆ ˆ ˆ
T T j

j t t j
t j

z z
T

+

−
= +

′Γ = ∑ ,   (5) 

where S is the truncation parameter and the superscript “SC” denotes sum-of-covariances. 

The sum-of-covariances estimator can alternatively be computed in the frequency 

domain as a weighted average of the periodogram: 

                     ˆ WPΩ  = 
[ /2]

ˆˆ
[ /2]

2 (2 / )
T

j zz
j T

I j Twπ π
=−
∑  ,            (6) 

where [T/2] denotes the integer part of T/2, Izz(ω) is the periodogram of  at frequency 

ω, ˆˆ ( )zzI ω  = 1
ˆ ˆ(2 ) ( ) ( )z zd dπ ω ω− ′  where ˆ ( )zd ω  = 

1
1/2 ˆ i t

t
T

t
eT z ω− −

=∑ , and where the weights 

{ }jw  in (6) satisfy 1

(
/

1
2

)
1 ( / ) i ju T

j
T

u T
T k u S ew π

=− −
− −

= ∑ .2 Kernel estimators are positive 

semidefinite with probability one if 0,jw j≥ ∈
 . Toward aligning ˆ WPΩ  with WOS 

estimators as defined below, note that (6) may be rewritten as ˆ WPΩ  = 

( )[ /2]
ˆˆ1

4 Re (2 / )T
j zzj

j Tw Iπ π
=∑  . 

 
2 For large S, ~ 2 (2 )jw bK jbπ π , where b = S/T, and K (ω) = 1(2 ) ( ) i

u

uk u e duωπ
∞

=

−

−

−

∞∫  is 

the spectral window generator; see Priestley (1981, pp. 447, 580-581) or Andrews (1991). 

ˆtz
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Three important kernel estimators are the Bartlett (Newey-West), EWP, and QS 

estimators. The Bartlett kernel is the tent function, k(x) = (1 – |x|)1(|x|≤1). The EWP 

estimator ˆ EWPΩ  is computed using ( )12 / 2j B j Bw −= ≤1  (the Daniell spectral kernel) in 

(6). The quadratic spectral estimator is so named because its weights in (6) are quadratic 

in j: ( ) ( )2
1 / ( / 2) / 2jw j B j B −
 

≤∝ 1 . 

 

2.2. WEIGHTED ORTHONORMAL SERIES ESTIMATORS 

 

WOS estimators are computed by projecting  onto a set of B mean-zero low-

frequency orthonormal functions, typically the first mean-zero elements of a basis for 

L2[0,1], and then evaluating a weighted sum of these projections (Hannan (1970), 

Brillinger (1975), Priestley (1981), and Stoica and Moses (2005)). Following Sun (2013), 

let {ϕj(s)},  j = 0, …, B,    0 ≤ s ≤ 1, denote the first B+1 functions in a real orthonormal 

basis for L2[0,1], where ϕ0(s) = 1 and 
1

0
( )j s dsφ∫  = 0 for j ≥ 1. The WOS estimator is, 

  ˆ WOSΩ  = 
1

ˆ
B

OS
j j

j
w

=

Ω∑ , where 
1

1
B

j
j

w
=

=∑ ,  ˆ OS
jΩ  = ˆ ˆ

j j
′Λ Λ , and ˆ

jΛ  = 
1

1 ˆ( / )
T

j t
t

t T z
T

φ
=
∑ .     (7) 

Note that ˆ WOSΩ  omits the j = 0 (constant) function since 0
ˆ ˆ 0T zΛ = = . The condition for 

ˆ WOSΩ  to be psd with probability one is that {wj} are nonnegative. 

The theory in this paper covers basis functions with two continuous and bounded 

derivatives. The leading case uses Fourier basis functions, for which psd WOS estimators 

and psd kernel estimators asymptotically coincide (see Priestley (1981, pp. 578-581)). 

The use of Fourier basis functions with equal weights produces the EWP estimator. Other 

examples of basis functions include Type II cosine basis functions and Legendre 

polynomials. The theory developed here extends to the batch means estimator studied by 

Ibragimov and Müller (2010): we show in the Online Supplement (Proposition S1) that in 

the location model (3), this estimator can be expressed as a WOS estimator, using what 

we refer to below as the split-sample (SS) basis functions. 

ˆtz
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3. UNIFIED EXPRESSIONS FOR BIAS, VARIANCE, AND REJECTION RATES  

 

Our unification of expressions for the bias, variance, and higher order rejection rates 

of HAR kernel and WOS tests relies on what we call the implied mean kernel of WOS 

tests. The implied mean kernel ,
WOS
B Tk  of ˆ WOSΩ  depends on the WOS weights and basis 

functions {ϕj}. Using the definition of ˆ OS
jΩ  in (7) and the device in Grenander and 

Rosenblatt (1957, p. 125), write the mean of the jth contribution to a WOS estimator as,   

ˆ OS
jEΩ  = 

1 1

11 ˆ ˆ( / ) ( / )
T T

j t j t
t t

E t T z t T z
T T

φ φ
= =

 ′            
∑ ∑  = 

1

,
( 1)

( / ) (1/ )
T

OS
j T u

u T

k u T O T
−

=− −

+Γ∑  ,   (8) 

where 1
, 1

( / ) ( / ) (( ) / ) (1 )TOS
j T j jt

tk u T T t T t u T u Tφ φ−
=

= − ≤ − ≤∑ 1 . Thus, 

( )
1

,
1 ( 1)

ˆ ˆ ( / ) (1/ )
B T

WOS WOS
j B T u

j u T
jE E w k u S O T

−

= =− −

Ω = Ω = Γ +∑ ∑ ,   (9) 

with , ( / )WOS
B Tk u S  = 1

,
1

B
OS

j j T
j

uw k B
S

−

=

 
 
 

∑  , where for WOS estimators we define S = T/B so 

that kernels and implied mean kernels have the same domain (cf. Priestley (1981, eq. 

(6.2.120)) and Brillinger (1975, eq. (5.8.6))); see the Online Supplement for details. 

The jth contribution to the implied mean kernel has the limit lim OS
T jTk→∞

 = OS
jk , and the 

implied mean kernel has the limit ,lim WOS
T B Tk→∞  = WOS

Bk , where 

    ( )WOS
Bk x  = 1

1
( )

B
OS

j j
j

w k B x−

=
∑   and ( )OS

jk v

 = 
min(1,1 )

max(0, )

( ) ( )
v

j j
v

s s v dsφ φ
+

−∫ ,  (10) 

where the limit is pointwise holding B fixed. Note that (0)WOS
Bk  = 1. 

 

3.1. PROPERTIES OF KERNEL AND WOS ESTIMATORS 

 

The asymptotic bias of a kernel LRV estimator depends on the behavior of the kernel 

at the origin. Below we provide an analogous result for WOS estimators. Let k be a 
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kernel or WOS implied mean kernel. Its th
0q  generalized derivative at the origin is,  

( )0

00
1 ( )(0) lim

| |
q

x q
k xk

x→

−
= .      (11) 

The Parzen (1957) characteristic exponent of k, denoted by q, is the maximum integer 0q  

such that ( )00 (0)qk< < ∞ . The Bartlett kernel has q = 1, while EWP and QS both have   

q = 2. For kernel estimators, a necessary condition for Ω̂  to be psd with probability 1 is 

that q ≤ 2 (e.g., Priestley (1981)).  

Bias also depends on the stochastic process for zt through the behavior of its spectral 

density at frequency zero. Let sz(λ) be the spectral density of zt at frequency λ, and let 
( ) (0)q
zs  be its Parzen generalized qth derivative at the origin, ( ) 1(0) (2 .) qq

jjzs jπ ∞−
=−∞

= Γ∑  

It is convenient to work with the trace of a scaled version of this generalized derivative, 

( ) 1 1
j

j

qq tr m jω
∞

− −

=−∞

 
= Γ Ω 

 
∑ ,      (12) 

which measures long-run persistence or anti-persistence of zt. For m = 1 and q = 2, ω(2) is 

the relative curvature of the spectral density at frequency zero: ω(2) = (0) / (0)z zs s′′− . 

In addition to the “smoothing” bias indexed by k(q)(0) and ω(q), for kernel estimators 

bias arises from the need to estimate the mean of yt (Hannan (1958)). This “demeaning” 

bias depends on the kernel’s asymptotic mean. We show below, as in Sun (2011), that no 

such demeaning bias arises for WOS estimators, as 
1

0
( )j s dsφ∫ = 0. Accordingly, define 

             1

0
1

( ) for kernel estimators,

( ) 0 for WOS estimators.
B

j j
j

k x dx

sw ds
µ

φ

∞

−∞

=


= 

=


∫

∑ ∫
 (13) 

If zt is Gaussian, then both kernel and WOS LRV estimators are distributed as 
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weighted averages of independent chi-squared random variables.3 For kernel estimators 

and scalar processes, Tukey (1950) proposed approximating this mixture distribution by a 

chi-squared with “equivalent degrees of freedom” ν  chosen to match the estimator’s 

asymptotic variance. Tukey’s approximation, extended to include WOS estimators, is  

Ω̂  ~ ( )2 /νχ ν Ω , where ( )
2

1

2

1

( ) for kernel estimators,
 and 

for WOS estimators,
B

j
j

k x dx
b

B w
ν ψ ψ

∞

−∞−

=


= = 



∫

∑
 (14) 

where we set b = B-1 for WOS estimators.  

For equal-weighted WOS estimators with m = 1, the approximation (14) is 

asymptotically exact, with ν = B, for fixed B and T →∞  (e.g., Brillinger (1975), Phillips 

(2005)). This extends straightforwardly to the vector case, m > 1, as 

( )1/2 1/2ˆ /WO
B

dS B ′Ξ Ω ΩΩ → , where ΞB follows a standard m-dimensional Wishart 

distribution with B degrees of freedom (e.g., Sun (2011)). Given 
1

0
( )j s dsφ∫  = 0 for j ≥ 1, 

the equal-weighted estimator is asymptotically independent of 0z , and thus the equal-

weighted WOS test *
TF  is asymptotically distributed FB,m-B+1. Among the class of kernel 

and WOS tests we consider, this property holds only for equal-weighted WOS tests, and 

the fixed-b limiting distribution and critical values for *
TF  are in general nonstandard 

(see, e.g., Kiefer and Vogelsang (2005) for tabulated critical values). 

 

3.2. RESULTS ON BIAS, VARIANCE, AND REJECTION RATES 

 

We now present unified expressions for the bias, variance, and rejection rates of kernel 

and WOS LRV estimators and HAR tests. Henceforth, let k denote either a kernel or an 

implied mean kernel. For kernel estimators, b = S/T and for WOS estimators, b = B-1. 

 
3 Without Gaussianity, this holds asymptotically under fixed-b asymptotics (Sun (2013, 

2014b). 
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We make the following assumptions: 

Assumption 1 (Gaussian stochastic processes). zt is a stationary Gaussian process 

generated according to the multivariate location model (3), with spectral density matrix 

sz(λ) that is positive definite in a neighborhood around λ  = 0 and autocovariances uΓ  that 

satisfy u
r

u
u∞

=−∞
Γ ∞<∑  for [0, 2 ]r ζ∈ + , for some 0ζ > . 

 

Assumption 2 (kernels). For a kernel LRV estimator, the kernel ( ) : [ 1,1]k x → −  is 

continuous, piecewise continuously differentiable, satisfies k(x) = k(–x), k(0) = 1, 

( )x k x dx
∞

−∞
< ∞∫ , has frequency-domain weights { }jw  in (6) satisfying 0,jw j≥ ∈

 , 

and has Parzen characteristic exponent q = 1 or 2. 

 

Assumption 3 (WOS). For a WOS LRV estimator, for j = 1, …, B, the orthonormal series 

jφ  ∈ 2[0,1]L   satisfy 
1

0
( ) 0j s dsφ =∫  for j ≥ 1 and have two continuous derivatives, such 

that the nth derivative ( ) ( )n
j sφ  satisfies ( ) 2 1/ 2

[0,1] ,sup ( )n n
s j ns C jφφ +
∈ ≤  for some constant 

,nC φ  for all j and n = 0, 1, 2. The weights 0jw ≥  are 1)(O B−  and satisfy 
1

1B

j jw
=

=∑ . 

 

Assumption 4 (rates). The sequence b is assumed to satisfy bqTq-1 + (bT)-1 → 0. 

 

These assumptions are the same as or modifications of those of Velasco and Robinson 

(2001), Sun, Phillips, and Jin (2008), and Sun (2013, 2014b). Assumption 1 states the 

model and provides conditions under which the bias expressions and fixed-b distributions 

hold, and it implies that ω(q) is finite for q ≤ 2. Assumption 2 states standard conditions 

on psd kernel estimators. Assumption 3 strengthens slightly the conditions in Sun’s 

(2013) Assumption 3.1 so that the orthonormal series have two derivatives, each of the 

order 2 1/2nj + . Bases that satisfy this condition include Fourier, Type II cosine, and 
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Legendre polynomials, as shown in Online Supplement Proposition S2. Assumption 4 

strengthens the corresponding condition in Sun, Phillips, and Jin (2008), who require       

b + (bT)-1 → 0. The more restrictive rate condition in Assumption 4 is used to express the 

limiting results for WOS tests in terms of the implied mean kernel when q = 2. 

Theorem 1 collects expansions for kernel and equal-weighted WOS estimators in 

Velasco and Robinson (2001), Sun, Phillips, and Jin (2008), and Sun (2013, 2014b) 

(among others) and extends them to include general WOS estimators. 

 

THEOREM 1. Under Assumptions 1–4,  

(i) The asymptotic bias of kernel and WOS LRV estimators is, 

( ) ( )( )( ) ( )02 ( )ˆ ( ) (0)q qq q
zE k obT s b o b bTπ µ− −Ω Ω − Ω− = − + + .               (15) 

(ii) The first two generalized derivatives of the WOS implied mean kernel are, 

            (1) 2 2

1

1(0) lim (0) 2(1) /
B

j j jB
j

k w
B

φ φ
→∞

=

 +  = ∑ , and 

   
1(2)

0
1

2

1(0) lim ( ) ( ) / 2
B

j j jB
j

k s dw s s
B

φ φ
→∞

=

′′= − ∑ ∫ .    (16) 

If k (1)(0) ≠ 0, then q = 1; otherwise, q = 2.  

(iii) The asymptotic variance of kernel and WOS LRV estimators is, 

                        ( ) ( )2
1ˆvar vec ( )mmm

v I o bK− ⊗Ω++Ω = Ω , (17) 

where Kmm is the 2 2m m×  commutation matrix and ⊗  is the Kronecker product. 

(iv) Let ( )mc bα  denote the fixed-b asymptotic critical value for the level α test with m 

degrees of freedom. The asymptotic expansion of the null rejection rate is,  
*

0Pr ( )T mF c bα >   = ( )( ) ( )( ) (0)( ) ( ) ( )q q q q
m m mG k bT o b o bTα αα χ χ ω − −′+ + + , (18) 

where Gm is the chi-squared cdf with m degrees of freedom, mG′  is the first derivative 

of Gm, and m
αχ  is the 1-α quantile of Gm. 

(v) The rejection rate against the local alternative (4) using the fixed-b critical value has 

the expansion,  
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*Pr ( )T mF c bδ
α >   = 2 2

( ) ( )
, ,

1 ( ) ( ) (0)( )q q q
m m mm m

G G k bTα α α
δ δ

χ χ χ ω −  ′− +    

        ( )2
2 1

2,

1 ( ) ( ) ( )
2

q
m mm

G o b o bTα α
δ

δ χ χ ν − −
+
′− + + ,   (19) 

where 2,m
G

δ
 is the noncentral chi-squared cdf with m degrees of freedom and 

noncentrality parameter δ2 and 2,m
G

δ
′  is its first derivative. 

(vi) The expansions in (18) and (19) also hold for the split-sample (SS) series estimator, 

for which q = 1, although it does not satisfy Assumption 3. 

  

The term in (bT)-q in the null rejection rate expansion (18) arises from the bias of the 

LRV estimator. Under the local alternative, the rejection rate expansion (19) depends 

both on bias (the first term) and on its variance through the term in ν-1. This latter term is 

the power loss analogous to that from using a t distribution in the i.i.d. location model 

because the variance is estimated, not known. 

 

4. SIZE-POWER TRADEOFFS AND THE SIZE-POWER FRONTIER 

 

This section uses the expansions in Theorem 1 to characterize the size-power tradeoff, 

the size-power frontier, and optimality results for kernel and WOS HAR tests evaluated 

using fixed-b critical values. Section 4.1 provides our results, which are discussed in 

detail in Section 4.2. Proofs are provided in the Appendix. 

 

4.1. MAIN RESULTS 

 

Assume throughout that Assumptions 1–4 hold.   

 

THEOREM 2. Let , ( )m Tc bα  be the size-adjusted fixed-b critical value, 

, ( )m Tc bα  = ( ) ( )1 (0)( ) ( )q q q
mk bT c bαω − +  .       (20) 
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Then *
0 ,Pr ( )T m TF c bα >   = ( )( ) ( ) qo b o bTα −+ +  and the higher order size-adjusted power 

of the test is, 

*
,Pr ( )T m TF c bα

δ  >   = ( )2 2
2 1

, 2,

11 ( ) ( ) ( ) ( )
2

q
m m mm m

G G o b o bTα α α
δ δ

χ δ χχ ν −
+

−  ′− − + +  .    (21) 

  

THEOREM 3. Consider two HAR test statistics *
1,TF  and *

2,TF  based on different kernels 

or implied mean kernels with the same value of q, with equivalent degrees of freedom 

respectively given by ν1 and ν2, and with fixed-b critical values respectively given by 

1, 1( )mc bα  and 2, 2( )mc bα . Choose sequences b1 and b2 meeting Assumption 4 such that *
1,TF  

and *
2,TF  have the same higher-order size. Then the difference between their higher-order 

rejection rates under the local alternative indexed by δ is, 

( )2
* * 2 1 1

1 1, 1 2 2, 2 2 12,

1Pr ( ) Pr ( ) ( )
2T m T m m mm

F c b F c b Gα α α α
δ δ δ

δ χ χ ν ν− −
+
′   > − > = −      

+ o(b1) + o((b1T)-q) + o(b2) + o((b2T)-q).   (22) 

 

Our main results concern the tradeoff between size and size-adjusted power. The size 

distortion ΔS of the candidate test is, 

ΔS = *
0Pr ( )T mF c bα α > −  .       (23) 

The power of the oracle test, in which Ω is known, is 2,
1 ( )

m mG
δ

αχ− . Let ΔP(δ) denote 

the power loss of the candidate test, compared to the oracle test, under the local 

alternative indexed by δ, and let max
P∆  denote the maximum such power loss, so max

P∆  is 

the maximum gap between the power curves of the oracle test and the candidate test: 

ΔP(δ) = 2
*

,,
1 ( ) Pr ( )m T m Tm

G F c bα α
δδ

χ   − − >   , and     (24) 

 max
P∆  = sup ( )Pδ δ∆ .        (25) 

Because ( ) 1bν ψ −= , equations (18) and (21) constitute a pair of parametric equations 

that determine ΔS and ΔP for a given b. Both expressions are monotonic in b, so 
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eliminating b yields the higher-order tradeoff between the size and power of a given test. 

Requiring that ΔS and ΔP maintain the same asymptotic order further restricts the rate of 

the sequence b; Corollary 1 provides that restriction, which satisfies Assumption 4.4 

Theorem 4 then provides the higher-order tradeoff between size and power. The envelope 

of these tradeoffs, provided in Theorem 5, is the size-power frontier. 

 

COROLLARY 1. ΔP(δ) and ΔS are of the same asymptotic order if and only if 

( )( 1)q qb TO − +=  and ( 1) ( )q q bT O− + = . 

 

THEOREM 4. For a given HAR test evaluated using fixed-b critical values, under the 

sequence for b in Corollary 1: 

(i) The small-b asymptotic tradeoff between the size distortion and the power loss 

against the local alternative indexed by δ is, 
1/1/ ( )

, ,
( )( ) ( ) (1)( )

qq q
S

q
P m qT ka oαδ δ ω∆ ∆ = + ,   (26) 

where , , ( )m qa α δ  = 2
1/

2
2

,

1 ( ) ( ( ) )
2

q
m mm m m mG Gα α αα

δ
χ χδ χ χ

+
′ ′  and ( )( )q k  = ( )1/( ) (0)

qqk ψ . 

(ii) Let , ,m qa α  = , ,sup ( )m qaδ α δ . The small-b asymptotic size-power tradeoff is, 

     

1/1/m ((ax )
, ,

) (1)( )
qq q

P S
q

m qT oka α ω∆ ∆ = + .      (27) 

(iii) The size-power tradeoffs of tests based on LRV estimators with Parzen characteristic 

exponent q = 2 asymptotically dominate the tradeoffs for tests with q = 1, both within 

and across the two families of tests. 

 

THEOREM 5.  

(i) For psd kernel and WOS HAR tests evaluated using fixed-b critical values, under the 

 
4 Equating the order of ΔS and ΔP is desirable as long as one places non-vanishing weight 

on both size and power in assessing their tradeoff; see LLSW (2018) for further 

discussion. 
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sequence for b in Corollary 1, 

max
, ,2(2)

3 10 (1)
25

S
P mT a oα

π
ω
∆

∆ ≥ + ,     (28) 

where , ,2ma α  is defined in Theorem 4. This frontier is achieved by the QS kernel. For 

tests with α = .05, , ,2 3 10 / 25ma α π  ≈ 0.3368 for m = 1 (yielding (1)), 

, ,2 3 10 / 25ma α π  ≈ 0.6460 for m = 2, and , ,2 3 10 / 25ma α π  ≈ 0.9491 for m = 3. 

(ii) For psd kernel and WOS HAR tests with exact t and F asymptotic fixed-b 

distributions and critical values, under the sequence for b in Corollary 1,  

max
, ,2(2) (1)

6
S

P mT a oα
π

ω
∆

∆ ≥ +  (exact t or F critical values).   (29) 

This frontier is achieved by the EWP test. For α = .05,  , ,2 / 6ma α π  ≈ 0.3624 for m = 

1 (yielding (2)), ≈ 0.6950 for m = 2, and ≈ 1.0211 for m = 3. 

 

4.2. REMARKS 

 

1. For a given α and m, the testing frontier depends only on the sample size and the 

average normalized curvature of the spectral density at frequency zero. As a result, 

the scaled fixed-b frontier plotted in Figure 1 applies universally to all psd kernel and 

weighted orthonormal series HAR tests evaluated using fixed-b critical values at the 

optimal rates in Corollary 1. 

2. The rate for b in Corollary 1, ( )( 1)q qb TO − += , is the same rate found by Sun, Phillips, 

and Jin (2008) and Sun (2014b) to minimize a weighted average of type I and type II 

testing errors in the case that ΔS > 0. Although we derive the frontier only for this 

sequence, we conjecture that it holds more generally. This conjecture is supported by 

the generally good ability of the frontier to describe simulation results (LLSW 

(2018)). This conjecture could be proven by strengthening remainder terms in o(b) 

and o((bT)-q) in the underlying Edgeworth expansions to O of a somewhat higher 



17 
 
 

order; doing so is left for future work. 

3. For kernel tests, the size-power frontier is obtained first by noting that the frontier for 

q = 2 tests asymptotically dominates the frontier for q = 1 tests, then by minimizing, 

over q = 2 kernels, the expression (2) 2(2) (0 ( )) )( k k x dk x
∞

−∞
= ∫ . This quantity is 

minimized by the Epanechnikov/QS kernel (Epanechnikov (1969)). The quantity 
(2) ( )k  has a long history in spectral density estimation. Priestley (1981, Section 

7.3.2) dates it to Grenander’s (1951) uncertainty principle for spectral estimation: as 

summarized by Priestley, “bias and variance are antagonistic.” In our application, bias 

produces a size distortion while variance degrades size-adjusted power. 

   Our results indicate that Grenander’s uncertainty principle extends beyond the 

minimal-MSE spectral density estimation problem. In addition to the size-power 

tradeoff in Theorem 4, the following objective functions depend on the (implied 

mean) kernel only through (2) ( )k  when evaluated using the optimal b for q = 2 

(where a scalar process, m = 1, is assumed for simplicity): 

(a) An objective function for the spectral estimation problem (given known β) that 

minimizes ( ) ( ) ( )2ˆ ˆ ˆ(0) (0) var (0)biasz z zMSE s s s= + ; 

(b) The previous objective function modified to ( ) ( )ˆ ˆ(0) (1 ) var (0)bias z za s a s+ −  

with 0 < a < 1; 

(c) An objective function for the HAR testing problem that minimizes size 

distortions plus power, specifically max| | (1 )S Pa a∆ + − ∆  or alternatively 

| | (1 ) ( ) ( )S Pa a d δδ δ∆ + − ∆ Π∫ , where a is a weight 0 < a < 1 and where δΠ  is 

a density function over the noncentrality parameter δ; 

(d) A quadratic version of the previous objective function, 2 max 2( ) (1 )( )s pa a∆ + − ∆ ;  

(e) The objective function considered by Sun, Phillips, and Jin (2008) that 

minimizes the weighted average of the type I and type II error. 

Minimizing (a) is the classic problem of optimal spectral estimation; its optimum is 



18 
 
 

achieved at a rate b = O(T-2q/(2q+1)) converging to zero faster than the testing-optimal 

rate in Corollary 1 (which is optimal for the remaining objective functions). Objective 

function (b) is not of primitive interest, but (c) and (e) reduce to (b). The objective 

function (c), which trades off size distortion and power loss linearly, also depends on 

the kernel solely through (2) ( )k  under the optimal b. Minimizing (d) does the same 

with quadratic loss and is the approach used by LLSW (2018). Objective function (e) 

differs from (c) because the type II error is not size-adjusted, yet its minimal value 

also depends on the kernel only through (2) ( )k  (see Sun and Yang (2020) and 

LLSW (2018, rejoinder). Each of these objective functions is minimized by the QS 

kernel, or, among equal-weighted WOS estimators, by the EWP estimator. See 

Proposition S3 in the Online Supplement for derivations.5 

4. Obtaining the frontier in Theorem 5(i) requires proving the optimality of the QS  

kernel relative to all WOS tests, not just among kernel tests. The proof of this new 

optimality result extends Grenander and Rosenblatt’s (1957, Section 4.2) result on the 

optimality of “spectrograph” (i.e., weighted Fourier series) estimators to show that,  

for WOS tests, the Fourier basis functions are optimal. This extension also implies 

that the EWP test achieves the restricted frontier provided in Theorem 5(ii), as exact t 

or F inference obtains only among equal-weighted WOS tests. 

5. The price paid for the convenience of exact t or F fixed-b critical values can be 

computed from Theorem 3. Let νEWP = B. It is shown in the Online Supplement that, 

for EWP and QS tests with the same higher-order size, 

Prδ[ *
,QS TF  > cQS,α(bQS)] – Prδ[ *

,EWP TF  > cEWP,α(bEWP)] 

 ≈ ( )2
2 1 1

2,

1 ( )
2 m m EWP QSm

G α α
δ

δ χ χ ν ν− −
+
′ −  =  2

2 1
2,

1 6 3( ) 1
2 5 5m mm

G Bα α
δ

δ χ χ −
+

 
′ −  

 
.  (30) 

Table I reports the maximum higher-order power loss from using EWP over all  

 
5 We thank a referee and Yixao Sun for pointing out that our results extend to (c) and (e), 

respectively. 
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TABLE I. Maximum power loss of same-sized EWP (with B series) compared to QS. 

m B = 4 B =8 B =16 

1 0.0147 0.0074 0.0037 

2 0.0247 0.0123 0.0062 

3 0.0335 0.0168 0.0084 

4 0.0419 0.0209 0.0105 

Note: b for QS is chosen so that its higher order size is the same as EWP. 

 

alternatives δ. The cost of using EWP relative to QS is small: for B = 8 and m = 1, the 

maximum equivalent-size power gap is 0.0074 over all alternatives. This explains the 

numerical finding in Kiefer and Vogelsang (2005) that the local asymptotic power 

curves for these two tests are very close. Figure S3 in the Online Supplement plots the 

final expression in (30) as a function of δ for various values of B and m = 1. 

6. While Theorem 5 provides results on optimal kernel choice, our framework also 

allows us to rank any two HAR tests using their asymptotic size-power tradeoffs from 

Theorem 4. For example, as shown in Proposition S5 in the Online Supplement, the 

Bartlett kernel dominates the equal-weighted split-sample WOS estimator (both of 

which have q = 1), as the Bartlett small-b size-power tradeoff curve is strictly below 

the SS tradeoff curve. We also find that, among q = 2 equal-weighted WOS tests, the 

tradeoff for the EWP test (i.e., using Fourier basis functions) is asymptotically 

equivalent to that obtained using Type II cosine basis functions as proposed by 

Müller (2007); see LLSW (2018) for further discussion. 

7. The tradeoffs in Theorem 4 are expressed in terms of absolute size distortions. For 

processes with (0)zs ′′  < 0 (loosely, positive serial correlation), the HAR tests are 

oversized and the tradeoff is between size and power. Positive serial correlation is 

common in practice, e.g. in multiperiod return regressions and multistep-ahead 

forecasts. In the negative serial correlation case (specifically, (0)zs ′′  > 0), the HAR 

test is undersized. If our size-power tradeoffs are used to construct truncation 
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parameter rules, one might therefore want to treat these two cases separately. For 

example, Sun, Phillips, and Jin (2008) consider a pretest approach that distinguishes 

between these two cases based on the sign of a preliminary estimate of (0)zs ′′ , and 

their approach could be extended to our framework, where the size-power tradeoff is 

used to obtain a truncation parameter rule in the positive serial correlation case. For 

additional discussion, see LLSW (2018). 

8. The multivariate results focus on inference on all m elements of β. The question arises 

as to whether they extend to inference on only m´ < m of those parameters or, more 

generally, to inference on m´ < m linear combinations of those parameters. 

Accordingly, consider the null hypothesis 0Rβ β=  , where R is m´×m and 0β  is 

m´×1. The F-statistic testing this hypothesis is ( ) ( ) ( )
1

0 0
ˆ /T Rz R R Rz m

−′ ′ ′Ω , where  

( )1
0 01

T
tt

Rz T Rz β−
=

= −∑  . Because all the estimators of Ω we consider are quadratic 

forms in ẑ , this F statistic testing 0Rβ β=   is equivalent to the usual F statistic 

testing a full vector hypothesis (i.e., 1
0 0

ˆ /Tz z m−′Ω ), but computed using the m´×1 

vector of transformed data Ryt. Thus, the results for full vector inference apply 

directly to subvector inference. 

 

4.3. TESTS WITH UNIFORM SIZE CONTROL 

 

The foregoing results, like most of the HAR literature, consider the performance of 

tests pointwise in the nuisance parameter ω(q). An alternative approach is to consider 

controlling the rejection rate uniformly over a region of ω(q), in particular for all ω(q) less 

than some finite upper bound ( )qω , and choosing the test that maximizes weighted 

average power among those that control size uniformly over |ω(q)| ≤ ( )qω . This uniform-

size-control approach follows a small HAR literature developed by Müller (2007, 2014), 

Preinerstorfer and Pötscher (2016), and Pötscher and Preinerstorfer (2017). The 

calculations here differ from earlier work by restricting the space of nuisance parameters 
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to be a closed subset representing moderate (bounded) persistence. 

Uniform size control can be achieved for any sequence /(1 )q qb T − +∝  by using the size-

adjusted critical value corresponding to the worst-case (least favorable) value of the 

nuisance parameter. It can be seen from (18) and (23) that the higher-order size distortion 

is increasing in ω(q), so the least favorable value of the nuisance parameter is the 

maximum ( )qω . The size-adjusted critical value (20), evaluated using this least favorable 

value, therefore results in a test that controls size uniformly to higher order under the 

condition that the remainder in (18) is of the stated order uniformly over |ω(q)| ≤ ( )qω .  

As an illustration, we derive the maximum weighted average power (WAP) test for the 

case where zt follows an AR(1) with coefficient ρ. First, given a kernel or WOS test, 

choose b to maximize the WAP among tests using the size-adjusted critical value (20) 

with ( ) ( )q qω ω= :  

( )( )arg max ( ), ( ) ( )WAP q
b Pb dd ρ δ
δ ρ ρ

ω ρ δ ρ δ
≤

∆ Π= Π∫ ∫ ,  (31) 

( ) 2 2
( ) 2 1 ( ) ( )

2, ,
( )w ,1( ), ( ) ( ) ( ) (

2
here  0)( )q q q q

P m m m mm
q

m
G G k bTα α α α

δ δ
ω ρ δ δ χ χ ν χ χ ω ρω− −

+
′ ′  ∆ = + − 

(2 2 ( ) ( )(1) 2)/ (1 ), / (1 ) max   ( s.t. ( )) 2 ( ) 2 , q qω ρ ωρ ρ ρ ρ ρ ρ ωρ ρ ω=− − == ≤ , and the 

weight functions Πρ and Πδ are independent and each integrate to one. The solution to 

(31), as shown in Proposition S6 in the Online Supplement, is 

 ( )
1

1 1( ) 1
( )1 11

, ,
(0) qq q

WAP qq qq
m q

kb q d Tα ω
ψ

−+
+ ++

 
=  

 


 ,  (32) 

where expressions for the constants ( )qω and , ,m qd α
  are provided in the Supplement with 

the derivation of the result. We can see immediately that bWAP declines with T at the same 

rate as given in Corollary 1. Further (again see the Online Supplement), the power loss of 

the test using the WAP-maximizing sequence (32) depends on k only through ( ) ( )q k
. 

Once again, the term in Grenander’s (1951) uncertainty principle appears, and the test 

asymptotically delivering the highest WAP uses the QS kernel, with a numerically small 

cost to using EWP. Further, q = 1 kernels are again asymptotically dominated by q = 2 
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kernels. Thus, the main qualitative findings from the pointwise analysis carry through to 

uniform-size-control, maximum-WAP tests. 

 

4.4. MONTE CARLO SIMULATIONS 

 

We conducted extensive Monte Carlo simulations to assess the accuracy of the 

asymptotic tradeoffs and frontiers. Results are reported in Section S1 of the Online 

Supplement and in LLSW (2018). We draw three overall conclusions. First, the 

theoretical tradeoff (27) provides a good description of finite-sample test performance in 

the Gaussian location model. The fit is better for q = 2 kernels than q = 1. Second, 

consistent with the theory, the performance of q = 2 kernels is superior to that of q = 1 

kernels for sufficiently large sample sizes; however, for persistent processes with small T, 

some q = 1 kernels (such as the Bartlett kernel) have size-power tradeoffs that cross the   

q = 2 frontier, both in theory and in simulations. Third, we also examined the regression 

case with stochastic regressors. In this case, zt is non-Gaussian even if the error term is 

Gaussian, so Assumption 1(i) does not hold. Still, the Monte Carlo tradeoffs and rankings 

across tests accord qualitatively (although not quantitatively) with the theoretical results 

for the Gaussian location model. Further results using designs constructed to match 

relevant empirical settings, reported in LLSW (2018), accord with these findings as well. 

 

5. DISCUSSION AND CONCLUSIONS 

 

The size-power tradeoff and frontier are obtained under the sequence, /( 1)
0

q qb b T − += , 

which equates the order of the size distortion and power loss. In practice, one needs to 

know the coefficient b0. While one might be tempted to select b0 to maximize size-

adjusted power, doing so would lead to a corner solution with the smallest possible b0 

while respecting the optimal sequence. That choice would have large size distortions, 

necessitating feasible size-adjusted critical values. In simulations, however, we find that 

feasible size adjustment (implemented according to (20), with an estimator of ( )qω ) 
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works poorly in sample sizes typically encountered; this is perhaps unsurprising because 

feasible size adjustment replaces the difficult problem of estimating the spectral density 

at frequency zero with the more difficult problem of estimating its curvature. Choosing a 

point on the frontier thus requires a judgement by the user. The approach of Section 4.3 is 

to specify a region over which one requires uniform size control; this region, along with 

the kernel, determines the constants in (32) and thus b0. A second approach, explored in 

depth in LLSW (2018), is to specify a loss function trading off size and size-adjusted 

power. A third, related approach (discussed in Remark 3) is to specify that loss function 

in terms of the Type I and Type II error as in Sun, Phillips, and Jin (2008). Our results on 

optimal kernel choice apply to all three approaches. 

Our results suggest directions for additional research. First, the WOS and kernel 

estimators are both contained in the larger family of quadratic estimators (e.g., Müller 

(2007), Sun (2014a)), and we conjecture that our frontier applies to that larger class. 

Second, we do not consider bootstrap tests. Results in Gonçalves and Vogelsang (2011) 

suggest that tests with critical values from the moving block bootstrap might also satisfy 

our size/power tradeoff expressions and the frontiers (1) and (2); an open question is 

whether bootstrap tests using QS or EWP kernels achieve those frontiers. Third, for 

certain processes and sample sizes, the tradeoffs for q = 1 and q = 2 kernels cross (LLSW 

(2018)), raising the question of whether one can improve upon the Bartlett kernel among 

q = 1 kernels, a topic taken up in Kolokotrones and Stock (2019). Fourth, additional 

theoretical work on the regression model with stochastic regressors is in order. 
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APPENDIX: PROOFS OF MAIN RESULTS 

 

Proof of Theorem 1: Theorem 1(i)-(ii) generalize Theorem 1(i) of Phillips (2005), 

Theorem 2(a) of Sun (2011), and Theorem 4.1 of Sun (2013), all of which apply only to 

equal-weighted WOS estimators with q = 2. Theorem 1(iii) for WOS estimators 

generalizes Theorem 2(b) of Sun (2011). See the Online Supplement for the proof. 

 

Proof of Theorem 2: Write , ,( ) ( ) ( )m T m m Tb c b dc bα α α= +  for some , ( ) (1)m T b odα = , where 

( )mc bα is as in (18), and denote 0
*( ) Pr ][ Tf z zF= > . Taylor expanding ( )f z  around ( )mc bα ,  
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( ) ( )( ) ( )
, ,(( ) ( ) ) ( ) ( ) 1 ( ) (0 ( ))q q q q

m T m m m m T m mf c b G b G O bk bT d O bTα α α α αα χ χ ω χ− − −  ′ ′= + + +     

          ( ) ( ),( ) ( ) ( )q
m To b o bT o d bα−+ + + ,             (33) 

where ( ) ( )[1 ( ) (( ) )]( ) q
m m mf c G O b bb O Tα αχ −′ +− ′ +=  follows from (S.29) in the proof of 

Theorem 1(iv) in the Online Supplement. Then using ,( ( )) ( ) (( ) )q
m Tf c b o b o bTα α −= + +  in 

(33), we have ( ) ( )
, ( ) (0)( )q q q

m T md b k bTα αχ ω−= , from which (20) follows. 

Taking a similar Taylor expansion and using (S.30) in the Online Supplement, 

2 2 2
* ( ) ( ) 2 1

, , , ( 2),
P 1[ ] [1 ( )] ( 0() (r )( ) )

2
q q q

T m T m m m m mm m m
F c G kG bT Gα α α α α α

δ δ δ δ
χ χ χ ω δ χ χ ν− −

+
′= − ′−> +  

  ( ) ( )2, ,,
) 1 ( ) ( ) )( ) ( ) (( ) ( ( )q q

m T m m Tm
O b O bT o b Td b G d bo b oα α α

δ
χ − −′−  + + + + +  .   (34)  

From (20), 2 2
( ) ( )

, , ,
( ) ( ) (0)( ) ( )q q q

m T m m mm m
b G k bTd Gα α α α

δ δ
χ χ χ ω−′ ′= . So the terms in 2,

( )mm
G α

δ
χ′  

in (34) cancel to higher order, which with , ( ) ( ) )( q
m T b O bTdα −=  gives (21).              

 

Proof of Theorem 3: Fix a sequence b1 for test *
1,TF . Given equivalent q for the two tests 

and using (18), equivalent higher-order size requires that ( )1/( ) ( )
2 2 1 1(0) / (0)

qq qk kb b= . 

Thus  

 2 2
( ) ( ) ( ) ( )

2 2 1 1, ,
( ) (0)( ) ( ) (0)( )q q q q q q

m m m mm m
G k b T G k bTα α α α

δ δ
χ χ ω χ χ ω− −′ ′= , (35) 

which along with (19) yields the stated relation.              

 

Proof of Corollary 1: Using (18) and (21), and the fact that 1( )bν ψ −= , 

                       ( )( ) ( )( (0)( ) ( ) ( )) q q q q
S m m mG k bT o b o bTα αχ χ ω − −∆ ′= + + , (36) 

                                          ( ) ( )2
2

( 2),

1( ) )
2

( ( ) q
P m mm

G b o b o bTα α
δ

δ δ χ χ ψ −
+

+= +′∆ .   (37) 

The leading terms in (36) and (37) are of equivalent asymptotic order if and only if  b 

and ( ) qbT −  are of equivalent asymptotic order, which leads to the stated sequence.       
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Proof of Theorem 4:       

(i) Under the assumed sequence, rewrite (36) as 

  ( ) ( ) [ ]1/ 1/1/ 1/1/ ( ) ( ) 1( (0) ( )) 1 (1)
q qq qq q q

S m m mG k bT oα αχ χ ω −′= +∆ ,  (38) 

which gives that ( ) ( ) ( )1/ 1/1/1/ ( ) ( ) 1( (0) /) 1
q qqq q q

S m m mT G k b o bα αχ χ ω −= +∆ ′ . Multiplying 

this with (37) (for which ( ) (( ) )qo b o bT −= ) and defining , , ( )m qa α δ  and ( ) ( )q k as stated, 

( ),

1/ 1/( ) (1/ )
, ( (0) (1)( ) ) qq

P S m q

q qqT a k oαδ δ ωψ = + ∆


∆


.           (39) 

(ii) Write ( )2
max 2

( 2),

1sup )
2

(P m mm
G b o bα α

δ δ
δ χ χ ψ

+
∆  ′ + 


=


, since δ does not enter bψ. Using 

this with the same steps as in part (i) yields (27). 

(iii) From (38), ( ) ( ) / 2) )(0( ( ) (1) (1)q q q
S m m mG k bT oα αχ χ ω −′= +∆ . Multiplying by max

P∆ , 

 2
max 2 ( ) ( ) 1 1 / 2

( 2),

1| | ) ) (0) ( ) (1 (1))
2

( ( q q q
P S m m m m mm

Tk bTG G oα α α α
δ

δ χ χ χ χ ω ψ − −
+

+′ ′∆ ∆ = . (40) 

Since bT →∞ , comparing any kernel or WOS tests with q = 1 and 2, T∃  s.t. T T∀ > , 

max, 2 2 max, 1 1| | | |q q q q
P S P S

= = = =∆ ∆ < ∆ ∆ , so max, 2 max, 1q q
P P

= =∆ < ∆  for 2 1q q
S S
= ==∆ ∆ .      

Proof of Theorem 5:      

(i) From Theorem 4(iii), we can confine attention to the q = 2 case. First, for kernel tests, 

from Theorem 4(ii), the optimal tradeoff is achieved by minimizing (2) 2(0) ( )k k x dx
∞

−∞∫ . 

This minimum is achieved by the QS estimator (Priestley (1981, p. 569-571)). 

For WOS tests, from (6), the QS estimator can be represented as a WOS estimator (7) 

with the Fourier basis and weights 2[1 ( / ) ]jw j B∝ −  (Priestley (1981, pp. 444, 581)), 

where we have transformed B/2  B for notational simplicity (without loss, as B can be 

understood to be any B*/2 set as the upper limit in (7)). We show in two parts that QS 

again dominates among WOS estimators: first, for any set of weights {wj}, the Fourier 

basis is optimal; second, the QS weights dominate given the choice of Fourier basis. We 

sketch the proof here, with technical details in the Online Supplement. 
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For the first step, fixing B and the set of weights {wj}, from Theorem 4(ii) the size-

power tradeoff depends on the choice of basis only through (2) (0)k , since ψ  is fixed 

from (14). Lemma S1 in the Online Supplement shows that the Fourier basis minimizes 

01

1
( ) ( )| |

j j j j
B w s s dsφ φ
=

′′∫∑  (and thus (2) (0)k , from Theorem 1) for any set of weights, up 

to o(1/T). The proof proceeds by considering the complex Fourier expansion of any ϕj 

from a given basis, 2( ) i ls
j jll

s a e πφ ∞ −
=−∞

= ∑ . For any orthonormal series,  

1 12 22 2

0 0,
1 ( ) i ls i l s

j jl jl jlll l
e dsd a a as s e π πφ

′

∞ ′−
′=−∞

= = =∑∑∫ ∫ ,  (41) 

and 
1

,0
)0 ( ( )j j j jl j j ll

s s ds a aφ φ ′ ′≠ ≠= = ∑∫ ,    (42) 

where jla  is the complex conjugate of ajl. The minimization problem for real ϕj is then 

{ } { }
1 2 2

1 10
min ( ) ( ) min

jl jl

B B
j j j j jla aj lj

w s s ds lw aφ φ
= =

′′ ⇔∑ ∑∑∫  , s.t. (41)-(42). (43) 

The proof provided in the Supplement then considers a finite truncation of the infinite 

Fourier series for ϕj, so that the problem may be re-expressed as a constrained trace 

minimization problem for a doubly stochastic matrix containing the values {|ajl|2}. 

Birkhoff’s Theorem gives that the extreme points of the set of doubly stochastic matrices 

are the permutation matrices. Since the objective (43) is linear in the values {|ajl|2}, and 

since the set of doubly stochastic matrices is compact and convex, a permutation matrix 

achieves the minimum; we show that the minimizing permutation matrix features 

2 1, 2 , 1j j j jaa ′− ′ ′ − ′ == , 2' /1, ,j B= … , 0jla =  otherwise. Thus the solution is

2 2
2 1 2{ } { 2 cos(2 ' ), }( ), ( ) 2 sin(2 ' )} { ,i j s i j s

j j j s j ss s e eπ π πφ πφ ′ ′−
′ ′− = = , , / 21,j B…′ = , so 

we have in fact selected the Fourier basis as the minimizing basis for (2) (0)k  for any set 

of weights. See the Supplement for details. 

For the second step, given the use of Fourier basis functions, we wish to minimize  

 ( )
1/ 2 1/ 2

1/ 2(2) (2) 2 2 2 2
2

1 1 1 1

1( ) (0)
B B B B

j j j j
j j j j

k k w j B w w j w
B

ψ
= = = =

       
= ∝ =       

       
∑ ∑ ∑ ∑  (44) 
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over the weights { }jw  (subject to Assumption 3) at all points on the sequence for B, 

where the fact that (2) 2 2
1

(0) B
jj

k B w j−
=

∝ ∑  arises from Theorem 1(ii) and the use of 

Fourier basis functions (as can be seen from the proof of Lemma S1 in the Supplement). 

We then follow Priestley’s (1981, p. 569-571) proof that the QS kernel minimizes (2) ( )k  

among kernel functions, modified so that the proof is with respect to WOS estimators 

using the Fourier basis. This result is provided in Lemma S2 in the Online Supplement. 

Combined with the fact that the Fourier basis achieves the size-power frontier for any set 

of weights, QS thus dominates the size-power tradeoff for WOS estimators, and therefore 

globally among the families considered here. 

From Priestley (1981, Tables 6.1 and 7.1), (2) 2(0) / 10k π= , 2 ( ) 6 / 5k x dx
∞

−∞
=∫  for QS. 

Combining these with (27) yields (28). Numerically computing , , , ,sup ( )m q m qa aα α
δ

δ=  for  

q = 2 and α = 0.05 yields , , 53 10 / 2m qa α π  ≈ 0.3368 for m = 1, , , 53 10 / 2m qa α π  ≈ 

0.6460 for m = 2, and , , 53 10 / 2m qa α π  ≈ 0.9491 for m = 3. 

(ii) As after (14), only equal-weighted orthonormal series estimators yield fixed-b 

asymptotic distributions that are exact t or F. The proof of part (i) of the theorem implies 

immediately that with equal weights, the Fourier basis achieves the frontier. Thus the 

EWP test is optimal among tests with exact t and F asymptotic fixed-b distributions. 

From Priestley (1981, Table 7.1), (2) 2(0) / 6k π=  for the Daniell kernel (i.e. the EWP 

estimator). Further, 1ψ =  for this estimator. Combining these with (27) yields (29). 

Again computing , ,m qa α  for q = 2 and α = 0.05, we have , ,2 / 6ma α π  ≈ 0.3624 for m = 1, 

, ,2 / 6ma α π ≈ 0.6950 for m = 2, and , ,2 / 6ma α π  ≈ 1.0211 for m = 3.   
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