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1 Introduction

There is compelling evidence of time-varying volatility in US macroeconomic data. The
Great Moderation brought a marked decline in the volatility of output, inflation, and many
other macro aggregates during the latter half of the twentieth century.1 Financial time
series also exhibit strong patterns of time-varying volatility, from business cycle to intraday
frequencies.2 The volatility of monetary policy shocks has also been found to vary over
time, as has the volatility of tax revenues and government spending, so too economic policy
uncertainty.3

I propose a new approach by which such time-varying volatility can be used to iden-
tify causal relationships in macroeconomic data. Econometricians typically seek to identify
structural shocks, εt, from reduced form innovations to observable series, ηt, following the
system of equations ηt = Hεt. For example, a change in tax revenue could be driven by
an exogenous tax shock, or an endogeneous automatic stabilizer effect of the business cycle.
Up to second moments, there is no unique solution for H without further economic assump-
tions. I show how H may be identified from the autocovariance of squared reduced form
innovations, ηt. This argument leverages statistical properties of the innovations implied by
an arbitrary and unspecified stochastic process for the shock variances, rather than impos-
ing economic restrictions. Identification holds without any parametric assumptions on the
volatility process. In a simple model, this identification approach can be motivated as an
instrumental variables problem; more generally, since structural shocks are assumed to be
uncorrelated over time, the autocovariance of squared innovations picks up only dynamics
of the volatility process, and I show that H can be recovered from these autocovariances
given a rank condition on the structural variance process. I derive a test for this condition
based only on the reduced form innovations. I use an application to fiscal policy to illustrate
“identification via time-varying volatility” (TVV-ID), before investigating fiscal multipliers
in detail.

The size of fiscal multipliers has been studied at length, under many identification ap-
proaches. However, the use of time-varying volatility to identify multipliers is relatively new
(e.g., ?, ?). Considering a benchmark VAR from the literature, I document time variation
in the squared residuals and find that the test for the identification condition is satisfied.
This condition – on the rank of the structural variance process – at first appears solely
statistical in nature, but has economic content. I argue that, provided that the individual
structural shock variances are persistent, the rank condition will generally be satisfied if out-

1See e.g., ? or ?.
2See ? and ? for evidence at business cycle frequency and ? for higher frequency data.
3? and ? study monetary policy shocks, ? fiscal policy, and ? economic policy uncertainty.
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put shock volatility does not predict tax shock volatility, consistent with classic treatments
of tax shocks (e.g., ?), and tax shock volatility does not predict output shock volatility, con-
sistent with recent theoretical work by ?. Moreover, these intuitive properties are satisfied
by the shocks recovered using my identification approach and the classic ? scheme, but at
odds with those identified by ?. I further show that the volatility profiles of shocks, which
drive identification and are recovered as a byproduct, align with a narrative reading of US
tax and output shocks. Finally, I illustrate that measuring second moments of the shocks
is important since they help quantify the role of the shocks in explaining macroeconomic
variation. While my identification is on face statistical, it draws on these properties that
carry economic meaning.

I obtain peak values of 0.86 for tax multipliers and 0.75 for spending multipliers, with
cumulative multipliers of 2.06 and 0.87 respectively after 20 quarters. While the response to
tax shocks is delayed, they explain a greater share of output variation at longer horizons. My
tax cut multipliers are lower than those of ? and ? because TVV-ID estimates a lower value
of the tax automatic stabilizer effect, which is key to determining the size of the multiplier,
as highlighted by ?. The value I estimate, 1.58, is remarkably close to that calculated by
? based on institutional data. I additionally characterize particular episodes that drive the
identification of multipliers regardless of methodology, and show that the narrative record
further favours my results based on TVV-ID, relative to existing approaches. By relating
the statistical properties driving identification to familiar economic properties and events,
and illustrating how they can help distinguish my estimates from existing findings, I provide
a blueprint for how empirical researchers can unpack results based on my identification
approach.

My identification argument contributes to a growing literature on statistical identification,
both via heteroskedasticity and higher moments more generally. ? and ? share the insight
that if the variances of the structural shocks change over time, shocks can be identified from
the reduced-form covariances at different points in time. However, this path of reduced
form covariances can be recovered by the econometrician only under specific parametric
models. The method of ? fits discrete variance regimes to the data, either based on external
information or estimation. Generalizations have been made to Markov switching (?) and
smooth transitions between regimes (?). ? use the full path of covariances, recoverable from
the data only under models like Generalized Autoregressive Conditional Heteroskedasticity
(GARCH).4 All of these approaches rely on these parametric features to consistently estimate

4While the identification argument is in principle non-parametric, based simply on a path of variances,
this path can only be recovered from the data by an econometrician under functional forms like GARCH.
These moments are thus not available to the econometrician, in the sense of being consistently estimable,
without strong non-parametric assumptions. These distinctions are discussed in further detail in Section 2.4.
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the path of variances, which has so far restricted researchers to choose one of the few models
that can be accommodated. My identification approach is similar in spirit to identification
based on non-Gaussianity (e.g., ???), which uses different higher moments, but generally
restricts any volatility processes of the shocks to be uncorrelated.

In contrast, my identification argument holds without parametric assumptions. While
such a non-parametric argument naturally permits a non-parametric estimator, an equally
important consequence is that it justifies the use of a wider range of parametric models, which
may be more appealing in practice. Indeed, TVV-ID separately establishes identification
via a novel channel for the models that have previously been shown to offer identification
via heteroskedasticity. More importantly, it gives researchers the freedom to develop new
alternative models and procedures to suit their data, without having to stop to establish
identification from scratch. TVV-ID also admits models where the volatilities are state
variables, as in the stochastic volatility (SV) model. The parameters of interest can still be
consistently estimated in such models, since identification follows from moments that can
be consistently estimated even when the volatilities cannot. Thus, while a non-parametric
generalized method of moments (GMM) approach is a natural implementation of TVV-ID,
the researcher is also empowered to use a (quasi-) likelihood approach based on any model
that implies an autocovariance for the squared innovations.

I provide guidance on the use of TVV-ID in practice. The test for the identification con-
ditions performs well in simulations. I also compare estimators applying existing statistical
identification approaches to newly-admissible estimators based on TVV-ID in simulations. I
find that one such new estimator, based on a first-order autoregressive (AR(1)) SV model,
performs best across many data-generating processes (DGPs), and I apply it in my empir-
ical analysis. I provide a formal framework for statistical inference on H, accounting for
the fact that identification holds only up to column order. I put these results together to
provide step-by-step guidance for empirical researchers, spanning testing the identification
conditions, estimating H, conducting inference on H, and extending inference to impulse
response functions (IRFs).

The remainder of this paper proceeds as follows. Section 2 describes the identification
problem in detail and presents the theoretical results. Section 3 describes estimation and in-
ference procedures, providing a step-by-step guide for empirical use. I study fiscal multipliers
in Section 4. Section 5 concludes.

Notation

The following notation is used in the paper. ⊗ represents the Kronecker product of two
matrices; � represents the element-wise (Hadamard) product of two matrices; B(i) denotes
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the ith row of matrix B; B(j) denotes the jth column of matrix B; Bij denotes the ijth element
of matrix B; B(−i) denotes all columns of B except for the ith, and similarly for rows and
elements; diag (b) is a diagonal matrix with the vector b on the diagonal; id (B) inverts the
matrix diagonal of the square matrix B; x1:t denotes {x1, x2, . . . , xt}. A permutation matrix
Pi is one of the set of n! matrices consisting of a reordering of the columns of In.

Additionally, I use the non-standard notation Et [·] to explicitly denote a time-specific
expectation, i.e. the mean value of xt at time t, as opposed to across t, and similarly Et,s [·]
when both time t, s variables are contained in the argument. This notation is used to clarify
when stationarity is not assumed, and to avoid the ambiguity (and possible non-existence)
present in simply writing E [xt] in a non-stationary context. The use of Et should not be
confused with reference to the t information set.

2 Identification theory

In the canonical SVAR setting, a vector of innovations, ηt, is composed of unobserved or-
thogonal structural shocks, εt, via a response matrix, H. ηt is an n×1 vector, obtained from
a VAR of observables Yt as A (L)Yt = ηt, where A (L) is a lag polynomial. Similarly, εt is
an n× 1 vector, and H an n× n matrix. Thus,

ηt = Hεt, t = 1, . . . , T, (1)

leaving H and, equivalently, εt, to be identified.5 I begin by presenting a simple example
under special assumptions to outline the identification problem and how heteroskedasticity
may solve it. I then derive a representation of higher moments of the reduced-form in-
novations to serve as identifying equations in a fully general model. I go on to establish
conditions under which these equations have a unique solution. I highlight the role of the
various assumptions and identification conditions, propose a simple test of those conditions,
and explain the relation to existing identification approaches.

2.1 Intuition for the use of heteroskedasticity

Before the impact of heteroskedasticity can be illustrated, some standard assumptions un-
derlying equation (1) are required.

Assumption 0. (temporary) For all t = 1, 2, . . . , T,

5Equation (1) can alternatively describe any other decomposition into orthogonal components, where
second moments offer identification only up to orthogonal rotations, including factor models, for example.

4



1. E [εtε
′
t | σt] = diag (σ2

t ) ≡ Σt (σ2
t is the conditional variance of the shocks),

2. σt is a strictly positive stochastic process and εt has finite fourth moments,

3. E [Σt] = Σε,

4. Shocks satisfy conditional mean independence, E [εit | εis] = 0, s 6= t and E [εit | ε−is] =

0 for all i, all t, s = 1, 2, . . . T,

5. H is time-invariant, full rank, and has a unit diagonal.

The fourth point substitutes conditional mean independence for the usual slightly weaker
uncorrelated shocks assumption. While the variance of shocks may change, fixing H (as in
Assumption 0.5) means that the economic impact of a unit shock remains the same. It is
natural to seek to identify H from the overall covariance of ηt, E [ηtη

′
t] = Ση. However, it is

well-known that these equations can only identify H up to an orthogonal rotation, Φ (where
ΦΦ′ = I).6

Variation in Σt may allow the researcher to overcome this indeterminacy. Consider a
simple two-variable example, where one structural variance is time-varying and the other is
fixed. For example, in the fiscal setting, the model could simply contain tax revenues and
output, with innovations ηTt, ηY t and shocks εTt, εY t. Assume that the tax shock’s volatility
is fixed (if tax shocks capture ideologically-motivated non-cyclical changes in tax policy,
those dynamics may be relatively stable from the 1950s-2000s), while the output shock’s
volatility varies (capturing the Great Moderation, for example). In this simplified setup, the
? approach yields closed form solutions for H (as in ?, for example). Ordering tax first and
output second, with σ2

T,t ≡ σ2
T , denote

σ2
t =

[
σ2
T

σ2
Y,t

]
, H =

[
1 H12

H21 1

]
.

H12 will be the parameter of interest, representing the automatic stabilizer effect (this is
the key parameter highlighted by ? and calibrated by ?). The conditional variances of
the reduced-form innovations are given by Et [ηtη

′
t | σt] = HΣtH

′. Given two subsamples,
A,B, containing the sets of time points TA, TB, for example, the period before the Great

6Observe Ση = HΣεH
′ = (HΦ) (Φ′ΣεΦ) (HΦ)

′
= H∗Σ∗εH

∗′ , where H∗ = HΦDH,Φ and Σ∗ε =
D−1
H,ΦΦ′ΣεΦD

−1
H,Φ, with DH,Φ = id (HΦ) the matrix that unit-normalizes the diagonal of HΦ. This means

that the pairs (H,Σε) and (H∗,Σ∗ε) are observationally equivalent, or H is identified up to transformations
HΦ × id (HΦ). Alternatively, note that due to the symmetry of Ση, it offers n (n+ 1) /2 equations, but
there are n2 unknowns. This is the fundamental identification problem posed by the SVAR methodology
and indeed many related models (e.g., factor models).
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Moderation, and the Great Moderation, it is shown by ? (and in the Supplement) that

ETA [ηTtηY t]− ETB [ηY tηY t]

ETA [η2
Y t]− ETB [η2

Y t]
=
H12

(
ETA

[
σ2
Y,t

]
− ETB

[
σ2
Y,t

])
ETA

[
σ2
Y,t

]
− ETB

[
σ2
Y,t

] = H12, (2)

Assuming that ∆
(
σ2
Y,t

)
≡ ETA

[
σ2
Y,t

]
−ETB

[
σ2
Y,t

]
6= 0 (the output shock variance did change

during the Great Moderation), H12 can thus be identified in closed form. εt need only have
finite second moments for all t ∈ TA, TB. While this argument is motivated by a regime-
based process, identification holds even when misspecified, provided ∆

(
σ2
Y,t

)
6= 0 and σ2

T is
indeed fixed. If there are regimes, they need not be known or correctly specified, as noted in
?. However, if the value of the σ2

Y,t process is instead constant, ∆
(
σ2
Y,t

)
is zero in population,

and identification fails.
The preceding approach exploits moment conditions based on subsample means of the

variance process. I now break with ? and offer an entirely novel argument, based instead
on the full-sample autocovariance properties of ηtη′t, illustrating the intuition of TVV-ID.
In fact, exploiting the autocovariance can be closely related to an instrumental variables
approach. Noting

ηY tηTt = H21ε
2
Tt +H12ε

2
Y t + εTtεY t +H12H21εTtεY t,

η2
Y t = H2

21ε
2
Tt + 2H21εTtεY t + ε2

Y t,

it is clear that H12 would be identified from the ratio of the H12ε
2
Y t and ε2

Y t terms. This is not
feasible as only the values of ηt are observed, and not their separate components. However,
a lagged value of η2

Y t can be used as an instrument for ε2
Y t. Note

cov
(
ηY tηTt, η

2
Y (t−p)

)
= H12cov

(
ε2
Y t, ε

2
Y (t−p)

)
, cov

(
η2
Y t, η

2
Y (t−p)

)
= cov

(
ε2
Y t, ε

2
Y (t−p)

)
,

by Assumption 0.4 and the fact that the variance of tax shocks, σ2
T , is fixed, so cov

(
ε2
Tt, ε

2
T (t−p)

)
=

0. Now, instead of relying on the fact that the variance of the output shock changes across
subsamples, I exploit the fact that it is persistent (while varying). It may still decline on
average between 1950 and 2000, but I no longer need to specify such external information.
H12 is then identified in closed form:

cov
(
ηY tηTt, η

2
Y (t−p)

)
cov
(
η2
Y t, η

2
Y (t−p)

) =
H12cov

(
ε2
Y t, ε

2
Y (t−p)

)
cov
(
ε2
Y t, ε

2
Y (t−p)

) = H12. (3)

This is the familiar instrumental variables estimator, where the dependent variable is ηY tηTt,
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the endogenous regressor is η2
Y t, and the instrument is η2

Y (t−p). The idea of instrumenting for
ε2
Y t is related to the identification argument of ? for cross-sectional settings, who exploits the
existence of some instrument for the heteroskedasticity; equation (3) also takes a similar form
to the panel identification results of ?. In the present uniquely time series argument, equation
(3) produces a closed form solution for H12 because the previous value η2

Y (t−p) is uncorrelated
with all period t terms except those containing ε2

Y t. H12, the automatic stabilizer effect, is
identified as a coefficient on the persistence of the output shock variance, without supplying
an external calibration (?), an external instrument (?), or exogenous regime dates (the ?
approach). The value of H21, the instantaneous impact of tax shocks on output, is then
easily identified from E [ηtη

′
t] = HΣtH

′. The identification argument applies for any lag, p.
Identification holds provided

cov
(
ε2
Y t, ε

2
Y (t−p)

)
6= 0

for some p.
This requirement that the pth autocovariance of ε2

Y t is non-zero is satisfied by a variety of
processes for σ2

Y t. If the true process is regime-based, as suggested by the Rigobon estimator,
identification follows from the non-zero autocovariance around break dates. In an SV model,
it holds if the autoregressive coefficient is non-zero. In a GARCH model, at least one of
the autoregressive parameters must be non-zero. For the fiscal multipliers model, I find in
Section 4 that the variance of the output shock is indeed highly persistent. This simple
example illustrates the crux of TVV-ID: given the structure of the autocovariance of ηtη′t,
comparing elements of the autocovariance (in this simple case, via a ratio) identifies the
columns of H.

This flexibility of identification – independent of specification – is not shared by the
existing approaches. I have made no assumptions about whether the heteroskedasticity is
conditional or unconditional (either can imply a suitable autocovariance) and I have required
only that the volatility process exhibits some degree of persistence.

Empirically, there is strong evidence of such persistence in macro time series, as discussed
in ?, for example. As a simple exercise, Figure 1 displays AR(1) parameters of η2

t , where ηt
are residuals of univariate AR(12) models fitted to each series of the ? FRED-MD database
in turn. I reject the null hypothesis that the AR(1) coefficient is zero at the 1% level for
96 of the 128 series, 5% for 98, and 10% for 101. A Ljung-Box test, as adopted by ?,
rejects homoskedasticity at the 1% level for 100 of the series and the 5% level for 103.
The persistence required of the squared shocks for identification is present in many of these
squared innovations.

In this simple case, multiple autocovariances can easily be combined; each yields moments
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Figure 1: Distribution of AR(1) coefficients of η2
t

Time series ηt are obtained as reduced-form innovations from AR(12) processes fitted to each of the ?
FRED-MD’s 128 monthly time series. The figure displays the distribution of the implied AR(1) coefficients
of η2

t .

of the form
cov
(
ηY tηTt, η

2
Y t−p

)
−H12cov

(
η2
Y t, η

2
Y t−p

)
= 0,

which can be stacked to yield an overidentified GMM problem. Alternatively, it might be
natural to assume that the (log) variances follow some loose parametric form, like an AR(1),
and let this assumption imply a whole range of autocovariances.

2.2 Identification via time-varying volatility

In the previous section, I made strong assumptions to assist intuition. I now relax them
and develop TVV-ID in its general form. I consider an n−dimensional model and allow the
variance of all shocks to vary over time. Through the lens of the fiscal example, government
spending can now be included with tax revenue and output, and the variance of all three
shocks, not just the output shock, can vary over time. While the identification argument
becomes more complicated, not only are these richer dynamics necessary to realistically
model empirical settings, but they offer valuable identifying information; in Section 4.3 I
find that the intertemporal relationship of these variances across shocks is instrumental in
distinguishing the fiscal multipliers obtained by TVV-ID from those of ?.

Again, let
ηt = Hεt, t = 1, 2, . . . T.

Denote Ft−1 = {ε1, . . . εt−1, σ1, . . . σt−1}. I replace Assumption 0 with Assumption A:

Assumption A. For every t = 1, 2, . . . , T,

1. Et (εt | σt,Ft−1) = 0 and Et (εtε
′
t | σt,Ft−1) = Σt,

2. Σt = diag (σ2
t ) , σ

2
t = σt � σt,
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3. Et [σ2
t ] <∞.

These assumptions cover both SV and autoregressive conditional heteroskedasticity-type
(ARCH) models (where σt is a function of ε1, . . . εt−1), amongst many others, including
unconditional heteroskedasticity. By explicitly conditioning on σt, this setup rules out inno-
vations to the σt process being correlated with εt, as is true of VAR models more broadly.

In addition, I make standard assumptions on H:

Assumption B. H is time-invariant, full rank, and has a unit diagonal.7

The assumption that H is time-invariant is crucial for identification and ubiquitous in
the literature. In fact, identification has not been established when H is time-varying except
in very special cases (e.g., ???). Work allowing more flexible time-variation in H is limited
to Bayesian frameworks, most notably ? and ?. I discuss the time-invariance of H further
following the main identification results. Implicit in this setting and most related work is the
additional assumption of invertibility, so the shocks are fundamental and thus recoverable
from ηt.

Decomposition of ηtη′t

To obtain moments in terms of just H and the underlying volatility process, I work with a
transformation of ηt, (ζt, defined below), as my basic data. I begin by writing the decompo-
sition

ηtη
′
t = HΣtH

′ + Vt, Vt = H
(
εtε

′

t − Σt

)
H ′,

where Σt is unknown. Define L to be an elimination matrix, and G a selection matrix (of
ones and zeros), see ?, for example.8 Then

ζt ≡ vech (ηtη
′
t) = vech (HΣtH

′) + vech (Vt)

= L (H ⊗H) vec (Σt) + vt, vt = vech (Vt) (4)

= L (H ⊗H)Gσ2
t + vt, (5)

7The unit diagonal assumption is simply a normalization. Note that even if there are zeros in H, such that
certain column orderings are incompatible with a unit-diagonal, this poses no problem for identification of the
columns of H, since column order is imposed only ex-post for interpretation. The conventional alternative,
a unit–variance normalization, makes less sense in this setting. First, instead of n unit variances, it would
impose a unit normalization on some n elements of the n×n2 matrix Mt,s, defined below, a nuisance matrix
encoding a variety of information about the persistence properties of the variances. Given that this is not a
familiar object, nor necessarily easily interpretable, it is not a natural target for normalization. Second, as
I discuss in Section 3 (and apply empirically), it may be desirable to estimate H using several alternative
models (or no model) for the variances. These results will only be directly comparable if the normalization
is consistent, but H is the only object that in general will be common across such estimators.

8This means vech (A) = Lvec (A) and vec (ADA′) = (A⊗A)Gd where d = diag (D).
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The simplification from (4) to (5) in the first term follows due to the diagonality of Σt

under Assumption A.2. From the definition of Vt and Assumptions A.1, A.3, and B,
Et [Vt | σt,Ft−1] = 0, so Et [vt | σt,Ft−1] = 0 and

Et [ζt | σt,Ft−1] = L (H ⊗H)Gσ2
t .

This provides a signal-noise interpretation for the decomposition of the outer product ηtη′t.
It follows from Assumption A.3 that I can integrate over Σt to obtain Et [vt | Ft−1] = 0

and similarly that Et [|vt|] < ∞. Therefore vt is a martingale difference sequence. Each
observation of ζt is an observation of HΣtH

′, plus mean-zero noise.

Properties of ζt

Assumption C expands on Assumption A.3 to permit a characterization of the autocovariance
of ζt.

Assumption C. For every t, Et
[
vec (εtε

′
t) vec (εtε

′
t)
′] <∞.

Using this additional assumption, the autocovariance of ζt has a convenient form:

Proposition 1. Under Assumptions A.1-2, B, & C,

covt,s (ζt, ζ
′
s) = L (H ⊗H)GMt,s (H ⊗H)′ L′, t > s (6)

where

Mt,s = covt,s
(
σ2
t , vec (εsε

′
s)
′)

= Et,s

[
σ2
t σ

2′

s

]
G′+Et,s

[
σ2
t vec (εsε

′
s − Σs)

′]−Et [σ2
t

]
Es

[
σ2′

s

]
G′.

This equation represents an reduced form quantity, covt,s (ζt, ζ
′
s), as a product of H and

the n × n2 matrix Mt,s (composed of n × (n2 + n) /2 moments of the underlying variance
process). If Et,s

[
σ2
it

(
εsε

′
s − Σs

)]
is diagonal (as in an SV model, or if any ARCH effects

come from only squared shocks), Mt,s can be replaced withM red
t,s G

′ whereM red
t,s is only n×n.

An autocovariance of the vectorization of ηtη′t can thus be expressed as just a product of
H, an n × n2 nuisance matrix, and known matrices of zeros and ones. This is remarkably
parsimonious for a covariance of random matrices. Note that stationarity has not been
assumed, merely the existence of higher moments. All of the expectations used are well-
defined for an object at a particular point in time, even if the distribution might be different
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at another point in time. A single autocovariance provides (n2 + n) /2×(n2 + n) /2 equations
in n2 − n+ n (n2 + n) /2 parameters, so the order condition is satisfied.

A unique solution

Having derived a set of equations of adequate order to identify H, it remains to show that
they yield a unique solution. Conditions under which (6) yields a unique solution for H are
established by Theorem 1.

Theorem 1. Under Assumptions A.1-2, B, & C, equation (6) holds. Then H and Mt,s are
jointly uniquely determined from (6) (up to column order) provided rank (Mt,s) ≥ 2 and Mt,s

has no proportional rows.

Theorem 1 states that (under certain conditions) equation (6) will yield a unique solution
for the relative magnitudes of elements in each column of H, with normalization imposed by
Assumption B. The identification result is based on period-specific moments – an autocovari-
ance between two specific time periods, s, t – so stationarity is neither assumed nor required.
For example, a stochastic volatility process with a unit root could in principle be used to
identify shocks by TVV-ID. In practice though, fourth-order stationarity of εt will often
be assumed so that (6) may be consistently estimated across the full sample (although this
need not be the case in an infill-asymptotic framework). The solution is unique up to column
order, or equivalently choosing economic labels for the shocks that dictate an ordering given
the unit diagonal normalization imposed on H by Assumption B (for example, labeling a
shock as the tax shock, with tax revenues being the first variable in the VAR, dictates the
corresponding column of H should be ordered first).9 There are n! such orderings; the same
is true for any statistical identification approach, including those based on heteroskedastic-
ity or non-Gaussianity. Labeling the columns and selecting an associated order, to complete
global identification, is needed to render the shocks interpretable in an economic sense, and
also important for statistical inference, as discussed in Section 3.2.

Theorem 1 makes two requirements of Mt,s. First, it must have rank of at least 2.
Second, it must have no proportional rows. This is weaker than a full rank condition, since
rows of Mt,s may be linear combinations, as long as they are not simply proportional. This
dimensionality requirement ensures adequate heterogeneity in Mt,s to uniquely identify H.
Mt,s encodes the autocovariance (and potentially ARCH) properties of σ2

t with σ2
s ; in an SV

model,Mt,s is simply the autocovariance of σ2
t multiplied by G′. These conditions imply that

all n variances must be time-varying and persistent, and additionally that no two variance
9In other words, H and HPi× id (HPi), where Pi is a permutation matrix, are observationally equivalent;

see Section 3.2 for a detailed discussion.

11



processes can have fully proportional autocovariance structures with respect to σ2
s . This

will not occur if each variance has at least some persistent idiosyncratic component, except
in knife-edge cases. ? find that there are indeed strong idiosyncratic components in time-
varying volatility that cannot be explained by common factors; the identification conditions
will hold if those idiosyncratic components are persistent, and thus impact Mt,s. For fiscal
multipliers, as I discuss in Section 4.3, theoretical arguments based on the ? notion of a
tax shock and the results of ? suggest that the co-persistences of tax and output shock
variances should be zero. Since both variances are strongly persistent, this implies that the
tax and output rows of Mt,s are linearly independent, satisfying the rank condition. Unless
the spending shock variance is almost perfectly predicted by one of σ2

T,t−1, σ2
Y,t−1 but not

at all by the other, the σ2
G,t row also cannot be proportional to either of those rows, so

identification holds.
If the proportional row condition on Mt,s does in fact fail, partial identification is still

possible, as established in Corollary 1.

Corollary 1. Under Assumptions A.1-2, B, & C, equation (6) holds. Then H(j) is identified
from (6) provided rank (Mt,s) ≥ 2 and Mt,s contains no rows proportional to row j.

This shows that columns of H pertaining to shocks whose volatility processes do not have
proportional autocovariance structures can still be identified.

The identification conditions in Theorem 1 can be relaxed by exploiting additional iden-
tifying equations. If, for example, the usual covariance of residuals,

Et [ηtη
′
t] = Et [ζt] , (7)

is considered, Theorem 1 can be supplanted by Theorem 2.

Theorem 2. Under Assumptions A.1-2, B, & C, equation (6) holds. Then H is uniquely
determined from (6) and (7) (up to column order) provided

[
Mt,s Et [σ2

t ]
]
has rank of at

least 2 and no proportional rows.

Theorem 2 shows that, if the covariance of ηt is also used as an identifying moment, a
proportional row assumption must additionally relate Et [σ2

t ] to Mt,s in order for identifica-
tion to fail. Similar arguments can be made, adding further observable moments, requiring
proportionality extend to a matrix with progressively more columns. A major implication
of Theorem 2 is described in Corollary 2.

Corollary 2. H is uniquely determined from (6) and (7) (up to column order) if at least
n − 1 shocks display time-varying volatility with non-zero autocovariance, provided that for

no two shocks i, j, covt,s
(
σ2
it, vec (εsε

′
s)
′) = covt,s

(
σ2
jt, vec (εsε

′
s)
′) Et[σ2

it]
Et[σ2

jt]
.
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Corollary 2 states that with the addition of (7), only n−1 dimensions of persistent time-
varying volatility are sufficient to identify H, except in a very special case. This degenerate
case amounts to the autocovariance structure of two shock variances (with respect to every
εisεjs) being proportional, with the proportionality constant just happening to be the ratio
of their means. As discussed in Section 2.4, this weaker identification condition puts TVV-ID
on a level theoretical footing with existing heteroskedasticity-based approaches. In Section
2.3, I propose a formal test to evaluate Theorem 2’s identification conditions in practice.

All of the preceding identification results yield identification ofH up to column order, and
it remains to label the shocks in a manner that dictates some ordering, or otherwise choose
an ordering. Once an order is determined, normalization (scaling) follows from Assumption
B. I discuss in Section 3.2 how with the use of additional economic information, point
identification holds globally, and consider the implications for inference on estimates of H.

Time-invariance of H

While TVV-ID focuses on the instability of the variances of structural shocks, H is assumed
fixed. Although this is in principle a strong assumption, no existing identification scheme
can flexibly accommodate time-varying H (although ?, ?, ?, and ? do so under very spe-
cific functional forms). Even the simplest recursive short-run restrictions do not identify
a known moment of H if H is in fact time-varying. Allowing H to vary more generally
presents an interesting econometric problem, which warrants further study. While there are
workhorse models in macroeconomics that allow for time-varying H, (e.g., ??), these all
adopt a Bayesian framework without identification results to separate variation in H from
variation in Σt based on properties of the observable data alone. In this context, the param-
eter values obtained are driven by the structure of the priors, imposing information the data
could never offer. As such, these approaches are largely orthogonal to the goal of this paper
to provide non-parametric frequentist identification results facilitating consistent estimation
of H based on observable data and (relatively) mild assumptions. While some frequentist
work has adopted time-varying parameters (TVP) in the reduced form model, for example
?, such papers are still unable to incorporate variation in H; time-variation in reduced form
parameters can be combined with TVV-ID.

Still, there are two ways in which time-variation in H is potentially compatible with
TVV-ID. First, if H varies at a slower rate than the variances, identification may still hold
asymptotically; H will be locally stationary over intervals over which the variances are not.
Such a case could be explored in an infill-asymptotic setting, for example. Theoretical
work sometimes reflects such distinctions in the rate of variation; for example, ? split
volatility into short-run and long-run components, with agents’ behaviour driven by the

13



slower moving component. Second, compared to identification exploiting regimes, as in
?, TVV-ID is better equipped to permit estimation using sub-samples over which H may
plausibly be fixed, since the data do not need to be subdivided again for identification under
a constant H. Should a researcher remain worried about the assumption of a fixed H, tests
of overidentifying restrictions remain an option, as H may be over-identified by TVV-ID.
Further, ? develops tests for parameter instability in a GMM context, for example the
sup-Wald test, the conditions for which are satisfied for a variety of time-varying volatility
models.10

2.3 Testing the identification conditions

Testing conditions for identification based on heteroskedasticity is difficult in general. The
requirements for identification impose conditions on parameters that are only identified con-
ditional on identification holding. In ?, the time paths of structural variances are required
to be linearly independent, and in ? the two (or more) sets of structural variances must be
non-proportional. In TVV-ID, Mt,s or

[
Mt,s Et [σ2

t ]
]
must have rank of at least 2 and

no proportional rows. Given knowledge of the structural parameters, these conditions could
easily be tested, but those parameters cannot be recovered without assuming identification.
As a result, ? propose a test for the dimension of heteroskedasticity based on the autoco-
variance of vech (εtε

′
t), but must first impose a recursive structure to recover εt (so as not

to assume H is identified via heteroskedasticity), and so base a test on some orthogonal
rotation of the true structural shocks. In contrast, I derive implications of the identification
conditions in Theorem 2 that are testable based on reduced form moments alone. In this
section, I assume stationarity to simplify asymptotic results (and so replace ζtζ ′s with ζtζ ′t−p,
etc.).

Define M̃t,t−p = E
[
σ2
t vec

(
εt−pε

′
t−p
)′]. Proposition 2 provides testable implications of the

rank of M̃t,t−p for the reduced form moment E
[
ζtζ
′
t−p
]
and relates the rank of M̃t,t−p to the

identification conditions. ? propose a similar rank test for variance components applied to
reduced-form properties (a lag−l generalized kurtosis matrix, like cov

(
ζt, ζ

′
t−p
)
), but their

results assume variances follow an ARCH functional form.

Proposition 2. By construction, rank
(
E
[
ζtζ
′
t−p
])

= rank
(
M̃t,t−p

)
= r; if r = n, M̃t,t−p

is full rank and the identification conditions of Theorem 2 are satisfied.
10The less-familiar assumptions needed in ?, those of Near-Epoch Dependence (NED), can be replaced by

stronger properties that hold for both GARCH and SV processes. ? shows that GARCH satisfies β-mixing
(and thus α-mixing with exponential rate) and ? show that SV models inherit the mixing properties of the
log-variance process. Results in ? show that an AR(1) variance process is α−mixing with exponential rate.
These mixing properties can be shown to imply NED; see ? Chapter 17 for additional background.
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A similar proposition holds for cov
(
ζt, ζ

′
t−p
)
and Mt,t−p to verify the conditions of The-

orem 1. However, estimating the centered moment cov
(
ζt, ζ

′
t−p
)
combines estimates of both

the uncentered higher moments, E
[
ζtζ
′
t−p
]
, and E [ζt], introducing additional estimation er-

ror relative to simply working with E
[
ζtζ
′
t−p
]
. In small samples, this decrease in precision

can negatively impact tests based on the estimated moments.11 Additionally, a test based
on the rank of M̃t.t−p will have power against the null of non-identification in several leading
cases where one based on the rank of Mt,t−p will not. In particular, this is true when one
shock exhibits homoskedasticity (in which case the corresponding row of Mt,t−p is zero) or
when one variance is a linear transformation (with a non-zero intercept) of another (in which
case the corresponding rows of Mt,t−p are proportional); in contrast, M̃t,t−p remains full rank
due to the different mean variances.

The implication of r = n for M̃t,t−p is actually stronger than the condition required for
identification in Theorem 2 in two ways. As detailed in the remark preceding the proof of
Proposition 2, rank

(
M̃t,t−p

)
≤ rank

([
Mt,t−p E [σ2

t ]
])

, although equality holds except
in certain nonlinear models. Second, the identification results require only a rank of 2, with
no proportional rows (rows that are not proportional but are otherwise linear combinations
lower the rank of M̃t,t−p and

[
Mt,t−p E [σ2

t ]
]
but do not prevent identification). Thus,

the condition rank
(
E
[
ζtζ
′
t−p
])

= n can be viewed as conservative with respect to the true
identification conditions for TVV-ID. The extent to which this matters in practice is an
empirical question – it is not a barrier in this paper’s empirical study – and one left to future
work.12

The problem of testing for identification is now reduced to testing the rank of E
[
ζtζ
′
t−p
]
.

Tests of matrix rank have been studied extensively, for example by ?. I assume the availability
of a consistent and asymptotically normal estimator for E

[
ζtζ
′
t−p
]
(e.g., 1

T−1

∑
ζ̂tζ̂
′
t−p); one

set of conditions assuring this is that εt is M-dependent and is eighth-order stationary, for
example. Then, Theorem 3 provides a test statistic and asymptotic distribution to assess
the rank of E

[
ζtζ
′
t−p
]
, and thus test whether the conditions to identify H using TVV-ID

hold.

Theorem 3. If ̂E
[
ζtζ ′t−p

]
is an asymptotically normal estimator of E

[
ζtζ
′
t−p
]
, then under

the null hypothesis that the matrix has rank r, the associated Cragg-Donald statistic CDζ,p (r)

has the asymptotic distribution CDζ,p (r)
d→ χ2

(
((n2 + n) /2− r)2

)
.

The interested reader should consult ? for additional technical details and a description
11Indeed, I find in unreported simulations that performance is better for tests of the rank of M̃t,t−p than

Mt,t−p.
12As detailed at the end of Section 2.4, this also does not appear to be a problem in other empirical

settings.
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of the test statistic. Essentially, the test assesses the deviation of the lower right part of the
estimated matrix from zero following r steps of Gaussian elimination.

I explore the performance of the test for identification described by Proposition 2 and
Theorem 3 in a simulation study reported in Section 4 of the Supplement. I find that the
test exhibits good size control even in small samples. In the vast majority of specifications,
the tests are very well-sized, or even conservative; for only one DGP are size distortions
over 2% (for a 5% nominal test). The test also offers reasonable (size-adjusted) power. ?
conduct simulations based on the ? test, assessing the autocovariance of vech (εtε

′
t), instead

of vech (ηtη
′
t), which is the object of my test. However, as noted above, vech (εtε

′
t) cannot be

recovered without imposing a value for H, which they do by assuming a Cholesky structure
(since heteroskedasticity is being tested, so cannot be assumed). Thus, one structural model
is assumed to test for variation that would allow the researcher to ultimately identify a
different structural model. This additional assumption makes direct comparison of the tests
difficult, but their test does appear to offer superior power properties. However, further
simulations show that my test also performs considerably better in this dimension when
applied to (empirically infeasibly) orthogonalized structural shocks instead of reduced form
innovations.

2.4 Relation to existing approaches

TVV-ID generalizes the conditions under which previous approaches have established iden-
tification via heteroskedasticity and nests the parametric models on which they have relied.
Below, I describe the relation of TVV-ID to each of the existing identification results.

? offer an identification argument that is in principle non-parametric; they show that,
conditional on the time path of reduced form covariances, Ση1:T , H is identified, provided the
variance processes are linearly independent. However, this path is not in general available
to the econometrician, who observes only the noisy ηtη′t in each time period, no matter the
sample length. This leads the authors to recommend a GARCH functional form, which is
very special in allowing the reduced form covariances to be deterministically recovered from
the observations conditional on H and the parameters of the variance process. This property
is shared by virtually no other variance process.

TVV-ID avoids these issues entirely by not making any reference to the variance path for
identification, instead using unconditional moments, in particular the autocovariance of ζt.
Because it is unnecessary to recover the variance path for identification, TVV-ID can admit
a near arbitrary range of volatility models, and is truly non-parametric. Such moments can,
under suitable assumptions, be consistently estimated even in models with state variables.
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TVV-ID is the first scheme to imply that H can be consistently estimated even when the
volatility path cannot. ? exploit this result to estimate a stochastic volatility model for
the structural shock variances, very closely related to the model I discuss in Section 3 and
employed in Section 4. Moreover, TVV-ID explicitly nests the GARCH implementations
of ? because a (stationary) GARCH process clearly implies a suitable matrix Mt,t−p for
autocovariance p.13

? regime-based identification following from subsample, Markov switching (e.g., ?), or
smooth transition (e.g., ?) models are also nested by TVV-ID. The transitions between
regimes imply non-zero autocovariance for the shock variances.14 Both ? and ? arguments
require n − 1 dimensions of linearly independent time-varying volatility; TVV-ID similarly
requires n−1 volatility processes with non-proportional autocovariance structures (Corollary
2). The TVV-ID condition has the advantage that it may be satisfied even if the variances
are, on average, proportional across regimes, since there may be differences in autocovariance
properties from one observation to the next that TVV-ID can exploit.

TVV-ID belongs more broadly to a long literature (dating to at least ? and ?) of iden-
tification based on higher moments. While TVV-ID exploits intertemporal moments, work
has generally focused on contemporaneous moments (or cumulants), either via maximum
likelihood (e.g., ??) or independent components analysis (ICA) (e.g., ?). If n − 1 shocks
are non-Gaussian, identification holds, again parelling the dimensionality requirement of
Corollary 2. Since heteroskedasticity induces unconditional non-Gaussianity even if shocks
are conditionally Gaussian, in theory identification via heteroskedasticity is nested by argu-
ments based on non-Gaussianity. However, the majority of such arguments maintain mutual
independence of shocks, which rules out coheteroskedasticity or factor structures in volatil-
ity, an important feature of macroeconomic data (e.g., ?) that TVV-ID can capture. ? and
? relax mutual independence to orthogonality, but the former paper introduces a cokurto-
sis assumption that still rules out correlated volatility processes, while the latter finds that
estimators imposing this assumption have superior performance, and uses it for empirical
work.

A final strength of TVV-ID is the testability of the identification conditions, as demon-
strated in Theorem 3. This test exploits evidence of the identification conditions that can
be found in the reduced form moment E

[
ζtζ
′
t−p
]
directly. Conditions for identification via

heteroskedasticity apply to otherwise unidentified structural parameters, generally making
13? offer an additional (local) identification argument for the GARCH model based on reduced-form

moments, more similar to the TVV-ID argument.
14As a simple example, consider a univariate process with σ2

t = 1, t = 1, . . . , T/2 and σ2
t = 2, t = T/2 +

1, . . . , T . cov
(
σ2
t , σ

2
t−1

)
= 1

T−1 (2 + 1× (T/2− 1) + 4× (T/2− 1))−
(

1+2
2

)2, which converges to 2.5−1.52 =
0.25 as T goes to infinity, so even with a single regime switch, the autocovariance is non-zero asymptotically.
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testing difficult. This leads ? to propose a test of the properties of some orthogonal rotation
of the structural shocks, as noted above. In the regime setting, ? introduce a novel test-
ing approach that is also based on only reduced-form moments, and ? develop a Bayesian
procedure. Both papers find empirical evidence that could appear to question the non-
proportionality of variances across regimes in various settings. Nevertheless, I successfully
test for identification in my empirical setting. To assess the broader practical relevance of my
approach, I also apply my identification test for TVV-ID’s conditions to the two empirical
applications in ?, and an additional application from a 2018 working paper version. For the
first two applications, my findings mirror those for the authors’ test: the ? model is identi-
fied, but that of ? can only be partially identified based on time-varying volatility. For the
third application, an extension of ? found in ?, the authors find only partial identification.
In contrast, I easily reject all ranks less than n at the 1% level, establishing identification.
These results suggest that my identification conditions (and associated test) may be at least
as useful in practice as a regime-based scheme. Moreover, the latter finding lends support
to the argument made above that the proportionality conditions required for TVV-ID may
hold more generally than those for regime-based identification due to intra-regime dynamics.

3 Estimation and inference

In this section, I provide guidance to empirical researchers to apply TVV-ID in practice.
I discuss reduced form estimation, estimators available to implement TVV-ID, inference
approaches, and the remaining task of ordering the columns of H. I conclude with a step-
by-step guide for the applied econometrician.

3.1 Estimation

Reduced form

TVV-ID may be applied to any data satisfying Assumptions A, B, and C. Typically this type
of identification problem arises in innovations to a system of equations. The most common
use case is SVARs. This means that a set of reduced-form parameters must be estimated in
order to recover the innovations, ηt, as residuals. For example,

Yt = a+
l̄∑
l=1

AlYt−l + ηt. (8)

In my empirical application, Yt is a 3 × 1 vector consisting of quarterly observations
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of (real) federal tax revenue, federal government consumption and investment, and GDP,
with l̄ = 4. The reduced form parameters A = (a,A1, . . . , Al̄) are estimated via OLS,
providing estimated innovations η̂t to recover H. I take Â and thus η̂t as given in estimating
H and assume that the shocks follow a symmetric distribution, which guarantees that the
distributions of the reduced form and structural parameters are asymptotically independent
(as in standard treatments, e.g., ??). I maintain this assumption since it is consistent with
the vast majority of volatility models proposed for identification via heteroskedasticity, and
the preferred estimator based on my simulation study, discussed below, which I adopt in
my empirical analysis.15 Since the estimates are asymptotically independent, a researcher
simply needs to use a (separately) valid asymptotic variance for each set of parameters.

Estimating H

Theorems 1 and 2 and Corollary 2 identify H up to column order. Before introducing es-
timators for H, it is important to note the relationship between a raw estimate Ĥ and the
true parameter H (with unit diagonal and columns ordered to be consistent with some shock
labeling). For standard asymptotic results to apply for an estimator Ĥ, the estimator should
explicitly select a certain matrix from the identified set of permutations and renormalizations
of H. If the selection follows a statistical rule, like choosing the permutation and normaliza-
tion that closest matches the identity matrix, or a lower triangular matrix, as in ?, this step
does not meaningfully restrict the identified set of matrices; ? provide a detailed discussion.
However, such a selection means that a consistent estimator Ĥ will in general be consistent
for some permutation and renormalization of H, not H itself. I thus refer to a raw estimate
of the columns of H as Ĥ, with consistency implying Ĥ p→ HP , where HP represents some
permutation of H. 16 In particular, I write

HPP
∗ × id (HPP

∗) = H, (9)
15Without this assumption, while a two-step procedure remains valid, the covariance of reduced form and

structural estimates must be computed for inference on IRFs, as discussed in ?. I additionally show in
Section 5 of the Supplement that a symmetry-like assumption is adequate for asymptotic independence to
further hold for non-parametric estimators implementing TVV-ID. While it is also true that Generalized
Least Squares estimating the reduced form and structural parameters jointly (or using a 2-step procedure as
in ?, for example) can deliver efficiency gains in the presence of heteroskedasticity, I do not pursue it here.
Doing so introduces additional computational challenges contrary to my aim to make a simple proposal for
practitioners, while complicating robustness checks comparing results across multiple implementations of
TVV-ID, since each estimator begins with different innovations.

16If the selection rule incorporated in the estimator coincides with the labeling criterion adopted to interpret
the shocks, as discussed in Section 3.2, then this preliminary selection step and the shock labeling step
coincide, and Ĥ will be consistent for H.
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where P ∗ is a permutation matrix and id (HP ∗) maintains the unit diagonal. I denote a
labeled (permuted and renormalized) version of the estimator Ĥ as Ĥlab.

Since TVV-ID is a non-parametric argument, it can justify both estimators making no
parametric assumptions on the shock variance process and also estimators making a wide
array of parametric assumptions on the variance process. In contrast, the previous identifi-
cation approaches using heteroskedasticity make parametric arguments, which dictate very
particular estimators. The former advantage of TVV-ID naturally points to estimating H
via GMM, based on cov

(
ζt, ζ

′
t−s
)
and E [ζt]. While fully non-parametric, this estimator

faces challenges in small samples since it relies on imprecisely estimated higher moments
for identification, features highly nonlinear estimation with a large parameter vector, and
is overidentified (and thus sensitive to the choice of weighting matrix). For a sense of the
challenge, the 3-variable SVAR in my empirical study leaves 27 parameters to be estimated
from 42 equations; the 42 higher moments must be estimated from just 224 observations
of Yt. The latter advantage of TVV-ID points to a virtually limitless class of previously
inadmissible parametric estimators for H, including those based on state space models, for
example. It leaves the econometrician free to choose a model that she thinks suits an appli-
cation well, and implement it without having to prove new identification results. Given this
multiplicity of options, I provide guidance on applying TVV-ID in practice.

In the Supplement, I report a simulation study comparing various implementations of
TVV-ID, as well as details on novel estimators, noting any additional assumptions required
for consistency and asymptotic normality. I summarize the results here. I consider two
estimators uniquely justified by TVV-ID: GMM estimates based on cov

(
ζt, ζ

′
t−s
)
and E [ζt]

and an Expectation-Maximization (EM) estimator based on an AR(1) SV process for the
shock variances, extending that of ? and ?. This state space model, adopted in ? and ?, for
example, is described by

εt ∼ N (0,Σt)

log σ2
t = µ (1− φ) + diag (φ) log σ2

t−1 + et, et ∼ N (0,Σe) . (10)

I additionally consider the GARCH(1,1) estimator of ?, “Hybrid GARCH”, which calibrates
the autoregressive parameters, three Rigobon estimators (with regimes determined either
by rolling windows as in ?, an arbitrary T/2 sample split, or a Markov switching model
as in ?), and two estimators exploiting non-Gaussianity (FastICA of ? and gJade of ?,
which accommodates possible stochastic volatility). These estimators have well-established
asymptotic properties (consistency and asymptotic normality) for Ĥ, and the interested
reader should consult those references for details on limiting distributions.
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I consider a range of heteroskedastic DGPs empirically calibrated to a bivariate system
consisting of the Fed Funds rate and the first principle component of the remainder of the
FRED-MD database. I compare mean estimates, RMSE, and the size of tests on true pa-
rameter values. I find that for all DGPs, the AR(1) SV model either performs best or very
close to the leading estimator, even when badly misspecified. The Hybrid GARCH and
Rigobon estimator based on a Markov switching model follow, with the non-Gaussianity es-
timators closely behind. The performance of GARCH and the remaining Rigobon estimators
varies dramatically across DGPs. Finally, the fully non-parametric GMM approach does not
perform well due to the difficulty in estimating fourth moments precisely in small samples.
These results generally agree with related studies in ? and ?.

Accordingly, the AR(1) SV estimator is my preferred approach. I provide extensive
details on this estimator in Section 2 of the Supplement, including asymptotic properties; I
suggest using the inverse expected Fisher Information for inference. I provide ready-to-use
code to implement the estimator as part of the replication files. In the empirical application,
I focus on this preferred estimator. Given a lack of information furnishing obvious discrete
regimes for fiscal policy, or evidence supporting particular functional forms in this data,
the robustness to possible misspecification I find is appealing. However, I also consider
sensitivity to estimators based on alternative variance processes, providing a blueprint for
future empirical work to do the same. Alternatively, empirical researchers may also adopt
model selection criteria as in ? to select a suitable volatility model. Those authors do not
consider the AR(1) SV model, while noting that the performance of their criteria depends
on the true DGP and the model being tested; assessing the performance of model selection
criteria for the AR(1) SV model is left for future work.

3.2 Labeling the structural shocks

To interpret the effects of the shocks εt or conduct inference for H, the ordered response
matrix, the columns of Ĥ need to be ordered and renormalized. The researcher must now
compare the implications of column permutations to economic information in order to de-
termine the column labels and associated ordering that best correspond to how he or she
has pre-defined the obejective, H (for example, stipulating that the first column contains
the responses to a tax shock, the second to a spending shock). While this is often done in-
formally in practice (e.g., ?), I provide a more formal treatment, and show that the labeling
indeterminacy does not impact inference on the labeled matrix Ĥlab asymptotically.

Let f : Rn2−n → Rk be a k−vector-valued function of (permutations of) H that the
researcher will compare to some k−vector of economic information, f0. Let Pi ∈ Pn =
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{P1,P2, . . . Pn!} denote one of the set of n! n × n permutation matrices. Finally, let ρ :

Rk → R be some norm, for example the Euclidean norm. Any permutation and subsequent
renormalization of H (or Ĥ) can be written as HPi × id (HPi). Then define

Lf (H,Pi, f0) =ρ (f (HPi × id (HPi)) , f0)

as a labeling criterion, with

∀Pi 6= In, Lf (H, In, f0) < Lf (H,Pi, f0) . (11)

Lf (H,Pi, f0) compares the function f of HPi× id (HPi), a permutation of H, to the vector
of economic information supplied by the researcher, f0, under the norm ρ. Given H, Pi = In

is the unique minimizer of Lf (·, ·, f0).17 It follows from the definition of HP and P ∗ in (9)
that Lf (HP , P

∗, f0) = Lf (H, In, f0). With the addition of (11), H is no longer just identified
up to column order, but is now globally point identified. There are many possible choices
for f corresponding to intuitive labeling criteria. Lf can simply compare each element of
H to its value under some prior, a previous study, or a structural model. It could do the
same for an IRF function based on H. It chooses the permutation that minimizes the
distance to f0. Section 5 of the Supplement describes an extensive list of such labeling
approaches. In my empirical study, since I compare my results to those of ? and ?, I simply
use f

(
ĤPi × id

(
ĤPi

))
= vec

(
ĤPi × id

(
ĤPi

))
and f0 = vec (HMR) (or vec (HBP )), so

I choose the permutation that makes my estimates closest to those of the previous studies.
This permutation is also least conducive to rejecting their results, rendering my analysis
potentially conservative.

Define the permutation minimizing Lf
(
Ĥ, Pi,f0

)
as

P̂ = argmin
Pi∈Pn

Lf
(
Ĥ, Pi,f0

)
,

and Ĥlab, the labeled and unit-diagonalized, point identified estimate of H, as Ĥlab=ĤP̂ ×
id
(
ĤP̂

)
. Theorem 4 outlines the asymptotic implications of labeling based on Lf

(
Ĥ, Pi,f0

)
,

and adopting the associated reordering and renormalization of columns, for inference on Ĥlab:

Theorem 4. If f is continuous and Ĥ is consistent for some permutation of H, HP , and
17In the process of specifying f , economic labels are associated with a particular column/shock ordering;

for example, if f computes a function of Ĥ(1) or ε̂1t to compare to economic information on the behaviour
of a tax shock, that implies that the first column of the objective matrix, H, is associated with the tax
shock. Such an ordering may be natural if tax revenue enters the VAR first, rendering the unit diagonal
normalization of H a named-shock unit effect normalization.
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asymptotically normal, then Lf
(
Ĥ, Pi, f0

)
is consistent for Lf (HP , Pi, f0) , P̂ is consis-

tent for P ∗, and Ĥlab is consistent for H; the labeling step does not impact the asymptotic
distribution of Ĥlab beyond permutation and normalization.

This result is based on ?, who establishes asymptotic distributions in a discrete model
selection setting, building on intuition dating to ?.18

In practice, Theorem 4 greatly simplifies the task facing the econometrician. To con-
duct inference on Ĥlab, the econometrician can simply either permute and renormalize the
estimated structural parameters and then recompute the asymptotic variance directly (by
reevaluating the moment covariance and Jacobian in the case of GMM, for example), or use
the delta method to compute the asymptotic variance based on the asymptotic variance of
Ĥ and the function Ĥlab=ĤP̂ × id

(
ĤP̂

)
.

3.3 Framework for empirical analysis

The estimation considerations above suggest a series of straightforward steps that can be
applied in practice to implement TVV-ID. The framework proceeds as follows:

1. Estimate the reduced form VAR as usual and obtain estimates of ηt.

2. Conduct a Cragg-Donald test of the rank of 1
T−1

∑
vech (η̂tη̂

′
t) vech

(
η̂t−1η̂

′
t−1

)′ for r =

1, . . . n− 1 to (conservatively) verify that the model is identified.

3. Apply the selected (consistent and asymptotically normal) estimator of H exploiting
persistent time-varying volatility to η̂t, taking η̂t as given (my results recommend the
AR(1) SV estimator, with replication code provided).

4. Use a labeling criterion Lf (·, ·, f0) satisfying the assumptions of Theorem 4 to obtain
P̂ and permute and renormalize Ĥ to obtain Ĥlab; for inference, use permuted and
renormalized estimates to construct the asymptotic variance of Ĥlab directly or apply
the delta method to Ĥ.19

18While I do not pursue it here, it is straightforward to extend these results to discontinuous f (·) (like
several discussed in Section 5 of the Supplement), allowing for criteria based on rankings of elements of H
by magnitude, for example.

19In particular, the delta method shows that
√
T
(
vec

(
Ĥlab

)
− vec (H)

)
d→

N

(
0,

∂vec(Ĥlab)
∂vec(Ĥ)

′ VHP

∂vec(Ĥlab)
′

∂vec(Ĥ)

)
, where VHP

is the asymptotic variance of Ĥ, Ĥlab=ĤP̂ × id
(
ĤP̂

)
,

and the Jacobian of vec
(
Ĥlab

)
is easily computed analytically given P̂ .
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5. Construct impulse responses and their asymptotic variance using an asymptotically
valid variance for the reduced form parameters estimated in step 1 (I use the wild
bootstrap of ?), the asymptotic variance from step 4 (VHlab

), and the delta method.20

I follow these steps in my empirical study, using the AR(1) SV estimator as my baseline.

4 New insights on fiscal multipliers from higher moments

The size of fiscal multipliers is central to policy debates, yet there remains considerable
disagreement over their scale. The range of estimates is documented by ?, ?, and ?, with
influential studies finding multipliers ranging from 1 to 3 for both tax and spending. I
use TVV-ID to obtain new estimates of both fiscal multipliers. I estimate a tax automatic
stabilizer effect, a key parameter in the literature, of 1.58, closely aligned with estimates
based on institutional details. I find dynamic multipliers peaking at 0.86 for tax cuts and
0.75 for government spending, while cumulative multipliers reach 2.06 and 0.87 respectively
after 5 years. Accordingly, tax shocks explain up to 22% of variation in output after 2
years, while spending shocks have a smaller role. I show that the parameters identified by
TVV-ID, and the higher moments that determine them, are consistent with our theoretical
understanding of the relationship between fiscal shocks and output. In contrast, the popular
methodology of ?, which leads to much higher multipliers, implies surprising conclusions
about higher moments, and faces concerns over instrument validity. Finally, the episodes
identified by TVV-ID as most important accord well with the narrative record of fiscal policy
and output in the United States.

4.1 Data & model

I apply TVV-ID to the trivariate VAR adopted by ? (henceforth BP) and ? (henceforth
MR). The former paper forms a seminal baseline, while the latter attempts to reconcile

20Explicitly, for the h−horizon IRF Ψh, h ≥ 1,

√
T
(

Ψ̂h
ij −Ψh

ij

)
d→ N

0,
∂Ψh

ij

∂
(
vec (Rh)

′
, vec (H)

′
) [ VR 0

0 VHlab

]
∂Ψh

ij

∂
(
vec (Rh)

′
, vec (H)

′
)′
 ,

where Ψh = RhH, Rh is the reduced form IRF (Rh =
∑h
g=1R

h−gAg, setting R0 = In and Ag = 0, g > l̄), and
∂Ψh

ij

∂(vec(Rh)′,vec(H)′)
=
[
H(j)′ ∂Rh′

(i)

∂vec(Rh)′
Rh(i)

∂H(j)

∂vec(H)′

]
. ? derive a valid heteroskedasticity-robust asymptotic

variance in Theorem 2.1 for the reduced form parameters, which can be combined with equation 3.7.5 of ?
to estimate VR. They also argue that the wild bootstrap of ? is a valid estimator for VR in the presence
of conditional heteroskedasticity, and I adopt this procedure in my empirical analysis. Their Theorem 2.1
additionally provides expressions that hold without my assumption of symmetrically distributed shocks.
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the existing range of fiscal multiplier estimates, including BP, with results obtained using
the “proxy-SVAR” methodology of ?, through the lens of this common model. These two
influential papers form an ongoing basis of comparison for my results. The VAR consists of
federal tax revenue, federal government consumption and investment, and GDP, based on
quarterly BLS data found in the NIPA tables, spanning 1950 Q1 to 2006 Q4.21 Additional
details can be found in MR. I use the replication code available on Mertens’ website to obtain
identical reduced form results, with analysis then following the steps outlined in Section 3.3.

Turning to the structural identification problem, the baseline model is

ηTt = εTt +H12εGt +H13εY t,

ηGt = H21εTt + εGt +H23εY t,

ηY t = H31εTt +H32εGt + εY t,

(12)

where ηTt, ηGt, ηY t are innovations to tax revenue, government spending, and output, re-
spectively, and εTt, εGt, εY t are similarly labeled structural shocks. BP’s structural model,
using the notation of MR, can be written as a transformation of (12). Equation (13) states
that model, where et are standardized structural shocks (so E [ete

′
t] = I), with the map-

ping between their parameters and H (replacing MR’s ζT with ξT to avoid confusion with
ζt = vech (ηtη

′
t)):

ηTt = σT eTt + θGσGeGt + θY ηY t, θG = H12−H32H13

1−H23H32
, θY = H13,

ηGt = γTσT eTt + σGeGt + γY ηY t, γT = H21−H23H31

1−H31H13
, γY = H23,

ηY t = ξTηTt + ξGηGt + σY eY t, ξT = H31−H32H21

1−H21H12
, ξG = H32−H31H12

1−H21H12
.

(13)

This mapping allows direct comparison of BP and MR parameters with the TVV-ID results.
BP identify the model by calibrating the automatic stabilizer response of tax revenue, θY ,
based on institutional data, and restricting γT = γY = 0. MR instead estimate γT and
ξT using the ? (henceforth RR) tax shocks as a proxy variable, and restricting γY = 0 to
separately identify spending and output shocks.

I first assess whether the data supports TVV-ID in this setting. Figure 2 plots evidence
of heteroskedasticity in the data, moving averages of the squares of reduced form residuals,
BP shocks, and MR shocks in turn; in all series, there appear to be strong patterns of het-
eroskedasticity. Next, I formally test the rank identification condition, exploiting Theorem
3. As I discuss in Section 4.3, this condition will hold if the variances of certain shocks have

21While ?, for example, estimate a TVP model in the reduced form, I maintain the constant parameter
reduced form VAR specification, since that remains the benchmark in the literature, even in more recent
work, such as ? and ?. Maintaining the same reduced form allows a clearer comparison of identifying
assumptions across approaches.
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Figure 2: Moving averages of squared residuals and shocks

2-year moving averages of the square of the specified series (standardized).

limited predictive power for the variances of others, for example. I test the null hypothesis
that the rank, r, of 1

T−1

∑
ζ̂tζ̂
′
t−1 is 1 (against the alternative r > 1), then the null hypothesis

r = 2 (against r > 2). In this 3-variable system, a rank of 3 implies that
[
Mt,t−1 E [σ2

t ]
]

satisfies the conditions of Theorem 2. The tests, reported in Table 4 in the Supplement,
reject the null ranks at the 10% and 5% levels respectively, jointly indicating a rank exceed-
ing 2, so the conditions for TVV-ID are satisfied. This conclusion is unchanged even after
accounting for multiple testing using a Bonferroni-Holm correction, under which these tests
jointly reject at the 10% level.22

4.2 Results

In this section, I present the headline empirical estimates based on TVV-ID. I first show that
the values of two key structural parameters differ from those of BP and MR. Accordingly,
TVV-ID estimates a considerably lower dynamic multiplier for tax cuts, while the spending
multiplier remains similar; both are below 1. The same is true for cumulative multipliers,
based on which it becomes clear that tax cuts do, nevertheless, have stronger effects on
output with multipliers around 2 after 20 quarters. Finally, I show that tax cuts explain a
greater share of variation in output through forecast error variance decompositions, reaching
22% after 8 quarters.

I first present estimates for the structural parameters in equation (13). These are simple
transformations of Ĥlab, which I estimate using the AR(1) SV model discussed in Section
3, with additional details in Section 2 of the Supplement. TVV-ID requires the estimated
shocks to be labeled; I do so using a labeling criterion that chooses the permutation of Ĥ

22The Bonferroni-Holm p−values for a family of two hypotheses at the 10% level are 0.10 and 0.05. The
test of rnull = 1 meets the first and the test of rnull = 2 meets the second.
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Table 1: Estimates of structural parameters
θG θY γT γY ξT ξG

TVV-ID −0.13
(0.10)

1.58∗∗∗

(0.18)
0.11

(0.13)
0.02

(0.39)
−0.00
(0.02)

0.06
(0.045)

BP -0.06 2.08 0 0 -0.08 0.07
MR -0.20 3.13 0.06 0 -0.35 0.10

The first row maps estimates of H obtained via TVV-ID to the parameters of BP and MR using (13). TVV-
ID is implemented using the AR(1) SV model, described in Section 3, with details provided in Supplement
Section 2. The remaining rows are estimates from ?, for comparison.

that is the closest match to BP and MR.23 Table 1 reports the results, with BP and MR
estimates for comparison.24 The automatic stabilizer effect for tax revenues, θY , is estimated
to be 1.58, and is statistically significant. The 95% confidence interval, [1.23, 1.94], does not
include the BP or MR value. While the estimate for the instantaneous response of output
to tax revenues, ξT , is not statistically distinct from zero, it is estimated precisely enough to
reject the negative values of both BP and MR at the 1% level. The remaining parameters
are quite similar across specifications; I do not reject the zeros assumed by BP and MR
as identifying restrictions. However, the two parameters for which I do obtain distinct
values represent the novel identifying information in BP and MR: BP externally calibrate
the automatic stabilizers, θY , while MR estimate ξT using an external instrument. ? show
that these two parameters are crucial for determining fiscal multipliers. Higher values of θY
mechanically dictate higher multipliers by implying negative values for ξT to match reduced
form covariances. Moreover, ξT , the contemporaneous response of output to tax revenues,
directly implies the size of the tax multiplier.

One might be concerned that the validity of statistical inference is impacted by the use
of pre-tests for identification. However, given the p−values of the identification tests in this
application, it turns out that any statistical test that rejects at the 5% level – like that of the
BP or MR values for θY – can be jointly rejected with the identification pre-tests at the 10%
level, using the Bonferroni-Holm adjustment.25 All subsequent results that are significant at
the 5% level can also be interpreted accordingly.

23In this application, this is the one clear labeling. As a further check, Figure 10 in the Supplement plots
dynamic multipliers for all alternative labelings; it is clear that the labeling selected is the only one that
produces results of plausible sign and magnitude.

24It is well-known that EM algorithms can be sensitive to start values; thus, optimization was carried out
across a grid of start values and the median estimates were used to initialize a final optimization. The range
of estimates across start values is very small, see Table 7 in the Supplement. As an additional check, the
estimates from alternative volatility models (same Table) are quite similar.

25For a family of three hypotheses, the Bonferroni-Holm p−values for a 10% test are 0.10, 0.05, and 0.03.
The test of rnull = 1 meets the first p−value, and the test of rnull = 2 meets the third. Thus, for a joint
rejection at the 10% level, any additional test must have a p−value of 0.05 or smaller.
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Figure 3: Response to a $1 tax cut

Dashed lines are 95% confidence intervals. The BP estimates in the left panel use their elasticity θY = 2.08;
the right uses the value of 1.58 estimated via TVV-ID.

The implications of the estimates for θY and ξT are evident in the dynamic multipliers.
The left panel of Figure 3 plots the dynamic multiplier to a $1 tax cut based on TVV-ID
(in blue), with a 95% confidence interval.26 The responses obtained using the BP and MR
approaches are plotted for reference (red and gold). The point estimate of the response of
output to a tax cut remains approximately zero for the first two quarters, before rising. It
peaks at 0.86 after 8 quarters. In contrast, BP and MR obtain responses on impact of 0.48
and 1.99 respectively, with peak effects of 1.35 (7 quarters) and 3.19 (4 quarters) respectively.
The near-zero estimated value of ξT under TVV-ID means that there is a response lag for
output, with effects coming through the lag structure of the VAR. The very large multiplier
of MR is rejected at all horizons, while the BP response is only rejected through 2 quarters.
The right panel plots the BP response, with the calibrated θY replaced by the value estimated
via TVV-ID. With this alteration, the responses are essentially identical. This finding bears
out the argument of ? that θY essentially pins down the multiplier in this model.

Figure 4 plots the government spending multiplier. The multiplier is 0.65 on impact,
peaks at 0.75 after 2 quarters, and is quite persistent, although the response is imprecisely
estimated. Recall that the parameters linking spending and output in Table 1 are very similar
across models; accordingly, so too are the multipliers. BP and MR yield 0.69 and 0.80 on
impact, respectively, and 0.81 and 0.96 after two quarters. Figure 13 in the Supplement
reports both dynamic multipliers for subsamples of the data. The results are fairly robust to
omitting periods featuring key episodes. Spending multipliers peak as high as 1.2 (1980-2000
subsample), while peak tax cut multipliers fall as low as 0.5 (1970-2000 subsample).

Since the shape of the dynamic multipliers differs for each policy measure, it is natural to
26As described in Section 3.3, I compute the confidence intervals based on a ? wild bootstrap variance

for the reduced form parameters, as in ?, the methods described in Section 2 of the Supplement for the
structural parameters, and the delta method.
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Figure 4: Response to a $1 spending shock

Dashed lines are 95% confidence intervals.

compare cumulative multipliers. I do so using the present-value formula of ?; this approach
also accounts for a persistent response in either tax revenue or government spending in the
denominator of the multiplier. Table 2 reports the results with BP and MR for comparison.
As for the dynamic multiplier, it takes some time for tax shocks to have an effect, but
the response reaches 0.71 after 2 years, and 2.06 after 5 years. Again, these responses are
considerably smaller than those based on BP and MR. Turning to spending, the cumulative
multiplier is relatively consistent across horizons: 0.65 on impact, 0.57 after 2 years, and 0.87
after 5 years. These responses are similar to BP and MR. The results reaffirm that while
the effects of a tax cut are not immediate, at longer horizons they are larger than those for
spending. These results favour models where real activity responds to tax shocks with a
delay. Table 10 in the Supplement shows that the cumulative multiplier results are robust
for subsamples and alternative estimators based on time-varying volatility.

My results align with the literature more broadly. Beginning with the structural param-
eter θY , TVV-ID matches estimates of automatic stabilizers based on institutional details
of tax revenues remarkably well. In particular, ? estimate the elasticity of tax revenues
with respect to output for the federal government, and obtain a value of 1.6 for the period
1986-2008 – nearly identical to the value of 1.58 I obtain via TVV-ID. They estimate 1.4 for
1960-1985. In their calibration, BP use the value 2.08, but crucially compute this number
based on data on general government revenue, which will naturally be higher than that for
just the federal government, the data used here. As shown in Figure 3, the discrepancy
between TVV-ID and BP can be entirely explained by using a value of θY that is tailored to
the federal government data used in the VAR.

Turning to the dynamic multipliers, my estimates accord well with those of ?, who use
non-fiscal proxies as external instruments. Figure 11 in the Supplement plots their estimates
against mine; in general, the IRFs are similar, with their responses lying within my 95%
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Table 2: Present value cumulative multipliers
Tax

Impact 2Q 4Q 8Q 12Q 16Q 20Q

TVV-ID -0.02 -0.03 0.09 0.71 1.33 1.77 2.06
Blanchard & Perotti 0.48 0.64 1.01 2.28 3.63 4.69 5.41
Mertens & Ravn 1.99 3.25 6.21 – – – –

Spending

Impact 2Q 4Q 8Q 12Q 16Q 20Q

TVV-ID 0.65 0.56 0.57 0.57 0.64 0.76 0.87
Blanchard & Perotti 0.69 0.61 0.60 0.56 0.60 0.70 0.80
Mertens & Ravn 0.80 0.73 0.73 0.71 0.78 0.89 1.00

Present value cumulative multipliers computed using the IRFs reported above and the formula in ?, with
the average effective Fed Funds rate over the sample used as the discount rate. I do not report multipliers
for horizons where the fiscal response in the denominator crosses zero, causing explosive behaviour.

confidence interval, and mine within their 95% credible set. When they calibrate a version
of BP using θY = 1.7, motivated by ?, they obtain very similar responses to mine.

The cumulative spending multipliers obtained also closely match results of ? based on
defense-related spending events. Her estimates range from 0.6-0.8, as do mine. While ?
obtain higher estimates for some states of the economy using both defense spending and
BP spending shocks as instruments, the 0.6-0.8 range generally accords with their results as
well. On the other hand, my cumulative multipliers differ from those of ?, who find much
larger responses to tax shocks and a reversal in the sign of the spending response after 8
quarters. Indeed, ? is one of few papers to obtain tax multipliers on the scale of MR. ? show
that the ? value for θY , about 3.2, is linked to those authors’ penalty-function identification
approach, which maximizes the systematic component of tax revenues.

Finally, I also characterize the ability of each shock to explain unforecasted variation
in observable series. This leverages both the estimated dynamic multipliers and the second
moments of the shocks implied by my identification approach. Forecast error variance decom-
positions (FEVDs) compute the share of the h−step ahead forecast error variance accounted
for by each structural shock. I plot FEVDs for the first 8 quarters in Figure 5. Each row
corresponds to a different observable series, and each column to an alternative identification
approach. TVV-ID finds that at short horizons most variation in tax revenue is driven by tax
shocks, with the automatic stabilizer effect naturally accounting for a larger share at longer
horizons. At all horizons, virtually all variation in spending comes from spending shocks.
At short horizons, nearly all variation in output is explained by output shocks (which in
this simple model likely encompass many more-specific shocks), but at longer horizons, the
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Figure 5: Forecast error variance decompositions

Forecast error variance decompositions computed based on the IRFs for each identification approach.

share attributable to tax shocks rises to 22%; in contrast, spending shocks explain at most
about 3%. These findings further illustrate that tax shocks may trigger stronger responses
in output. The BP results almost exactly replicate those of TVV-ID, as do those of MR for
spending. However, the MR results imply that the majority of variation in tax revenue at
all horizons is explained by output shocks; this is not implausible, and simply hinges on the
alternative schemes disagreeing on the relative importance of automatic stabilizers versus
policy changes. More puzzlingly though, the decomposition ascribed by MR implies that
even over the first quarters, tax shocks explain 25% of variation in output, with that share
rising to about 75% by 8 quarters. This story, of tax shocks having such immediate effects on
output, and ultimately being the most important determinant of output fluctuations, is at
odds with conventional wisdom and extensive prior work (finding no such role for tax shocks,
as in ?, discussed in detail below, or suggesting, for example, that financial or investment
conditions are the main driver of business cycles, e.g., ????). Through the FEVDs, the sec-
ond moments implied by the alternative identification schemes are of policy relevance, since
they imply the relative ability of fiscal shocks to explain output fluctuations. I find that tax
shocks have greater potential to shape output fluctuations than spending shocks. I further
illustrate how higher moments can be informative for identification in the next section.

4.3 Interpreting the identifying variation

Having described the response of output to fiscal shocks and highlighted discrepancies with
the previous results of MR (and to a far lesser extent, BP), I now characterize the identifying
variation exploited by the approaches. I argue that the variation exploited by TVV-ID is not
just statistical in nature, but economically meaningful. In particular, what one might con-
clude about the relationship between output and tax shocks, based on their higher moments,
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Table 3: Unconditional autocorrelation of structural shock variances
TVV-ID Blanchard & Perotti Mertens & Ravn

σ2
T,t−1 σ2

G,t−1 σ2
Y,t−1 σ2

T,t−1 σ2
G,t−1 σ2

Y,t−1 σ2
T,t−1 σ2

G,t−1 σ2
Y,t−1

σ2
T,t 0.87∗∗∗ 0.40∗∗∗ −0.08 0.78∗∗∗ 0.37∗∗∗ 0.04 0.70∗∗∗ 0.38∗∗∗ 0.47∗∗∗

σ2
G,t 0.48∗∗∗ 0.99∗∗∗ 0.66∗∗∗ 0.51∗∗∗ 0.98∗∗∗ 0.70∗∗∗ 0.55∗∗∗ 0.99∗∗∗ 0.93∗∗∗

σ2
Y,t −0.10 0.65∗∗∗ 0.99∗∗∗ 0.05 0.69∗∗∗ 0.99∗∗∗ 0.62∗∗∗ 0.89∗∗∗ 0.97∗∗∗

Autocorrelation computed using the filtered variance paths obtained via TVV-ID and filtered paths estimated
by fitting a multivariate AR(1) SV model to the shocks implied by ? and ? structural shocks. Results are
starred at the 1, 5, and 10% levels.

is informative for whether those shocks have been successfully identified when compared to
theory. This analysis serves both to bolster the credibility of my findings, identified using
these moments, as well as to offer novel empirical results. In contrast, I show that the exter-
nal instrument exploited by MR could be invalid, since both relevance and exogeneity may
be rejected.

TVV-ID identifies H from the autocovariance of the squared reduced form innovations,
and thus, implicitly, as coefficients on the autocovariance of structural variances in equation
(6). These autocovariances of structural variances are identified jointly with H; any rotation
of H implies a rotation of the structural shocks, and thus different properties for the auto-
covariance of their variances. Table 3 reports the (unconditional) autocorrelations of these
variances, based on filtered variance paths.27 Estimates are starred at 1, 5, and 10% levels.

TVV-ID suggests that each of the shock variances is strongly persistent. There is also
strong co-persistence exhibited between tax and spending variances and spending and output
variances. However, there is no such co-persistence between tax shock and output shock
variances. The results are strikingly similar for the BP shocks. However, the rotation of H
associated with the MR identification approach additionally imposes a strong co-persistence
between tax shock variances and output shock variances. What does this co-persistence
imply? A positive correlation of σ2

Y,t−1 and σ2
T,t suggests that periods of volatile structural

shocks to output predict subsequent periods periods of unexpected tax changes. Such a
relationship contradicts the intuition of the RR narrative shocks and the MR identification.
The point of RR’s series is to isolate purely exogeneous tax policies independent of business
cycle movements. The positive correlation suggests that, on average, large tax movements
identified by this instrument are in fact predicted by business cycle movements.

In the other direction, a positive correlation of σ2
T,t−1 and σ2

Y,t suggests that periods of

27I report the correlations, not covariances, to render the scale more interpretable and comparable across
series. For TVV-ID, the variances are obtained as a byproduct of the estimation via the EM algorithm. For
MR and BP, I apply a version of the EM algorithm to the estimated shocks that treats the input series as
already orthogonalized, and simply fits a multivariate AR(1) SV process.
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unexpected tax changes predict subsequent periods of volatile structural shocks to output.
Since these are structural shock variances, this correlation is not simply output moving
endogenously following tax changes. In this case, economic theory can be helpful. ? merge
an incomplete markets model with a New Keynesian model to capture the U.S. tax and
transfer system and show that changes to tax rates (which would be tax shocks in this
empirical setting) have only negligible effects on aggregate volatility. This result holds for
both the level and intercept of the tax schedule. The intuition is that while changes in tax
rates alter labour supply or investment decisions, they do not do so differentially across the
business cycle, and thus have little effect on volatility. This result is fully consistent with
the zero co-persistence uncovered by TVV-ID and BP, while inconsistent with the strong
positive relationship of MR. TVV-ID in turn provides empirical support for their structural
model, by obtaining similar findings based on statistical properties of the macroeconomic
data.

The facts detailed above are central in distinguishing between TVV-ID and the MR
approach. The autocovariances implied by TVV-ID are more consistent with the higher
moments theory predicts for tax and output shocks. They illustrate the information that
TVV-ID, by virtue of selecting a rotation of the shocks that is additionally consistent with
such higher moments of the data, leverages to rule out rotations like that of MR. The same
is true for the FEVDs reported above and the paths of the shock variances discussed below.

The two “zero” autocovariances also provide an economic reason for why the rank con-
dition for identification should hold. The matrix of autocorrelations in Table 3 is a rescaled
subset of Mt,t−1, which Theorem 1 requires to have rank of at least 2, with no proportional
rows. If each structural variance is persistent, then inserting these two zero co-persistences
implies that the rows corresponding to σ2

T,t and σ2
Y,t are linearly independent (so rank is at

least 2). Unless σ2
G,t is almost perfectly predicted by one of σ2

T,t−1, σ2
Y,t−1 but not at all by

the other, the σ2
G,t row also cannot be proportional to either of these linearly independent

rows. The same is true for Mt,t−1 as a whole, so identification holds. Thus, the seemingly
abstract statistical conditions applied to Mt,t−1 can have clear economic interpretations.

In contrast to the higher moments of TVV-ID, MR use the RR shocks as external in-
struments to identify tax shocks. As discussed in ?, like standard instrumental variables,
such proxies must be both relevant and exogenous. I test the relevance condition using the
first-stage F−statistic under the alternative assumptions of either homoskedasticity or het-
eroskedasticity, where the critical values are F > 10 (?) or F > 23 (?), respectively. The
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corresponding F−statistics are 4.13 and 1.76, so weak identification cannot be rejected.28,29

It is also possible to test the exogeneity of MR’s instrument. Under the assumption that
the TVV-ID estimates are valid, I regress the RR proxy on ε̂t and test the hypotheses that
coefficients on εGt and εYt are zero. The test rejects at the 5% level for the shocks jointly,
driven by a significant negative relationship with εYt . After a Bonferroni-Holm adjustment
to account for identification pre-tests, as discussed above, these tests still reject at the 10%
level.30 This test is conditional on the parameters identified via TVV-ID, and thus assumes
that the identifying conditions for TVV-ID hold, in order to test the MR assumptions. How-
ever, these assumptions were verified; furthermore, the results are very similar using the BP
shocks, suggesting they are robust to small changes in the estimated structural parameters.
Table 8 in the Supplement repeats both the relevance and exogeneity tests for the alternative
narrative measures considered by MR; the findings are robust. The rejection of exogeneity
parallels the previous finding of correlation between the variance of output shocks and the
variance of tax shocks. It appears that despite careful construction, the narrative proxy ex-
hibits counter-cyclical behaviour. Given the need to parse political motivations behind tax
changes in order to classify them in RR, it is possible that in an effort to avoid pro-cyclicality,
the time series may over-omit ideologically-motivated events that might appear pro-cyclical.
The strong negative relationship between the instrument and output shocks implies that, for
a tax cut, the estimated impact on output is likely biased upwards, which is consistent with
the large multipliers MR recover. ? use a similar methodology, but with non-fiscal proxies
that they confirm satisfy both relevance and exogeneity conditions, and find much smaller
multipliers.

4.4 Structural shocks and the narrative record

The fiscal shocks that I recover also match the narrative record well and cast light on partic-
ularly important policy episodes. First, I describe how the analytical relationship between
ξT and θY can lead MR to differ in decomposing observed comovements into tax shocks or
output shocks. I then characterize the most important tax episodes over the sample regard-

28These results are at odds with the reliability measure MR report. This measure is asymptotically
equivalent to the R2 associated with the instrument. It can only be computed based on estimated structural
shocks; instrument validity is assumed to obtain these. The F−statistic is more informative since thresholds
based on the bias of IV estimators are available. Additionally, the reliability statistic makes assumptions on
the form of measurement error.

29While the instruments considered here appear weak, ? focus on the impact of marginal tax rates and
construct an alternative instrument based on the RR narrative shocks, scaled based on marginal tax rate
changes, which appears to be a strong instrument for the tax rate changes they consider.

30Additionally, adjusting inference to account for ε̂t being a generated regressor following ? leaves test
statistics changed by at most 0.01. These exogeneity test results are also surprisingly robust to alternative
labelings of the tax shock, as shown in Table 9 of the Supplement.
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less of identification approach, mostly reforms of the 1960s and 1970s and the Bush tax cuts.
Next, I describe how, as a result of how they estimate ξT and θY , TVV-ID and MR differ
in their classification of key episodes as tax versus output shocks; most strikingly, TVV-ID
characterizes the 1981-82 recession as mainly an output shock, while MR explains it using a
tax shock. The same discrepancies appear when analyzing variance paths of the shocks.

Both BP and MR use external information to supply identifying restrictions to identify
the model, with BP calibrating θY and MR estimating ξT . As argued in the previous section,
there is reason to doubt this estimate of ξT . In a bivariate version of the baseline model
without spending, there is a simple analytical relationship between the parameters θY and
ξT . In particular, define the bivariate model as

ηbit = Hbiεbit , E
[
ηbit η

bi′

t

]
= Σbi =

[
σ2,bi
ηT

σbi

σbi σ2,bi
ηY

]
.

This essentially coincides with the “simple fiscal rule” case in ?. The instantaneous effect of
taxes on output is given by

ξbiT =
θbiY σ

2,bi
Y − σbi

θbiY σ
bi − σ2,bi

T

, (14)

which, after normalization, is equivalent to the result in equation (11) in ?. Given the
empirical properties of ηbit , ξbiT and θbiY are inversely related. Figure 6 plots the value of ξbiT as
a function of θbiY , with the point on the curve chosen by each identification scheme marked.
While TVV-ID chooses a point near zero, with BP’s θY implying a mildly negative response,
MR’s estimate is strongly negative, −0.35. TVV-ID allows the data internal to the model,
including the higher moments discussed above, to choose the point on this curve. However,
both other approaches, by choosing a point externally, eliminate all but one possible rotation,
and in the case of MR, this rotation may have undesirable implications. In particular,
since it implies such a large positive comovement through the automatic stabilizer effect,
it means that episodes featuring a negative comovement between tax and output will be
mostly explained by the model as a tax shock, while TVV-ID will interpret them as some
combination of a tax shock and an output shock. As discussed below, the latter appears
more consistent with the narrative of the U.S. macroeconomy.

Turning to the narrative record, I compare how TVV-ID and MR interpret important
episodes as tax and output shocks to assess which rotation of the structural shocks is more
consistent with the narrative economic evidence. The spending series are virtually identical,
so I defer discussion to the Supplement; I omit the BP series, since they are quite similar to
TVV-ID. Section 1.2 of the Supplement plots the shocks and discusses in detail all periods
with substantial discrepancies between the alternative tax and output shocks. I summarize
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Figure 6: Automatic stabilizers and the tax multiplier

The curve plots ξbiT as a function of θbiY , equation (14), using the BP parameters to compute reduced form
moments absent spending shocks (other models imply virtually identical curves). The red circles indicate
the value on the curve chosen by each identification scheme.

key findings here, which offer insights into the plausibility of the two sets of shocks.
Before discussing discrepancies though, there are some episodes that are important for

identification, no matter the identification approach. There are 7 common shocks amongst
the 10 largest magnitude shocks for both TVV-ID and MR. In chronological order, they are:

1951 Q1: Truman’s Revenue Act of 1950

1964 Q2: Johnson’s Revenue Act of 1964

1965 Q3: Continued effect of Revenue Act of 1964 or Excise Tax Reduction Act of 1965

1975 Q3: Ford’s Tax Reduction Act of 1975

2001 Q3: Bush’s Economic Growth and Tax Relief Reconciliation Act

2002 Q1: Bush’s Job Creation and Worker Assistance Act of 2002

2003 Q3: Bush’s Jobs and Growth Tax Relief Reconciliation Act

All of these shocks also correspond to important fluctuations in the variance paths of Figure
7, which constitute identifying variation for TVV-ID.31 Three of them are among the 18
observations that drive the negative relationship between ηY t and the instrument in MR’s
identification, including the second most influential such observation (2003 Q3).

There is one consistent theme throughout the periods of discrepancy considered. For cer-
tain key dates, events that TVV-ID interprets as negative output shocks register as positive
tax shocks in MR, and vice versa. This is due to the fact that ξT is near-zero in TVV-ID,
but strongly negative in MR. As noted above, this means that when tax revenues and output
move in opposite directions, MR is likely to attribute the episode to a tax shock, whereas
TVV-ID will explain it with a combination of opposite-signed tax and output shocks. The
most serious case of this is 1981 Q2, the onset of the 1981-82 recession, a clear case for a
negative output shock. However, MR puzzlingly attribute the recession to their third largest

31Except 1951 Q1, since, as the first observation, its variance is an initial condition in the EM algorithm.
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tax increase. Conversely, TVV-ID registers its third most contractionary output shock,
consistent with the macroeconomic narrative. In brief, the cases include:

1971 Q1: MR register their sixth largest tax cut, coinciding with only modest changes to
depreciation rules, under conditions consistent with an expansionary output shock.

1974 Q3: MR register their fifth largest tax increase, with no recognized policy change,
under conditions more consistent with a contractionary output shock.

1978 Q2: MR register their eighth largest tax cut, with no recognized policy change, to
help explain a large output boom.

1981 Q2: MR register their third largest tax cut to explain the 1981-82 recession, while
TVV-ID recovers its third most contractionary output shock.

1990 Q4: MR register a large tax increase, with no recognized policy change, to help repli-
cate the trough of the 1990 recession.

2001 Q3: MR put the 9/11 output shock on par with the trough of the five-times-deeper
1980 recession in order to offset the effect of a contemporaneous tax cut.

While certain anomalies also appear in the TVV-ID shocks, the majority of surprising results
arise in the MR shocks, and can generally be linked to the substantially negative ξT .

Finally, I compare filtered paths of structural variances for each set of shocks, Figure 7, to
the same narrative record. Since the AR(1) SV estimator fits variance paths to the data, these
are auxiliary identifying moments for my estimate for H. The variance paths are generally
similar across approaches, particularly TVV-ID and BP, with two notable exceptions for
MR, which are circled on the plots. First, MR registers spikes in the variance of tax shocks
in the late 1970s and early 1980s, commensurate with its lower variance in output shocks at
those times. Based on the narrative above and additional events detailed in the Supplement,
this further establishes the tendency of MR to interpret likely output shock variation as tax
shock variation. Second, this rotation of shocks registers a high variance period for output
shocks in the early 2000s, following the 2001 recession, nearly as pronounced as that of
the early 1980s, a period widely recognized as considerably more volatile. Separately, these
variance paths may be objects of economic interest; the variances for both tax and spending
shocks can be seen as measures of respective policy uncertainty, while the output variance
path traces well the familiar narrative of the Great Moderation.32,33

32Note, however, that the variance of forecast errors is not necessarily a natural analog to true “uncertainty”,
but is frequently discussed as such, see for example ?.

33Interestingly, spending “uncertainty” peaks during the Korean War, various periods of the Vietnam war,
and again with Afghanistan/Iraq.
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Figure 7: Paths of structural shock variances

Standardized filtered variance paths estimated via TVV-ID or fitting an AR(1) SV model to ? and ?
structural shocks. Dates of key discrepancies are circled.

5 Conclusion

This paper presents a general argument that structural shocks can be identified via time-
varying volatility. The previous literature offers identification arguments based on a path
of variances available for only a handful of parametric models of the variance process. My
identification approach makes minimal assumptions on the variances as a stochastic process.
This argument highlights a novel channel of identification based on heteroskedasticity that
frees the researcher from needing to assume a particular functional form (or, indeed, any
functional form) to obtain identifying moments. On the other hand, this also empowers
researchers to develop new parametric models and approaches in contexts exhibiting time-
varying volatility without needing to re-establish identification for each. Based on extensive
simulations, one such novelly identified model, an AR(1) SV process, appears robust to
misspecification and well-suited for applied work; fully non-parameteric estimators struggle
in small samples. Economic information commonly used to structurally identify such models
now need only be used to label the shocks identified by TVV-ID. I propose a simple test of
the identification conditions based only on reduced form moments. I provide a step-by-step
guide for empirical researchers to exploit TVV-ID.

I use my methodology to estimate fiscal multipliers. I estimate peak multipliers of 0.86 for
tax cuts and 0.75 for spending. Cumulative multipliers reach 2.06 and 0.87 respectively after
20 quarters. I further find that tax shocks explain substantial variation in output at longer
horizons, up to 22%. The spending multipliers reaffirm most previous results, including
?, ?, ?, and ?. The larger tax multipliers of ? can easily be reconciled with TVV-ID by
adjusting their calibrated automatic stabilizer effect to the value I estimate based on TVV-
ID. This value, about 1.6, is remarkably similar to the estimate of ?. I illustrate that the
higher moments exploited by TVV-ID for identification have real economic content, and are
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consistent with theoretical work, including ?. In contrast, the estimates of ?, which imply
a much larger tax multiplier, can be ruled out based on these moments. I also show that
their instrument for fiscal shocks does not pass tests for validity. In addition, I highlight
policy episodes that are key to identifying tax multipliers, and argue that the shocks implied
by TVV-ID are more consistent with the narrative record than those of ?. I thus provide
new evidence, including higher moments, to reject some of the largest tax multipliers found
in the literature, while offering support for the increasing consensus on multipliers closer to
unity.
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A Proofs

A.1 Derivation of Proposition 1

Proof. I start with
Et,s [ζt | σt,Ft−1] = L (H ⊗H)Gσ2

t .

Since vt was shown to be a martingale difference sequence and Et [vtv
′
t] <∞ (by Assumption

C),
covt,s (vt, v

′
s) = 0, s 6= t.

This also implies that in the signal-noise decomposition, (5), vt is white noise. Using this
fact, Assumption B, Assumption C, and the decomposition of ζt above, it is immediate that,
for s 6= t,

Et,s [ζtζ
′
s] = L (H ⊗H)GEt,s

[
σ2
t σ

2′

s

]
G′ (H ⊗H)′ L′ (15)

+ L (H ⊗H)GEt,s
[
σ2
t v
′
s

]
+ Et,s

[
vtσ

2′

s

]
G′ (H ⊗H)′ L′.

By the law of iterated expectations, Assumption A.1 implies that

Et,s
[
Σt | σ2

s

]
= Et,s

[
εtε
′
t | σ2

s

]
, t ≥ s.

This, in turn, by the law of iterated expectations, implies that

Et,s

[
vec (εtε

′
t − Σt)σ

2′

s

]
= 0, t ≥ s.

Thus, setting t > s, the third term in (15) vanishes, leaving

Et,s [ζtζ
′
s] = L (H ⊗H)GEt,s

[
σ2
t σ

2′

s

]
G′ (H ⊗H)′ L′ + L (H ⊗H)GEt,s

[
σ2
t v
′
s

]
. (16)

Finally, I can rewrite (16) as

L (H ⊗H)
(
GEt,s

[
σ2
t σ

2′

s

]
G′ +GEt,s

[
σ2
t vec (εsε

′
s − Σs)

′])
(H ⊗H)′ L′

= L (H ⊗H)GM̃t,s (H ⊗H)′ L′ (17)
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where M̃t,s = Et,s
[
σ2
t σ

2′
s

]
G′ + Et,s

[
σ2
t vec (εsε

′
s − Σs)

′]. M̃t,s is an n × n2 matrix. Since the
same arguments can be applied to show that

Et [ζt]Es [ζt]
′ = L (H ⊗H)

(
GEt

[
σ2
t

]
Es
[
σ2
s

]
G′
)

(H ⊗H)′ L′,

it is immediate that additionally

covt,s (ζt, ζ
′
s) = L (H ⊗H)GMt,s (H ⊗H)′ L′, t > s,

where
Mt,s = M̃t,s − Et

[
σ2
t

]
Es
[
σ2′

s

]
G′.

A.2 Proof of Theorem 1

I begin by proving two lemmata for properties of the singular value decomposition (SVD).34

Definition 1. Define

1. U1DUU
′
2 = V , a reduced SVD, with V n1 × n2, DU d× d,35

2. Ci is a full rank matrix, mi × ni,mi ≥ ni,

3. F = C1V C
′
2, with rank (F ) = d.

First, I show that a linear relationship exists between the singular vectors of V (U1, which
will later correspond to an unobservable object) and singular vectors of F (which will later
correspond to an observable object).

Lemma 1. There exists a matrix Γ1 such that C1U1Γ1 is an orthogonal matrix of singular
vectors from an SVD of F .

Proof. Define Q1R1 = C1U1, a QR decomposition, and similarly for U2C2. Then F can be
factored as F = Q1R1DUR

′
2Q
′
2. The upper-triangular matrix R1 is d× d and full rank since

C1U1 is full rank d (rank (R1) ≥ rank (Q1R1) = rank (C1U1) ≥ rank (F ) = d). Now take
34For a real-valued matrix V , the singular value decomposition V = U1DUU2 decomposes V into two

orthogonal matrices U1, U2, and a non-negative diagonal matrix DU . The “singular vectors”, columns of U1

and U2, are eigenvectors of V V ′ and V ′V respectively. The non-zero singular values (diagonal of DU ) are
square-roots of the non-zero eigenvalues of V V ′ and V ′V .

35A reduced SVD reduces the dimension of U1, DU , U2 to drop singular values equal to zero and their
corresponding arbitrary singular vectors.
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another singular value decomposition, this time of R1DUR
′
2, so W1DRW

′
2 = R1DUR

′
2. Then

F can be factored as F = (Q1W1)DR (W ′
2Q
′
2), which is itself a reduced SVD, since it can

easily be shown that DR are singular values of F , and the corresponding vectors are clearly
orthogonal. To obtain Γ1, recall Q1R1 = C1U1 and note Q1R1

(
R−1

1 W1

)
= Q1W1, singular

vectors of F , so Γ1 = R−1
1 W1, which is guaranteed to exist.

Definition 2. Define S1DSS
′
2 = F , a reduced SVD.

I now establish the uniqueness of an SVD of F up to orthogonal rotations, accounting
for the possibility of repeated eigenvalues.

Lemma 2. The SVD of F is unique up to rotations characterized by F = S1B1DSB2S
′
2

where Bi is orthogonal.

Proof. For non-repeated singular values in DS, the corresponding singular vectors are unique
up to sign, and the space of vectors corresponding to any k repeated singular values corre-
sponds to linear combinations of any k such vectors. Thus any alternative reduced singular
value decomposition of F can be written as F = (S1B1)DS (B2S

′
2), since Bi can incorporate

any such sign changes or linear combinations. Since SiBi must be orthogonal (by defini-
tion of an SVD), B′iS ′iSiBi = Id. Then since Si is orthogonal, B′iBi = Id, so Bi is itself
orthogonal.

Definition 3. Define

1. C1 = (H ⊗H)G, n2 × n with rank n, C2 = (H ⊗H) , n2 × n2 with rank n2,

2. G is a selection matrix such that vec (ADA′) = (A⊗ A)Gdiag (D),

3. S̃1 = C1Ũ1 = C1U1Γ1B1, singular vectors from any reduced SVD of F ,

4. V is n× n2 and has no proportional rows,

5. rank (V ) = d ≥ 2.

Using the relationships I have derived in Lemma 1 between an SVD of the observable F
and an SVD of the unobservable V , I now establish conditions under which H is uniquely
determined from singular vectors of F . Using Lemma 2, I show that this is true even in the
case of repeated singular values.

Proposition 3. H is uniquely determined up to column order from the equations F = C1V C
′
2

provided V has no proportional rows.

42



Proof. U1 is n × d. Note C1U1 =
[
vec
(
Hdiag

(
U

(1)
1

)
H ′
)
, . . . , vec

(
Hdiag

(
U

(d)
1

)
H ′
)]

,
where d ≥ 2 (this follows from the structure of C1). By the proportional row condition
on V , for any j, there exists at least one pair k, l such that U (l)

1,j/U
(l)
1,i 6= U

(k)
1,j /U

(k)
1,i for all

i = 1, 2, ..., n, i 6= j (since if V has no proportional rows, its left singular vectors also
have no proportional rows). By an argument due to ? (the underlying mathematical re-
sult also features in ? and ?), H(j) is unique up to scale and sign as the right eigenvec-

tor of Hdiag
(
U

(l)
1

)
H ′
(
Hdiag

(
U

(k)
1

)
H ′
)−1

corresponding to the jth eigenvalue, provided

U
(l)
1,j/U

(l)
1,i 6= U

(k)
1,j /U

(k)
1,i .

The same argument applies to C1Ũ1 where Ũ1 = U1Γ1B1, provided Ũ1 has no proportional
rows. To establish this, take any two rows in U1 that are not proportional rows; multiplying
by full rank Γ1 cannot decrease their rank (so they cannot become proportional). The same
holds true for multiplication by the orthogonal B1. Thus H remains the unique solution
to C1Ũ1 up to column order (ordering of eigenvalues); for any permutation of H (ordering
of eigenvalues), the scale of each column (eigenvector) is pinned down by the unit diagonal
normalization of H. In other words, H is unique up to permutation and the associated
renormalization (rescaling eigenvalues to maintain the unit diagonal of H).

Proposition 3 is rewritten in terms of the identifying equations, setting V = Mt,s and F =

covt,s (ζt, ζ
′
s) (ignoring L, which simply deletes duplicated equations) to yield Theorem 1,

noting that the requirements imposed on U1 imply the stated conditions on Mt,s. H is
identified up to column permutations and the associated renormalization to maintain a unit
diagonal. In other words, H is identified up to transformations given by HPi × id (HPi),
where Pi is a permutation matrix.

A.3 Proof of Corollary 1

Proof. Corollary 1 follows directly from Proposition 4 above for any column j for which a
pair k, l exists such that U (l)

1,j/U
(l)
1,i 6= U

(k)
1,j /U

(k)
1,i for all i = 1, 2, ..., n.

A.4 Proof of Theorem 2

Proof. Theorem 2 is based on the argument underlying Proposition 3. Note that Et [ζt] =

Lvec (Hdiag (Et [σ2
t ])H

′) = L (H ⊗H)GEt [σ2
t ] = LC1Et [σ2

t ] . Recall that the equations
used to identifyH in Proposition 3, S1 = C1U1, have identical form (vec

(
Hdiag

(
U

(i)
1

)
H ′
)
, i =

1, 2, . . . , n). Thus (ignoring L, which simply deletes duplicated equations), the moment Et [ζt]

augments one additional column of identifying equations, so H may now be identified from
C1

[
U1 Et [σ2

t ]
]
≡ C1Ū . Now, for identification to hold, there must be at least one k, l
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pair for j such that Ū (l)
j /Ū

(l)
i 6= Ū

(k)
j /Ū

(k)
i for all i = 1, 2, ..., n + 1 i 6= j. The “no propor-

tional rows” condition that applied to U1 in Theorem 1 now applies to Ū ; this condition
will hold if it is also satisfied by M̄t,s ≡

[
Mt,s Et [σ2

t ]
]
. Note that the same logic can be

extended to adding additional autocovariances, etc., in each case adding columns to Ū , and
thus decreasing the plausibility of the condition failing.

A.5 Proof of Corollary 2

Proof. Corollary 2 follows directly from Theorem 2 by noting that the rank
(
M̄t,s

)
≥ 2 is

satisfied given even one dimension of time-varying volatility and re-arranging the condition
under which row proportionality fails.

A.6 Proof of Proposition 2

Remark. The relationship between M̃t,t−p, Mt,t−p, and M̄t.t−p =
[
Mt,t−p E [σ2

t ]
]
, which

suggests the use of M̃t,t−p for the identification test, warrants further discussion. Given
the broadest identification result, Theorem 2, applies rank conditions to M̄t.t−p, that is the
ideal target for a test. However, given the structure of the problem, there is no reduced
form object that inherits the rank of M̄t.t−p directly. However, note that rank

(
M̄t.t−p

)
=

rank
([

M̃t,t−p E [σ2
t ]
])

, sinceMt,t−p is a linear combination of M̃t,t−p and E [σ2
t ]. It follows

that rank
(
M̃t,t−p

)
≤ rank

(
M̄t.t−p

)
and similarly rank (Mt,t−p) ≤ rank

(
M̄t.t−p

)
. This raises

the question of whether M̃t,t−p or Mt,t−p provides the better indication of the rank of M̄t.t−p.
The rank of each will be at most 1 less than that of M̄t.t−p. However, Mt,t−p will have
lower rank whenever there is a homoskedastic series, a series with non-persistent stochastic
variance, or two series whose variances constitute a linear transformation. Conversely, in
each of these cases, the rank of M̃t,t−p will be equal to that of M̄t.t−p.36 Thus, focusing on
M̃t,t−p for rank tests allows for a more powerful test of identification in these key settings.

Proof. I begin by showing rank
(
E
[
ζtζ
′
t−p
])

= r if and only if rank
(
M̃t,t−p

)
= r. Recall

E
[
ζtζ
′
t−p
]

= L (H ⊗H)GM̃t,t−p (H ⊗H)′ L′ (see A.1). The elimination matrix L merely
deletes repeated rows (and L′ columns), so cannot impact rank. Thus it suffices to work
with (H ⊗H)GM̃t,t−p (H ⊗H)′. Denote C = (H ⊗H), which is square with full rank
n2, since H is full rank n. G is a full rank n2 × n matrix. First, if rank

(
M̃t,t−p

)
=

r, rank
(
GM̃t,t−p

)
= rank

(
M̃t,t−p

)
= r since G is rank n. Because C is full rank and

square, rank
(
CGM̃t,t−p

)
= rank

(
GM̃t,t−p

)
= r, and likewise rank

(
CGM̃t,t−pC

′
)

= r.

36While cases with the opposite ordering exist, they do so only for nonlinear models.
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Thus, rank
(
M̃t,t−p

)
= r implies rank

(
LCGM̃t,t−pC

′L′
)

= r. Going the other way, if

rank
(
CGM̃t,t−pC

′
)

= r, then rank
(
CGM̃t,t−p

)
= r since C ′ is full rank and square. For

the same reason, it then follows that rank
(
GM̃t,t−p

)
= r. Because G has rank n, it further

follows that rank
(
M̃t,t−p

)
= r. Thus, rank

(
LCGM̃t,t−pC

′L′
)

= r implies rank
(
M̃t,t−p

)
=

r, so rank
(
E
[
ζtζ
′
t−p
])

= r if and only if rank
(
M̃t,t−p

)
= r.

This means that if rank
(
E
[
ζtζ
′
t−p
])

= r = n, then rank
(
M̃t,t−p

)
= n. In that case,

rank
(
M̃t,t−p

)
≥ 2 , satisfying the first identification condition in Theorem 2. Moreover,

since M̃t,t−p is n × n2, it is full rank, so it must have no proportional rows, satisfying the
second identification condition. M̄t.t−p must also satisfy the conditions of the theorem, since
its rank is weakly greater than that of M̃t,t−p.

A.7 Proof of Theorem 3

Proof. This is a direct restatement of a main result of ?. If ̂E
[
ζtζ ′t−p

]
is a consistent and

asymptotically normal estimator of E
[
ζtζ
′
t−p
]
, rank

(
E
[
ζtζ
′
t−p
])
< (n2 + n) /2 (which it is

because the maximum rank of M̃t,t−p is n) and the finite sample estimate ̂E
[
ζtζ ′t−p

]
is almost

surely full rank, then their Assumption 1 is satisfied. Then the Cragg-Donald statistic and
its limiting distribution are given in equation (9) of that paper.

A.8 Proof of Theorem 4

Proof. Since Ĥ p→ HP , ĤPi × id
(
ĤPi

)
p→ HPPi × id (HPPi) by the continuous mapping

theorem (since Pi is just a matrix of zeros and ones and id (·) simply inverts scalar entries
of Ĥ). If f (·) is continuous, then f

(
ĤPi × id

(
ĤPi

))
p→ f (HPPi × id (HPPi)), again by

the continuous mapping theorem. Since the norm ρ is also a continuous function of f (·),
similarly ∀Pi, Lf

(
Ĥ, Pi, f0

)
p→ Lf (HP , Pi, f0), proving the first part of the theorem. P̂

is defined as the permutation matrix minimizing Lf
(
Ĥ, Pi, f0

)
. Since by definition ∀Pi 6=

In, Lf (H, In, f0) < Lf (H,Pi, f0), there exists ε > 0 such that

∀Pi 6= In, ε < Lf (H,Pi, f0)− Lf (H, In, f0) .

Since ∀Pi, Lf
(
Ĥ, Pi, f0

)
p→ Lf (HP , Pi, f0), for any δ > 0 there exists T ∗ such that for

T > T ∗,
sup
Pi∈P

Pr
(∣∣∣Lf (Ĥ, Pi, f0

)
− Lf (HP , Pi, f0)

∣∣∣ > ε/2
)
< δ,
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and thus, since Lf (HP , P
∗, f0) = Lf (H, In, f0)

∀Pi 6= P ∗, Pr
(
Lf
(
Ĥ, Pi, f0

)
≤ Lf

(
Ĥ, P ∗, f0

))
< δ

so
∀Pi 6= P ∗, Pr

(
Lf
(
Ĥ, Pi, f0

)
> Lf

(
Ĥ, P ∗, f0

))
→ 1. (18)

Since P̂ is defined as the minimizer of Lf
(
Ĥ, Pi, f0

)
, (18) implies that P̂ p→ P ∗. This

establishes the second point of the theorem. Applying the continuous mapping theorem
again, Ĥlab = ĤP̂ × id

(
ĤP̂

)
p→ HPP

∗ × id (HPP
∗) = H, confirming the third point of the

theorem.
It remains to show that asymptotic inference on Ĥlab is unaffected by the labeling step,

in which P̂ is estimated. Let GT (x) denote the distribution of Ĥ around HP , so that

Pr
(
T 1/2

(
Ĥ −HP

)
≤ x

)
= GT (x) ,

and, by the asymptotic normality assumption on Ĥ, G (x) = limT→∞ GT (x) exists. Addi-
tionally, define

GiT (x) = Pr
(
T 1/2

((
Ĥ −HP

)
Pi × id

((
Ĥ −HP

)
Pi

))
≤ x

)
,

which is the distribution of a continuous function of
(
Ĥ −HP

)
. Then the distribution of

Ĥlab can be written as

Pr
(
T 1/2

(
Ĥlab −H

)
≤ x

)
=
∑
Pi∈P

Pr
(
Pi = P̂

)
GT (x) . (19)

To obtain the asymptotic distribution, taking the limit of (19) yields

lim
T→∞

Pr
(
T 1/2

(
Ĥlab −H

)
≤ x

)
=
∑
Pi∈P

lim
T→∞

(
Pr
(
Pi = P̂

)
GiT (x)

)
=
∑
Pi∈P

1 [Pi = P ∗] lim
T→∞

GiT (x)

= lim
T→∞

G∗T (x) ,

where the second equality uses the fact that the limits of both terms on the right hand
side exist and that P̂ is consistent for P ∗, and G∗T (·) is the distribution associated with
the permutation P ∗. Since G (x), the limiting distribution of

(
Ĥ −HP

)
, is Gaussian (by
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assumption), and GiT (x) is the distribution of a continuous function of
(
Ĥ −HP

)
, then

G∗ (x) = limT→∞ G∗T (x) can be obtained directly using the delta method. Note that the
function to which the delta method is applied consists simply of permutation and renor-
malization of the elements of Ĥ, so the labeling problem does not affect the asymptotic
distribution of Ĥlab, beyond accounting for permutation and renormalization.

While I do not pursue it here, it is straightforward to extend these results to discontinuous
f (·) (like several discussed in Section 5 of the Supplement) by establishing the consistency
of f (·) without using the continuous mapping theorem.
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