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Abstract—Identification via heteroskedasticity exploits variance changes
between regimes to identify parameters in simultaneous equations. Weak
identification occurs when shock variances change very little or multiple
variances change close to proportionally, making standard inference un-
reliable. I propose an F -test for weak identification in a common simple
version of the model. More generally, I establish conditions for validity
of nonconservative robust inference on subsets of the parameters, which
can be used to test for weak identification. I study monetary policy shocks
identified using heteroskedasticity in high-frequency data. I detect weak
identification, invalidating standard inference, in daily data, while intraday
data provide strong identification.

I. Introduction

UNOBSERVED structural shocks, like those in the struc-
tural vector autoregressions (SVARs) of Sims (1980),

are ubiquitous in economic models, where observed inno-
vations are related to structural shocks by a linear combi-
nation matrix. Economists frequently study the effects of
such structural shocks to identify causal relationships. A va-
riety of identification approaches to recover the structural
shocks exist, but identification via heteroskedasticity, which
does not require the researcher to impose assumptions on
the responses themselves, is increasingly popular in empiri-
cal work. Holding constant contemporaneous responses, this
methodology compares differences in innovation covariances
across regimes to identify those constant parameters as co-
efficients on the changing variances of the structural shocks.
The intuition dates from at least Fisher (1965). This identifi-
cation scheme is most popular in macrofinancial contexts but
has also been adopted in many other fields.1 However, little
work has addressed the possibility of weak identification in
these studies.
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1The macrofinance literature includes Rigobon (2003), Rigobon and Sack
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Eichengreen and Panizza (2016), Hébert and Schreger (2017), Nakamura
and Steinsson (2018), Wright (2012), and Gürkaynak, Kisacikoglu, and
Wright (2019). Examples in other fields include public finance (Jahn &
Weber, 2016), growth (Islam, Islam, & Nguyen, 2017), trade (Feenstra
& Weinstein, 2017; Lin, Weldemicael, & Wang, 2016), political econ-
omy (Khalid, 2016; Rigobon & Rodrik, 2005), environmental economics
(Gong, Yang, & Zhang, 2017; Millimet & Roy, 2016), agriculture and en-
ergy (Fernandez-Perez, Frijns, & Tourani-Rad, 2016), education (Hogan &
Rigobon, 2003; Klein & Vella, 2009), marketing Zaefarian et al. (2017),
and even fertility studies (Mönkediek & Bras, 2016).

The identifying variation is the difference in innovation
covariances across regimes. If the structural variances are in
fact the same across regimes, then so too are these reduced-
form covariances, and there is no identifying variation. More
subtly, if the structural variances all change by the same fac-
tor across regimes, there is also no new identifying informa-
tion, as the covariance matrices are just scalar multiples. Both
scenarios may lead to weak identification, if the variances
change by too little, or if they change (perhaps substantially)
by too similar a factor. The latter means that even if ample
heteroskedasticity is present, identification is not guaranteed.
The effects are akin to the more familiar weak instrumental
variables (IV) context, where an IV that offers little infor-
mation about an endogenous regressor leads to poor iden-
tification of the parameter of interest. As a result, multiple
sets of parameters may be almost observationally equivalent,
causing the asymptotic distribution of estimators to be non-
standard. Standard inference methods will be unreliable, as
will any empirical conclusions based on them. If not properly
detected and accounted for, this phenomenon can undermine
the credibility of empirical work.

I provide a framework for inference in models identified
via heteroskedasticity when weak identification causes stan-
dard methods to provide a poor approximation to the asymp-
totic distribution. First, I propose a straightforward method to
test for weak identification in an empirically common bivari-
ate case, where it is assumed that only one variance changes
across regimes. The model can be written as an IV regres-
sion using dummy variables for regimes. I propose a rule of
thumb of F > 23 for the heteroskedasticity-robust first-stage
F -statistic,

F =
�̂2

(∑T
t=1 Z2

t

)2

∑T
t=1 Z2

t v̂2
t

,

where Zt is an instrument constructed based on the observed
innovations and regime dummies, �̂ is the OLS estimator of
the coefficient in the first-stage regression of an innovation on
Zt , and v̂t are the corresponding OLS residuals (see section
IIB for details). Papers using IV report first-stage F -statistics
to support their results, based on Staiger and Stock (1997);
now this pretest can be reported for models identified via
heteroskedasticity.

In a fully general model, I establish conditions under which
the asymptotic distributions of common identification-robust
test statistics (K-statistic of Kleibergen, 2005; S-statistic of
Stock & Wright, 2000) may be more tightly characterized
when the object of interest is a subset of the parameter vector. I
derive primitive conditions under which all weakly identified
nuisance parameters are uniquely determined once values are
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ROBUST INFERENCE IN MODELS IDENTIFIED VIA HETEROSKEDASTICITY 511

specified for the parameter of interest under the null hypoth-
esis, meaning they may be concentrated out.2 I provide an
economic interpretation of the types of variance changes that
are compatible with this procedure. Significantly, these con-
ditions will often be satisfied in small models identified via
heteroskedasticity. Inference can thus proceed using a famil-
iar test statistic but potentially much smaller critical values.
These more tightly characterized confidence sets can be used
with the two-step procedure of Andrews (2018) to test for
weak identification. This procedure determines how much
lower the level of a robust confidence set must be before it is
contained by a strong identification confidence set to quantify
the strength of identification. Such tests would be conserva-
tive (likely prohibitively so) using robust sets for a subset of
the parameters computed using the only previously available
option, projection inference.

I demonstrate, in both data and empirically calibrated sim-
ulations, that weak identification does in fact cause stan-
dard inference approaches to perform poorly. I consider the
application of Nakamura and Steinsson (2018, henceforth
NS), who exploit higher variance in monetary policy shocks
around monetary policy announcements, compared to ordi-
nary days, to identify monetary policy shocks. I find that the
shocks are weakly identified in daily data, while intraday data
provide strong identification. In daily data, robust confidence
intervals for the effect of forward guidance are drastically
wider than their standard counterparts; in intraday data, con-
clusions are the same whether standard or robust inference
methods are used. In simulations based on the daily data, esti-
mates of the effect of monetary policy shocks are not well ap-
proximated by a normal distribution. Additional simulations
show that standard tests suffer accordingly from serious size
distortions and projection methods are severely undersized,
while the procedures I propose remain well sized.

With the tools I outline, research using heteroskedasticity
for identification can address concerns of weak identification
head-on. It is possible to verify the strength of identification
using these methods, much like it is now common practice to
do for IV following the work of Staiger and Stock (1997).

The paper is organized as follows. Section II presents the
model, shows how weak identification arises, and demon-
strates its effects on parameter estimates. Section III pro-
poses a pretest for weak identification in a simple bivariate
model commonly adopted in practice. Section IV outlines
standard robust inference results, establishes conditions on
proportional variance changes under which subset inference
can proceed using reduced critical values, describes a test
to detect weak identification, and reports simulation results.
Section V applies the methods to the data of NS. Section VI
concludes. Proofs are in the appendix.

I use the following standard matrix notation: Mi j denotes
the i jth element of matrix M; M· j denotes the jth column;

2A parameter is “concentrated out” from a test statistic by making it a
function of some other parameter, eliminating its influence on the limiting
distribution.

Mi· denotes the ith row; vech (M ) denotes the unique vector-
ization; PM = M

(
M ′M

)−1
M ′ denotes the projection matrix.

II. Strong and Weak Identification via Heteroskedasticity

In this section, I outline the model and identification ar-
gument. I provide intuition for when identification might fail
and illustrate the consequences analytically in an empirically
popular simple case. I then characterize weak identification
in the fully general model.

A. Identification and When It Might Fail

The observed data consist of an n × 1 vector of serially
uncorrelated mean-zero innovations ηt . These could be ob-
served (asset price changes) or as-if observed (residuals from
a consistently estimated VAR). While I focus on the time se-
ries setting, the results of this paper apply equally in cross-
sectional settings. Innovations are related to an n × 1 vector
of structural shocks, εt , by a time-invariant invertible matrix
H :3

ηt =

⎛
⎜⎝

η1t
...

ηnt

⎞
⎟⎠ =

⎡
⎢⎢⎢⎣

1 H12 · · · H1n

H21 1 · · · H2n
...

...
. . .

...

Hn1 Hn2 · · · 1

⎤
⎥⎥⎥⎦
⎛
⎜⎝

ε1t
...

εnt

⎞
⎟⎠ = Hεt . (1)

The diagonal of H is unit-normalized without loss of gener-
ality. The object of interest is generally elements of H , which
represent the contemporaneous responses of the innovations
to structural shocks. In contrast to the standard SVAR identi-
fication problem, assume there are two-regimes for ηt . While
I focus on the two-regime case, most of the following results
can be directly extended to allow for additional regimes. For
consistency with my empirical application to NS, I denote
regimes C and P, which contrasts “Control” observations and
“event” observations, arguing that on the event days, when,
for example, a Policy announcement is made, the relevant
structural shocks are likely to be more volatile than on a typ-
ical day. Assumption 1 details basic assumptions.

Assumption 1. For all t = 1, 2, . . . , T and regimes r ∈
{C, P},

1. H is fixed over time, invertible, and has a unit-diagonal,
2. E

[
εt | t ∈ r,Ft−1

] = 0, E
[
εtε

′
t | t ∈ r,Ft−1

] = �ε,r ,
Ft−1 = {ε1, . . . , εt−1},

3. �ε,r is diagonal.

The first point imposes necessary assumptions on H .
The second and third jointly state martingale difference se-
quence and orthogonality assumptions as well as covariance

3Note that Rigobon and Sack (2003, 2004) consider bivariate models
with three structural shocks. These models can only be identified with
additional application-specific structural assumptions. Instead, I focus on
models where identification follows exclusively from heteroskedasticity.
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512 THE REVIEW OF ECONOMICS AND STATISTICS

FIGURE 1.—DISTINGUISHING SIMULTANEOUS RESPONSES USING HETEROSKEDASTICITY

Observations are simulated to correspond to the illustration in figures 1 and 2 of Rigobon and Sack (2004) and represent hypothetical innovations to asset prices and interest rates in different regimes.

stationarity of ηt within regimes. Consequently, the covari-
ance of ηt for regime r is

�η,r = E
[
ηtη

′
t |t ∈ r

] = H�ε,rH ′, r ∈ {C, P} , (2)

which is consistently estimated by 1
Tr

∑
t∈r ηtη

′
t , where Tr is

the number of observations from regime r. I treat the regimes
C, P as known; in practice, they are frequently chosen using
external information about volatility, like monetary policy
announcement dates. This leaves H , �ε,C , and �ε,P to be
identified.

A single covariance of ηt yields
(
n2 + n

)
/2 equations with

n2 unknowns between H and the shock variances. However,
adding a second regime doubles the number of identifying
equations to n2 + n, while only adding n new shock variances.
Thus, with two regimes, the equations in (2) are potentially
just identified. Rigobon (2003) establishes conditions under
which these equations do indeed have a unique solution, laid
out in proposition 1. Let σ2

ε,r denote the diagonal of �ε,r .

Proposition 1. Under assumption 1, H is globally identified
from equation (2) up to column order provided the rows of[
σ2

ε,C σ2
ε,P

]
are not proportional.

Under additional assumptions, distinguishing the columns
of H , point identification holds. To that end, I adopt assump-
tion 2, an empirically common choice to this effect:

Assumption 2. For shock of interest i, σ2
εi,P/σ2

εi,C > σ2
ε j,P/

σ2
ε j ∀ j �= i; additional columns of H are ordered based on

some other statistical rule.

“The shock of interest” refers to the shock whose effects
the econometrician seeks to recover. The second part of the
assumption is required to point-identify H when n > 2 and
simply requires some ordering. Many choices are possible
(such as continuing to order according to σ2

ε j,P/σ2
ε j,C).

Figure 1 presents the intuition of the identification ap-
proach. The first two panels follow the example from Rigobon
and Sack (2004), who identify the response of asset prices to
monetary policy via variance changes on policy announce-

ment days. The first panel plots hypothetical data for ηt , as-
set price changes against interest rate changes, on “control”
days—those with no monetary policy announcement. The
lines represent the monetary policy and asset price response
curves—the coefficients that the econometrician wishes to
identify. Due to the simultaneity of the problem, with two
structural shocks affecting ηt contemporaneously, neither re-
sponse can be identified. The second panel plots what might
happen on days with monetary policy announcements if the
variance of the policy shock increases dramatically. Now, due
to the increase in volatility in the monetary policy shock, the
data begin to trace out the asset price response. Since there
is still nonnegligible volatility in the second structural shock,
the response cannot be identified from the second regime
alone, but it can be identified by contrasting the information
contained in both regimes.

What happens when the condition in proposition 1 is close
to failing? First, the variances might not change much at all
across regimes. For example, if most of the information con-
tained in monetary policy announcements is anticipated, the
volatility may not increase much on announcement days over
its average level. This would make the two variance regimes
close to identical. The third panel of figure 1 depicts this con-
cern; the variance of the monetary policy shock increases, but
the cloud of data does not clearly trace out the asset price re-
sponse curve. The policy regime offers little additional iden-
tifying information over the control sample. Second, all vari-
ances could change together. In the Great Moderation, many
volatilities decreased simultaneously, while during the Great
Recession and associated financial crisis, many volatilities
increased together. On announcement days, there may be in-
creased volatility in more than one shock if there are mul-
tiple dimensions of monetary policy shocks. The closer the
comovement of variance is, the less identifying information
the second variance regime provides about H . The final panel
of figure 1 depicts this concern. There is a large increase in
volatility in both dimensions, and the data do not trace the
curve. Again, the policy regime offers little additional iden-
tifying information.
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ROBUST INFERENCE IN MODELS IDENTIFIED VIA HETEROSKEDASTICITY 513

Turning to estimation, the identification approach is easily
implemented via GMM. Defining the vector θ ∈ � as the
elements of H , �ε,C , and �ε,P, equations (2) can be written
as a combined set of moments (as in Rigobon, 2003):

φ (θ, ηt ) =
[

1 [t ∈ C] vech
(
ηtη

′
t − H�ε,CH ′)

1 [t ∈ P] vech
(
ηtη

′
t − H�ε,PH ′)

]
. (3)

Under assumption 1, E [φ (θ0, ηt )] = 0 at θ0, the true param-
eter value. The GMM objective function is defined as

ST
(
θ; θ̃

) =
[
T −1/2

T∑
t=1

φ (θ, ηt )

]′

WT
(
θ̃
) [

T −1/2
T∑

t=1

φ (θ, ηt )

]
,

(4)

where θ̃ is the parameter used to compute the weighting
matrix, WT (·). For the purposes of this paper, I focus on
a continuous updating estimator (CUE) with the efficient
weighting matrix. This means θ̃ = θ and WT (θ) = �T (θ)−1,
�T (θ) = 1

T

∑
φ (θ, ηt ) φ (θ, ηt )

′, so for compactness, I write
ST (θ) ≡ ST (θ; θ). Since in practice there may also be het-
eroskedasticity within regimes, the estimator can be thought
of as computing the average variance in each regime, which
is then used for identification.4

To characterize the asymptotic distribution of GMM esti-
mates, I adopt the regularity conditions of assumption 3:

Assumption 3. Assume

1. The process ηt is ergodic and stationary within regimes.
2. E [vech(ηtη

′
t ) vech(ηtη

′
t )

′ | t ∈ r] < ∞ for r ∈{P,C}.
3. Tr/T = τr > 0, for Tr = |{t : t ∈ r}| , r ∈ {P,C}.
4. � is compact.

The first two points allow for the application of a mar-
tingale central limit theorem within each regime. The first
point strengthens the covariance stationarity assumed within
regimes in assumption 1.2. The second is a standard moment
existence condition. The third point guarantees that the sam-
ple size within each regime increases at the same rate as the
overall sample size. Under these assumptions, if addition-
ally θ0 is the unique solution to equation (3), standard argu-
ments show that the GMM estimates of θ will be consistent
and have the standard asymptotically normal GMM limiting
distribution.

However, in contexts characterized by weak identification,
it is this final assumption—the uniqueness of the solution to
equation (3)—that is in doubt. I now consider formally how
that condition may fail and the consequences when it does.

4While the literature has exclusively assumed that εt are serially uncor-
related (unconditionally and within regimes), consistent with the notion of
structural shocks, in principle the expectations of ηtη

′
t could be replaced

with (consistent) heteroskedasticity and autocorrelation-robust (HAR) vari-
ance estimators, should a researcher wish to consider a model with persistent
shocks.

B. The Asymptotic Distribution in a Simple Case

Many empirical papers make the additional assumption
that only the variance of the shock of interest changes across
regimes (e.g., NS; Hébert & Schreger, 2017; Rigobon & Sack,
2004; Wright, 2012). Under this assumption, the parameter
of interest can be estimated in closed form via analogy to
IV. This means that the effects of weak identification can
be clearly illustrated. Throughout the paper, I refer to this re-
stricted model as the simple case and restrict attention therein
to models with n = 2.5 I assume that the first shock is the one
with constant variance, σ2

ε1,r ≡ σ2
ε1; H12 is the parameter of in-

terest, measuring the impact of ε2t on η1t . This aligns with NS
(and many other empirical papers) where the shock of inter-
est is some policy shock whose variance changes. In NS, H12

represents the impact of monetary policy shocks on Treasury
forward rates.

Following Rigobon and Sack (2004), H12 can be recovered
in closed form:

ση1η2,P − ση1η2,C

σ2
η2,P − σ2

η2,C

= H12
(
σ2

ε2,P − σ2
ε2,C

)+ H21
(
σ2

ε1,P − σ2
ε1,C

)(
σ2

ε2,P − σ2
ε2,C

)+ H2
21

(
σ2

ε1,P − σ2
ε1,C

)
= H12�

(
σ2

ε2

)
�
(
σ2

ε2

) = H12, (5)

where

�η,r =
(

σ2
η1,r

ση1η2,r

ση1η2,r σ2
η1,r

)
,

and the � (·) operator takes the difference in the argument
between regimes. If in fact σ2

ε1,P �= σ2
ε1,C , then H12 will be

misidentified, since the �
(
σ2

ε1

)
terms will not vanish and

equation (5) does not hold.
I now move from H12, identified in population, to possible

estimators, Ĥ12. The sample analogs from the left-hand side
of equation (5) can be simply estimated:

Ĥ12 = �
(
σ̂η1η1

)
�
(
σ̂2

η2

) =
1

TP

∑
t∈P η1tη2t − 1

TC

∑
t∈C η1tη2t

1
TP

∑
t∈P η2

2t − 1
TC

∑
t∈C η2

2t

.

However, this estimator is equivalent to that of an instrumen-
tal variables problem (Rigobon & Sack, 2004):

1
TP

∑
t∈P η1tη2t − 1

TC

∑
t∈C η1tη2t

1
TP

∑
t∈P η2

2t − 1
TC

∑
t∈C η2

2t

=
1
T

∑T
t=1 η1t Zt

1
T

∑T
t=1 η2t Zt

, (6)

5In principle, the single-variance change assumption is compatible with
larger models (with similar results) but is rarely combined with them in
practice.
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514 THE REVIEW OF ECONOMICS AND STATISTICS

where

Zt =
[

1 (t ∈ P) × T

TP
− 1 (t ∈ C) × T

TC

]
η2t . (7)

Thus, Ĥ12 can also be estimated via IV or TSLS, using

first stage: η2t︸︷︷︸
X

= �Zt︸︷︷︸
�Z

+vt ,

second stage: η1t︸︷︷︸
Y

= H12η2t︸ ︷︷ ︸
βX

+ut , (8)

where standard IV notation is indicated below the terms as a
function of the structural parameters, � = (

σ2
ε2,P − σ2

ε2,C

)/(
τ−1

P

(
H2

21σ
2
ε1 + σ2

ε2,P

)+ τ−1
C

(
H2

21σ
2
ε1 + σ2

ε2,C

))
. If Zt is stron-

gly correlated with the innovation η2t (exogeneity follows
from equation (1) and assumption 1), standard asymptotic
results for IV/TSLS apply. First,

Ĥ12 =
1
T

∑T
t=1 η1t Zt

1
T

∑T
t=1 η2t Zt

p→ E [η1t Zt ]

E [η2t Zt ]
= H12, (9)

as long as the denominator, 1
T

∑T
t=1 η2t Zt , does not converge

to 0, so Slutsky’s theorem can be applied. Moreover, Slut-
sky’s theorem shows that provided the denominator does not
converge to 0, the asymptotic distribution will be fully charac-
terized by the behavior of the numerator. In particular, under
a martingale central limit theorem,

√
T
(
Ĥ12 − H12

) =
√

T 1
T

∑T
t=1 η1t Zt

1
T

∑T
t=1 η2t Zt

d→ N
(
0,Vstrong

)
.

Vstrong is the usual White (1980) heteroskedasticity-robust
IV/TSLS asymptotic variance, E [η2t Zt ]−2 E

[
u2

t Z2
t

]
.

If the denominator is in fact close to 0, standard infer-
ence methods are not reliable in the familiar IV setting (e.g.,
Staiger & Stock, 1997). As the first-stage coefficient, �, tends
to 0, the instrument provides less information about the en-
dogenous regressor. Here, � goes to 0 as σ2

ε2,P approaches
σ2

ε2,C , the case of no variance change.
If σ2

ε2,P = σ2
ε2,C (� = 0) , so H12 is unidentified, then the

denominator (and numerator) of equation (6) converges in
probability to 0. To obtain a limiting distribution, multiply-
ing equation (6) by

√
T√
T

illustrates that both numerator and
denominator converge in distribution to mean-0 normal ran-
dom variables. Ĥ12 converges in distribution to the ratio of
two correlated normal random variables, a Cauchy-like dis-
tribution, so the standard normal approximation is not a good
one. Thus, the convergence of equation (6) is nonuniform
with respect to

(
σ2

ε2,P, σ2
ε2,C

)
: if σ2

ε2,P �= σ2
ε2,C the limiting dis-

tribution is normal, but if σ2
ε2,P = σ2

ε2,C , it is not. To derive an
asymptotic distribution that well approximates the behavior
of Ĥ12 when σ2

ε2,P is close to, but not equal to, σ2
ε2,C , I follow

convention and model the difference as “small.” In particular,

σ2
ε2,P

σ2
ε2,C

= 1 + d√
T

, (10)

where d is finite. Rearranging yields

σ2
ε2,P = σ2

ε2,C

(
1 + d/T 1/2) = σ2

ε2,C + dσ/T 1/2, dσ ≡ σ2
ε2,Cd,

so σ2
ε2,P is “local to σ2

ε2,C .” Employing this device means that
even as T → ∞, the probability of rejecting the hypothesis
σ2

ε2,P = σ2
ε2,C tends to neither 0 nor 1, capturing the interme-

diate case of weak identification.
With this model of σ2

ε2,P and σ2
ε2,C in hand, the asymptotic

distribution of Ĥ12 under weak identification is similar to that
for the standard IV model:
Proposition 2. Under the device (10) and assumptions 1 and
3, Ĥ12 is not consistent for H12; rather,

Ĥ12 − H12
d→ z1

dσ + z2
,

(
z1

z2

)
∼ N (0,Vweak ) , (11)

where Vweak is determined by the parameters of the model
and distribution of the data.

Proposition 2 follows from an argument in the spirit of
Staiger and Stock (1997), presented in the appendix. The
estimator is no longer consistent. Likewise, Vweak cannot be
consistently estimated. The reason is that, asymptotically, the
denominator 1

T

∑T
t=1 η2t Zt

p→ 0. As the identifying variation
becomes small, sampling variation in the consistently esti-
mated means matters for the asymptotic distribution of Ĥ12.

The estimator’s asymptotic distribution is thus better rep-
resented as a ratio of two correlated normals. Inference ap-
proaches based on the normal approximation break down.
A bootstrap approach for Ĥ12 (for Wald-type inference) is
also invalid, as shown in Moreira, Porter, and Suarez (2004).
Similarly, a GMM application of the IV estimator will fare no
better (Stock, Wright, & Yogo, 2002). Instead, robust meth-
ods developed for weak instruments must be used.

In section IVA, I prove the validity of an inference proce-
dure robust to weak identification for individual elements or
subsets of H . The conditions required for the procedure will
always hold in bivariate models like the one presented above,
which are very common in practice. This procedure does not
require the zero change assumption for σ2

ε1
discussed in this

section but remains valid if it is adopted. This means that re-
gardless of whether the model is weakly identified (which can
be determined using the test in section III), valid inference
can be conducted without resorting to potentially conserva-
tive projection methods.

C. Weak Identification in the General Case

I now discuss weak identification in the fully general
model. Proposition 1 states the conditions for global iden-
tification, which can break down in the two related cases
outlined previously. Similar to the simple case, I now model
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ROBUST INFERENCE IN MODELS IDENTIFIED VIA HETEROSKEDASTICITY 515

FIGURE 2.—DISTRIBUTION OF t-RATIOS FOR Ĥ12

Distributions of estimated t-ratios, (Ĥ12 − H12 )/SE (Ĥ12 ), calculated from 10,000 Monte Carlo draws, using the sample length in the left margin and the degree of identification in the bottom margin, from the nominal
forward and nominal yield specification estimated in section V. The black curve represents the standard normal pdf, the limiting distribution under standard asymptotic arguments. Extreme outliers are truncated to
allow comparison on the same axes. Calibration details are given in equation (14) in the supplement. Estimation via CUE efficiently weighted GMM.

the relationship between the variances of two shocks, i and
j, as local-to-unity:

σ2
εi,P/σ2

εi,C

σ2
ε j,P/σ2

ε j,C

= 1 + d√
T

, (12)

where d is finite. In economic terms, the Great Moderation or
Great Recession are offered above as examples where vari-
ances might change together. If instead the variances barely
differ across regimes, that too can be captured in this device,
as both the numerator and denominator on the left-hand side
are close to unity. The impact on identification is character-
ized in proposition 3:

Proposition 3. Adopting the modeling device in equation
(12) and assumption 1, equation (2) does not have a unique
solution for H as T → ∞.

Intuitively, under the local-to-unity device, the nonpropor-
tionality requirement of proposition 1 fails asymptotically in
population, as the variances converge to the knife-edge case
σ2

εi,P = (
σ2

ε j,P/σ2
ε j,C

)
σ2

εi,C , resulting in an unidentified system.
However, the limiting probability of rejecting the hypoth-
esis

(
σ2

εi,P/σ2
εi,C

)/(
σ2

ε j,P/σ2
ε j,C

) = 1 from (infeasible) obser-
vations of εt is neither 0 nor 1, capturing the spirit of the
intermediate case of weak identification. As identification
breaks down, H cannot be consistently estimated, as Stock

and Wright (2000) argued. Similarly, standard asymptotic
approximations used for inference also fail.

To conclude this section, I demonstrate via simulation just
how poor of an approximation standard asymptotic results
may provide. I calibrate my simulations to NS’s specification
using daily changes in two-year nominal Treasury forward
rates as a dependent variable and daily changes in two-year
nominal Treasury yields as the policy series. Additional de-
tails can be found in the empirical application below and in
section C of the supplement. I vary T from 400 to 1,600 (the
empirical sample size is approximately 800) and vary the de-
gree of identification, d, by a factor of 10 in each direction
from the d̂ implied by the data. I do this by adjusting the
variance of monetary policy shocks on policy dates, setting

σ2
ε2,P (d ) = σ̂2

ε2,C

σ̂2
ε1,P

σ̂2
ε1,C

(
1 + d√

T

)
.

Figure 2 presents histograms of the t-ratio,
(
Ĥ12 − H12

)
/

SE
(
Ĥ12

)
, for 10,000 draws. The estimates are not normally

distributed for low degrees of identification, even as T grows
large. For the “strong identification” specifications, the distri-
bution is closer to a normal distribution; these specifications
map to about seven times the empirical relative change in
the policy shock variance and twice the change observed in
the Treasury yield innovation variance. These distributions
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516 THE REVIEW OF ECONOMICS AND STATISTICS

constitute prima facie evidence of weak identification. It is
clear that relying on standard inference methods, assuming
asymptotic normality for estimates, may lead to unreliable
tests under weak identification, as such an assumption is a
poor approximation to the true distribution of the estimator.

III. A Simple Pretest for Weak Identification

In the IV literature, following influential work by Staiger
and Stock (1997) and Stock and Yogo (2005), it is now com-
mon practice to perform pretests to assess the strength of
identification. The standard test compares the first-stage F -
statistic to a threshold of 10, proposed by Staiger and Stock
(1997). Given that the empirically common simple case of
identification via heteroskedasticity outlined in section IIB
can be recast as an IV problem, I propose a similar test to
allow such a practice to be adopted in this setting too.

As demonstrated in equations (7) and (8), the simple case
can be recast as a just-identified linear IV model with a sin-
gle endogenous regressor. As a reminder, this is a bivari-
ate model, where it is assumed that only the variance of the
second structural shock changes across regimes. This means
that a first-stage F -test approach can be adopted. In the set-
ting of section IIB, the heteroskedasticity-robust first-stage
F -statistic is

F =
�̂2

(∑T
t=1 Z2

t

)2

∑T
t=1 Z2

t v̂2
t

,

where �̂ and v̂t are OLS estimates from the first stage, and

η2t = �Zt + vt , Zt

=
[

1 (t ∈ P) × T

TP
− 1 (t ∈ C) × T

TC

]
η2t .

Note that the heteroskedasticity-robust F -statistic must be
used even if the shocks are homoskedastic within regimes,
since v2

t will generally be correlated with Z2
t . However,

the critical values of Stock and Yogo (2005) are valid
only under homoskedasticity. Fortunately, Montiel Olea and
Pflueger (2013) develop alternative critical values under
weaker assumptions.6 They allow for arbitrary heteroskedas-
ticity and autocorrelation and calibrate critical values to the
Nagar bias of TSLS (the first three terms of a Taylor expan-
sion of the asymptotic distribution) relative to a “worst case”
benchmark. Table 1 reports the relevant critical values. A
threshold of F > 23 corresponds to 10% bias, the threshold
motivating the F > 10 rule-of-thumb found in the IV litera-

6In particular, in the TSLS framework, they assume 1√
T

(∑T
t=1 Zt vt∑T

t=1 Zt ut

)′
is asymptotically normal with consistently estimable positive

definite covariance, the covariance of (vt ut )′ is positive definite and con-
sistently estimable, and a local-to-0 representation for �. See Montiel Olea
and Pflueger (2013) for additional details.

TABLE 1.—CRITICAL VALUES FOR FIRST-STAGE F -TEST BASED ON TSLS BIAS

Bias 0.05 0.1 0.2 0.3
Critical Value 37.42 23.11 15.06 12.05

Critical values are calculated by Montiel Olea and Pflueger (2013). For a given critical value, bias is
greater than that indicated in 5% of repeated samples. Assumptions underlying these results are enumerated
in note 6.

ture. This test can easily be adopted in this specialized setting
and I provide code to do so on my website.

IV. Weak Identification Robust Inference

In this section, I present standard results for robust infer-
ence in the general model, followed by a new result justifying
nonconservative inference on empirically relevant subsets of
θ. I outline how these confidence sets can be used to test for
weak identification and conclude with a simulation study.

A. Parameter Inference

The asymptotic behavior of GMM estimators, robust to
weak identification, is established in Stock and Wright
(2000). Instead of providing an asymptotic distribution for
estimates θ̂, as in strongly identified GMM problems, they
show that ST (θ0), the “S-statistic,” follows a χ2 distribution.
Many refinements have since been developed, including the
“K-statistic” of Kleibergen (2005). Much of this literature
is limited to joint tests on the full parameter vector or sub-
sets of the parameter vector including all parameters that are
weakly identified, as only strongly identified nuisance pa-
rameters are “concentrated out.” However, the parameter of
interest in applied work is often some subset of the parameter
vector; this is the case in Rigobon and Sack (2003) (response
of three-month Treasury rate to S&P 500 shocks), Rigobon
and Sack (2004) (response of equity indices and long-term
rates to monetary policy shocks), Wright (2012) (response of
long-term interest rates to monetary policy shocks), Hébert
and Schreger (2017) (response of equities and exchange rates
to sovereign default shocks), and NS (2018) (response of
Treasury forward rates to monetary policy shocks), for ex-
ample. In this section, I present standard results for tests on
the full parameter vector and then establish conditions under
which test statistics for subsets of the parameter vector have
a more precise limiting distribution in this setting.

I state results using the K-statistic of Kleibergen (2005). In
the leading two-regime case considered here, the K-statistic
coincides with the S-statistic of Stock and Wright (2000)
since the model is just identified. Further refinements may
have better power properties in overidentified models (e.g.,
the conditional linear combination tests of Andrews, 2016).

Definition 1. In the leading two-regime just-identified case,
KT (θ)=ST (θ)= 1

T φT (θ, η)′�T (θ)−1φT (θ, η), where φT (θ,
η) = ∑T

t=1 φ(θ, ηt ) and �T (θ) = 1
T

∑T
t=1 φ(θ, ηt )φ(θ, ηt )′.

In the more general R-regime case, KT (θ) = 1
T φT (θ, η)′
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�T (θ)−1/2P�T (θ)−1/2JT (θ,η)�T (θ)−1/2φT (θ, η), where JT (θ, η)

= ∂φT (θ,η)
∂θ′ = −T ∂ (τ1vech(H�ε,1H )′,...,τRvech(H�ε,RH )′ )′

∂θ′ .7

Full vector inference. Under the assumptions presented in
section II, theorem 1 shows that inference on the full param-
eter vector can proceed using the K-statistic.

Theorem 1. Under assumptions 1, 2, and 3, if the null hy-
pothesis θ = θ0 holds,

KT (θ0)
d→ χ2

n2+n.

As discussed below, Magnusson and Mavroeidis (2014)
consider this test (their split-KLM) for identification via het-
eroskedasticity.

Inference for subsets of the parameter vector. Projection
methods constitute the leading option for subset inference
when some nuisance parameters are weakly identified. Such
tests are notoriously conservative; the full-vector test statis-
tic is minimized conditional on the parameter(s) of interest,
but is compared to the same critical values as for the full-
vector test (see Chaudhuri & Zivot, 2011, for a discussion
and refinements).

However, Kleibergen (2005) provides a refinement over
theorem 1 for tests on certain subsets of the parameter vec-
tor. Partition θ into the parameter(s) of interest, β, and the
nuisance parameters, α. If the rank of the asymptotic Jaco-
bian of the moment equations with respect to α is equal to
the dimension of α, there exists a unique solution for α given
a value for β. Thus, since β0 is specified under the null hy-
pothesis, inference may use degrees of freedom equal to the
dimension of β (Kleibergen, 2005, theorem 2), as α can be
concentrated out, even if it is not strongly identified ex ante.
The elements of β, specified as the null hypothesis, may be ei-
ther weakly or strongly identified. Assumption 4 and theorem
2 state this result formally.

Assumption 4. For a given value of β, a subset of the param-
eters in H, �ε,C, and �ε,P, equation (2) has a unique solution
for α, the remaining parameters, as T → ∞.

Assumption 4 is a global analog to the local assumption
3 in Kleibergen (2005). Although T does not appear explic-
itly in equation (2), uniqueness must hold asymptotically in
light of the local-to-unity device (12). While it might be obvi-
ous that parameters α that can be written as continuous func-
tions of β can be concentrated out when conducting inference,
assumption 4 characterizes a more general class of models
for which α can be concentrated out in theorem 2. Define
KT (α, β) = KT (θ) where θ = ( α′ β′ )′ and further KT (β) =
KT (α (β) , β), where α (β) = argminαKT (α, β); KT (β) is the
subset K-statistic for β. Theorem 2 and the subsequent defi-
nition 2 of Kleibergen (2005) imply theorem 2:

7Note the simplification from DT in Kleibergen (2005) to the Jacobian JT
results from the fact that the Jacobian of the moments is deterministic in
this model; see lemma 1 for details.

Theorem 2. Under assumptions 1, 2, and 3, if assumption 4
and the null hypothesis β = β0 additionally hold, then

KT (β0)
d→ χ2

p,

where p is the dimension of β.

The degrees of freedom of the limiting distribution for
the full parameter vector (or projection tests for a subset)
is lowered from n2 + n to p. I henceforth refer to the test
comparing KT (β0) to the χ2

p critical values as the subset test,
since it uses these critical values specific to the subset tested.

When does the present model satisfy assumption 4? Mag-
nusson and Mavroeidis (2014) show that strongly identified
parameters can be concentrated out in settings including the
present model (theorems 6 and 7). However, a crucial aspect
of Kleibergen’s result, and that of Magnusson and Mavroei-
dis (2014), is that their definitions of strongly identified pa-
rameters include those that are only strongly identified after
specifying a value β0 (not just those that are strongly identi-
fied a priori). I exploit this distinction to derive subset robust
inference results for identification via heteroskedasticity.

First, I introduce a partition of H :

Definition 2. Partition H as HI
...HW such that H·k ∈ HI if

and only if
(
σ2

εk,C σ2
εk,P

)
is proportional to no other row in

⎡
⎢⎣

σ2
ε1,C σ2

ε1,P
...

...

σ2
εn,C σ2

εn,P

⎤
⎥⎦ ,

and conversely for HW .

HI is uniquely determined from equation (2), while HW is
not.

In empirical work, the object of interest is generally either
the immediate impact of one shock on one variable or the
shock’s impact on all variables. The former consists of a sin-
gle element of H ; the latter pertains to a full column (Rigobon
& Sack, 2003, 2004; Wright, 2012; Hébert & Schreger, 2017;
NS). Theorem 3 shows that if such parameters are in HW ,
specifying them as β0 ensures a unique solution for α (β0).

Theorem 3. Under assumptions 1 and 2, if HW contains two
columns, equation (2) has a unique solution for α after fixing
as β0 either

1. A single element Hlk, with Hlk �= Hlm/Hkm for H·k, H·m
∈ HW , or

2. The full column H·k ∈ HW .

By explicitly conditioning on the information to be used in
the null hypothesis of the subset test (which fixes Hlk or H·k),
theorem 3 provides primitive conditions under which there is
a unique solution for α after fixing a value for the parameter
of interest in β0. This means that a system of equations sat-
isfying the conditions of theorem 3 meets assumption 4, and

D
ow

nloaded from
 http://direct.m

it.edu/rest/article-pdf/104/3/510/2022713/rest_a_00963.pdf by U
N

IVER
SITY C

O
LLEG

E LO
N

D
O

N
 user on 28 N

ovem
ber 2022



518 THE REVIEW OF ECONOMICS AND STATISTICS

theorem 2 may be applied. The ancillary condition on the rela-
tive magnitudes of elements of HW can be seen as strengthen-
ing the standard invertibility condition on H to an invertibility
assumption on a subblock of H . In the n = 2 case, this result
may be obvious, since equation (4) of Rigobon (2003) shows
that if one free parameter of H is known, the other is a simple
function of that parameter and the reduced-form variances
(and can thus be concentrated out). However, that is not the
case for n ≥ 2, where knowledge of one parameter of HW is
not sufficient to immediately solve for the remainder.

Condition 1 interprets the result of theorem 3 through the
lens of the model, abstracting from the knife-edge Hlk =
Hlm/Hkm case.

Condition 1. If there are at most two variances, i, j, for
which limT →∞

(
σ2

εi,P/σ2
εi,C

)/(
σ2

ε j,P/σ2
ε j,C

) = 1, and either i
or j is the shock of interest, then assumption 4 is satisfied
for tests where β contains the corresponding column of H
or a single element of the column (and possibly additional
parameters); theorem 2 holds.

Significantly, condition 1 may justify critical value refine-
ments for subset inference even when no model parameters
are strongly identified. Since most empirical papers focus on
a single element of H or a column of H , this result means sub-
set inference can frequently proceed using reduced degrees of
freedom instead of projection methods, provided proportion-
ality in variance changes is not too prevalent. Five remarks
clarify the impact of condition 1:

Remark 1. Condition 1 nests the cases where β = θ or where
β is the set of all weakly identified parameters.

Remark 2. The shock of interest must be one of those af-
fected by any variance pathology. Otherwise, fixing a
parameter(s) in the column of interest of H adds no new
information.

Remark 3. Given at most two variances may evolve propor-
tionally, a researcher should minimize the dimension of
ηt subject to the constraint that ηt spans εt (invertibility).

Remark 4. In empirical practice, bivariate systems are com-
mon. In this case, both the limit on proportionality and
the condition on relative magnitudes in H are nonbind-
ing, so theorem 3 can always be applied.

Remark 5. It is straightforward to extend the results of theo-
rem 3 to IRFs. For a detailed discussion, see section D
of the online supplement.

To complete the discussion of robust inference, I relate my
results to those in the existing literature. Robust inference
on the full parameter vector (and the subset of all weakly
identified parameters) in models identified via heteroskedas-
ticity has already been considered as a motivating example in
Magnusson and Mavroeidis (2014). They propose a variety
of tests that accommodate the present setting. In section 3.5,
they show that in this setting, the asymptotic distributions of
the split-S and split-KLM test statistics are unaffected by esti-

mating ζ , a strongly identified nuisance parameter, retaining
degrees of freedom equal to the number of weakly identified
parameters, their θ (their theorems 6 and 7). When weak iden-
tification arises, there need not be any a priori strongly iden-
tified parameters, but some parameters still may be uniquely
determined once a null hypothesis β0 is specified, and con-
centrated out on that basis. Theorem 3 and condition 1 offer
economically interpretable primitive conditions under which
such high-level results apply.

NS compute robust confidence intervals for a single pa-
rameter of interest using what they refer to as a “Fieller’s
method” bootstrap, drawing on Staiger, Stock, and Watson
(1997). This approach only works in their simple case, since
their test statistic depends only on H12, by virtue of the di-
rect analogy to IV. With multiple variance changes, the test
statistic they propose depends on structural parameters other
than H12 and thus cannot be used to test values of H12 without
specifying values for the other parameters, returning to the
full parameter vector/projection problem. Their test coincides
asymptotically with an S-test.

A general test for weak identification. The two-step ap-
proach of Andrews (2018) for detecting weak identification
can be adopted for the general model. This test can be ap-
plied to a subset of the parameter vector or the full vector.
First, a researcher decides on a maximal acceptable size dis-
tortion that she believes is compatible with strong identifi-
cation, say, γ = 0.1. Then a preliminary robust confidence
set is constructed to have size 1 − ν − γ, where ν is the de-
sired level of the test, say, ν = 0.05. This robust set will be
valid regardless of the true strength of identification. Next, a
1 − ν confidence set is constructed under strong identifica-
tion asymptotics (based on standard t inference, say). If this
second set contains the preliminary robust set, then identi-
fication is not so weak that the size distortion surpasses the
prespecified threshold. The parameter(s) can be said to be
strongly identified and standard inference methods adopted.
If the preliminary set is not contained, weak identification
cannot be rejected, and a robust 1 − ν set should be con-
structed for inference. More details can be found in Andrews
(2018). Nonconservative subset tests based on theorem 3 are
particularly valuable for this purpose. Given how conserva-
tive projection methods can be, it would be highly impractical
to use them here, since the resulting confidence sets are so
large; the sets are unlikely to be contained by a lower-size
standard confidence set, even if strong identification truly
holds.

In a recent paper, Lütkepohl et al. (2020) present a method
to test whether variance changes are proportional in mod-
els identified via heteroskedasticity. Their approach assesses
whether the changes differ in a statistically significant way;
the mapping between p-values and the strength of identifi-
cation requires further study. In addition, when n > 2, their
theory does not yet offer guidance on how to conduct sequen-
tial tests to determine if the model is fully identified.
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TABLE 2.—SIZE OF F -TEST AND K-TEST OF THE FULL PARAMETER VECTOR

d̂/10 d̂ d̂ × 10

Wald K Wald K Wald K

T = 400 94.9 16.7 75.9 16.7 36.3 16.7
T = 800 95.5 11.2 76.5 11.2 30.7 11.2
T = 1,600 95.7 8.4 76.6 8.4 27.1 8.4

Rejection rates of the true parameter vector for a nominal 5% test, based on 10,000 Monte Carlo draws.
Calibration details are given in equation (14) of the supplement. Estimation via efficiently weighted CUE
GMM.

B. Monte Carlo Performance of Tests

I demonstrate the superior size-control properties of the
proposed robust tests, as well as the power improvements
provided by the subset inference results, in a Monte Carlo
study. I calibrate the DGP to the two-variable empirical ex-
ample from NS that I explore in section V. For additional
details on the setting and calibration, see section C of the
online supplement.

Rejection rates of tests on the full parameter vector. Re-
jection rates for both Wald and robust (K) tests with a
nominal level of 5% are reported in Table 2. The value d̂
implied by the data measures the empirical degree of identi-
fication, and T = 800 the approximate empirical sample size;
I vary both across columns and rows by setting σ2

ε2,P (d ) =
σ̂2

ε2,C

(
σ̂2

ε1,P/σ̂2
ε1,C

)(
1 + d/

√
T
)
.8 The Wald tests exhibit ex-

tremely large size distortions, aligned with the theoretical
result of Dufour (1997) that the size of such tests will tend
to unity as the degree of identification tends to 0. The dis-
tortions improve with the strength of identification. The ro-
bust tests are unaffected by the degree of identification. Their
size does decrease with sample size, which is due only to
small-sample behavior. It appears that the performance of
Wald-based inference approaches an acceptable level only
for variance changes an order of magnitude larger than those
observed empirically. As noted in section II, the stronger cal-
ibration imposes nearly seven times the empirically observed
change in the structural variance of the policy shock.

Rejection rates of subset tests on a single parameter of in-
terest. I compare three subsample testing approaches: the
t-test, the projected K-test based on theorem 1, and the newly
proposed subset K-test with reduced critical values, based
on theorem 2 and condition 1. Rejection rates for nominally
5% tests are displayed in Table 3. First, like Wald tests on
the full parameter vector, the standard t-test is substantially
oversized, although the distortion is not as large as for the full
vector. As identification gets stronger, the distortions shrink.
The K-test based on projection methods is substantially un-

8d̂ , with σ̂2
εi,r the estimated average variances in regime r, remains an

accurate measure of the degree of identification even in the possible presence
of within-regime heteroskedasticity, since identification is based on these
average variances. Identification does not exploit any additional information
contained within the regimes.

dersized, with a rejection rate of effectively 0 in simulation.
However, Ksub, justified by condition 1, is consistently well
sized, regardless of the degree of identification. These im-
provements in size control over previously available tests es-
tablish the usefulness of condition 1 for applied work.

Power improvements in subset testing. The use of smaller
critical values for the subset tests justified by condition 1
relative to projection tests implies automatic power improve-
ments. I fix T = 800 and vary the strength of identification,
testing a null of H12 = −0.31 (the empirical estimate; see
section V and online supplement section C) against a se-
quence of alternative values of H12 used to simulate the data.
Figure 3 computes power curves based on these simulations.
For the weakest identification, the power of the t-test (solid
line) unsurprisingly dominates that of the robust tests. The
subset test (dashed line) is more powerful than the projection
test (dot-dashed line), as expected; they use the same test
statistic, but the subset test uses smaller critical values. For
the baseline calibration, the results are similar, except that
the subset test surpasses the t-test for alternatives left of the
null (where its power is very low) and increases markedly in
power for alternatives to the right, with smaller gains for the
projection test. For the strong identification calibration, the
t-and subset tests are comparable, and noticeably dominate
the projection test. The online supplement contains results
for a broader range of alternatives and size-adjusted power,
along with a more detailed discussion.

V. Empirical Application

I demonstrate the use of the proposed robust inference
methods by studying the identification of monetary policy
shocks in the setting of NS.9 The authors analyze the impact
of policy shocks on nominal and real instantaneous Trea-
sury forward rates of varying maturities. They argue that the
response of these forward rates captures forward guidance
effects. They use identification via heteroskedasticity as a ro-
bustness check on their main results. They adopt a bivariate
model with daily changes in a forward rate as the “dependent”
variable and a second series that serves as a policy instrument.
They consider three such instruments: the daily change in
nominal two-year Treasury yields and the 30-minute or daily
change in a “policy news” series, which they construct as
the first principal component of several interest rate series.
They assume that the only shock exhibiting a variance change
on announcement days is the monetary policy shock. They
use announcement days as the “high-variance” regime, and
a sample of analogous dates as the control period, or “low-
variance” sample. I examine specifications using either the
daily Treasury yields or the authors’ 30-minute window pol-
icy news series as the policy instrument, with either nominal
or real two-year instantaneous Treasury forward rates as the

9I am grateful to Emi Nakamura and Jòn Steinsson for making their policy
news series available to me.
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TABLE 3.—SIZE OF t-TEST, PROJECTION K-TEST, AND SUBSET K-TEST OF Ĥ12

d̂/10 d̂ 10 × d̂

t Kproj Ksub t Kproj Ksub t Kproj Ksub

T = 400 54.1 0.0 6.7 16.6 0.0 4.5 7.9 0.0 4.4
T = 800 53.8 0.0 6.9 14.2 0.0 4.9 6.8 0.0 4.9
T = 1,600 52.9 0.0 6.8 13.3 0.0 5.2 6.2 0.0 5.2

Rejection rates of the true parameter value for H12 for a nominal 5% test based on 10,000 Monte Carlo draws. The Kproj results are not identically 0, but round to 0.0. Calibration details are given in equation (14)
of the online supplement. Estimation via efficiently weighted CUE GMM.

FIGURE 3.—POWER CURVES FOR TESTS OF H12

Power curves are formed from estimates of rejection rates of the null hypothesis (H12 = −0.31, dashed vertical line) against a sequence of alternatives (x-axis) based on 1,000 Monte Carlo draws. Estimation via
efficiently weighted CUE GMM.

“dependent” variable. Thus, ηt = (�st �it )′ where st is a
forward rate and it is the policy instrument. For all specifica-
tions, I focus on the sample NS use for their real forward rate
specifications, January 2004 to March 2014 (omitting July
2008 to June 2009), so I can maintain a consistent sample
across specifications. The qualitative findings are robust to
extending the sample back to 2000 where possible.

A. Tests of Identification and Estimates

NS assume only the variance of policy shocks changes on
announcement days. This places their analysis in the simple
case, with analogy to just-identified linear IV with a single
endogenous regressor. However, this paper develops theory
for the fully general model, allowing for the possibility that
the variances of both structural shocks might change. Eco-
nomically, it might make sense for only the variance of the
policy shock to change, but if that is the case, the restriction
need not be imposed mechanically, as estimation will bear
it out. I thus primarily consider the unrestricted model. The
monetary policy shock is labeled according to assumption 2.

I first test formally for weak identification using the meth-
ods proposed in section III. Under NS’s restricted model, the
first-stage F -statistic tests for weak identification. These re-
sults are reported in the left panel of Table 4. For the daily
nominal Treasury yield series, weak identification cannot be
rejected at any level considered. In contrast, for the 30-minute
policy news series, the first-stage F -statistic is large, and
weak identification is rejected for all levels of bias. The An-
drews (2018) test for the general model is reported in the
right panel. The daily nominal Treasury yield displays weak
identification for all distortions. The 30-minute policy news
series shows only mild evidence of weak identification at the
5% and 10% distortion thresholds (owing to the far right tail
of the asymmetric robust confidence intervals; see table 5).
The differences between daily and intraday data arise since,
while daily data do contain the high-volatility periods cap-
tured in the 30-minute windows on announcement days, the
overall volatility of announcement days shrinks toward that
of nonannouncement days because of nonelevated volatility
during the rest of the day. These test results corroborate the
less formal observations of NS, who suspect weaker identi-
fication in daily data.
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TABLE 4.—TESTS OF IDENTIFICATION

First-Stage F (bias) Andrews Two-Step (Size)

F 0.2 0.1 0.05 0.2 0.15 0.1 0.05

Nominal, daily shock × × × ×
8.04 × × ×

Real, daily shock × × × ×
Nominal, 30-min shock � � × ×

7,343.78 � � �
Real, 30-min shock � � × ×

The first panel tests each shock series using the first-stage F -statistic bias-based critical values in table 1. The second panel conducts the Andrews (2018) two-step test for each specification for four candidate
distortion thresholds, γ. The model is strongly identified in the sense of inference not being distorted more than γ if the 1 − ν − γ robust confidence set is contained by the 1 − ν strong identification set. Andrews’s γ̂,
defined such that the 1 − ν − γ̂ robust set is just contained by the strong identification set, is 0.14 for both models using the 30-minute shock instrument.

TABLE 5.—ESTIMATES OF STRUCTURAL PARAMETERS

Policy Inst. One-Day Yield 30 Min. News

Dep. Var. Nominal Fwd. Real Fwd. Nominal Fwd. Real Fwd.

H21 0.70*** −0.88 0.01* 0.01*

stnd. CI [0.52, 0.89] [−22.47, 20.71] [0.00, 0.02] [0.00, 0.01]
robust CI [0.54, 0.78] [−172.06, 1.14] [−0.00, 0.01] [−0.00, 0.01]

H12 −0.31 1.30 1.07** 0.93***

stnd. CI [−5.16, 4.54] [−3.85, 6.46] [0.17, 1.98] [0.36, 1.51]
robust CI [−78.46, 0.94] [−388.68, 1.92] [0.27, 3.25] [0.43, 2.37]

103 × σ2
s,C 3.9 0.4 3.9 3.4

103 × σ2
i,C 0.1 1.8 0.02 0.02

103 × σ2
s,P 7.0 0.7 6.2 5.7

103 × σ2
i,P 0.4 3.4 0.8 0.8

GMM estimates allowing for changes in all variances. The “dependent variable” is the one-day change in either the nominal or real two-year instantaneous Treasury forward rate. The policy instrument is either
one-day changes in the two-year nominal Treasury yield or 30-minute changes in NS’s policy news series. For the variances, i denotes the monetary policy shock and s the second shock. The standard 95% confidence
interval is based on a t-statistic. The robust 95% confidence interval is based on the subset K-test. Asterisks indicate significance from 0 at the ∗10%, ∗∗5%, or ∗∗∗1% levels based on the robust tests.

Table 5 reports estimates for the unrestricted model. Note
that NS do not report estimates for H21, preventing com-
parison on that dimension. For the 30-minute policy news
instrument, the results for H12, the pass-through of policy
shocks to forwards (1.07 and 0.93) are extremely close to
those for NS’s restricted model (1.10 and 0.96), indicating a
forward guidance/news effect that shifts expectations. Their
assumption that σ2

1 is fixed has little impact on estimates of
H12 because H21 is near-zero, minimizing the possible bias
in equation (5).

Using daily changes in the nominal yield as the policy in-
strument, the point estimates differ dramatically between the
two specifications and from the strongly identified specifi-
cations. The estimated pass-through of monetary policy to
the real forward rate is somewhat larger than the intraday
results and that of NS (compare 1.30 to their 0.97 for H12).
On the other hand, the sizable negative value for H21 (−0.88)
is at odds with the strongly identified zero estimates. The
estimated negative pass-through of monetary policy to nom-
inal forward rates is starkly at odds with the other estimates
(−0.31; NS obtain 1.14); it indicates that a positive forward
guidance shock lowers the two-year instantaneous forward
rate, while raising the average rate over the next two years,
altering the shape of the yield curve. For this specification,
H21 is again estimated to be non-0, but this time is positive
(0.70). The non-0 values for H21 in both weakly identified
specifications are consistent with there being a second mean-

ingful dimension of news, but the opposite signs make any
such interpretation very different across specifications. These
results are at odds with NS’s background noise interpretation
of the second shock and starkly opposed to the strongly iden-
tified specifications.

B. Performance of Tests

I now compare confidence sets robust to weak identifica-
tion to those computed assuming identification is strong. For
models using the daily yield series (exhibiting weak identi-
fication), the robust confidence intervals, which I compute
using the subset K-test based on theorem 3, are much wider
than standard confidence intervals for H12; the same is true
for H21 for the real forward rate.10 However, the intervals
are substantially asymmetric so do not contain the standard
confidence intervals. Notably, the estimate Ĥ21 = 0.70 for
the nominal forward rate specification is statistically signif-
icant under both inference procedures, supporting the pres-
ence of a second dimension of news affecting nominal yields
and forward rates at the daily frequency. For models using
the 30-minute window policy news series (exhibiting strong
identification), the robust confidence intervals are compara-
ble to the standard ones, and the estimates of H12 remain

10If the robust confidence set is disjoint, I report the interval spanning all
elements contained in the set.
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statistically significant at the 5% or 1% level.11 This conclu-
sion replicates NS’s findings using the restricted model. For
H21, I obtain precisely estimated 0s.

For the specifications using 30-minute shocks, I can also
test the null hypothesis that the nonpolicy shock variance is
fixed across regimes, adopting standard inference methods
based on the evidence of strong identification. This is the
overidentifying assumption used by NS to reduce the model
to the simple case. Using a simple Wald test, p = 0.13 for
the nominal forward specification and p = 0.07 for the real
forward specification. While equality may not be overwhelm-
ingly rejected, there is ample evidence against using it as an
identifying assumption. This finding supports the use of the
unrestricted model in the simulations conducted in the paper.

As an additional exercise, I compute confidence intervals
for impulse responses based on the NS data. The results are
broadly similar to those for the contemporaneous responses,
with standard intervals far too narrow; details are in section
D of the online supplement.

VI. Conclusion

This paper provides a framework for conducting inference
robust to weak identification in models identified via het-
eroskedasticity. I describe and model the deficiencies that
can lead to such weak identification and show that these
properties can significantly affect the reliability of standard
inference methods in empirical data. I propose tests to de-
tect weak identification, allowing researchers to determine
whether they ought to confront these concerns.

I establish conditions under which robust inference for a
subset of the parameter vector can use smaller critical val-
ues than those required for projection methods. Such tests
constitute the first option for robust inference in this context
that is not likely to be prohibitively conservative. Given the
problem posed by robust subset inference in nonlinear mod-
els in general, the idea of concentrating out weakly identified
parameters that are uniquely determined only after a null hy-
pothesis is specified may be more broadly useful.

I apply these methods to the identification of monetary pol-
icy shocks, as in NS. Daily data exhibit several symptoms of
weak identification, but intraday data strongly identify mon-
etary policy shocks. Daily data are frequently used in macro-
financial contexts, so this finding has implications for the
design of empirical studies. It remains to examine the preva-
lence weak identification in lower-frequency (e.g., monthly,
quarterly) data.

Following Staiger and Stock (1997), papers using IV re-
port first-stage F -statistics to justify instrument relevance.
Up to now, reporting similar evidence has not been possible
for the growing literature exploiting identification via het-
eroskedasticity, but the results presented in this paper enable
researchers to do so.

11Under strong identification, the intervals should be asymptotically
equivalent, but even if the model is strongly identified, this need not be
true in finite samples.
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Appendix

1. Proof of Proposition 1

Proof. The result owes to Rigobon (2003). Alternatively,
Brunnermeier et al. (2021) show that the columns of H are

the right eigenvectors of �η,P�−1
η,C , whose eigenvalues are the

diagonal of �ε,P�−1
ε,C . Eigenvectors corresponding to nonre-

peated eigenvalues (which implies nonproportionality) are
uniquely determined.

2. Proof of Proposition 2

Proof. While the weak instruments literature models � =
C/

√
T , the device I adopt implies the more complicated

expression:

� = dσ

dστ
−1
P + √

T
(
H2

21σ
2
ε1 + σ2

ε2,C

) (
τ−1

P + τ−1
C

) .
However, the asymptotic distribution of Ĥ12 is fundamentally
unchanged. Under my local-to-unity device, σ2

ε2,P = σ2
ε2,C +

dσ/
√

T so σ2
η2,P = σ2

η2,C + dσ/
√

T and ση1η2,P = ση1η2,C +
H12dσ/

√
T . Asymptotically, the estimator in equation (6)

yields
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where ( z12,2 z12,1 z2,2 z2,1 )′ ∼ N (0,Vz ). Under assump-
tions 1 and 3, the convergence follows from a martingale
central limit theorem for each of the summations, since
ηt is assumed to be ergodic and stationary conditional on
regime. In the last line, z12 ≡ z12,2 − z12,1, z2 ≡ z2,2 − z2,1,
and z1 ≡ z12 − H12z2, with ( z1 z2 )′ ∼ N (0,Vweak ).

3. Proof of Proposition 3

Proof. I model the variance deficiency as
(
σ2

εi,P/σ2
εi,C

)
/
(
σ2

ε j,P/

σ2
ε j,C

)=1+d/
√

T . The ith row of
[

diag
(
�ε,C

)
diag

(
�ε,P

) ]
is then equal to

[
σ2

εi,C σ2
εi,C

(
σ2

ε j,P/σ2
ε j,C

)(
1 + d/T 1/2

) ]
. In

the limit, this equals
[
σ2

εi,C σ2
εi,C

(
σ2

ε j,P/σ2
ε j,C

) ]
. However, this

expression is σ2
εi,C/σ2

ε j,C times the jth row,
[
σ2

ε j,C σ2
ε j,P

]
, so

the condition of proposition 1 is violated.
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4. Proof of Theorem 1

Proof. Define φ̄
(
θ, ηt

) = φ
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θ, ηt

)− E
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, q
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)
= vec

(
∂φ(θ,ηt )

∂θ′
)
, q̄

(
θ, ηt

) = q
(
θ, ηt

)− E
(
q
(
θ, ηt

))
, as in

Kleibergen (2005), with φ replacing his f . Lemma 1 in the
supplement provides asymptotic distributions for φ̄

(
θ0, ηt

)
and q̄

(
θ0, ηt

)
, corresponding to assumption 1 of Kleibergen

(2005). Lemma 2 in the online supplement establishes addi-
tional properties of the asymptotic variance, corresponding to
assumption 2 of Kleibergen (2005). Theorem 1 of Kleibergen
(2005) then immediately applies, and his definition 1 gives
the limiting distribution of KT

(
θ0
)
. Lemmas 1 and 2 also es-

tablish the required conditions of Stock and Wright’s (2000)

theorem 2, so ST
(
θ0
) d→ χ2

n2+n.

5. Proof of Theorem 2

Proof. As above, theorem 2 follows directly from theorem 2
and the following definition 2 of Kleibergen (2005). Again,

this result also implies ST
(
β0
) d→ χ2

pint
as an immediate

corollary.

6. Proof of Theorem 3

Proof. The proof follows from extending the argument of
proposition 4 in Sentana & Fiorentini (2001). They show
that for a similarly partitioned H , the columns of HI are
identified to column order; assumption 2 guarantees point
identification. However, the columns of HW are identified
only up to an orthogonal rotation Q, QQ′ = Q′Q = I . HW

contains at least two columns. If HW contains exactly two

columns, then Q is 2 × 2. Consider first a single fixed element
of H·k , the subject of the null hypothesis for the subset test.
Without loss of generality, let it be H2k = x. This yields the
system of equations⎡
⎢⎢⎢⎣

1 H1m

x 1
...

...

Hnk Hnm

⎤
⎥⎥⎥⎦
[

Q11 Q12

Q21 Q22

]
=

⎡
⎢⎢⎢⎢⎣

1 H̃1m

x 1
...

...

H̃nk H̃nm

⎤
⎥⎥⎥⎥⎦ . (13)

Placing H·k and H·m as the first and second columns, with the
associated unit normalization, is without loss of generality,
as identification is up to scale of each column. Since Q is or-
thogonal, fixing column order, Q2

11 + Q2
21 = 1. Given this and

the equation xQ11 + Q21 = x, Q11 and Q21 can be solved for
where the sign is pinned down by the unit normalization. This
yields two solutions for Q11 and Q21:

{
Q11 = 1, Q21 = 0

}
and

{
Q11 = (

x2 − 1
)
/
(
x2 + 1

)
, Q21 = 2x/

(
x2 + 1

)}
. How-

ever, using an additional equation implied by equation (13),
Q11 + H1mQ21 = 1, rules out the second solution unless
H1m = 1/x. Generalizing this condition away from the case
where H·k and H·m are the first two columns yields the first
condition of the theorem, Hkm �= Hlm/Hlk . With Q11 and Q21

thus pinned down, the other column of Q is unique, and thus
the entirety of H is identified. If H is identified, then so too
are σ2

ε,C, σ2
ε,P.

This argument extends to the case where the entirety of
H·k is fixed. Now, however, the solution is unique unless
Hlm/Hmm = Hlk/Hmk for all l , in which case column m is a
scalar multiple of column k, making H noninvertible, which
is false by assumption 1.1. Thus, the solution when a full
column of H is specified is unique.
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