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The COVID-19 pandemic that began in 2019 has resulted in millions of deaths worldwide. Over
this period, the economic and healthcare consequences of COVID-19 infection in survivors of
acute COVID-19 infection have become apparent. During the course of the pandemic, computer
analysis of medical images and data have been widely used by the medical research com-
munity. In particular, deep-learning methods, which are artificial intelligence (AI)-based ap-
proaches, have been frequently employed. This paper provides a review of deep-learning-
based AI techniques for COVID-19 diagnosis using chest radiography and computed tomog-
raphy. Thirty papers published from February 2020 to March 2022 that used two-dimensional
(2D)/three-dimensional (3D) deep convolutional neural networks combined with transfer
learning for COVID-19 detection were reviewed. The review describes how deep-learning
methods detect COVID-19, and several limitations of the proposed methods are highlighted.
� 2022TheAuthors. Publishedby Elsevier Ltd onbehalf of TheRoyal College ofRadiologists. This is

an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction

The SARS-CoV-2 (COVID-19) virus, detected in December
20191 has, as of April 2022, infected over 507 million people
across the world and resulted in a global death toll of over 6
million people.2 Effective and efficient primary screening
for COVID-19 infection has been a cornerstone of manage-
ment.3 The standard primary screening tool for COVID-19
has been the reverse transcription polymerase chain reac-
tion (RT-PCR) test,4 in which the ribonucleic acid (RNA) of
the COVID-19 virus is identified in sputum samples ob-
tained from the upper respiratory tract; however, early in
the pandemic, several studies highlighted a variable sensi-
tivity of RT-PCR tests, which were influenced by the time of
collection of the specimen relative to the time of
artment of Respiratory Medicin
.

er Ltd on behalf of The Royal Coll
infection.5,6 During the acute phase of the pandemic, labo-
ratory services were often overwhelmed by the volume of
testing required, resulting in diagnostic delays. As a result,
an additional diagnostic screening method considered
alongside RT-PCR was the examination of chest radiographs
(CXR).7,8 CXRs were favoured as the necessary equipment is
easy to access, they are fast to perform and interpret, and
portable systems can markedly reduce the chances of virus
transmission9,10; however, a major challenge in CXR
screening during the pandemic was the limited number of
expert radiologists available for interpreting imaging data.11

In some European centres, computed tomography (CT)
imaging was used to screen patients for COVID-19.6,12,13 CT
imaging was shown to be more sensitive to CXRs in diag-
nosing COVID-19, particularly in cases where the diagnosis
e, University College London, Gower Street, London WC1E 6BT, UK.
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was incidental, for example, in the work-up of elective
surgical patients.14,15 CT has also been valuable in assessing
the lungs of patients with worsening respiratory compli-
cations and in patients with negative RT-PCR test results
where COVID-19 infection remained in the differential. Yet
the specificity of CT for diagnosing COVID-19 (as with CXRs)
is limited16,17 making radiological interpretation of imaging
for COVID-19 diagnosis challenging.18e20

Known workforce shortages of radiologists, combined
with the low specificity of chest imaging methods in diag-
nosing COVID-19, led many research groups to develop AI-
based algorithms to support clinicians and radiologists
diagnosing COVID-19.21 The present review provides an
overview of previously proposed AI methods using deep-
learning (DL) algorithms for diagnosing COVID-19 using
CXR and CT.
Application of DL in COVID-19 detection

DL in COVID-19 detection using CXR images

As mentioned above, the convenience and ubiquity of
CXRs in the assessment of COVID-19 led to an exponential
growth in the acquisition of CXR data. The resulting large
datasets were leveraged by AI researchers to develop
automated DL algorithms for COVID-19 detection. COVID-19
diagnosis has typically been considered in as a two-group or
three-group classification challenge. When considered a
two-group problem, computer algorithms were trained to
distinguish between COVID-19 imaging and imaging ac-
quired from healthy controls. Classification in this way,
however, does not allow inference of how an algorithm
would interpret a CXR containing non-COVID-19 pneu-
monia. A three-group classification task aims to distinguish
between COVID-19 pneumonia, non-COVID-19 pneumonia,
and normal CXR imaging.

The method proposed by Apostolopoulos et al.22 is one of
the earliest AI-based approaches proposed for COVID-19
detection. In this paper, authors used state-of-the-art con-
volutional neural networks (CNN) including VGG19,23

MobileNet v2,24 Inception,25 Xception,26 and Inception
ResNet v2.25 The process of transfer learning was used for
COVID-19 diagnosis. In DL analyses, transfer learning is a
commonly applied process where computer models previ-
ously trained for a specific task (e.g., classification of two
image classes such as cats and dogs) reuse the stored
knowledge gained in the initial task and apply it to a new but
related task (e.g., classification of two image classes such as
COVID-19 and non-COVID-19 CXRs). In the study by Apos-
tolopoulos et al.22 the best accuracies achieved for two-group
(normal, COVID-19) and three-group (normal, bacterial
pneumonia, COVID-19) classification were 98.75% and
93.48%, respectively. Moreover, they tested the proposed
model on a separate dataset with additional viral pneumonia
cases, and the reported performance was 96.78% and 94.72%
for two-group and three-group classification, respectively.

Ozturk et al.,.28 designed a 19-layer CNN known as
DarkCOVIDNet, which was trained and tested in two-group
and three-group classification tasks. They specifically
visualised the heat maps of the proposed model using the
Grad-CAM33 approach. A heat map or saliency map is a
graphical two-dimensional representation of CNN infor-
mation that uses a colour-coding system to represent areas
of differing importance within the image. An example of a
CXR heat map produced using the Grad-CAM method can
be seen in Fig 1. The outputs of the heat maps in the study
by Ozturk et al.28 were assessed qualitatively by an expert
radiologist. The optimal performance obtained by the
DarkCOVIDNet was 98.08% and 87.02% for two-group and
three-group classification tasks, respectively.

Rahimzadeh et al.29 proposed a twin CNN (TCNN) ar-
chitecture, using two well-known CNNs, Xception26 and
ResNet,34 to extract parallel deep features from an image. A
deep or latent feature is the consistent model response or
output at the last node or layer. The extracted latent fea-
tures were combined for the final prediction. The accuracy
of two-group and three-group classification tasks were
99.05% and 94.40%. The results suggested that a TCNN
approach could boost algorithm performance for COVID-19
prediction. Similar to Rahimzadeh et al.,29 Ouchicha et al.30

proposed a TCNN with shared layers known as CVDNet. The
designed architecture was tested on a three-group classifi-
cation task producing an accuracy of 96.69%.

A challenging area for computer algorithms when
assessing and classifying diseases on CXRs lies in the region
of the diaphragm. Diaphragm contain areas of high density
that can confuse algorithms and, in the context of COVID-19
classification, result in misdiagnosis. Heidari et al.27 pro-
posed a pre-processing algorithm that can boost the per-
formance of a CNN by identifying and removing the
diaphragmatic area with multi-stage image processing al-
gorithms. The results in this paper suggest that using their
proposed processing pipeline can improve model perfor-
mance in COVID-19 detection to 98.1% and 94.5% for two-
group and three-group classification tasks, respectively.

SqueezeNet is a well-designed CNN proposed for natural
image classification, which uses fewer parameters than
other models.35 In the study by Ucar et al.,31 the building
blocks of SqueezeNet were used to design a new network
called COVIDiagnosis-Net. To perform tuning of model
hyperparameters, they used a Bayesian optimisation36 al-
gorithm. Moreover, multi-scale offline image augmentation
was performed to overcome imbalances in data classes. The
output accuracy of COVIDiagnosis-Net for the three-group
classification task was reported as 98.30%.

One of the most successful strategies used to improve
classification performance is Ensemble Learning (EL).37 EL
combines the output of several independent deep-learning
models, each of which may have individual and distinct
strengths. The expectation is that the various models will
show complementary performance when combined,
making the ensemble greater than the sum of its parts and
more robust to unseen data. Rajaraman et al.38 combined
the predictions of nine individual DL-based models for
two- and three-group classification tasks using several
well-known ensemble strategies including max voting,
averaging, weighted averaging, and stacking. Moreover,



Figure 1 Representation of CNN outputs on a heat map using Grad-CAM.33 The first column shows the original CXR images from NCCID
dataset72 and the second column shows the heat-map representation of the model output for the corresponding images.73 Warmer colours show
strong signals (higher values) and colder colours show weak signals (lower values).
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they also proposed an iterative pruning strategy to fine-
tune the model. The iterative pruning strategy was able
to identify the optimal number of layers for a given
network and, in so doing, decreased the complexity of the
model without compromising model performance. The
accuracy reported for the three-group classification task
was 98% without pruning and 99% when the pruning
strategy was employed.

Other CNN based models for COVID-19 detection include
multi-dilation CNN39; CoroNet,21 which uses the Xception26

architecture; COVID-CAPS40 and Convolutional capsnet,41

which use a capsule network-based framework42; and al-
gorithms based on ResNet43 and MobileNet44 architectures.

Training DL models requires a considerable amount of
data; however, the main challenge faced by the models
mentioned previously in this review lay in the small sample
size of the datasets available for model training. This was
essentially a consequence of difficulties in data sharing in
the early stages of the pandemic and the focus on acute
clinical care in the emergency setting. Data limitations can
result in early models demonstrating poor generalisability
for unseen or out-of-distribution data. To overcome the
handicap of limited data, most of the recently proposed
algorithms based on DL approaches utilise transfer learning
to boost performance; however, the main disadvantage of
transfer learning is that of negative transfer, which occurs as
the initial and target tasks are not similar enough to allow
satisfactory training of the model. To avoid this, the authors
in32 took the novel approach of generating synthetic CXR
images (using an algorithm called COVIDGAN) using
generative adversarial networks (GANs).45 Specifically, they
used an auxiliary classifier generative adversarial network
(ACGAN)46 architecture to enhance COVID-19 detection. The
results suggested that the synthetic images produced by
COVIDGAN can increase COVID-19 detection accuracy by up
to 10%.



Table 1
Detailed information about the proposed artificial intelligence deep-learning-based models for COVID-19 detection using radiographic images.

Ref. Methods Data groups Tasks Accuracy per-task (%)

Heidari et al.27 VGG16 445 COVID-19
5,179 Non-COVID-19 pneumonia
2,880 Normal

Two groups (normal, COVID-19)
Three groups (normal, pneumonia,
COVID-19)

98.1
94.5

Apostolopoulos et al.22 VGG19
Mobile Net
Inception
ResNets

224 COVID-19
700 Bacterial pneumonia
504 normal

Two groups (normal, COVID-19)
Three groups (normal, pneumonia,
COVID-19)

98.7
93.5

Ozturk et al.28 Custom CNN 130 COVID-19
500 pneumonia
500 normal

Two groups (normal, COVID-19)
Three groups (normal, pneumonia,
COVID-19)

98.08
87.20

Ranimzaden et al.29 TCNN 180 COVID-19
6,054 Pneumonia
8,851 Normal

Two groups (normal, COVID-19,
Three groups (normal, pneumonia,
COVID-19)

99.05
94.40

Khan et al.21 Xception 290 COVID-19
330 Bacterial pneumonia
330 Viral pneumonia
310 Normal

Two groups (normal, COVID-19)
Three groups (normal, pneumonia,
COVID-19)
Four groups (normal, pneumonia
bacterial, pneumonia viral, COVID-
19)

98.80
94.52
89.60

Ouchicha et al.30 TCNN 219 COVID-19
1,345 Viral pneumonia
1,341 Normal

Three groups (normal, pneumonia,
COVID-19)

96.69

Ucar et al.31 Deep-SqueezeNet 76 COVID-19
4,290 Non-COVID-19 pneumonia
1,583 Normal

Three groups (normal, pneumonia,
COVID-19)

98.30

Waheed et al.32 COVIDGAN 403 COVID-19
721 Normal

Two groups (normal, COVID-19) 95.00
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A summary of the proposed methods using CXR images
for COVID-19 detection can be seen in Table 1.

DL in COVID-19 detection using CT

In several countries, such as The Netherlands,47,48 CT was
the primary imaging methodology used to assess the lung
to identify COVID-19 infection. The improved spatial reso-
lution of CT over CXR can enhance the sensitivity of COVID-
19 detection. This is particularly valuable in detecting subtle
early disease or identifying ground-glass densities hidden
by the heart or hemidiaphragm on frontal CXRs6,49; how-
ever, workforce limitations in radiology departments dur-
ing the pandemic meant that reading vast numbers of CT
studies to detect COVID-19 became a challenging task.50

When coupled with reader intra- and interobserver vari-
abilities, AI experts began to propose automated algorithms
to diagnose COVID-19 on CT.

An early method proposed by Chen et al.51 was based on
a 2D Unetþþ52 pre-trained on ImageNet.53 The model was
initially trained to segment regions of interest within the
lungs on CT and then predict suspicious lesions within these
regions. The best accuracy reported by this approach was
92.59%. Similarly, Gunraj et al.54 proposed a COVID-19
detection algorithm based on a pre-trained 2D CNN com-
bined with optimised neural network architecture,
informed by human prerequisites for model sensitivity and
positive predictive value for COVID-19 detection. Specif-
ically, they benefited from a machine-driven design
exploration strategy proposed in55 to design the network
architecture automatically and identify the designed ar-
chitecture patterns/blocks. The proposed model, called
COVIDNet-CT, had a reported accuracy for a three-group
(normal, non-COVID-19 pneumonia, and COVID-19) classi-
fication task of 99.10%.

Another study used the COVNet TCNN model,56 which is
based on two parallel ResNet50s (CNNs that are 50 layers
deep)34 with weight sharing. Similar to the previously
mentioned models, this method first identified the lungs
using a 2D Unet57 and then trained the TCNN to detect
features of COVID-19 within the lungs. The authors reported
an area under the receiver operating characteristic curve
(AUROC) value of 96.50%. Utilising the same concept, Wang
et al.58 designed a TCNN architecture based on 3D networks.
They used a 3D U-Net59 for lung segmentation and then
combined two 3D-ResNets for COVID-19 detection. They
utilised a prior-attention mechanism and proposed a new
prior-attention residual learning block to boost the model’s
performance. The reported accuracy and AUROC were
93.30% and 97.30%, respectively. Song et al.60 proposed an
architecture based on three parallel 2D ResNets with weight
sharing to extract different levels of lung CT features,
including global features, detailed local features, and
rational features. They directly extracted global features
from the whole lung area as an initial processing step using
ResNet50. A feature pyramid network algorithm was uti-
lised to segment the lung area and generate sub-region/
images at different scales. Then, based on the defined sub-
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regions, a ResNet50 was used to extract local features at
each region and relational features between regions. They
later combined these features for the final COVID-19 pre-
diction. The proposed method had an accuracy of 93% and
an AUROC of 95%.

Acar et al.61 proposed a pipeline based on GAN45 algo-
rithms to increase the performance of the previously
developed CNNs for COVID-19 detection. They initially
extracted the lungs using a deep network called BDCU-
Net.62 They then used a GAN model to synthesise new lung
CT images, thereby increasing the number of samples
available for training. For their final step, they utilised
several well-known pre-trained 2D CNNs to diagnose
COVID-19 and demonstrated that using GANs in the base-
linemodels could increase COVID-19 diagnostic accuracy up
to 9%.

One of the main challenges in training AI models for
COVID-19 detection using CT is having good quality and
abundant manual labels of regions of COVID-19-affected
lung parenchyma. A strategy that has been used to miti-
gate against limited labels has been to use weakly super-
vised DL algorithms63 that can efficiently work on datasets
without labels but can maintain sufficient accuracy for
COVID-19 detection. Inspired by the work of Yang et al.,64

Hu et al.63 initially proposed a 2D Unet multi-view seg-
mentation model with additional attention layers to extract
the lungs from the CT. Later they modified the VGG23

network adding a weakly supervised multi-scale learning
algorithm to increase COVID-19 detection performance. The
accuracy and AUROC for this model were 87.4% and 89.60%.
Similarly, Wang et al.65 proposed a weakly supervised
framework based on a 2D Unet and a 3D CNN. As a first
stage, they used a 2D Unet model to segment the lungs on
CT images. Then they used the segmented mask to extract
the lung area and combined the slices to create a 3D lung
mask. They then trained a 3D CNN encoder called DeCoVNet
by concatenating the original 3D scans with the lung masks
and combined this with a weakly supervised COVID-19
lesion localisation algorithm to classify the scans. The ac-
curacy and AUROC for this approach were 90.10% and
95.90%, respectively.

Other similar approaches based on CNNs for COVID-19
detection include methods based on Unet architec-
tures,66,67 methods that utilised attention-based net-
works,68 and other CNN architectures focused on
segmentation and classification.20,50,69,70 A summary of the
various CNN methods that used CT can be seen in Table 2.
Discussion

The present review described the application of DL-
based AI models to detect and diagnose COVID-19 on CXR
and CT. In total, 30 studies performed within the time frame
of the review were assessed. Sixteen studies with pioneer-
ing approaches to COVID-19 diagnosis are described, de-
tailing the model architectures and their reported
performance. (The remaining 14 studies used similar ap-
proaches, and their model architectures are summarised
briefly.) Yet, comparing performance between models is an
essentially futile exercise as none of the models described
examined a common standardised dataset, thereby making
an unbiased definitive comparison impossible.

Based on the present review, it is clear that there are
several challenges related to the application of AI for COVID-
19 detection. Invariably when image analysis of CXR or CT
images for COVID-19 detection is performed, the ground
truth for diagnosis is the RT-PCT test. Yet, solely using a
molecular test to confirm the presence of lung disease is
flawed. A patient may have COVID-19 infection with no lung
manifestations. The CXR and CT may be clear, but the AI
model will be forced to classify the lungs as COVID positive. A
consequence is that the model will be trained on faulty
ground truth data. A comparable scenario is when in times of
endemic infection, a patient with non-COVID-19 pneumonia
may acquire nosocomial COVID-19 that does not affect the
lungs. The model will again be forced to learn that the lung
abnormalities are those of COVID-19 even though the un-
derlying aetiology might be a different infectious agent.
False-negative RT-PCR results have also not been reported
infrequently. These cases can result in spurious training data
where the AI model will be forced to learn that basic COVID-
19 features on CXR or CT should be classified as not being
COVID-19. In all these examples, the flawed assumption that
the RT-PCT test is a surrogate for lung infection is a major
constraint to AI model performance.

Despite the good accuracy and performance quoted by
the various AI models described in this review, there has
been almost no evaluation as to how these models perform
on real-world CT and CXR examinations. A recent study71

highlighted quite dramatically that when some of these
algorithms were re-implemented, the regions of the image
that were the key determinant of how the image was
classified came from features outside of the lungs. On CXR
images, non-pathological features in the images, such as
laterality markers (identifying the left or right side of the
patient on the image), image edges, the diaphragm, and
the cardiac silhouette strongly influenced predictions of
COVID-19 status. These features instead of emphasising
COVID-19-related damage, are more likely to reflect dif-
ferences across training datasets where the CXR acquisi-
tion anterioreposterior (AP) versus posterioreanterior
(PA) or patient position differed between centres contrib-
uting data to the imaging database.71 These observations
underscore the need for interpretability and transparency
of AI model outputs so that human readers can be confi-
dent in the logic by which AI models come to their con-
clusions. These requirements are essential for safety and
trust in AI systems.

It is also worth considering that the high accuracy re-
ported for several of the AI methods can result from un-
desired bias within the datasets used, such as training and
testing the models on the same dataset. For example, the AI
model proposed by Acar et al.61 reported the highest accu-
racy among all the proposed AI methods that analysed CT
scans; however, when their model was tested on an
external dataset, the accuracy decreased by 8.5%, suggesting
that the model was overfitted to the training dataset.



Table 2
Detailed information about the proposed artificial intelligence deep-learning-based models for COVID-19 detection using computed tomography images.

Ref. Methods Data groups Tasks Accuracy (%) AUROC (%)

Chen et al.51 2D Unetþþ 51 COVID-19
55 Other disease

Two groups (non-COVID-19, COVID-
19)

92.59 -

Gunraj et al.54 2D CNN - Three groups (normal, pneumonia,
COVID-19)

99.10 -

Li et al.56 2D Unet þ 2D TCNN 1,296 COVID-19
1,735 Pneumonia
1,325 Non-pneumonia

Three groups (non-pneumonia,
pneumonia, COVID-19)

- 96.5

Wang et al.58 3D Unet þ 3D TCNN 1,315 COVID-19
2,406 ILD
936 Normal

Three groups (normal, ILD, COVID-
19)

93.30 97.30

Song et al.60 Shared 2D CNNs 88 COVID-19
100 Bacterial pneumonia
86 Normal

Three groups (normal, pneumonia,
COVID-19)

93.00 95.00

Acar et al.61 BDCUnet þ GAN þ 2D CNN 1,607 COVID-19
1,667 Normal

Two groups (normal, COVID-19) 99.51 -

Hu et al.63 2D Unet þ 2D WS-CNN 80 COVID-19
78 Pneumonia
72 Normal

Three groups (normal, pneumonia,
COVID-19)

87.4 89.60

Wang et al.65 2D Unet þ 3D WS-CNN 313 COVID-19
299 Non-COVID-19

Two groups (non-COVID-19, COVID-
19)

90.10 95.90

AUROC, area under the receiver operating characteristic curve; ILD, interstitial lung disease.
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Of the studies reviewed in Tables 1 and 2, performance
was better for methods that used CT images; however,
models that use CT and 3D processing algorithms utilise
more complex algorithmic pipelines and need more com-
plex computational resources. They also have an increased
likelihood of overfitting the model to their training data as
the number of parameters used in the 3D DL networks is
higher. Furthermore, as mentioned previously, creating
manual labels of imaging features on CT images is an
expensive process requiring the input of experts that are
typically in short supply. Models that use CXR images are
intrinsically less complex as they are based on 2D DL net-
works with single end-to-end pipelines. As the size of CXR
datasets is typically exponentially larger than CT datasets,
the training data have a better chance of being more
representative of the various disease manifestations in the
lungs; however, as previously described, relying on RT-PCR
results as the ground truth for lung damage is a major
constraint to the models.

According to the literature, most of the proposed algo-
rithms analysing COVID-19 focus on distinguishing COVID-
19 from non-COVID pneumonia; however, clinically, there
are other differentials of COVID-19 on CXR, including other
viral or bacterial infections, aspiration pneumonia, etc. The
main limitation of the proposedmethods is that they ignore
other types of lung damage/disease, limiting the ability of
an AI algorithm to differentiate COVID-19 from other kinds
of illness. Moreover, a patient may simultaneously have
COVID-19 and a bacterial or viral pneumonia.

There are limitations to this review. The focus was on the
image analysis aspects of these studies, and studies where
clinical data were also built into AI models were not
explored. The content of this review describes a rapidly
evolving research field. Papers published until March 2022
were reviewed, but since this time, several new AI models
have been released andwere beyond the remit of this review.
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