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Abstract 

Metastasis is the main cause of cancer death, yet to this day the evolutionary processes 

behind remain largely unknown. Here, through analysis of large panel-based genomic 

datasets from the AACR GENIE project including 40,979 primary and metastatic tumors across 

25 distinct cancer types, we explore how the evolutionary pressure of cancer metastasis 

shapes the selection of genomic drivers of cancer. The most commonly affected genes were 

TP53, MYC and CDKN2A with no specific pattern associated with metastatic disease 

suggesting that on a driver mutation level the selective pressure operating in primary and 

metastatic tumors is similar. The most highly enriched individual driver mutations in 

metastatic tumors were known resistance mutations, to hormone therapies in breast and 

prostate cancer affecting ESR1 and AR, to anti-EGFR therapy in non-small cell lung cancer 

(EGFR T790M) and to imatinib in gastrointestinal cancer (KIT V654A). We also observed 

specific mutational signatures associated with treatment in three cancer types, supporting 

clonal selection following anti-cancer therapy. Overall, this implies that acquisition of driver 

mutations are predominantly shaped by the tissue of origin where specific mutations define 

the developing primary tumor and drives growth, immune escape and tolerance to 

chromosomal instability.  

Significance  

The genomic drivers of metastatic cancer remain largely unknown. We show how the driver 

landscape mirrors primary disease, with the main genomic drivers of metastatic cancer evolution 

associating with resistance to therapy. 
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Introduction 

Metastasis is the process where cancer cells from a primary site colonize to distant organs(1), 

and is usually considered the terminal step in the evolution of lethal cancer. Given that a 

significant proportion of primary cancers are cured entirely through surgery, metastatic 

dissemination must be a relatively late event in many if not most cases. It has been 

hypothesized that the ability to metastasise is not inherent to primary cancers, but must be 

acquired during cancer evolution(2). As more than 90 percent of all cancer-related deaths are 

caused by metastatic cancer(3), understanding the process of how the primary tumor 

achieves metastatic potential is of critical importance if cancer survival is to be substantially 

improved. 

Cancer is a molecular disease driven by accumulation of somatic alterations to the genome. 

Most of our current understanding of cancer is derived from studies investigating primary 

tumors, while there has been considerably less analysis of metastatic tumors. The metastatic 

process is a multi-step process and consists of local invasion, intravasation, survival in the 

circulation, extravasation and colonization to distant tissues(1,2). Studies in mice have 

suggested that the metastatic process is generally highly inefficient, with the vast majority of 

cancer cells dying in circulation(4). The established association between tumor size and risk 

of metastasis suggests that the metastatic process may be a stochastic combination of cell 

proliferation and tumor size, with larger and/or more proliferative tumors shedding more 

cells into circulation, ultimately increasing the chance of successful colonization of distant 

metastasis. However, phylogenetic analysis of metastatic lesions across multiple cancer types 

have recently shown that a monophyletic relationship commonly exists between metastatic 

lesions(5). While this observation may be limited by the number of metastatic tumors 

https://paperpile.com/c/AWF7oi/pIWTv
https://paperpile.com/c/AWF7oi/nL19y
https://paperpile.com/c/AWF7oi/tVdzm
https://paperpile.com/c/AWF7oi/pIWTv+nL19y
https://paperpile.com/c/AWF7oi/SzQ1l
https://paperpile.com/c/AWF7oi/iLus
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sampled, this might suggest that some aggressive phenotypic traits either dramatically 

increase the chance of metastatic dissemination, or are potentially acting as gate-keeper 

events required for successful dissemination. 

 

Mutations that increase cancer cell fitness are referred to as driver mutations. In the primary 

tumor, driver mutations are selected for as they generally lead to improved cancer cell fitness 

through either increased cell proliferation or decreased cell death(6). While selection in the 

primary setting is independent of metastasis, it is plausible that certain traits that increase 

fitness in the primary tumor also promote survival in circulation and the ability to colonize 

distant tissue. These would in effect act as gate-keeper events, where the risk of metastasis 

is vastly increased following acquisition. While the existence of such gatekeeper mutations or 

alterations have long been hypothesized(2), so far, they have eluded detection. Several recent 

studies have analyzed genomic data from metastatic tumors in smaller cohorts. Robinson et 

al analyzed data from more than 500 metastatic cancer samples from 20 different cancer 

types and found an increased mutation burden relative to primary samples using The Cancer 

Genome Atlas (TCGA)(7), and increased global dysregulation of gene transcription. However, 

on both gene and pathway level, they were unable to find any defining characteristic that 

facilitated development of metastatic potential. Similar results indicating limited recurrent 

evolution of the cancer genome in the metastatic setting was reported by the Hartwig 

Medical Foundation (HMF), where the authors demonstrated a conspicuous lack of 

metastasis-specific driver mutations in a cohort of 2,520 metastatic patients analyzed by 

whole genome sequencing(8). A more recent follow-up study by the HMF analyzed paired 

samples, either primary-metastatic or metastatic-metastatic, across 250 individuals analyzed 

with whole genome sequencing(9). Here, de Haar and colleagues found that when focusing 

https://paperpile.com/c/AWF7oi/YBFh7
https://paperpile.com/c/AWF7oi/nL19y
https://paperpile.com/c/AWF7oi/xbly
https://paperpile.com/c/AWF7oi/CyOI
https://paperpile.com/c/AWF7oi/u93uQ
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on clinically relevant genomic biomarkers, full concordance was observed for 99% of patients 

between paired biopsies. Thus, to this day, no evidence has been found supporting a clear 

genomic basis for metastatic potential, and the existence of gatekeeper events for metastatic 

dissemination remains a hypothesis. 

 

With this work we aim to leverage the power of large datasets to investigate if cancer gate-

keeper mutations exist by comparing genomic panel data from primary and metastatic tumor 

samples from the GENIE project. We define a common gene set of 174 established cancer 

genes with sequence data from 40,979  samples. With these we investigate whether 

metastatic tumors are preferentially enriched in driver mutations or copy number alterations 

in cancer genes. Through gene and pathway-based analysis we decipher whether certain 

alteration patterns may be necessary for achieving metastatic potential. While this gene set 

only represents a small fraction of the genome, together these genes represent the targets 

of more than half of all cancer driver mutations reported in the to-date largest analysis of 

metastatic cancers using whole genome sequencing, performed by the HMF(8). Thus, with 

this geneset we are able to investigate shifts to the evolutionary landscape within established 

cancer genes, but as a limitation of the panel-based approach we are unable to discern 

metastasis-driven evolution to other parts of the genome.  

  

https://paperpile.com/c/AWF7oi/CyOI
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Methods 

Data acquisition  

Basic patient information along with mutation and copy number data 112,935 sequenced 

tumor samples was acquired from the AACR Project Genomics Evidence Neoplasia 

Information Exchange (GENIE) consortium(10), version 9.0. The data includes primary or 

metastatic tumor genomic data from 104,125 of cancer patients treated at 18 institutions 

worldwide. Genomic data was based on 92 different gene panels, containing between 11 and 

760 genes. The public GENIE repository includes restricted clinical annotations, limited to 

primary/metastatic status, gender, ethnicity, age, and cancer type. 

 

Determining an optimal geneset  

To identify the largest number of genes assessed across the largest number of patients, we 

defined an optimal gene-set based on genes shared by the most panels assessed in the largest 

number of tumors. First cancer types with less than 100 samples in both primary and 

metastatic cancer were excluded. All panels were sorted by number of included samples, the 

largest was compared to all other panels to identify the panel with the largest gene overlap, 

this panel was kept, and the overlapping genes were compared to the remaining panels. This 

was repeated until all panels had been ranked. The final gene set was chosen by weighing the 

number of genes versus the number of patients and included 174 genes assayed by 29 

different gene panels in 40,979 tumors across 25 different cancer types (Figure S1, Table S1).  

 

Summary genomic scores 

https://paperpile.com/c/AWF7oi/SHNYg
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The somatic tumor mutation burden (TMB) was defined as the number of mutations per 

megabase, for each sample calculated based on the full panel size. The weighted genome 

integrity index (wGII) was calculated from the available segmented copy number data, as 

previously described(11).  

 

Annotation of driver events  

All somatic mutations in both TCGA and Genie were annotated to genes by ANNOVAR(12) 

using the hg19 reference genome. Driver mutations were defined for frameshifts as 

Frameshift indels in tumor suppressor genes (TSG), and as Non-frameshift indels with an 

occurrence in the COSMIC v90(13) database of at least 3 in oncogenes. SNVs were defined as 

drivers for TSGs if either predicted “deleterious” by SIFT, “probably damaging” by PolyPhen 

or if it was a stop gain or splice mutation. For oncogenes, specific mutations had to occur at 

least 3 times on COSMIC. Finally, any specific mutation with a Cosmic count > 10 was included 

in the definition of driver mutations. Data on somatic copy number alterations (SCNA) as 

defined by the GENIE pipeline were available for a subset of the samples (Table S2). Here, the 

GENIE data set was annotated as either 2, 1, -1 or - 2, specifying deletions, losses, gains and 

amplifications. Genes annotated as deletions or amplifications were classified as driver 

events. 

 

Enriched and depleted genes and pathways 

For the enrichment analyses genes were considered altered if they harbored either a somatic 

mutation considered a likely driver, or a copy number change called as a deletion or an 

amplification as defined by the GENIE processing pipeline. A two-sided Fisher’s exact test was 

used to compare primary to metastatic disease, on the number of patients with and without 

https://paperpile.com/c/AWF7oi/O1dm9
https://paperpile.com/c/AWF7oi/zpbM3
https://paperpile.com/c/AWF7oi/eXia0
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altered genes, per cancer type. P-values were corrected by false discovery rate (FDR) and 

considered significant if the corrected p-values were below 0.05. A similar enrichment 

analysis was performed on a pathway level, where all gene driver events were mapped to the 

cancer specific pathways from Sanchez-Vega et al.(14) before further analysis on pathway 

level, including only pathways where at least 50% of the genes were found in the GENIE gene 

set (Table S3). Enrichment or depletion of co-occurring alteration in pathways was tested 

using a two-sided Fisher’s exact test to compare primary to metastatic disease, on the number 

of patients with and without altered pathway pairs, per cancer type. P-values were corrected 

by false discovery rate (FDR) and considered significant if the corrected p-values were below 

0.25. 

  

Mutational signature analysis 

All mutations were annotated relative to their trinucleotide context, as described(15). For 

each cancer type, within primary and metastatic tumors separately, the frequencies of 96 

potential trinucleotide mutations were determined, and COSMIC mutational signatures v3.0 

were inferred using the deconstructSigs R package(15,16), version 1.9.0. To determine the 

number of mutations assigned to each signature, we multiplied the signature proportion with 

the average tumor mutation burden of the cancer type, primary and metastatic separately. 

 

Statistical analysis 

All analysis was performed in R version 3.6.2 (17), using Tidyverse (18) and ggpubr(19), 

scales(20), ggrepel(21) for visualizations. For significance testing Wilcoxon test was used 

unless otherwise mentioned. 

https://paperpile.com/c/AWF7oi/VthTU
https://paperpile.com/c/AWF7oi/gluct
https://paperpile.com/c/AWF7oi/gluct+bWYto
https://paperpile.com/c/AWF7oi/hBq2p
https://paperpile.com/c/AWF7oi/f4LTu
https://paperpile.com/c/AWF7oi/kUXLk
https://paperpile.com/c/AWF7oi/YBHff
https://paperpile.com/c/AWF7oi/qGmI8
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Results 

Samples and genes 

The public GENIE version 9 dataset contains a total of 112,935 tumors from 104,125 patients, 

profiled using 92 different gene panels, containing 11-760 genes. The clinical annotations are 

limited to basic information, such as age, gender, cancer type and primary or metastatic 

biopsy. While based on gene panels and thus restricted in the genomic content covered, this 

very large cohort provides a unique opportunity to study the evolution of primary to 

metastatic cancer in a selected set of well-defined cancer genes. To perform this analysis, we 

defined a common sequenced gene set that contained the maximum number of tumors 

covered by the highest number of genes (see methods, Figure S1). The final gene set included 

174 established cancer genes which were assayed in a total of 40,979 tumors, 24,333 primary, 

16,546 metastatic, across 25 cancer types (Figure 1A-B). While the common gene set is 

relatively small compared to whole exome or whole genome sequence data, these 174 cancer 

genes are commonly mutated in cancer, with 145 listed in the COSMIC cancer gene census. 

Indeed, in 2,520 metastatic tumors analyzed by the Hartwig Medical Foundation(8), 20,070 

driver mutations were reported. Of these, 10,889 (54.3%) were found within genes covered 

by the GENIE common gene set (Figure 1C), making this gene set a valid reference point for 

analysis based on driver alterations (somatic driver mutations and copy number events).  

 

Metastatic cancer harbors more somatic mutations and increased levels of genomic 

instability  

To investigate the summary genomic differences between metastatic and primary cancer, we 

determined the tumor somatic mutation burden (TMB), the mutation variant allele frequency 

https://paperpile.com/c/AWF7oi/CyOI
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(VAF), and the overall level of chromosomal alterations defined using the weighted genome 

integrity index (wGII)(11). We found that TMB trended higher in metastatic samples 

compared to primary samples in 17 of 25 cancer types, being significantly higher in 10 (Figure 

2A). In only one cancer type did we find a significantly higher TMB in primary tumors (bladder 

cancer). VAF, a proxy measure of tumor purity and clonality, was generally found to be higher 

in metastatic samples, being significantly higher in 10/25 (Figure S2), but significantly lower 

in five cancer types (uterine sarcoma, glioma, bone, bladder and renal cancer). Similarly, we 

observed that wGII trended higher in metastatic tumors in 20 of 25 cancer types, being 

significantly higher in 13  (Figure 2B). In none of the cancer types did we observe higher wGII 

in primary relative to metastatic tumors. When comparing TMB to wGII directly, as previously 

reported(22) we found an inverse association, with tumors harboring high levels of mutations 

showing lower levels of chromosomal alterations (Figure S3, A-B). To investigate if the 

observed increase in wGII in metastatic relative to primary samples only applied to samples 

with low TMB, we divided samples into bins based on their TMB (Figure S3C). We observed a 

significantly higher level of wGII in metastatic samples across all bins, indicating that the 

increased levels of chromosomal alterations found in the metastatic setting is independent 

of the overall mutation burden (Figure S3D). 

 

Metastatic tumors harbor fewer drivers per mutation  

Across the full GENIE cohort, we found 138,253 driver mutations and 193,708 driver copy 

number alterations, with an average of 3 driver events observed per sample (range 0-152). 

To investigate if cancer driver mutations might be more prevalent in metastatic samples, we 

compared the total number in each sample between primary and metastatic tumors. Based 

on the gene panels in this study, we found a higher overall number of driver mutations per 

https://paperpile.com/c/AWF7oi/O1dm9
https://paperpile.com/c/AWF7oi/rS3b8
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sample in metastatic versus primary tumors, with 8/25 cancer types showing slight but 

significant increase in driver mutation count in metastatic samples, and 4/25 cancer types 

showing a slight but significant decrease (Figure 2C), overall this indicates that metastatic 

biology is not driven solely by the sheer number of established cancer drivers. To determine 

whether an increase in driver mutations might be driven by a general increase in mutation 

burden, we calculated the ratio of driver mutations to TMB. Intriguingly, in 12 of 25 cancer 

types we found a significantly lower number of drivers when corrected for the total mutation 

burden. In none of the cancertypes did we observe the inverse (Figure 2D). This suggests that 

for the core set of cancer driver genes analyzed in this work, selection for specific drivers is 

lower in the metastatic setting relative to the rate of mutation accumulation. To further 

investigate this, we determined the percentage of samples with cancer driver events (defined 

as either individual mutations or SCNAs causing gene alterations with a likely role in driving 

cancer) within metastatic and primary disease, and determined the delta change in the 

percentage of tumors with a driver mutation in a given gene, when combining all cases across 

cancer types (Figure S4). We found that overall, most genes showed a delta value of less than 

2 when subtracting the percent mutated primary tumors from the percent mutated 

metastatic tumors. No gene showed a delta value higher than 4, indicating that acquisition of 

driver mutations is mostly shaped by the tissue of origin. 

 

Metastatic tumors are enriched in resistance mutations 

In order to identify specific genes with driver events that are either depleted or enriched in 

metastasis, we compared the occurrence of driver events between primary and metastatic 

cancer directly within individual cancer types. First, we calculated the fraction of patients with 

driver events for each gene. Excluding cancer types with neither altered genes in primary and 
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metastatic samples (Figure 3A). We found overall a correlation between primary and 

metastatic disease (r = 0.96,  P < 0.0001), supporting that most cancer driver mutations are 

early events, and thus shared by both primary and metastatic disease across all cancer 

types(23). However, although the observed differences between primary and metastatic 

disease are small, we do find that certain genes consistently trends towards higher fractions 

in the metastatic setting. To further investigate this, we determined the relative ratio of 

affected genes between primary and metastatic disease (Figure 3B, Table S4). This analysis 

revealed that the most commonly affected driver genes enriched in metastatic cancer across 

all cancer types were MYC and CDKN2A, well established cancer genes with a known role in 

controlling apoptosis and genomic stability, proliferation and cell cycle. Overall, while a total 

of 68 genes were significantly enriched or depleted in at least one cancer type, most showed 

limited difference in mutation rate between primary and metastatic tumors (Figure 3C). The 

genes showing the most dramatic enrichment in the metastatic setting were ESR1 in breast 

cancer (2.4% vs 16.7%, primary/metastatic) and AR in prostate cancer (2.5% vs 36.1%, 

primary/metastatic). These alterations were almost certainly selected for through 

development of acquired resistance to anti-hormone treatment, demonstrating how 

treatment is a major driver of cancer evolution in the metastatic setting. Notably, we also 

identified mutations in several genes as significantly depleted in metastatic cancer. These 

include ARID1A (endometrial, colorectal and ovarian) and PTEN (endometrial and colorectal), 

both observed as depleted in more than one cancer type (Figure 3C). PIK3CA is particularly of 

interest as it is one of the most commonly mutated cancer genes(24), and the target of several 

precision therapies. Interestingly, while found as one of the most commonly enriched genes 

overall, we also observed TP53 as significantly depleted in metastatic Head and Neck Cancer 

(OR = 0.51, P = 0.0068).  

https://paperpile.com/c/AWF7oi/CZxyz
https://paperpile.com/c/AWF7oi/qJcCx
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Metastatic disease is dominated by p53 and cell cycle pathways 

Except for TP53, which represents 15.7% of all GENIE driver events, most genes are rarely 

affected by somatic driver alterations in any individual tumor. Thus, even in a cohort like 

GENIE with samples reaching more than 40,000, most genes are found affected only a few 

times and therefore difficult to assess for metastatic relevance. However, as genes act in 

concert, we investigated if patterns might emerge when individual events are summarized to 

pathways. For this we relied on the pathway definitions as described by Sanchez-Vega et 

al(14), including in the analysis all pathways where at least 50% of the assigned genes were 

found in the GENIE common geneset (Table S3). As on gene-level, we calculated the fraction 

of patients with altered pathways in both primary and metastatic tumors, excluding cancer 

types with neither altered pathways in primary and metastatic samples Again, we found 

overall a correlation between primary and metastatic disease (r = 0.97,  P < 0.0001, Figure 

S5A), indicating that also on pathway level, most cancer driver events happen in the primary 

tumor, and are maintained in the metastatic setting. However, while the difference in 

frequency between primary and metastatic was minor for most cancer types, we did observe 

either slight increase or slight decrease in the frequency of certain pathways in metastatic 

versus primary tumors. Again, an enrichment analysis was performed (Figure S5B, Table S5). 

Here  we found that of the 5 pathways assessed, all were significantly enriched in at least one 

cancer type, with a total of 17 significant hits across all cohorts (Figure S5C). Consistent with 

literature(25), p53 pathway was one of the most affected pathways across all tumors, 

affected in approximately 50% of all tumors. Together with the Cell Cycle pathway (affecting 

26.9% of all tumors), it was also pathway most enriched in metastatic disease, both enriched 

in 6/25 different cancer types. The p53 pathway is dominated by mutations in TP53 itself and 

https://paperpile.com/c/AWF7oi/VthTU
https://paperpile.com/c/AWF7oi/VEgps
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the CDKN2A gene. While both TP53 and CDKN2A are typically clonally dominant, this suggests 

that when they do occur subclonally, they are more likely to be present in the metastasising 

clone. Hits to both p53 and Cell Cycle pathways are well established as strong drivers of cancer 

through analysis of primary tumors. That we also observe continued selection of these events 

in the metastatic setting indicates that on a pathway level, the drivers of high stage aggressive 

disease are also the drivers of metastatic disease.  

 

Recurring mutations in metastatic tumors are associated with treatment resistance 

Given the size of the GENIE dataset, we have the power to investigate if specific variants are 

selected for in metastatic tumors. For this analysis, we included all non-synonymous 

mutations observed in at least 1% of metastatic tumors within each cancer type, and asked if 

a given amino acid change was enriched in the metastatic setting. Nine variants were found 

significantly enriched in the metastatic setting (Figure 4A). Four enriched mutations were in 

ESR1, found in breast cancer, three mutations were in AR, found in prostate cancer, both 

likely representing acquired resistance to anti-hormone therapies. Additionally, the KIT 

V654A mutation was found significantly enriched in metastatic Gastrointestinal Stromal 

tumors, previously associated with acquired resistance to imatinib(26), and the EGFR T790M 

mutation was found significantly enriched in metastatic non-small cell lung cancer, a well 

documented resistance mutation to anti-EGFR therapies(27) (Figure 4B). Taken together, this 

analysis of the driver landscape of metastatic cancer shows that acquisition of specific driver 

mutations mostly reflects tissue of origin where specific events define the developing primary 

tumor and likely promotes growth and immune escape. It is not evident that any further 

acquisition of driver mutations are needed to specifically contribute to metastatic 

dissemination. Rather, while metastatic tumors are slightly enriched in known drivers of 

https://paperpile.com/c/AWF7oi/5qRj3
https://paperpile.com/c/AWF7oi/lehUa
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aggressive biology such as cell proliferation and chromosomal instability, a key dominant 

driver of metastatic cancer evolution is anti-cancer therapy. Overall, this supports that in the 

absence of treatment, the evolutionary pressures that act on established cancer driver genes 

such as those investigated in this work are indistinguishable in the evolution of both primary 

and metastatic disease. 

 

Mutational signature analysis reveals a treatment footprint and evidence of APOBEC 

activity in metastatic tumors 

To explore if the processes generating mutations may change during metastatic progression, 

we performed mutational signature analysis based on the framework published by 

Alexandrov et al(15,28). We did not have sufficient power to perform this analysis on an 

individual sample level. Instead, we combined all observed mutations in primary and in 

metastatic tumors, respectively, within each cancer type. The dominating mutational 

signatures across the cohort were SBS1 and SBS5, both of which were found in most cancer 

types and are associated with age and mitosis(29), reflecting that the primary driver of 

somatic mutations in both primary and metastatic cancer is associated with cell proliferation 

(Figure S6). In three cancer types, we observed clear evidence of treatment leaving a 

mutational footprint on the metastatic tumors, indicating selection for drug resistant 

subclones. In Glioma and Pancreatic cancer, a significant increase in the number and 

proportion of SBS11 mutations were observed, representing temozolomide treatment or 

alkylating chemotherapy (Figure 4C). In germ cell tumors, we observed a significant increase 

in SBS35, representing platinum chemotherapy. Five cancer types showed a significant 

increase in SBS2 and SBS13 representing APOBEC induced mutations, with cervical, head and 

neck, non-small cell lung, breast and thyroid cancer showing significant enrichment while a 

https://paperpile.com/c/AWF7oi/d5CGx+gluct
https://paperpile.com/c/AWF7oi/FEHru
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slight and non-significant decrease was observed for bladder cancer (Figure 4D). SBS4 

represents mutations induced by tobacco smoke(30) and were found in small cell and non-

small cell lung cancer. Small cell lung cancer showed a significant decrease in the number of 

SBS4 mutations observed in metastatic tissue, while non-small cell lung cancer showed a non-

significant decrease (Figure 4E). This is consistent with tobacco-induced mutations mostly 

playing a role in carcinogenesis and less in metastatic cancer development. Excluding SBS1 

and SBS5, no signature was found in more than six cancer types, and these rarer signatures 

combined showed a significant increase in metastatic tumors (Figure 4F P = 0.0034, paired 

Wilcoxon test). This supports either a shift in mutation processes in metastatic tumors, or 

clonal bottlenecking potentially through monoclonal seeding occurring during metastatic 

dissemination.  

 

Discussion 

With this study we demonstrated how large genomic datasets, even with limited genomic 

coverage and sparse clinical information, can be used to make novel insights into cancer 

biology and contribute to our understanding of metastatic cancer biology. With more than 

40,000 tumors spanning 25 different cancer types, this study is to our knowledge the largest 

to date that directly compares molecular data from metastatic and primary tumors. 

Consistent with previous studies in smaller cohorts, we found that metastatic tumors harbor 

a higher TMB, more driver mutations, and more genomic alterations compared to primary 

tumors(5,7,8,31,32). While we found similar levels of driver mutations in metastatic and 

primary tumors, the number of drivers per mutation was higher in primary tumors. This 

indicates that for the majority of tumors no additional canonical driver mutations are required 

https://paperpile.com/c/AWF7oi/3hi6O
https://paperpile.com/c/AWF7oi/xbly+iLus+CyOI+7jz6+ruJ5
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for metastatic transition and thus not selected for. The increased mutation burden overall 

may reflect that metastatic dissemination is mostly monoclonal, driven by few specific cancer 

driver events that are already selected for in the primary tumor. Conversely, the primary 

tumor is often heterogeneous, composed of multiple independent subclones(33). Here, tissue 

biopsies may sample more heterogeneous tissue containing multiple subclones, each defined 

by both clonal and subclonal mutations and driver events(5). Cancer cells acquire mutations 

both through intrinsic and extrinsic factors, but individual mutations are private to a small 

number of cells sharing the same lineage. Monoclonal metastatic dissemination would result 

in a strong bottleneck, where all lineage-specific mutations acquired by the metastasising 

subclone throughout the life-history of the cancer are suddenly unmasked. This may result in 

a higher VAF in metastatic tumors due to higher clonality, and an increased observed TMB.  

 

In our work we found that 10/25 cancer types showed significantly higher VAF in metastatic 

tumors. The observed increase in VAF in the metastatic setting is consistent with previously 

observed increased clonality of metastatic tumors(34), and may in these cancer types support 

a predominantly monoclonal model of metastatic dissemination. In metastatic small cell lung 

cancer, we observed a higher VAF in metastatic settings, no change in TMB, but a significantly 

lower aging signature (SBS1) supporting early metastatic dissemination, as previously 

described(35). Interestingly, metastatic small cell lung cancer harbors a lower level of smoking 

SBS4 mutations, suggesting that while smoking-induced mutations might be causal of the 

primary tumor, they do not significantly contribute to metastatic tumor development. 

Thyroid and cervical cancer both showed increased SBS2 and SBS13, indicating late activation 

of APOBEC enzymes. APOBEC has previously been found to activate late in cancer evolution 

where it may contribute to cancer development through increased mutation burden(36).  

https://paperpile.com/c/AWF7oi/WkbWH
https://paperpile.com/c/AWF7oi/iLus
https://paperpile.com/c/AWF7oi/nVyf7
https://paperpile.com/c/AWF7oi/WIhwd
https://paperpile.com/c/AWF7oi/kEyBq
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Several cancer types showed a clear footprint of treatment-induced mutations in metastatic 

tumors. In glioma and pancreatic cancer, we observed a significant increase in SBS11 

mutations, induced by alkylating agents such as temozolomide(28,37). In germ cell tumors, a 

strong increase in SBS35 was observed, representing platinum-induced mutations(28,37). The 

observed increase in mutation signatures in metastatic tumors is likely indicative of clonal 

bottlenecking occurring during treatment as the cancer responds to therapy. We also found 

that mutations in both ESR1 and AR were highly significantly enriched in metastatic breast 

and prostate cancers, respectively, while essentially absent from primary tumors. These are 

almost certainly treatment induced, as patients with breast cancer and prostate cancer are 

routinely treated with adjuvant anti-hormone therapy. We also observed specific enrichment 

of known resistance mutations KIT V654A and EGFR T790M in gastrointestinal tumors and 

non-small cell lung cancer, again almost certainly treatment induced. Together these findings 

demonstrate how treatment alters the evolutionary pressures acting on cancer, induces 

clonal bottlenecking of the disease, and causes selection for resistance-associated drivers. 

However, beyond ESR1, AR, KIT and EGFR we did not find any metastasis-specific driver 

events. Our work thus supports a model for cancer evolution where in the absence of 

treatment, the selective pressure towards increased malignancy is similar in primary and 

metastatic disease, with no specific cancer driver events associated specifically with 

metastatic dissemination. Consistent with this, most of the genes identified as enriched or 

depleted in the driver enrichment analysis were already well established cancer genes 

commonly accepted as drivers of cancer from studies of primary tumors.  This suggests that 

metastasis may not be caused by acquisition of new metastatic features or specific driver 

events, at least not among the gene set analyzed here. It may be that metastatic potential 
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primarily depends less on proliferation-associated oncogenes, but rather on acquisition of 

other phenotypes, such as immune-evasion, allowing cancer cells to disseminate more widely 

and grow without triggering local immune responses(31). This conclusion is supported by 

several recent publications, including work by de Haar et al(9), where analysis of 250 patients 

with paired samples using whole genome sequencing demonstrated limited evolution of the 

actionable cancer genome in the metastatic setting. Likewise, in an analysis of genomic 

characteristics of 25,000 primary and metastatic tumors from Memorial Sloan Kettering(32) 

using panel based sequencing, including on a subset of the samples analyzed in this work, the 

authors reported a higher fraction of TP53 mutations in metastatic tumors, and higher levels 

of chromosomal instability, as well as an increase in AR and ESR1 mutations in prostate and 

breast cancer, respectively.  

 

From a clinical perspective the limited genomic differences found between primary and 

metastatic tumors are of particular interest. It indicates that in the absence of prior therapy, 

biopsies from primary tumors can be safely used as a treatment guide and that the need for 

additional primary or metastatic biopsies may not be necessary. An important caveat to our 

study is that all analysis is performed upon 174 shared genes. However, all of the 174 genes 

investigated in this study are previously reported cancer genes representing the bulk of 

known cancer driver events, making this a valid study of cancer driver landscape. A major 

limitation is that the primary and metastatic data is not from paired samples but from 

individual patients. Additionally, as a significant fraction of primary tumor patients eventually 

will develop metastatic disease, it is possible that metastasis-causing driver events may be 

present among the genes analyzed, but are not reaching statistical significance due to 

inaccurate classification of primary tumors. Unfortunately, to date only few and limited 
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studies exist with paired data available. In contrast, the results of this study are derived from 

an exceptionally large number of patients, which increases the power of the results.  

 

Taken together, our results suggest that acquisition of cancer driver mutations are initially 

mostly shaped by the tissue of origin where specific cancer driver mutations define the 

developing primary tumor, while acquisition of driver mutations that contribute to metastatic 

disease are less specific. This might suggest that the metastatic process is driven less by newly 

acquired metastatic features, but more by non-cancer features such as inflammation of the 

tumor microenvironment and in the surrounding tissue. These findings shed new light upon 

the mystery of metastatic cancer dissemination, the critical step that typically defines 

operable from inoperable disease and is generally lethal. Our findings here expands on the 

current understanding of metastatic cancer biology, but considering the limitations of the 

gene panel examined, they must be further investigated and confirmed in additional cancer 

cohorts using more inclusive genomic platforms, such as whole exome or whole genome 

sequencing. 

 

Figure legends 
 
Figure 1. Cohort characteristics. (A) Schematic overview of the Genie cohort and the analytical 
workflow. (B) Distribution of primary and metastatic samples within the 25 cancer types. (C) Number 
of driver events reported in the HMF 2,520 patient metastatic cohort(8) and number of these 
overlapping with the GENIE common gene set of 174 genes. 
 
Figure 2. Summary mutations and copy number alterations. Primary samples on the x-axis and 
metastatic samples on the y-axis. Each cancer type is individually color coded. The dot size indicates if 
a given measure is significantly different between primary and metastatic within each cancer type. 
Only the significant cancer types are labeled. (A) Mean TMB across all cancer types. TMB is significantly 
higher in metastatic samples in 9/25 cancer types. (B) Mean wGII across all cancer types. wGII is higher 
in metastatic samples in 20/25 cancer types and significantly higher in 13/25 cancer types. (C) Mean 
number of driver mutations across all cancer types. Higher numbers of driver mutations in metastatic 
cancer are found in 8/25 cancer types, while for 4/25 cancer types more drivers are found in primary 
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samples. (D) The calculated ratio of driver mutations corrected for total mutational burden. For 12/25 
cancer types the level of driver mutation/TMB ratio are found significantly higher in metastatic 
samples.  
 
Figure 3. Enrichment of individual driver events. (A) Fraction of patients with driver events for each 
gene per cancer type. Only genes with values above 0.25 are labeled (B)  Volcano plot showing 
enrichment or depletion in metastatic disease. FDR-adjusted p-value on the y-axis. (C) Summary 
overview, top panel showing for each gene the number of cancer types it is enriched, either in 
metastatic (orange) or in primary (blue) tumors. Bottom panel shows metastatic tumor percentage 
minus primary tumor percentage for each gene, in the cancer types showing significant enrichment 
based on the analysis in (B). 
 
Figure 4. Metastatic tumors are enriched in specific variants and mutation signatures. (A) Using a 
one-sided Fisher’s test performed within cancer types to evaluate enrichment in metastatic tumors, 9 
specific gene variants are found significantly enriched. (B) The incidence of the significantly enriched 
variants and the cancer types they are found in are shown. (C-E) Mutation signatures in primary versus 
metastatic tumors. The Y-axis represents the numeric contribution of a specific mutation signature to 
the total TMB of each cancer type. Open circles indicate a signature is found but is not significantly 
different between primary and metastatic. (C) Treatment-related SBS11 (alkylating agents, 
temozolomide) and SBS35 (platinum chemotherapy). (D) The sum of APOBEC-related signatures, SBS2 
and SBS13. (E) Smoking-related signature, SBS4. (F) Showing for each cancer type the contribution of 
individual mutation signatures, excluding the very common mitotic-related signatures SBS1 and SBS5. 
P-value based on a paired Wilcoxon test. 
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Legends for the Supplementary figures  
 
 
Figure S1. Selecting an optimal gene set. Number of shared genes on the left y-axis and number of 
patients on the right y-axis. Number of panels on the x-axis. The vertical line indicates selection cut-
off.  
 
Figure S2. Variant allele frequency in primary and metastatic tumors across cancer types.  Mean VAF 
across all cancer types. VAF is significantly higher in metastatic samples in 10/25 cancer types. Primary 
samples on the x-axis and metastatic samples on the y-axis. Each cancer type is individually color 
coded. The dot size indicates if a given measure is significantly different between primary and 
metastatic within each cancer type. Only the significant cancer types are labeled.  
 
Figure S3. Comparison of TMB and wGII. Primary samples are blue and metastatic samples orange. 
(A) TMB relative to wGII in primary tumors. Tumors harboring high levels of mutations showing lower 
levels of chromosomal alterations. (B)  TMB relative to wGII in metastatic tumors. Tumors harboring 
high levels of mutations showing lower levels of chromosomal alterations. (C) TMB divided into bins. 
A significantly higher level of wGII in metastatic samples is found across all bins (D) wGII divided into 
bins. A significantly higher level of wGII in metastatic samples is found across 3 bins. 

 
Figure S4. Limited differences observed between primary and metastatic tumors. Difference in 
percentage of driver mutations, comparing all primary to all metastatic tumors across the GENIE 
cohort. Y-axis shows metastatic tumor percentage minus primary tumor percentage for each gene. 
Genes with higher percentage in metastatic tumors are colored orange, while genes with higher 
percentage in primary samples are colored blue. The analysis is performed only for pathways where 
at least 50% of the assigned genes were found in the GENIE common geneset. 
 
Figure S5. Enrichment of pathways with driver events. (A) fraction of patients with altered pathways 
in both primary and metastatic tumors. (B) The calculated ratio of affected pathways in both primary 
and metastatic samples. FDR-adjusted p-value on the y-axis. (C) Summary overview, top panel 
showing for each pathway the number of cancer types it is enriched, either in metastatic (orange) or 
in primary (blue) tumors. Bottom panel shows the percentage point difference between metastatic 
and primary tumors for each pathway, in the cancer types showing significant enrichment based on 
the analysis in (B). 
 
Figure S6. Mutational signatures. Mutational signatures were determined separately within cancer 
types, by combining separately all primary mutations and all metastatic mutations and determining 
the contribution of individual mutational processes, as defined by Alexandrov and colleagues(15,28), 
using the deconstructSigs(16) R package (A) Contribution of individual mutational signatures to the 
total mutation burden within primary tumors. (B) Contribution of individual mutation signatures to 
the total mutation burden within metastatic tumors. 
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