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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS
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We propose a framework for analyzing the sensitivity of counterfactuals to para-
metric assumptions about the distribution of latent variables in structural models. In
particular, we derive bounds on counterfactuals as the distribution of latent variables
spans nonparametric neighborhoods of a given parametric specification while other
“structural” features of the model are maintained. Our approach recasts the infinite-
dimensional problem of optimizing the counterfactual with respect to the distribution
of latent variables (subject to model constraints) as a finite-dimensional convex pro-
gram. We also develop an MPEC version of our method to further simplify computation
in models with endogenous parameters (e.g., value functions) defined by equilibrium
constraints. We propose plug-in estimators of the bounds and two methods for infer-
ence. We also show that our bounds converge to the sharp nonparametric bounds on
counterfactuals as the neighborhood size becomes large. To illustrate the broad appli-
cability of our procedure, we present empirical applications to matching models with
transferable utility and dynamic discrete choice models.

KEYWORDS: Robustness, ambiguity, model uncertainty, misspecification, global sen-
sitivity analysis.

1. INTRODUCTION

RESEARCHERS FREQUENTLY MAKE PARAMETRIC ASSUMPTIONS about the distribution of
latent variables in structural models. These assumptions are typically made for compu-
tational convenience1 or because simulation-based methods are used for estimation. In
many models, such as those we consider in this paper, the distribution of latent variables
is not nonparametrically identified. This raises the possibility that model parameters and
the outcomes of policy experiments, or counterfactuals, may be only partially identified
when parametric assumptions are relaxed. That is, different distributions may fit the data
equally well in-sample, but may yield different values of the counterfactual. It is there-
fore natural to question whether counterfactuals are sensitive or robust to researchers’
parametric assumptions, especially when evaluating the credibility of structural modeling
exercises.
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264 T. CHRISTENSEN AND B. CONNAULT

This paper proposes a framework for analyzing the sensitivity of counterfactuals to
parametric assumptions about the distribution of latent variables in a class of structural
models. In particular, we derive bounds on counterfactuals as the distribution of latent
variables spans nonparametric neighborhoods of a given parametric specification while
other “structural” features of the model are maintained. This approach is in the spirit of
global sensitivity analysis advocated by Leamer (1985) (see also Tamer (2015)). Global
sensitivity analyses are important in this context: many structural models are nonlinear so
policy interventions can have different effects at different points in the parameter space.
But a major difficulty with implementing global sensitivity analyses is tractability. A more
tractable alternative are local sensitivity analyses, which are based on small perturbations
around a chosen specification. Because local approaches rely on linearization, they may
fail to correctly characterize the range of counterfactuals predicted by a nonlinear model
when the distribution differs nontrivially from the researcher’s chosen parametric specifi-
cation.

Our main insight is to borrow from the robustness literature in economics pioneered by
Hansen and Sargent (2001, 2008) to simplify computation using convex programming.2

Following this literature, we define neighborhoods around the researcher’s parametric
specification using statistical divergence (e.g., Kullback–Leibler divergence), with the op-
tion to add certain shape restrictions as appropriate. For tractability, we restrict our at-
tention to models that may be written as a finite number of moment (in)equalities, where
the expectation is with respect to the distribution of latent variables. While restrictive,
this class accommodates many important models of static and dynamic discrete choice,
discrete games, and matching.

To describe our procedure, consider the problem of minimizing or maximizing the
counterfactual at a fixed value of structural parameters by varying the distribution of la-
tent variables over a neighborhood, subject to the model’s (in)equality restrictions. We use
duality to recast this infinite-dimensional optimization problem as a finite-dimensional
convex program. The value of this inner program is treated as a criterion function, which
is optimized in an outer optimization with respect to structural parameters. Importantly,
the dimension of the inner problem is independent of the neighborhood size, making our
procedure tractable over both small and large neighborhoods. To further simplify compu-
tation, we develop an MPEC version of our procedure for models featuring endogenous
parameters (e.g., value functions) defined by equilibrium constraints. We show that this
implementation can produce significant computational gains for dynamic discrete choice
models in particular.

Our approach is conceptually different from nonparametric partial identification anal-
yses which derive bounds on counterfactuals under minimal distributional assumptions.
But as we show, bounds computed using our procedure converge to the (sharp) nonpara-
metric bounds in the limit as the neighborhood size becomes large. Aside from sensitivity
analyses, our methods may therefore be used to approximate nonparametric bounds by
taking the neighborhood size to be large but finite.

For estimation and inference, we propose simple plug-in estimators of the bounds and
establish their consistency. We also propose and theoretically justify two methods for in-
ference: a computationally simple but conservative projection procedure and a relatively
more efficient bootstrap procedure.

2Our approach is also related to the field of distributionally robust optimization in operations research. See,
for example, Shapiro (2017), Duchi and Namkoong (2021), and references therein.
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 265

We illustrate our procedures with two empirical applications. The first revisits the “mar-
ital college premium” estimates reported in Chiappori, Salanié, and Weiss (2017), which
relied on an i.i.d. Gumbel (type-I extreme value) assumption for the distribution of in-
dividuals’ idiosyncratic marital preferences (see also Choo and Siow (2006)). The second
empirical application performs a counterfactual welfare analysis in the canonical dynamic
discrete choice model of Rust (1987).

Related Literature. Our approach has connections with global prior sensitivity in
Bayesian analysis (Chamberlain and Leamer (1976), Leamer (1982), Berger (1984)), most
notably Giacomini, Kitagawa, and Uhlig (2019) and Ho (2022) who considered sets of pri-
ors constrained by Kullback–Leibler divergence relative to a default prior.

Motivated by questions of sensitivity, Chen, Tamer, and Torgovitsky (2011) studied in-
ference in semiparametric likelihood models using sieve approximations for the infinite-
dimensional nuisance parameter (the distribution of latent variables in our setting). For
the class of moment-based models we consider, our approach instead eliminates the
infinite-dimensional nuisance parameter via a convex program of fixed dimension.

Several other works have used convex duality to characterize identified sets in models
with latent variables. Most closely related are Ekeland, Galichon, and Henry (2010) and
Schennach (2014).3 The problem we study is different, both because of its focus on coun-
terfactuals, rather than structural parameters, and because the optimization is performed
over a neighborhood, rather than over all distributions. As a consequence, our estimation
and inference methods are also quite different.

Torgovitsky (2019b) used linear programming to characterize sharp identified sets in
latent variable models defined by quantile restrictions. Within this class, his approach is
more computationally convenient than ours for characterizing identified sets. Several im-
portant moments or counterfactuals cannot be expressed as quantile restrictions, such as
social surplus in discrete choice models and Bellman equations in dynamic discrete choice
models. Our approach is compatible with these moments and counterfactuals, thereby al-
lowing the user to characterize identified sets in broader classes of model as well as to
perform sensitivity analyses.

There is also a literature deriving nonparametric bounds in specific latent variable
models. Examples include Manski (2007, 2014), Allen and Rehbeck (2019), Tebaldi, Tor-
govitsky, and Yang (2022), Lafférs (2019), Torgovitsky (2019a), and Gualdani and Sinha
(2022). Most closely related is Norets and Tang (2014), who constructed identified sets of
counterfactual conditional choice probabilities (CCPs) in dynamic binary choice models.
Their approach is specific to counterfactual CCPs and to dynamic binary choice models.
Our approach allows for a wider range of counterfactual (e.g., welfare), shape restrictions,
and multinomial choice, in addition to performing sensitivity analyses.4

Finally, our work is complementary to the recent literature on local sensitivity—see,
for example, Kitamura, Otsu, and Evdokimov (2013), Andrews, Gentzkow, and Shapiro
(2017, 2020), Armstrong and Kolesár (2021), Bonhomme and Weidner (2022), and
Mukhin (2018). Much of this literature is concerned with local misspecification of mo-
ment conditions, which is different from the setting we consider.

3Works using other notions of “duality” to construct identified sets include Beresteanu, Molchanov, and
Molinari (2011), Galichon and Henry (2011), Chesher and Rosen (2017), and Li (2018).

4Kalouptsidi, Scott, and Souza-Rodrigues (2021) and Kalouptsidi, Kitamura, Lima, and Souza-Rodrigues
(2020) considered the converse problem, in which flow payoffs are nonparametric (as they can be in our setting)
but the distribution of latent payoff shocks is known.
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266 T. CHRISTENSEN AND B. CONNAULT

Outline. Section 2 introduces our procedure and estimators of the bounds, and shows
our approach recovers nonparametric bounds as the neighborhood size becomes large.
Section 3 discusses practical aspects and implementation details. Section 4 gives guidance
for interpreting the neighborhood size. Empirical applications are presented in Section 5.
Section 6 discusses estimation and inference. The Supplemental Material (Christensen
and Connault (2023)) presents extensions of our methodology, connections with local sen-
sitivity analyses, additional empirical results, and proofs of our main results. A secondary
appendix of our working paper version (Christensen and Connault (2022)) presents back-
ground material on Orlicz classes and supplemental proofs.

2. PROCEDURE

We begin in Section 2.1 by describing the class of models to which our procedure may
be applied. Section 2.2 describes our approach, Section 2.3 shows how duality is used to
simplify the bounds, and Section 2.4 introduces our estimators of the bounds. Section 2.5
shows our bounds converge to the sharp nonparametric bounds as the neighborhood size
becomes large.

2.1. Setup

We consider a class of models that link a structural parameter θ ∈ � ⊂ R
dθ , a vector

of targeted moments P0 ∈ P ⊆ R
dP , and possibly an auxiliary parameter γ0 ∈ � (a metric

space) via the moment restrictions

E
F
[
g1(U�θ�γ0)

] ≤ P10� (1a)

E
F
[
g2(U�θ�γ0)

] = P20� (1b)

E
F
[
g3(U�θ�γ0)

] ≤ 0� (1c)

E
F
[
g4(U�θ�γ0)

] = 0� (1d)

where g1� � � � � g4 are vectors of moment functions, P0 = (P10�P20) is partitioned con-
formably, and E

F denotes expectation with respect to a vector of latent variables U ∼ F .
We assume that the researcher has consistent estimators (P̂� γ̂) of (P0�γ0). We also as-
sume that the researcher is interested in a (scalar) counterfactual of the form

κ= E
F
[
k(U�θ�γ0)

]
� (2)

This setup accommodates counterfactuals that do not depend explicitly on U , in which
case (2) reduces to κ = k(θ�γ0). Note that κ will still depend on the distribution of U
through θ, whose values are disciplined by the moment conditions (1a)–(1d).

Several models and counterfactuals of interest fall into this framework. We review three
examples before proceeding.

EXAMPLE 2.1—Discrete choice and consumer welfare: Suppose an individual derives
utility hj(X�θ)+Uj from choice j ∈J0 :={0�1� � � � � J}, whereX ∈X are observed covari-
ates and U = (Uj)j∈J0 is latent (to the econometrician). We assume, as typical, that U is
drawn independently across individuals from a continuous distribution F . The probability
that an individual with characteristics x chooses j is

p(j|x) = PF

(
hj(x�θ) +Uj = max

j′∈J0

(
hj′ (x�θ) +Uj′

))
� (3)
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 267

where PF denotes probabilities when U ∼ F . In empirical work, θ is typically estimated
using a criterion that fits the model-implied choice probabilities (3) to probabilities ob-
served in the data. Welfare analyses are often based on the social surplus (McFadden
(1978))

W (x) = E
F
[
max
j∈J0

(
hj(x�θ) +Uj

)]
�

which is the average utility consumers with characteristics x derive from the choice prob-
lem. A related welfare measure is the change in surplus 	W (xa�xb) = W (xa) − W (xb)
associated with a shift from xb to xa. In practice, it is common to assume the Uj are i.i.d.
Gumbel (type-I extreme value), as this yields closed-form expressions for choice proba-
bilities and the welfare measures W (x) and 	W (xa�xb).

Our approach may be used to perform a sensitivity analysis of W (x) and 	W (xa�xb) to
parametric assumptions about F when X is finite. A leading example is matching models
with finitely many agent types—see Section 5.1 and references therein. Understanding
the sensitivity of W (x) and 	W (xa�xb) to F is important in this case because W (x) and
	W (xa�xb) are not nonparametrically identified.5

In our notation, g2 collects indicator functions representing the choice probabilities (3)
across covariates x ∈X and choices j ∈J :={1� � � � � J} (j = 0 is redundant):

g2(U�θ) =
(
1
{
hj(x�θ) +Uj = max

j′∈J0

(
hj′ (x�θ) +Uj′

)})
(j�x)∈J×X

and P20 = (Pr(j|x))(j�x)∈J×X is the vector of true choice probabilities. There is no g1, g3,
g4, or γ in this model. Finally, k(U�θ) = maxj∈J0 (hj(x�θ) +Uj) for W (x) and k(U�θ) =
maxj∈J0 (hj(xa�θ) +Uj) − maxj∈J0 (hj(xb�θ) +Uj) for 	W (xa�xb).

EXAMPLE 2.2—Discrete games: Following Bresnahan and Reiss (1990, 1991), Berry
(1992), and Tamer (2003), consider the complete-information game in Table I.

Here, U = (U1�U2) is the latent (to the econometrician) component of firms’ profits,
which is independent of covariates X . Suppose that the solution concept is restricted to
equilibria in pure strategies. The econometrician may estimate the probabilities of the
potential market structures (0�0), (0�1), (1�0), (1�1) (conditional on X) from data on a
large number of markets. As the model is incomplete—there are values of U for which
there are multiple equilibria—moment inequality methods are typically used in empirical
work to avoid restricting the equilibrium selection mechanism. However, strong paramet-

TABLE I

PAYOFF MATRIX FOR (FIRM 1, FIRM 2) WHEN X = x.

Firm 2

0 1

Firm 1 0 (0�0) (0�β′
2x+U2)

1 (β′
1x+U1�0) (β′

1x−	1 +U1�β
′
2x−	2 +U2)

5See, for example, Berry and Haile (2010, 2014) and Allen and Rehbeck (2019) for nonparametric iden-
tification of utilities and welfare measures in discrete choice models when characteristics have continuous
support.
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268 T. CHRISTENSEN AND B. CONNAULT

ric assumptions are often made about the distribution of U (typically bivariate Normal) to
derive the model-implied probabilities for different market structures; see, for example,
Berry (1992), Ciliberto and Tamer (2009), Beresteanu, Molchanov, and Molinari (2011),
and Kline and Tamer (2016). It therefore seems natural to also question the sensitivity of
counterfactuals to parametric assumptions for U .

This model falls into our setup when the regressors X have finite support X .6 In our
notation, g1 collects the moment inequalities that bound the probabilities of (0�1) and
(1�0) across x ∈ X , with P10 denoting the corresponding true probabilities. The inequal-
ities are typically expressed as upper bounds on the probabilities of (0�1) and (1�0); we
flip the sign to be compatible with (1a):

g1(U�θ) =
[(−1

{
U1 ≥ −β′

1x;U2 ≤ 	2 −β′
2x

})
x∈X(−1

{
U1 ≤ 	1 −β′

1x;U2 ≥ −β′
2x

})
x∈X

]
�

P10 =
[(−Pr

(
(1�0)|X = x

))
x∈X(−Pr

(
(0�1)|X = x

))
x∈X

]
�

where θ= (	1�	2�β1�β2). Similarly, g2 and P20 collect the moment conditions and prob-
abilities for outcomes (0�0) and (1�1), which are always realized as the result of unique
equilibria:

g2(U�θ) =
[ (

1
{
U1 ≤ −β′

1x;U2 ≤ −β′
2x

})
x∈X(

1
{
U1 ≥ 	1 −β′

1x;U2 ≥ 	2 −β′
2x

})
x∈X

]
�

P20 =
[(

Pr
(
(0�0)|X = x

))
x∈X(

Pr
(
(1�1)|X = x

))
x∈X

]
�

There is no g3, g4, or γ in this model. Ciliberto and Tamer (2009) computed upper bounds
on the probability of entrants under a counterfactual payoff shift, say τ(θ). The function
k(U�θ) = 1{U1 ≥ τ(θ) −β′

1x} corresponds to the upper bound on the probability of firm
1 entering when X = x under this counterfactual.

EXAMPLE 2.3—Dynamic discrete choice: Consider a canonical dynamic discrete
choice (DDC) model following Rust (1987). The decision maker solves

V (s) = E
F
[
max
d∈D0

(
πd�s(θπ) +Ud +βE

[
V
(
s′)|d� s])]� (4)

where s ∈ S is a Markov state variable, D0 = {0�1� � � � �D} is the set of actions, πd�s is the
flow payoff for action d in state s which is parameterized by θπ ,Ud is a latent payoff shock,
β ∈ (0�1) is a discount parameter, and E[·|d� s] denotes expectation with respect to the
future state s′. The distribution F of U = (Ud)d∈D0 is typically assumed to be continuous

6Continuous regressors are often discretized in empirical applications; see, for example, Ciliberto and Tamer
(2009), Grieco (2014), Kline and Tamer (2016), and Chen, Christensen, and Tamer (2018).
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 269

and independent of s. The CCP of action d in state s is

p(d|s)

= PF

(
πd�s(θπ) +Ud +βE

[
V
(
s′)|d� s] = max

d′∈D0

(
πd′�s(θπ) +Ud′ +βE

[
V
(
s′)|d′� s

]))
� (5)

where PF denotes probabilities when U ∼ F .
It is standard to assume the Ud are i.i.d. Gumbel, as this yields closed-form expressions

for the expectation in (4) and multinomial-logit expressions for the CCPs (5). Parameters
θπ or (θπ�β) are typically estimated using a criterion function that fits the model-implied
CCPs (5) to probabilities observed in the data. Counterfactuals are then computed by
solving (4) under alternative laws of motion, flow payoffs, or other interventions.

When S is finite, model parameters, counterfactual CCPs, and counterfactual welfare
measures are typically not identified without parametric restrictions on F . Our procedure
may be used to perform a sensitivity analysis of counterfactuals to parametric assump-
tions on F as follows. Let θ = (θπ� v� ṽ) or θ = (θπ�β�v� ṽ), where v = (V (s))s∈S and
ṽ = (Ṽ (s))s∈S collect the baseline and counterfactual value functions across s ∈ S . Also
let γ = (Md)d∈D0 collect the transition matrices for s, g2 collect indicator functions for the
CCPs (5) across states s ∈ S and choices d ∈D :={1� � � � �D} (d = 0 is redundant):

g2(U�θ�γ) =
(
1
{
πd�s(θπ) +Ud +βMd�sv= max

d′∈D0

(
πd′�s(θπ) +Ud′ +βMd′�sv

)})
(d�s)∈D×S

with Md�s denoting the sth row of Md , and P20 = (Pr(d|s))(d�s)∈D×S collect the correspond-
ing true CCPs. Finally, g4 collects moment functions representing (4) in the baseline
model and under the counterfactual:

g4(U�θ�γ) =
⎡⎢⎣
(

max
d∈D0

{
πd�s(θπ) +Ud +βMd�sv

}− vs
)
s∈S(

max
d∈D0

{
π̃d�s(θπ) +Ud + β̃M̃d�sṽ

}− ṽs
)
s∈S

⎤⎥⎦ � (6)

where vs = V (s), ṽs = Ṽ (s), and π̃, β̃, M̃d denote counterfactual flow payoffs, dis-
count factor, and law of motion.7 We recommend including the location normalizations
E
F [Ud] = 0 for d ∈ D0 in g4 for interpretability. We also recommend including scale nor-

malizations in g4 so that EF [maxd∈D0 Ud] is finite. For instance, in Section 5.2 we normalize
E
F [U2

d] for all d ∈D0.
Counterfactual CCPs can be computed using

k(U�θ�γ) = 1
{
π̃d�s(θπ) +Ud + β̃M̃d�sṽ= max

d′∈D0

(
π̃d′�s(θπ) +Ud′ + β̃M̃d′�sṽ

)}
�

Change in average welfare corresponds to k(θ�γ) =w′(ṽ− v) for a weight vector w.

7If E
F [maxd∈D0 Ud] is finite, then v 	→ (EF [maxd∈D0{πd�s(θπ) + Ud + βMd�sv}])s∈S is a ∞-contraction of

modulus β on R
|S|. Hence, there is a unique (v� ṽ) solving E

F [g4(U�θ�γ)] = 0 at any fixed (θπ�β� β̃�F).
The solution (v� ṽ) must collect the solutions to (4) in the baseline model and counterfactual across states:
v= (V (s))s∈S and ṽ = (Ṽ (s))s∈S . It follows that F satisfies EF [g4(U�θ�γ)] = 0 at θ= (θπ�β�v� ṽ) if and only
if (v� ṽ) corresponds to the value functions V and Ṽ under F .
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270 T. CHRISTENSEN AND B. CONNAULT

REMARK 2.1: We allow for conditional moment models with E[g1(U�X�θ�γ)|X =
x] ≤ P10(x) (and similarly for (1b)–(1d)) if U is independent of X and X takes values
in a finite set X . Moment functions are then stacked across x ∈ X to form g1, g2, g3,
and g4 (see Examples 2.1–2.3). Appendix A discusses extensions to conditional moment
models where the distribution of U may vary with the value of (discrete) covariates, and
to non-separable models with discrete covariates. Models with continuous covariates fall
outside the scope of our procedure.

REMARK 2.2: Our setup relies on the counterfactual being expressible as (2). If k is
vector-valued, our procedure can be applied to compute the support function8 of the
identified set of counterfactuals: set kτ(U�θ�γ) = τ′k(U�θ�γ) for a conformable unit
vector τ and replace (2) with κτ = E

F [kτ(U�θ�γ0)]. Our setup excludes counterfactuals
that are infinite-dimensional, such as the distribution of the number of firms in a market.

REMARK 2.3: The distribution F is not nonparametrically identified in any of the above
examples or, more generally, in the class of models (1a)–(1d) when the support of U con-
tains many more points than there are moment conditions (e.g., when U is continuously
distributed).

In common practice, a seemingly reasonable or computationally convenient distribu-
tion, say F∗, is assumed by the researcher and maintained throughout the analysis (e.g.,
bivariate Normal in Example 2.2 and i.i.d. Gumbel in Examples 2.1 and 2.3). Given F∗
and estimates P̂ = (P̂1� P̂2) of P0 and γ̂ of γ0, the researcher computes an estimate θ̂ of θ
using a criterion function based on the moment conditions

E
F∗[g1(U�θ� γ̂)

] ≤ P̂1� E
F∗[g2(U�θ� γ̂)

] = P̂2�

E
F∗[g3(U�θ� γ̂)

] ≤ 0� E
F∗[g4(U�θ� γ̂)

] = 0�
(7)

Finally, the researcher estimates the counterfactual using κ̂= E
F∗[k(U� θ̂� γ̂)]. If k does

not depend on U , then the estimated counterfactual is simply κ̂= k(θ̂� γ̂). In this case, κ̂
will still depend implicitly on F∗ through θ̂.9

The researcher’s chosen specification F∗ is used both for estimation of θ and again
when computing the counterfactual. A natural question is: to what extent does the coun-
terfactual depend on the choice of distribution? The main contribution of this paper is to
provide a tractable econometric framework for answering this question.

2.2. Our Approach

As a sensitivity analysis, we shall relax the researcher’s parametric assumption and allow
F to vary over nonparametric neighborhoods Nδ of F∗, where δ is a measure of neighbor-
hood “size.” When we do so, there may be multiple pairs (θ�F) ∈ � × Nδ that satisfy
(1a)–(1d) but which yield different values of the counterfactual. Our objects of interest

8A closed convex set is determined by its support function—see Rockafellar (1970, Section 13).
9While this discussion has assumed point identification of θ and κ for sake of exposition, our methods allow

structural parameters and counterfactuals to be partially identified.
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 271

are the smallest and largest values of the counterfactual over all such (θ�F) pairs:

κδ = inf
θ∈��F∈Nδ

E
F
[
k(U�θ�γ0)

]
subject to (1a)–(1d)� (8)

κδ = sup
θ∈��F∈Nδ

E
F
[
k(U�θ�γ0)

]
subject to (1a)–(1d)� (9)

By focusing on κδ and κδ, our approach naturally accommodates models with partially-
identified structural parameters and counterfactuals. Our approach also sidesteps having
to compute the identified set of structural parameters.

The optimization problems (8) and (9) are made tractable by a convenient choice of
Nδ. Following Hansen and Sargent (2001) and Maccheroni, Marinacci, and Rustichini
(2006), we consider neighborhoods constrained by φ-divergence (Csiszár (1967)):

Nδ = {
F ∈F :Dφ(F‖F∗) ≤ δ

}
�

Dφ(F‖F∗) =
⎧⎨⎩
∫
φ

(
dF
dF∗

)
dF∗ if F � F∗�

+∞ otherwise�

(10)

where F denotes all probability measures on the support10 U of U and F � F∗ denotes
absolute continuity of F with respect to F∗. The convex function φ : [0�∞) → R+ ∪{+∞}
penalizes deviations of F from F∗. For example, φ(x) = x logx − x + 1 corresponds to
Kullback–Leibler (KL) divergence, φ(x) = 1

2 (x − 1)2 corresponds to Pearson χ2 diver-
gence, and

φ(x) = xp − 1 −p(x− 1)
p(p− 1)

(p> 1)�

corresponds to Lp divergence. If F∗ has positive (Lebesgue) density, then the absolute
continuity condition merely rules out F with mass points.

REMARK 2.4: Normalizations and other shape restrictions may be added by augment-
ing the moment functions g1� � � � � g4. Examples include: (i) location normalizations, for
example, E

F [U] = 0 or E
F [1{Ui ≤ 0} − 0�5] = 0 for each element Ui of U ; (ii) scale

normalizations, for example, EF [U2
i ] = 1; (iii) covariance normalizations, for example,

E
F [UU ′] = I; and (iv) smoothness restrictions, for example, EF [1{Ui ≤ ak+1} − 1{Ui ≤

ak}] ≤ C for a1 < · · ·< aK and a positive constant C.

REMARK 2.5: Appendix A.1 in the Supplemental Material shows that shape restrictions
including symmetry, exchangeability, and, more generally, invariance under a finite group
of transformations, are also easy to impose.

2.3. Dual Formulation

We use convex duality to simplify computation of κδ and κδ. We start by noting κδ and
κδ may be written as the solution to two profiled optimization problems:

κδ = inf
θ∈�

Kδ(θ;γ0�P0)� κδ = sup
θ∈�

Kδ(θ;γ0�P0)�

10That is, U is the set of all values that U could conceivably take according to the model, which is possibly
larger than the support of the measure F∗.
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272 T. CHRISTENSEN AND B. CONNAULT

where the criterion functions Kδ(θ;γ0�P0) and Kδ(θ;γ0�P0) are, respectively, the infi-
mum and supremum of E

F [k(U�θ�γ0)] with respect to F ∈ Nδ subject to the moment
conditions (1a)–(1d). In what follows, it is helpful to define the criterion functions at a
generic (γ�P). To do so, we say that the moment conditions (1a)–(1d) hold “at (θ�γ�P)”
if they hold when γ0 is replaced by γ and P0 is replaced by P . Then

Kδ(θ;γ�P) = inf
F∈Nδ

E
F
[
k(U�θ�γ)

]
subject to (1a)–(1d) holding at (θ�γ�P)� (11)

Kδ(θ;γ�P) = sup
F∈Nδ

E
F
[
k(U�θ�γ)

]
subject to (1a)–(1d) holding at (θ�γ�P)� (12)

with the understanding that Kδ(θ;γ�P) = +∞ and Kδ(θ;γ�P) = −∞ if there does not
exist a distribution in Nδ for which the moment conditions (1a)–(1d) hold at (θ�γ�P).

We first impose some mild regularity conditions on F∗, φ, and the moment functions
to justify the dual formulation. Similar conditions are used in generalized empirical like-
lihood estimation (see, e.g., Komunjer and Ragusa (2016)). Let �0 denote the set of all
φ : [0�∞) → R∪{+∞} such that φ is continuously differentiable on (0�+∞) and strictly
convex, with φ(1) = φ′(1) = 0, φ(0) < +∞, limx↓0φ

′(x) < 0, limx→+∞φ(x)/x = +∞,
limx→+∞φ′(x) > 0, and limx→+∞ xφ′(x)/φ(x) <+∞. The functions inducing KL, χ2, and
Lp divergence all belong to �0.

Let φ�(x) = supt≥0:φ(t)<+∞(tx − φ(t)) denote the convex conjugate of φ ∈ �0 and let
ψ(x) = φ�(x) − x. Define E = {f : U → R for which E

F∗[ψ(c|f (U)|)] <∞ for all c > 0}.
The class E is an Orlicz class of functions (see Appendix F of Christensen and Connault
(2022) for details). For example,

E = {
f : U → R : EF∗[ec|f (U)|]<∞ for all c > 0

}
for KL divergence�

E = {
f : U → R : EF∗[f (U)2

]
<∞}

for χ2 divergence, and

E = {
f : U → R : EF∗[∣∣f (U)

∣∣q]<∞}
for Lp divergence

(
p−1 + q−1 = 1

)
�

Let g= (g1� g2� g3� g4) denote the vector formed by stacking each of the moment functions
from (1a)–(1d). Our key regularity condition is the following:

ASSUMPTION �: (i) φ ∈�0.
(ii) k(·� θ�γ) and each entry of g(·� θ�γ) belong to E for each θ ∈� and γ ∈ �.

For KL divergence, the class E contains bounded functions (e.g., indicator functions)
and functions that are additively separable in U provided F∗ has tails that decay faster
than exponentially (e.g., Gaussian but not Gumbel). Assumption � therefore fails for
KL divergence in Examples 2.1 and 2.3, but holds for χ2 or Lp divergence as these only
require finite second or qth moments, respectively.

Let d = ∑4
i=1 di where di is the dimension of gi, let � = R

d1+ × R
d2 × R

d3+ × R
d4 , and

let λ12 denote the first d1 + d2 elements of λ ∈ �. A derivation of the following criterion
functions is presented in Appendix G.2 of Christensen and Connault (2022).
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 273

PROPOSITION 2.1: Suppose that Assumption � holds. Then the criterion functions (11)
and (12) may be restated as

Kδ(θ;γ�P) = sup
η>0�ζ∈R�λ∈�

−ηEF∗
[
φ�

(
k(U�θ�γ) + ζ + λ′g(U�θ�γ)

−η
)]

−ηδ− ζ − λ′
12P� (13)

Kδ(θ;γ�P) = inf
η>0�ζ∈R�λ∈�

ηEF∗
[
φ�

(
k(U�θ�γ) − ζ − λ′g(U�θ�γ)

η

)]
+ηδ+ ζ + λ′

12P� (14)

Moreover, the value of (13) is +∞ (equivalently, the value of (14) is −∞) if and only if there
is no distribution in Nδ under which (1a)–(1d) holds at (θ�γ�P).

REMARK 2.6: Problems (13) and (14) are convex in (η�ζ�λ). The parameter η is the
Lagrange multiplier for the constraint Dφ(F‖F∗) ≤ δ. Similarly, λ collects the Lagrange
multipliers for the moment (in)equalities (1a)–(1d). These multipliers are non-negative
if they correspond to inequality restrictions and unconstrained otherwise. Finally, ζ is the
Lagrange multiplier for the constraint

∫
dF = 1, which ensures that the optimization is

over probability measures.

Problems (13) and (14) simplify in some special cases. For KL neighborhoods, φ�(x) =
ex − 1 and the multiplier ζ has a closed-form solution, leading to

Kδ(θ;γ�P) = sup
η>0�λ∈�

−η logEF∗[e−(k(U�θ�γ)+λ′g(U�θ�γ))/η
]−ηδ− λ′

12P�

Kδ(θ;γ�P) = inf
η>0�λ∈�

η logEF∗[e(k(U�θ�γ)−λ′g(U�θ�γ))/η
]+ηδ+ λ′

12P�

Another special case is when k(u�θ�γ) does not depend on u. To analyze this case, con-
sider

	(θ;γ�P) := inf
F
Dφ(F‖F∗) subject to (1a)–(1d) holding at (θ�γ�P)� (15)

The value 	(θ;γ�P) is the minimum φ-divergence between F∗ and a distribution F for
which the moment conditions hold at (θ�γ�P). Proposition G.2 of Christensen and Con-
nault (2022) shows that 	(θ;γ�P) has an equivalent dual formulation:

	(θ;γ�P) = sup
ζ∈R�λ∈�

−E
F∗[φ�

(−ζ − λ′g(U�θ�γ)
)]− ζ − λ′

12P� (16)

For KL divergence, ζ may be solved for in closed form and problem (16) simplifies to

	(θ;γ�P) = sup
λ∈�

− logEF∗[e−λ′g(U�θ�γ)
]− λ′

12P�
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274 T. CHRISTENSEN AND B. CONNAULT

If k does not depend on u, then by a change of variables11 we may restate problems (13)
and (14) as

Kδ(θ;γ�P) =
{
k(θ�γ)�
+∞�

Kδ(θ;γ�P) =
{
k(θ�γ) if 	(θ;γ�P) ≤ δ�

−∞ if 	(θ;γ�P) > δ�
(17)

An important feature of our approach is that the optimization problems (13), (14), and
(16) are convex and their dimension does not increase with δ. This feature is not shared by
other seemingly natural approaches to flexibly model F , such as mixtures or other finite-
dimensional sieves. As we show in Section 2.5, our procedure may be used to approximate
sharp nonparametric bounds on counterfactuals by taking δ to be large but finite.

2.4. Estimation

We now propose simple estimators of the bounds κδ and κδ based on “plugging in”
consistent estimators (P̂� γ̂) of (P0�γ0). Estimators κ̂δ and κ̂δ are computed by optimizing
criterion functions with respect to θ:

κ̂δ = inf
θ∈�

K̂δ(θ)� κ̂δ = sup
θ∈�

K̂δ(θ)�

where

K̂δ(θ) =
{
Kδ(θ; γ̂� P̂)�
+∞�

K̂δ(θ) =
{
Kδ(θ; γ̂� P̂) if 	(θ; γ̂� P̂) < δ�

−∞ if 	(θ; γ̂� P̂) ≥ δ�

and Kδ(θ; γ̂� P̂), Kδ(θ; γ̂� P̂), and 	(θ; γ̂� P̂) are the criterion functions (13), (14), and
(16) evaluated at (γ̂� P̂). If k(u�θ�γ) = k(θ�γ), then we simply have

K̂δ(θ) =
{
k(θ� γ̂)�
+∞�

K̂δ(θ) =
{
k(θ� γ̂) if 	(θ; γ̂� P̂) < δ�

−∞ if 	(θ; γ̂� P̂) ≥ δ�

In Section 6.1, we establish consistency of κ̂δ and κ̂δ and derive their asymptotic distribu-
tion.

2.5. Nonparametric Bounds on Counterfactuals

We define the (nonparametric) identified set of counterfactuals as

K = {
E
F
[
k(U�θ�γ0)

] : (1a)–(1d) holds for some θ ∈� and F ∈Fθ

}
�

where Fθ = {F ∈ F : EF [g(U�θ�γ0)] is finite and F � μ} denotes all distributions on U
that are absolutely continuous with respect to a σ-finite dominating measure μ and for
which the moments in (1a)–(1d) are finite at θ. We impose existence of a density with
respect to μ as it is often a structural assumption used, for example, to avoid ties in CCPs

11Substitute ηζ − k(θ�γ) in place of ζ in (13) and ηζ + k(θ�γ) in place of ζ in (14), then substitute ηλ in
place of λ in both (13) and (14).
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 275

or to establish existence of equilibria. The main result of this section shows that κδ and κδ
approach the sharp nonparametric bounds infK and supK as δ becomes large.

We first introduce some additional regularity conditions. Say k is “μ-essentially
bounded” if |k(·� θ�γ0)| has finite μ-essential supremum12 for each θ ∈ �. This holds
trivially if k is bounded (e.g., counterfactual CCPs in Examples 2.2 and 2.3 and change in
average welfare in Example 2.3). Models with unbounded k may be reparameterized (as
a proof device) by setting θ̃= (θ�κ), appending k(U�θ�γ0) − κ as an element of g4, and
setting k(U� θ̃�γ0) = κ.

We also require a constraint qualification condition. This is a sufficient condition for
establishing equivalence of “nonparametric” primal and dual problems in Appendix B in
the Supplemental Material, which is an intermediate step in the proof of the following
result. Let 0di denote a di × 1 vector of zeros, C = R

d1+ × {0d2} × R
d3+ × {0d4}, G(θ�γ) =

{EF [g(U�θ�γ)] : F ∈ N∞} where N∞ = {F : Dφ(F‖F∗) < ∞}, and �P = (P�0d3+d4). For
A�B ⊆ R

d , we let ri(A) denote the relative interior of A and A + B = {a + b :
a ∈A�b ∈ B}.

DEFINITION 2.1: Condition S holds at (θ�γ�P) if �P ∈ ri(G(θ�γ) + C).

Using relative interior instead of interior allows for moment functions that are collinear
at some θ (i.e., some moments are redundant). To give some intuition, consider moment
equality models. Condition S requires that (1a)–(1d) holds at (θ�γ�P) under some F ∈Nδ

that is “interior” to N∞, in the sense that one can perturb the (non-redundant) moments
in any direction by perturbing F . For moment inequality models, Condition S also re-
quires that there is F ∈N∞ under which all moment inequalities hold strictly at (θ�γ�P).

Let �I ={θ ∈� : (1a)–(1d) holds for some F ∈Fθ} denote the (nonparametric) identi-
fied set for θ. Define the “nonparametric” objective function

Knp(θ;γ�P) = inf
F∈Fθ

E
F
[
k(U�θ�γ)

]
subject to (1a)–(1d) holding at (θ�γ�P)� (18)

with the understanding that Knp(θ;γ�P) = +∞ if the infimum runs over an empty set.
Let Knp(θ;γ�P) denote the analogous supremum. Evidently,

infK = inf
θ∈�

Knp(θ;γ0�P0) and supK = sup
θ∈�

Knp(θ;γ0�P0)�

DEFINITION 2.2: �I is S-regular if, for all ε > 0, there exist θ�θ ∈�I such that Condi-
tion S holds at (θ�γ0�P0) and (θ�γ0�P0), Knp(θ;γ0�P0) < infK + ε, and Knp(θ;γ0�P0) >
supK− ε.

Intuitively, S-regularity requires that the values the counterfactual takes at “boundary”
points of �I (i.e., at which Condition S fails) are not materially more extreme than values
it can take at points “inside” �I (i.e., at which Condition S holds). This condition can
be verified under more primitive continuity conditions on k and g. A sufficient (but not
necessary) condition for S-regularity is that Condition S holds at (θ�γ0�P0) for all θ ∈�I .

12The μ-essential supremum of a function f is denoted μ-ess sup f and is the smallest value c for which
μ({u : f (u) > c}) = 0. The μ-essential infimum, denoted μ-ess inf, is defined analogously.
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276 T. CHRISTENSEN AND B. CONNAULT

THEOREM 2.1: Suppose that Assumption � holds, k is μ-essentially bounded, �I is S-
regular, and μ and F∗ are mutually absolutely continuous. Then

lim
δ→∞

κδ = infK� lim
δ→∞

κδ = supK�

Theorem 2.1 shows that our procedure can be used to approximate the sharp non-
parametric bounds infK and supK by setting δ to be large but finite. If μ is Lebesgue
measure—which it often is in applications—then the mutual absolute continuity condi-
tion in Theorem 2.1 is satisfied whenever F∗ has strictly positive density over U .

REMARK 2.7: Appendix B presents the dual forms of Knp and Knp. Unlike Kδ and Kδ,
the duals of Knp and Knp are min-max and max-min problems which involve an inner op-
timization over u. These problems may be computationally challenging, especially when
u is multivariate. Comparing Proposition 2.1 with the duals in Appendix B, we see that
setting δ <∞ replaces a “hard-max” (an optimization over u) with a “soft-max” (a convex
expectation). In this respect, adding the constraint F ∈Nδ may be viewed as a regulariza-
tion of the nonparametric objective functions, similar to the use of entropic penalization
to regularize objective functions in optimal transport problems—see, for example, Cuturi
(2013). Smaller values of δ impose a stronger regularization.

Theorem 2.1 is silent on the issue of how large δ needs to be so that κδ and κδ are close
to the nonparametric bounds. While this is model- and counterfactual-specific, the follow-
ing toy example suggests that relatively small values of δ may suffice in some problems
where the counterfactual is a choice probability.

EXAMPLE 2.4: Consider the problem

κδ = sup
θ∈R�F∈Nδ

E
F
[
1{U ≤ θ}

]
subject to E

F [U − θ] = 0�

where Nδ is defined by KL divergence and F∗ is the N(0�1) distribution. When F = F∗,
the only solution to E

F [U − θ] = 0 is θ = 0. Therefore, the value of the counterfactual
under F∗ is E

F∗[1{U ≤ 0}] = 1
2 whereas supK = 1. The large-δ approximation κδ = 1 −

2πe−2δ−1(1 + o(1)) is derived in Appendix H of Christensen and Connault (2022). By
symmetry, κδ = 2πe−2δ−1(1 + o(1)) and infK = 0. Therefore, in this example, κδ and κδ
converge rapidly to infK and supK as δ increases.

More generally, suppose the dual problems (13) and (14) have unique solutions η and
η for η, where the optimization is performed over η≥ 0.13 Under appropriate regularity
conditions (see, e.g., Milgrom and Segal (2002)), it follows that

∂Kδ(θ;γ�P)
∂δ

= −η� ∂Kδ(θ;γ�P)
∂δ

= η�

One can therefore infer from η and η the extent to which, if at all, the bounds at any fixed
θ would widen further if δ was increased.

13Optimizing over η≥ 0 rather than η> 0 does not affect the optimal value—see Proposition G.1 of Chris-
tensen and Connault (2022).
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 277

3. PRACTICAL CONSIDERATIONS

We now discuss practical details for implementing our procedure. Section 3.1 discusses
computational methods, Section 3.2 presents our MPEC approach, and Section 3.3 dis-
cusses methods for dealing with over-identified models.

3.1. Computation

There are three aspects to computation: (i) computing the expectations with respect to
F∗ in the objective functions, (ii) solving the inner optimization problems over Lagrange
multipliers, and (iii) solving the outer optimization problems over θ.

The expectations in the objective functions (13), (14), and (16) are available in closed
form for certain settings,14 in which case the dimension of u does not play a role in the
computational complexity of our procedure. Otherwise, the expectations will need to be
computed numerically. If so, the dimension of u will play a role in terms of determin-
ing how many quadrature points or Monte Carlo draws are needed to control numerical
approximation error. In the empirical applications, we used a randomized quasi-Monte
Carlo approach based on scrambled Halton sequences as in Owen (2017).

The inner optimization with respect to Lagrange multipliers can be solved rapidly: it is
convex and gradients and Hessians are available in closed form. The envelope theorem
can be used to derive gradients for the outer optimization when k and g are differentiable
in θ.15 Our procedures were all implemented in Julia with the inner and outer optimiza-
tions solved using Knitro. A general-purpose implementation of our methods in Julia is
provided in the Supplemental Material.

As with parameter estimation in nonlinear structural models, the outer optimization
with respect to θ is typically non-convex. In applications, we used an iterative multi-start
procedure in an attempt to converge to global optima. Computation times are reported
in the applications below.

3.2. MPEC Approach

We now describe and formally justify an MPEC version of our procedure in the spirit
of Su and Judd (2012). This approach simplifies computation in models with endogenous
parameters defined by equilibrium conditions (e.g., value functions defined by Bellman
equations), resulting in significant computational gains for DDC models in particular.

Suppose θ = (θs� θe) and g4 = (g4s� g4e) where θs are “deep” structural parameters
and θe are “endogenous” parameters that are defined implicitly by g4e. That is, for any
(θs�γ�F), the parameter θe = θe(θs�γ�F) solves

E
F
[
g4e

(
U� (θs� θe)�γ

)] = 0�

For instance, in Example 2.3 we have θs = θπ or (θπ�β), while θe = (v� ṽ) collects the
value functions in the baseline model and counterfactual, and g4e collects the functions
representing the corresponding Bellman equations, as in display (6). Although our proce-
dure can be implemented as described in Section 2, that implementation does not make
use of the fact that θe is defined implicitly by g4e.

14An earlier draft derived closed-form expressions for a discrete game of complete information with Gaus-
sian payoff shocks and KL neighborhoods—see https://arxiv.org/abs/1904.00989v2.

15In practice, we smoothed any non-smooth moments and used automatic differentiation to compute deriva-
tives with respect to θ if these were not easily available analytically.
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278 T. CHRISTENSEN AND B. CONNAULT

To leverage this structure, consider the subset of moments conditions excluding g4e:

E
F
[
g1(U�θ�γ0)

] ≤ P10� E
F
[
g2(U�θ�γ0)

] = P20�

E
F
[
g3(U�θ�γ0)

] ≤ 0� E
F
[
g4s(U�θ�γ0)

] = 0�
(19)

and define criterion functions using these only:

Ks
δ(θ;γ�P) = inf

F∈Nδ

E
F
[
k(U�θ�γ)

]
subject to (19) holding at (θ�γ�P)� (20)

K
s

δ(θ;γ�P) = sup
F∈Nδ

E
F
[
k(U�θ�γ)

]
subject to (19) holding at (θ�γ�P)� (21)

Under the conditions of Proposition 2.1, these criterion functions may be restated as

Ks
δ(θ;γ�P) = sup

η>0�ζ∈R�λ∈�s
−ηEF∗

[
φ�

(
k(U�θ�γ) + ζ + λ′gs(U�θ�γ)

−η
)]

−ηδ− ζ − λ′
12P� (22)

K
s

δ(θ;γ�P) = inf
η>0�ζ∈R�λ∈�s

ηEF∗
[
φ�

(
k(U�θ�γ) − ζ − λ′gs(U�θ�γ)

η

)]
+ηδ+ ζ + λ′

12P� (23)

with gs = (g1� g2� g3� g4s) and �s = R
d1+ × R

d2 × R
d3+ × R

d4s with d4s = dim(g4s). Problems
(22) and (23) simplify analogously to (17) when k does not depend on u, with the mini-
mum divergence problem 	 defined using gs in place of g.

In our MPEC approach, the criterion functions (22) and (23) are optimized with re-
spect to θ, with the remaining moment conditions involving g4e appended as constraints.
Importantly, these constraints are evaluated under the “least favorable” distributions Fδ�θ

and Fδ�θ that solve problems (20) and (21), respectively. The following proposition for-
mally justifies this approach.

PROPOSITION 3.1: Suppose that Assumption � holds. Then the problems

inf
θ∈�

Kδ(θ;γ�P)

and

inf
θ∈�

Ks
δ(θ;γ�P) subject to E

Fδ�θ
[
g4e(U�θ�γ)

] = 0

have the same value. An analogous result holds for the upper bound.

To implement our MPEC approach, note that the expectations in the constraints may
be expressed in terms of changes of measure. Let mδ�θ = dFδ�θ/dF∗ and mδ�θ = dFδ�θ/dF∗
so that

E
Fδ�θ[·] = E

F∗[mδ�θ(U)·]� E
Fδ�θ[·] = E

F∗[mδ�θ(U)·]�
If k depends on u, then we construct mδ�θ and mδ�θ from solutions to (22) and (23), say
(η�ζ�λ) and (η�ζ�λ) (these solutions exist under the regularity conditions below). If
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 279

η> 0, then the distribution solving (20) is unique and is induced by the change of measure

mδ�θ(u) = φ̇�

(
k(u�θ�γ) + ζ + λ′gs(u�θ�γ)

−η
)
� (24)

where φ̇�(x) = dφ�(x)
dx

. The function mδ�θ(u) is constructed similarly, replacing (η�ζ�λ) in
(24) by (−η�−ζ�−λ). For KL divergence, the change of measure simplifies to

mδ�θ(u) = e(k(u�θ�γ)+λ′gs (u�θ�γ))/−η

E
F∗[e(k(u�θ�γ)+λ′gs (u�θ�γ))/−η] �

and similarly for mδ�θ(u).
If η= 0, then there may be multiple minimizing distributions. As shown in the proof of

Proposition 3.2, each such distribution must be supported on

Aδ�θ := {
u : k(u�θ�γ) + λ′gs(u�θ�γ) = F∗-ess inf

(
k(·� θ�γ) + λ′gs(·� θ�γ)

)}
�

Note F∗(Aδ�θ) > 0 is required for η = 0 to be a solution. Otherwise, any distribution
supported on Aδ�θ is not absolutely continuous with respect to F∗ and is therefore not
in Nδ. If η = 0 and F∗(Aδ�θ) > 0, then we construct mδ�θ by restricting F∗ to Aδ�θ and
rescaling:

mδ�θ(u) = 1{u ∈Aδ�θ}/F∗(Aδ�θ)�

The function mδ�θ(u) is constructed analogously, replacing λ with −λ and the set Aδ�θ

with Aδ�θ ={u : k(u�θ�γ) − λ
′
gs(u�θ�γ) = F∗-ess sup(k(·� θ�γ) − λ

′
gs(·� θ�γ))}.

If k does not depend on u, then mδ�θ and mδ�θ are constructed from solutions to a
version of problem (16) with gs in place of g. Under the regularity conditions below, this
program has a solution, say (ζ�λ). In this case, we define

mδ�θ(u) =mδ�θ(u) = φ̇�
(−ζ − λ′gs(u�θ�γ)

)
� (25)

For KL divergence, the change of measure simplifies to

mδ�θ(u) =mδ�θ(u) = e−λ′gs (u�θ�γ)

E
F∗[e−λ′gs (u�θ�γ)

] �
PROPOSITION 3.2: Suppose that Assumption � holds, Condition S holds at (θ�γ�P), and

there exists a distribution F with D(F‖F∗) < δ under which (19) holds at (θ�γ�P). Then the
distributions Fδ�θ and Fδ�θ induced by mδ�θ and mδ�θ solve (20) and (21), respectively.

Example. We consider a numerical example for the DDC model of Rust (1987) based
on the parameterization in Section 5.4 of Norets and Tang (2014). The counterfactual they
considered is a hypothetical change in the law of motion of the state. We follow these pa-
pers and use state-space of dimension 90. As |S|= 90 and D0 = {0�1}, there are 90 func-
tions in g2 representing the observed CCPs. There are another 180 functions in g4e repre-
senting the Bellman equations in the baseline model and counterfactual across states. We
also impose the normalization E

F [Ud] = 0 for d = 0�1. Hence, g4s(U�θ�γ) = (U0�U1).
Our MPEC approach has 92 moments in the inner optimization (90 for CCPs and two
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280 T. CHRISTENSEN AND B. CONNAULT

TABLE II

COMPUTATION TIMES (IN SECONDS) FOR THE INNER PROBLEMS.

Implementation

Objective

K0�01 K0�10 K1�00 	

MPEC (92 moments) 0.207 0�232 0�256 0.108
Full (272 moments) 4.317 12�978 43�699 3.365

Note: Expectations are computed using 50,000 scrambled Halton draws. Computations are per-
formed in Julia v1.6.4 and Knitro v12.4.0 on a 2.7 GHz MacBook Pro with 16 GB memory.

mean-zero normalizations on the shocks) with the remaining 180 moments representing
the Bellman equations appended as constraints. The full approach uses all 272 moments
in the inner optimization.

Table II reports computation times for the inner optimization problems (14) and (23)
(denoted Kδ) for maximizing the counterfactual CCP in the highest mileage state.16 We
also report times for solving the minimum divergence problem (16) (denoted 	) using
the full set of moment functions g and its MPEC analogue using gs. Neighborhoods are
constrained by a hybrid of KL and χ2 divergence as in the empirical applications—see
Section 5. As can be seen, the inner optimization problems are solved at least 20 times
faster for the MPEC implementation, with the relative efficiency increasing in δ.

3.3. Over-Identification

In over-identified models (i.e., where the number of moment conditions d exceeds the
dimension dθ of θ), there might not exist θ ∈� for which the sample moment conditions
(7) hold under F∗. We propose two methods for handling over-identified models.

First, one may compute the smallest value of δ for which there exists F ∈Nδ consistent
with the sample moment conditions (7) by solving the optimization problem

δ̂= inf
θ∈�

	(θ; γ̂� P̂)�

The interval [κ̂δ� κ̂δ] will be nonempty for δ > δ̂. If the model is correctly specified under
F∗,17 then δ̂ will converge in probability to zero under the conditions of Theorem 6.1. In
this case, the interval [κ̂δ� κ̂δ] will be nonempty with probability approaching 1 for each
fixed δ > 0.

It is also possible that δ̂ = +∞ in correctly specified but over-identified models when
P̂ is incompatible with certain model restrictions. For instance, CCPs are often estimated
nonparametrically using empirical choice frequencies. If some choices are not observed
in the data, then the estimated CCPs will be zero even though model-implied CCPs are
strictly positive.

This issue can be circumvented in models defined by equality restrictions only (hence
P0 ≡ P20) using the following two-step approach. First, compute a preliminary estima-

16The times in Table II are based on initializing the solver at η = 1, ζ = 0, and λ = 0. When embedded in
the outer optimization over θ, computation times for the inner problem are reduced significantly by using a
warm start that initializes at the solution to the inner problem at the previous value of θ.

17Neither our theoretical results developed in Section 2 nor the estimation and inference results in Section 6
require correct specification of the model under F∗.
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 281

tor θ̃ of θ based on (7). Then, set P̂ = E
F∗[g2(U� θ̃� γ̂)]. This second-step estimator P̂ is

compatible with the model by construction, thereby ensuring that the interval [κ̂δ� κ̂δ] is
nonempty for each δ > 0. The estimator P̂ will be consistent and asymptotically normal
under mild regularity conditions provided the model is correctly specified under F∗, so
the consistency and inference results developed in Section 6 will also apply.

4. INTERPRETING THE NEIGHBORHOOD SIZE

This section presents some theoretical results and practical methods to help interpret
the neighborhood size δ. Sections 4.1 and 4.4 discuss properties of φ-divergences and
their implications for interpreting δ. Section 4.2 shows how to construct the “least fa-
vorable” distributions that minimize or maximize the counterfactual. Section 4.3 gives a
practical, model-based metric for interpreting δ.

4.1. Invariance

A defining property of φ-divergences is their invariance to invertible transformations.
That is, if T is an invertible transformation and G and G∗ denote the distributions of
T (U) when U ∼ F and U ∼ F∗, respectively, then Dφ(F‖F∗) =Dφ(G‖G∗).18 An impor-
tant consequence of invariance is that δ has the same interpretation under a change in
units. For instance, if one researcher writes a model in terms of dollars with U ∼ F∗ and
another researcher uses thousands of dollars with U ∼ G∗ for G∗(u) = F∗(10−3u), then
F is in Nδ if and only if its rescaled counterpart G is in a δ-neighborhood of G∗. A sec-
ond consequence is that neighborhood size is invariant under invertible location and scale
transformations of F∗ (e.g., N(μ��) versus N(0� I)).

4.2. Least Favorable Distributions

A useful feature of our approach is that the “least favorable” distributions (LFDs) that
attain the smallest or largest values of the counterfactual may easily be recovered. To
help interpret δ, one may plot the LFDs and compute other quantities of interest (e.g.,
correlations or welfare measures) under them.

Section 3.2 describes how to construct LFDs when our MPEC approach is used. LFDs
for our full (i.e., non-MPEC) approach are a special case with g4 = g4s. To briefly sum-
marize, consider the LFD Fδ�θ solving the minimization problem (11). First suppose that
k depends on u. Let (η�ζ�λ) solve problem (13). If η > 0, then Fδ�θ is unique and its
change of measure mδ�θ = dFδ�θ/dF∗ is given by

mδ�θ(u) = φ̇�

(
k(u�θ�γ) + ζ + λ′g(u�θ�γ)

−η
)
� (26)

The LFD Fδ�θ solving the maximization problem (12) is constructed similarly, replacing
(η�ζ�λ) in (26) with (−η�−ζ�−λ), where (η�ζ�λ) solves (14). If η= 0 or η = 0, then
there may exist multiple distributions solving (11) and (12) at θ. LFDs in this case are
constructed analogously to the method described in Section 3.2. Note that η= 0 or η= 0

18See, for example, Liese and Vajda (1987). A more direct statement is in Qiao and Minematsu (2010).
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282 T. CHRISTENSEN AND B. CONNAULT

is unlikely if k and/or elements of g are unbounded in u—see the discussion in Section 3.2.
If k does not depend on u, then we set

mδ�θ(u) =mδ�θ(u) = φ̇�
(−ζ − λ′g(u�θ�γ)

)
� (27)

where (ζ�λ) solves (16). While there may exist multiple distributions solving (11) and
(12) in this case, the distribution induced by (27) has smallest φ-divergence relative to F∗
among all such distributions.

4.3. Viewing Neighborhood Size Through the Lens of the Model

Another method for interpreting δ is based on measuring the variation in the moments
at the distributions solving (8) and (9) relative to their values under F∗.

Consider the sets of minimizing and maximizing values of θ at which κδ and κδ are
attained, say �δ and �δ. These are nonempty under the regularity conditions in Section 6.
While the moment conditions (1a)–(1d) hold at any θ ∈�δ ∪�δ under the corresponding
LFD, they will typically not hold at θ under F∗. We therefore define

size(δ) = sup
θ∈�δ∪�δ

max
{∥∥(EF∗[g1(U�θ�γ0)

]− P10

)
+
∥∥

∞�
∥∥EF∗[g1(U�θ�γ0)

]− P20

∥∥
∞�∥∥(EF∗[g3(U�θ�γ0)

])
+
∥∥

∞�
∥∥EF∗[g4(U�θ�γ0)

]∥∥
∞
}
�

where (v)+ = (max{vi�0})di=1 for a vector v ∈ R
d . The quantity size(δ) is the maximum

degree to which the moments at θ ∈�δ ∪�δ violate (1a)–(1d) under F∗.
This measure is informative about the extent to which the distortions to F∗ required to

attain the smallest and largest values of the counterfactual over Nδ are reflected in (1a)–
(1d). Small values of size(δ) indicate that the LFDs supporting κδ and κδ distort F∗ in a
way that moves the counterfactual but barely moves the moments. Conversely, large val-
ues of size(δ) indicate that distortions required to increase or decrease the counterfactual
also have a material impact on the moments. In practice, this measure can be computed
by replacing (P0�γ0) by estimators (P̂� γ̂) and �δ and �δ by the minimizers and maximiz-
ers of the sample criterion functions from Section 2.4 or by the estimators of �δ and �δ

introduced in Section 6.2.

4.4. Relating Different Divergences

It is well known that φ-divergences are equivalent over local neighborhoods (see, e.g.,
Theorem 4.1 of Csiszár and Shields (2004)). However, κδ and κδ may depend on the
choice of φ when δ is not arbitrarily small. Bounds induced by different φ functions may
be related as follows. Let Nδ�1 and Nδ�2 denote δ-neighborhoods induced by φ1 and φ2,
respectively. The quantity

ā= sup
x≥0�x �=1

φ1(x)
φ2(x)

is a measure of relative neighborhood size: if ā < ∞, then Nδ�2 ⊆ Nāδ�1 for each δ > 0,
as shown formally in the proof of Proposition 4.1 below. For instance, when compar-
ing KL divergence (φ1(x) = x logx − x + 1) and χ2 divergence (φ2(x) = 1

2 (x − 1)2),
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 283

we obtain ā= 2. Therefore, δ-neighborhoods under χ2 divergence are contained in 2δ-
neighborhoods under KL divergence. Interchanging φ1 and φ2 produces ā= +∞, which
reflects the fact that KL divergence is weaker than χ2 divergence.

Let κδ�1 and κδ�2 denote the smallest counterfactual from display (8) over Nδ�1 and Nδ�2,
respectively. Define κδ�1 and κδ�2 analogously.

PROPOSITION 4.1: Suppose that Assumption � holds for both φ1 and φ2 and ā is finite.
Then [κδ�2�κδ�2] ⊆ [κāδ�1�κāδ�1] for each δ > 0.

It follows from Proposition 4.1 that bounds that are wide under φ2 must necessarily be
wide under φ1. Similarly, narrow bounds under φ1 must also be narrow under φ2. Note
also that the inclusion in Proposition 4.1 holds for any counterfactual.

5. EMPIRICAL APPLICATIONS

5.1. Marital College Premium

Chiappori, Salanié, and Weiss (2017), henceforth CSW, studied the evolution of marital
returns to education using a frictionless matching model with transferable utility (Choo
and Siow (2006)). Within this framework, the “marital college premium” is the additional
expected utility that an individual would derive from the marriage market if they had a
(counterfactually) higher level of education. CSW found that marital college premiums
for women in the United States increased significantly across cohorts from the mid to late
20th century, particularly for the more highly educated.

As is conventional following Dagsvik (2000) and Choo and Siow (2006), CSW assumed
latent variables representing individuals’ idiosyncratic marital preferences are i.i.d. Gum-
bel. The marital college premium is only partially identified when the distribution of these
latent variables is not specified. We therefore perform a sensitivity analysis of CSW’s es-
timates to departures from this conventional parametric assumption.

Our analysis makes several findings. First, it seems difficult to draw conclusions about
whether marital college premiums have increased or decreased over time under small
nonparametric relaxations of the i.i.d. Gumbel assumption. Interestingly, premiums have
narrow nonparametric bounds at fixed parameter values, but a slight relaxation of the
i.i.d. Gumbel assumption allows for significant variation in parameters which, in turn,
produces wide bounds on premiums. As parameters are just-identified under any fixed
distribution of shocks (Galichon and Salanié (2022)), further restrictions on parameters
or shape restrictions on the distribution are required to tighten the bounds. We show that
imposing exchangeability can tighten the bounds significantly.

Model and Benchmark Estimates. Agents are male or female and one of J types (ed-
ucation levels). A type-a male receives utility εa0 if he chooses to be unmatched and
zab + εab if he matches with a type-b female. Similarly, a type-b female receives utility
e0b if she chooses to be unmatched and tab + eab if she matches with a type-a male. The
parameters (zab� tab)Ja�b=1 represent the common deterministic component of marital pref-
erences. The latent shocks (εa0� � � � � εaJ) and (e0b� � � � � eJb) represent individuals’ idiosyn-
cratic marital preferences. Shocks are i.i.d. across individuals and have mean zero. The
type b to b′ marital education premium for females is the difference in expected marital
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284 T. CHRISTENSEN AND B. CONNAULT

utility between types b and b′:

κ= E
F
[

max
a=0�����J

(tab′ + eab′)
]
−E

F
[

max
a=0�����J

(tab + eab)
]
� (28)

where F denotes the distribution of (e0b� � � � � eJb′) and t0b = t0b′ = 0.
CSW used data from the American Community Survey. They formed 28 cohorts in-

dexed by female birth year from 1941 (cohort 1) to 1968 (cohort 28), each of which is
treated as an independent marriage market. We focus on CSW’s estimates for whites.
There are J = 5 types: “high-school dropouts,” “high-school graduates,” “some college,”
“college graduate,” and “college-plus.” We center our analysis on the “some college”
to “college graduate” premium, though we obtained qualitatively similar results (not re-
ported) for the “college graduate” to “college-plus” premium. Figure 1 presents estimates
and 95% confidence sets (CSs) for the premium under the i.i.d. Gumbel assumption (cf.
Figure 21 in CSW) based on CSW’s replication files.

Implementation. The model reduces to a standard individual-level discrete choice
problem for each type (see CSW’s Propositions 1 and 2). We assume that the distribution
of females’ preference shocks does not depend on their type, so we drop the b subscript
and consider a single random vector U = (e0� � � � � eJ). We allow the distribution F of U
to vary across cohorts and implement our procedures cohort-by-cohort.19

Under any fixed F , a cohort’s parameters (tab)Ja=1 are just-identified from the marriage
probabilities for that cohort’s type-b women (Galichon and Salanié (2022)). We therefore
impose only the moment conditions involving the parameters θ = (tab� tab′)Ja=1 appearing
in (28), as the remaining parameters can be chosen to fit the remaining marriage proba-
bilities under the resulting least-favorable distribution. We form g2 to explain the type b
and b′ marriage probabilities for women in a given cohort:

g2(U�θ) =
⎡⎢⎣

(
1
{
tab + ea = max

a′=0�����J
(ta′b + ea′)

})J
a=1(

1
{
tab′ + ea = max

a′=0�����J
(ta′b′ + ea′)

})J
a=1

⎤⎥⎦
and form P̂2 using CSW’s estimates of the corresponding type-b and b′ marriage prob-
abilities. We set g4(U�θ) = (ej� e2

j − π2/6)Jj=0 so that shocks have mean zero and the
same variance as the Gumbel distribution. The scale normalization also ensures that the
nonparametric bounds on the premium are finite at any fixed θ. As J = 5, there are 22
moments (10 for marriage probabilities and 12 location/scale normalizations), and θ has
dimension 10.

We consider a second implementation which imposes invariance of F under rotations
and reflections of potential spouse types, so that the model-implied marriage probabilities
depend on θ but not the labeling of potential spouse types (though they may depend on
their ordering).20 Formally, this shape restriction corresponds to dihedral exchangeability
(see Appendix A.1 of the Supplemental Material); we refer to it simply as “exchangeabil-
ity.” Under this shape restriction, F must satisfy the 22 moment conditions under all 12

19In view of the just-identification results of Galichon and Salanié (2022), we would obtain the same bounds
if F was homogeneous across cohorts. Allowing for heterogeneity in own-type would result in wider bounds.

20Allowing dependence on the ordering of types seems desirable here as types correspond to education
levels, which are naturally ordered.
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 285

rotations and reflections of the elements of U . This implementation therefore imposes
a total of 264 moment conditions. Rather than including all 264 moments separately, it
suffices to form g2 and g4 by taking the averages of the 22 moments across the 12 per-
mutations (see Appendix A.1). Both implementations therefore have inner optimization
problems of the same dimension.

Computations are performed as described in Section 3.1. The first implementation uses
50,000 scrambled Halton draws to compute the expectations. The second uses 10,000
draws which are concatenated over the 12 permutations (see Remark A.2), for a total of
120,000 draws. Computation times are reported in Appendix D.1 of the Supplemental
Material. CSs for κδ and κδ are computed using the bootstrap procedure in Section 6.2.
Appendix D.1 discusses bootstrap details and presents projection CSs using the method
from Section 6.3.

We define neighborhoods using a hybrid of KL and χ2 divergence:

φ(x) =
⎧⎨⎩x logx− x+ 1 if x≤ e�

1
2e

(x− e)2 + (x− e) + 1 if x > e�

We use this divergence because Assumption �(ii) fails for KL divergence, whereas hy-
brid divergence only requires finite second moments for Assumption �(ii). The LFDs
under hybrid divergence are also everywhere positive, which is not guaranteed under
χ2 divergence. We repeated our analysis with neighborhoods constrained by χ2 and L4

divergences as robustness checks. Overall, our findings are not sensitive to φ (see Ap-
pendix D.1 for a discussion).

Findings. Figure 1 presents a sensitivity analysis of the “some college” to “college
graduate” premium. Cohort-wise estimates and CSs for κδ and κδ are presented, begin-
ning at δ = 0�01 and increasing δ by factors of 10 up to δ = 100. Even with δ = 0�01,
estimates of κδ and κδ lie uniformly below and above zero across cohorts without ex-
changeability (see Figure 1(a)). Imposing exchangeability can tighten the bounds, with
the bounds for δ= 0�01 significantly negative in early cohorts and significantly positive in
later cohorts (see Figure 1(b)). But the δ = 0�1 bounds with exchangeability again con-
tain zero across all cohorts. Bounds for larger δ presented in Figures 1(c) and 1(d) are
uninformatively wide.

To understand better what is meant by “small” and “large” neighborhoods, Figure 2
plots marginal CDFs for the LFDs under which the upper bounds for cohort 1 are
attained. Similar LFDs (not reported) were obtained for other cohorts and the lower
bounds. Without exchangeability, the LFDs with δ= 0�1 are almost identical to Gumbel
(plots with δ= 0�01 are indistinguishable from Gumbel). LFDs appear close to Gumbel
across most potential spouse types with δ = 1, while for δ = 10 and δ = 100 the LFDs
have kinks and indicate shifts in mass from the center of the distribution to the tails.

Under exchangeability (Figure 2(b)), the marginal distribution of shocks is indepen-
dent of potential spouse type. In this case, the LFDs for δ = 1 or smaller are virtually
indistinguishable from Gumbel. LFDs with δ= 10 and δ= 100 are also less kinked than
Figure 2(a) because distortions are spread more evenly across potential spouse types.

We also computed the largest correlation of shocks under the LFDs at which the bounds
are attained and our size measure from Section 4.3. As these quantities are stable across
cohorts, we present their averages across cohorts in Table III. Shocks are independent
when δ = 0 and only very weakly correlated for small δ, while for large δ some shocks
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286 T. CHRISTENSEN AND B. CONNAULT

FIGURE 1.—Sensitivity analysis of the “some college” to “college graduate” premium across cohorts. Note:
Solid lines are estimates, dotted lines are (cohort-wise) 95% CSs. CSW’s estimates and CSs correspond to
δ= 0.

are strongly negatively correlated. The maximal correlations under exchangeability are
smaller, especially for large δ. Turning to the size measure, the LFDs for δ= 0�01 with-
out exchangeability shift the model-implied marriage probabilities by 0.01 (on average,
across cohorts) from their values under the i.i.d. Gumbel assumption. LFDs for δ = 10
and δ= 100 shift marriage probabilities around 0.25 (on average, across cohorts). Impos-
ing exchangeability reduces the size measure by around 25% because model parameters
do not vary as much under this shape restriction.

In view of the small-δ bounds in Figure 1, the LFDs in Figure 2, and the metrics in
Table III, it seems difficult to draw conclusions about how the sign of the premium has
changed over time under slight nonparametric relaxations of the i.i.d. Gumbel assump-
tion. To help understand why, Figure 5 plots bounds where F is allowed to vary but θ is
held fixed at CSW’s estimates. These “fixed-θ” bounds for δ= 10 and δ= 100 are almost
identical, and are roughly the same width as the δ= 0�01 bounds in Figure 1. The width
of the bounds in Figure 1 therefore seems largely attributable to the additional variation
in θ that is permitted when parametric assumptions for F are relaxed.

Overall, our findings are complementary to Gualdani and Sinha (2022) who performed
a nonparametric reanalysis of CSW using the PIES methodology of Torgovitsky (2019b).
Although they did not derive nonparametric bounds on the marital education premium
itself, only terms that contribute to it, they found no evidence of an increase in premiums
across cohorts.
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 287

FIGURE 2.—Marginal CDFs for the LFDs maximizing the “some college” to “college graduate” premium
in cohort 1 across potential spouse types.

5.2. Welfare Analysis in a Rust Model

Our second empirical illustration is a sensitivity analysis for welfare counterfactuals in
the DDC model of Rust (1987).
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288 T. CHRISTENSEN AND B. CONNAULT

TABLE III

METRICS FOR INTERPRETING δ.

δ

Without exchangeability With exchangeability

ρmax, κδ ρmax, κδ size ρmax, κδ ρmax, κδ size

0�01 −0�015 −0�014 0.010 −0�022 0.013 0.006
0�10 −0�071 −0�073 0.038 −0�061 0.054 0.023
1 −0�247 −0�197 0.112 −0�139 0.115 0.099

10 −0�502 −0�496 0.242 −0�204 0.236 0.176
100 −0�620 −0�576 0.266 −0�266 0.284 0.178

Note: Averages across cohorts of the largest element of the correlation matrix for U under the
LFDs at which the estimated lower bounds (ρmax, κδ) and upper bounds (ρmax, κδ) are attained, and
our size measure from Section 4.3. Each is computed at the parameter values at which the estimated
upper and lower bounds are attained.

Model and Benchmark Estimates. We focus on the specification in Table IX of Rust
(1987) where maintenance costs are linear in the state (i.e., mileage). In the notation of
Example 2.3,|S|= 90, β= 0�9999, and θπ = (RC�MC) where RC is the replacement cost
and MC is a maintenance cost parameter. Our counterfactual of interest is the change in
average welfare arising from a 10% reduction in maintenance costs. Hence, π1�s(θπ) =
π̃1�s(θπ) = −RC and π0�s(θπ) = −0�001MC × s (baseline) and π̃0�s(θπ) = 0�9π0�s(θπ)
(counterfactual). The counterfactual function is k(θ�γ) = w′(ṽ − v) where w is the sta-
tionary distribution of the state in the baseline model.

Under the i.i.d. Gumbel assumption, the estimated counterfactual at the maximum
likelihood estimate (MLE) of θπ is 73.07 and its 95% CS is [48.25,101.31].21 Note the
counterfactual is point-identified under the i.i.d. Gumbel assumption because θπ is point-
identified.

Implementation. We estimate CCPs using Rust’s Group 4 data. Nonparametric esti-
mates of the 90 CCPs are zero in many states, so we proceed as in Section 3.3 and take the
model-implied CCPs at the MLE of θπ (under the i.i.d. Gumbel assumption) as our esti-
mate P̂2. We drop moment conditions for CCPs in states where the replacement probabil-
ity is less than 0�001 to avoid numerical instabilities induced by including near-degenerate
moments. This reduces the dimension of g2 to 71. We normalize F so that shocks have
mean zero and the same variance as the Gumbel distribution by appending E

F [Ud] = 0
and E

F [U2
d −π2/6] = 0, for d = 0�1, to g4. In total, there are 255 moments (71 for CCPs,

180 for Bellman equations, and 4 location/scale normalizations) and θ = (θπ� v� ṽ) has
dimension 182.

We implement our methods as described in Section 3.2. The inner optimization uses
75 moments (71 for CCPs and 4 for normalizations), with the remaining 180 moments
appended as constraints in the outer optimization. We define neighborhoods using hybrid
divergence from Section 5.1 so that Assumption �(ii) holds. Similar results are obtained
with χ2 and L4 neighborhoods (see Appendix D.2). Expectations are computed using
50,000 scrambled Halton draws—see Appendix D.2 for computation times. We compute
95% CSs for κδ and κδ using the bootstrap procedure from Section 6.2 and projection
procedure from Section 6.3. See Appendix D.2 for details.

21We construct this CS by simulation. We draw θ̂∗
π ∼N(θ̂π� �̂) where θ̂π is the MLE and �̂ is an estimate of

the inverse information matrix. For each θ̂∗
π draw, we compute the baseline and counterfactual value functions

v∗ and ṽ∗, and hence the counterfactual κ̂∗ =w′(ṽ∗ − v∗).
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 289

FIGURE 3.—Sensitivity analysis for change in average welfare under a 10% maintenance cost subsidy. Note:
Solid lines are estimates, dotted lines are bootstrap CSs, dashed lines are projection CSs.

Findings. Estimates and CSs for κδ and κδ are plotted in Figure 3 for values of δ from
0�01 to 100.22 As can be seen, the bounds expand rapidly under slight relaxations of the
i.i.d. Gumbel assumption then stabilize around δ= 1, where the lower bound is 6.45 and
the upper bound of 160.5 represents approximately 220% of the value under the i.i.d.
Gumbel assumption.

To interpret δ, in Figure 4 we plot the CDFs of U1 − U0 under the LFDs at which
the estimated bounds κ̂δ and κ̂δ are attained. LFDs were computed as described in Sec-
tion 4.2 using the construction (27). The distributions appear very close to logistic (their
distribution when δ= 0) for δ= 0�01. Therefore, we see that large differences in welfare
counterfactuals can arise under very slight departures from the i.i.d. Gumbel assumption.
LFDs for the upper bound shift increasing amounts of mass to the center of the distribu-

FIGURE 4.—CDFs of U1 − U0 under the LFDs at which the estimated lower and upper bounds on the
welfare counterfactual are attained.

22The width of the bootstrap CSs relative to the bounds reduces as δ gets large. We re-estimated our bounds
using several different draws of bootstrapped CCPs in place of P̂2 and obtained bounds that spanned a range
similar to the bootstrap CSs for small δ, but which for many draws converged to values close to our estimates
of the bounds for large δ. This corroborates the behavior of our bootstrap CSs. We conjecture that other
features of the model are potentially more important than the numerical values of the CCPs in determining
nonparametric bounds on the welfare counterfactual.
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290 T. CHRISTENSEN AND B. CONNAULT

TABLE IV

METRICS FOR INTERPRETING δ.

δ

Lower bound Upper bound

corr size RC MC corr size RC MC

0 0�000 0.000 10.208 2.294 0�000 0.000 10.208 2.294
0�01 0�036 0.010 7.357 1.411 −0�027 0.016 13.390 3.307
0�1 −0�058 0.039 5.186 0.553 0�149 0.109 16.134 4.374
1 −0�045 0.039 4.023 0.203 0�616 0.346 17.166 5.038

10 −0�040 0.039 4.022 0.202 0�765 0.461 17.595 5.331
100 −0�063 0.039 3.931 0.176 0�764 0.469 17.626 5.365

Note: Correlation of U0 and U1 under the LFD at which the estimated lower and upper bounds are attained (corr), our size
measure from Section 4.3, and replacement and maintenance cost parameters at which the estimated lower and upper bounds are
attained.

tion of U1 −U0 as δ increases. LFDs corresponding to the lower bound are relatively less
distorted, but have increasing amounts of mass shifted into the right tail. These are simi-
lar for δ= 0�1 through δ= 100 because the estimated lower bound stabilizes for smaller
values of δ than the upper bound (cf. Figure 3).

Table IV lists other metrics to help interpret the neighborhood size. The first is the
correlation of U0 and U1 under the LFDs at which κ̂δ and κ̂δ are attained. These are
very small for δ = 0�01 and remain small under the LFDs for κ̂δ as δ increases, while
U0 and U1 are strongly positively correlated under the LFDs for κ̂δ, especially for larger
δ values. We compute our size measure separately for the upper and lower bounds. We
measure distortions using only the moments corresponding to the CCPs as these are most
directly interpretable within the context of the model. We see that the LFDs for δ= 0�01
are distorting F∗ in a manner that shifts the model-implied CCPs by at most 0.016. By
contrast, the LFDs for δ= 10 and δ= 100 shift the model-implied CCPs from their values
under the i.i.d. Gumbel assumption by at most 0�04 for κ̂δ and 0�47 for κ̂δ.

The parameters at which κ̂δ and κ̂δ are attained are also revealing about neighborhood
size. Table IV presents MLEs of MC and RC, which are similar to the values reported
in Table IX of Rust (1987). We see from Table IV that κ̂δ and κ̂δ are attained at very
different parameter values, with much smaller cost parameters for the lower bound and
larger parameters for the upper bound, even for δ= 0�01. Intuitively, a smaller MC means
that the saving from the subsidy—which is proportional—must be small. Correspondingly,
a low RC is needed to help the model to fit the observed CCPs at the smaller MC. While
it is known that payoff parameters are not identified without parametric assumptions on
F , it is perhaps surprising that these parameters vary by so much under slight relaxations
of the i.i.d. Gumbel assumption. For instance, with δ= 0�01, the lower bound is attained
with cost parameters RC = 7�357 and MC = 1�411 while the upper bound is attained with
cost parameters that are roughly double these values.

6. ESTIMATION AND INFERENCE

We begin in Section 6.1 by establishing consistency and the asymptotic distribution of
the estimators κ̂δ and κ̂δ from Section 2.4. We then present a bootstrap-based inference
method in Section 6.2 and a projection-based inference method in Section 6.3.
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 291

6.1. Large-Sample Properties of Plug-in Estimators

We first introduce some regularity conditions. Recall the space E from Assumption �.
We equip E with the Orlicz norm (see Appendix F of Christensen and Connault (2022))

‖f‖ψ = inf
c>0

1
c

(
1 +E

F∗[ψ(
c
∣∣f (U)

∣∣)])�
This norm is equivalent to theL2(F∗) norm for χ2 and hybrid divergence and equivalent to
the Lq(F∗) norm for Lp divergence (p−1 +q−1 = 1), while for KL divergence it is stronger
than any Lp(F∗) norm with p < ∞ but weaker than the sup-norm. Say that a class of
functions {fa : a ∈ A} ⊂ E indexed by a metric space A is E -continuous in a if a′ → a
in A implies ‖fa − fa′‖ψ → 0. We also require a slightly stronger notion of constraint
qualification than Condition S from Section 2.5.

DEFINITION 6.1: Condition S′ holds at (θ�γ�P) if �P ∈ int(G(θ�γ) + C).

Condition S′ replaces “relative interior” in Condition S with “interior.” Finally, recall
	(θ;γ�P) from (16) and let �δ(γ�P) ={θ ∈� : 	(θ;γ�P) < δ}.

ASSUMPTION M: (i) k(·;θ�γ) and each entry of g(·;θ�γ) are E -continuous in (θ�γ);
(ii) (θ�γ) 	→ E

F∗[φ�(a1 + a2k(U�θ�γ) + a′
3g(U�θ�γ))] is continuous for each (a1� a2�

a3) ∈ R×R×R
d;

(iii) �δ(γ0�P0) is nonempty and Condition S′ holds at (θ�γ0�P0) for each θ ∈�δ(γ0�P0);
(iv) cl(�δ(γ0�P0)) ⊇{θ ∈� : 	(θ;γ0�P0) ≤ δ};
(v) � is a compact subset of Rdθ .

Parts (i) and (ii) of Assumption M are continuity conditions. If k and g consist entirely
of indicator functions of events, then these conditions hold provided the probabilities of
the events under F∗ are continuous in (θ�γ). In models without γ, these conditions simply
require continuity in θ.

There are two parts to Assumption M(iii). The nonemptyness condition holds when
the model is correctly specified under F∗ or, more generally, when there is at least one
F ∈ Nδ that satisfies (1a)–(1d) for some θ. The second part is a constraint qualification.
This condition requires that for each θ ∈�δ(γ0�P0), there is a distribution F under which
(1a)–(1d) holds at (θ�γ0�P0) that is “interior” to N∞, in the sense that one can perturb the
moments at (θ�γ0�P0) in all directions by perturbing F . Condition S′ also requires that
there is F ∈ N∞ under which any inequality restrictions at (θ�γ0�P0) hold strictly. Note,
however, that we do not require that this F belongs to Nδ, only to N∞. We therefore do
not view this condition as overly restrictive. We also conjecture it could be relaxed using
a notion similar to S-regularity from Section 2.5.

Assumption M(iv) is made for convenience and can be relaxed; this condition simply
ensures that there do not exist values of θ at which 	(θ;γ0�P0) = δ that are separated
from �δ(γ0�P0). Assumption M(v) is standard and can be relaxed.

THEOREM 6.1: Suppose that Assumptions � and M hold and (γ̂� P̂) →p (γ0�P0) or, if
there is no auxiliary parameter, P̂ →p P0. Then κ̂δ →p κδ and κ̂δ →p κδ.

To derive the asymptotic distribution of the estimators, we assume γ0 is known and
suppress dependence of all quantities on γ for the remainder of this section. This entails
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292 T. CHRISTENSEN AND B. CONNAULT

no loss of generality for models without γ, such as Examples 2.1 and 2.2 and the appli-
cation in Section 5.1. In DDC models, this presumes the law of motion of the state is
known. The asymptotic distribution therefore reflects only sampling uncertainty from the
estimated CCPs, which is the case for confidence sets reported when laws of motion are
first estimated “offline.” Extending our approach to accommodate sampling variation in γ̂
in a tractable manner appears to require exploiting application-specific model structure,
which we defer to future work.

Define

bδ(P) = inf
θ∈�δ(P)

Kδ(θ;P)� bδ(P)= sup
θ∈�δ(P)

Kδ(θ;P)� (29)

In this notation, κδ = bδ(P0) and κδ = bδ(P0) (see Lemma E.3) and κ̂δ = bδ(P̂) and
κ̂δ = bδ(P̂). We derive the asymptotic distribution of κ̂δ and κ̂δ by showing bδ and bδ
are directionally differentiable and applying a suitable delta method. Say f : Rd1+d2 → R

is (Hadamard) directionally differentiable at P0 if there is a continuous map dfP0 [·] :
R
d1+d2 → R such that

lim
n→∞

t−1
n

(
f (P0 + tnhn) − f (P0)

) = dfP0 [h]

for all sequences tn ↓ 0 and hn → h (Shapiro (1990, p. 480)). If dfP0 [h] is linear in h, then
f is (fully) differentiable at P0. We introduce some additional notation used to define the
directional derivatives of bδ and bδ. Let

�
δ
(θ;P) = argsup

η≥0�ζ∈R�λ∈�
−E

F∗[(ηφ)�
(−k(U�θ) − ζ − λ′g(U�θ)

)]−ηδ− ζ − λ′
12P�

where (ηφ)� denotes the convex conjugate of x 	→ η ·φ(x), and let �δ(θ;P) denote the
analogous arginf for the minimization problem corresponding to the upper bound. Recall
that λ12 = (λ1�λ2) collects the first d1 + d2 elements of λ. Let

�δ(θ;P) = {
(λ1�λ2) : (η�ζ�λ1�λ2�λ3�λ4) ∈�

δ
(θ;P)

}
denote the projection of �

δ
(θ;P) for λ12. We let �δ(θ;P) denote the analogous projec-

tion of �δ(θ;P). Finally, let

�δ(P0) = arg min
θ∈�

Kδ(θ;P0)� �δ(P0) = arg max
θ∈�

Kδ(θ;P0)�

The sets �δ(P0) and �δ(P0) are nonempty and compact under Assumptions � and M.
The following regularity conditions are presented for the general case in which k de-

pends on u. It may be possible to weaken some of these conditions when k does not
depend on u.

ASSUMPTION M—continued: (vi) �δ(P0) ⊆�δ(P0) and �δ(P0) ⊆�δ(P0);
(vii) θ 	→�δ(θ;P0) and θ 	→�δ(θ;P0) are lower hemicontinuous at each θ ∈�δ(P0) and

θ ∈�δ(P0), respectively.
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 293

THEOREM 6.2: Suppose that Assumptions� and M hold. Then bδ and bδ are directionally
differentiable at P0, with

dbδ�P0
[h] = min

θ∈�δ(P0)
max

λ12∈�δ(θ;P0)
−λ′

12h� dbδ�P0 [h] = max
θ∈�δ(P0)

min
λ12∈�δ(θ;P0)

λ
′
12h�

Moreover, if
√
n(P̂ − P0) →d Z ∼N(0��) with � finite, then

√
n

((
κ̂δ
κ̂δ

)
−

(
κδ
κδ

))
→d

(
dbδ�P0

[Z]
dbδ�P0 [Z]

)
�

The asymptotic distribution presented in Theorem 6.2 may be non-Gaussian. In the
special case in which

⋃
θ∈�δ(P0) �δ(θ;P0) = {λ12}, the asymptotic distribution of κ̂δ simpli-

fies to N(0�λ′
12�λ12). An analogous simplification holds for κ̂δ when

⋃
θ∈�δ(P0) �δ(θ;P0) is

a singleton.

6.2. Inference Procedure 1: Bootstrap

Our first inference procedure specializes the general approach of Fang and Santos
(2019) for inference on directionally differentiable functions to the present setting. Define

d̂bδ�P0
[h] = inf

θ∈�̂δ�n
sup

λ12∈�δ(θ;P̂)

−λ′
12h� d̂bδ�P0 [h] = sup

θ∈�̂δ�n
inf

λ12∈�δ(θ;P̂)
λ

′
12h�

where

�̂δ�n = {
θ ∈�δ(P̂) :Kδ(θ; P̂) ≤ κ̂δ + ν̂

√
logn/n

}
� and

�̂δ�n = {
θ ∈�δ(P̂) :Kδ(θ; P̂) ≥ κ̂δ − ν̂

√
logn/n

}
�

with ν̂ a (possibly random) positive scalar tuning parameter for which ν̂ →p ν > 0. Any
such ν̂ results in a confidence set with asymptotically correct coverage. We give some
practical guidance for choosing ν̂ below.

Let P̂∗ denote a bootstrapped version of P̂ . In practice, any bootstrap can be used pro-
vided it satisfies mild consistency conditions. In the empirical application in Section 5.1,
we simply draw P̂∗ ∼N(P̂� �̂/n) where �̂ is a consistent estimator of �. Let

ĉα = α-quantile of d̂bδ�P0

[√
n
(
P̂∗ − P̂

)]
� ĉα = α-quantile of d̂bδ�P0

[√
n
(
P̂∗ − P̂

)]
�

where the quantiles are computed by resampling P̂∗ (conditional on the data). Lower,
upper, and two-sided 100(1 − α)% CSs for κδ and κδ are

CS1−α
δ�L =

[
κ̂δ − ĉ1−α√

n
�+∞

)
�

CS1−α
δ�U =

(
−∞� κ̂δ − ĉα√

n

]
� CS1−α

δ =
[
κ̂δ − ĉ1−α/2√

n
� κ̂δ − ĉα/2√

n

]
�

We require a slight strengthening of Assumption M(vii) to establish validity of the proce-
dure. As before, regularity conditions are presented for the general case where k depends
on u. It may be possible to weaken these conditions when k does not depend on u.
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294 T. CHRISTENSEN AND B. CONNAULT

ASSUMPTION M—continued: (vii′) (θ�P) 	→�δ(θ;P) and (θ�P) 	→�δ(θ;P) are lower
hemicontinuous at (θ�P0) for each θ ∈�δ(P0) and θ ∈�δ(P0), respectively.

THEOREM 6.3: Suppose that Assumptions � and M(i)–(vi), (vii′) hold,
√
n(P̂ − P0) →d

Z ∼N(0��) with � finite, and P̂∗ satisfies Assumption 3 of Fang and Santos (2019). Then

the distribution of d̂bδ�P0
[
√
n(P̂∗ − P̂)] and d̂bδ�P0 [

√
n(P̂∗ − P̂)] (conditional on the data) is

consistent for the asymptotic distribution derived in Theorem 6.2. Moreover, if the CDFs of
dbδ�P0

[Z] and dbδ�P0 [Z] are continuous and increasing at their α/2, α, 1 − α, and 1 − α/2
quantiles, then

lim
n→∞

Pr
(
κδ ∈ CS1−α

δ�L

) = 1 − α�

lim
n→∞

Pr
(
κδ ∈ CS1−α

δ�U

) = 1 − α� lim inf
n→∞

Pr
(
[κδ�κδ] ⊆ CS1−α

δ

) ≥ 1 − α�

Any ν̂ that satisfies ν̂ →p ν > 0 results in asymptotically valid CSs. In view of the func-
tional forms of d̂bδ�P0

[·] and d̂bδ�P0
[·], smaller ν̂ produce (weakly) wider CSs. In the CSW

application, we set ν̂ equal to the minimum diagonal element of the covariance matrix of
the moments evaluated at (θ̂� γ̂� P̂) under F∗, where θ̂ is computed under F∗. We chose
this quantity as it is related to the convexity of the inner problem for small δ. In practice,
this resulted in ν̂ between 0.001 and 0.01. We recommend setting ν̂ to be of a similarly
small magnitude, then performing a sensitivity analysis to check that critical values are

not too dependent on ν̂. Setting ν̂ = 0 and replacing �̂δ�n and �̂δ�n by {θ̂δ} and {θ̂δ} where

θ̂δ and θ̂δ minimize and maximize the sample criterions is also valid, but may be conser-
vative.

6.3. Inference Procedure 2: Projection

This second approach is computationally simple but possibly conservative.23 Suppose
we have random vectors P̂1−α

1�U , P̂1−α
2�U , and P̂1−α

2�L that form a 100(1 −α)% rectangular CS for
P0:

lim inf
n→∞

Pr
(
P10 ≤ P̂1−α

1�U � P̂
1−α
2�L ≤ P20 ≤ P̂1−α

2�U

) ≥ 1 − α� (30)

where the inequalities should be understood to hold element-wise (we discuss how to
construct a rectangular CS for P0 below).

The idea behind this approach is to replace any moment conditions involving P by
inequalities constructed from the rectangular CS. Define the criterion functions

K̂δ�1−α(θ) =
{
Kδ�cs(θ; P̂1−α)�
+∞�

K̂δ�1−α(θ) =
{
Kδ�cs(θ; P̂1−α) if 	cs(θ; P̂1−α) < δ�

−∞ if 	cs(θ; P̂1−α) ≥ δ�

where Kδ�cs, Kδ�cs, and 	cs are versions of (13), (14), and (16) formed using

E
F
[
g1(U�θ)

] ≤ P̂1−α
1�U � E

F
[
g2(U�θ)

] ≤ P̂1−α
2�U � E

F
[−g2(U�θ)

] ≤ −P̂1−α
2�L � (31)

23We are grateful to a referee for suggesting this approach.
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COUNTERFACTUAL SENSITIVITY AND ROBUSTNESS 295

as well as (1c) and (1d). In these criterions, � is replaced by �cs = R
d1+2d2+d3+ × R

d4 , g is
replaced by gcs = (g1� g2�−g2� g3� g4), P is replaced by P̂1−α = (P̂1−α

1�U � P̂
1−α
2�U �−P̂1−α

2�L ), and λ12

denotes the first d1 + 2d2 elements of λ.
Critical values are computed by optimizing the criterions K̂δ�1−α and K̂δ�1−α with respect

to θ:

κ̂δ�1−α = inf
θ∈�

K̂δ�1−α(θ)� κ̂δ�1−α = sup
θ∈�

K̂δ�1−α(θ)�

Lower, upper, and two-sided 100(1 − α)% CSs for κδ and κδ are then given by

CS1−α
δ�L = [

κ̂δ�1−α�+∞)� CS1−α
δ�U = (−∞� κ̂δ�1−α

]
� CS1−α

δ = [κ̂δ�1−α� κ̂δ�1−α]�

THEOREM 6.4: Suppose that Assumptions � and M(i), (iii)–(v) hold and P̂1−α satisfies
(30). Then

lim inf
n→∞

Pr
(
κδ ∈ CS1−α

δ�L

) ≥ 1 − α�

lim inf
n→∞

Pr
(
κδ ∈ CS1−α

δ�U

) ≥ 1 − α� lim inf
n→∞

Pr
(
[κδ�κδ] ⊆ CS1−α

δ

) ≥ 1 − α�

To construct a rectangular CS for P0 satisfying (30), suppose
√
n(P̂ − P0) →d N(0��)

and we have a consistent estimator �̂ of �. Let σ̂ denote the vector formed by taking the
square root of each diagonal entry of �̂. Partition σ̂ conformably as σ̂ = (σ̂(1)� σ̂(2)) and
set

P̂1−α
1�U = P̂1 + n−1/2ĉ1−α�1σ̂(1)� P̂1−α

2�L = P̂2 − n−1/2ĉ1−α�2σ̂(2)�

P̂1−α
2�U = P̂2 + n−1/2ĉ1−α�2σ̂(2)�

where the (scalar) critical values ĉ1−α�1 and ĉ1−α�2 solve

Pr
(

max
1≤i≤d1

Zi/σ̂i ≤ ĉ1−α�1� max
d1+1≤i≤d2

|Zi/σ̂i| ≤ ĉ1−α�2
)

= 1 − α� Z ∼N(0� �̂)�

If d2 = 0, then ĉ1−α�1 is the (1 − α)-quantile of max1≤i≤d1 Zi/σ̂i; similarly, if d1 = 0, then
ĉ2�1−α is the (1 − α)-quantile of max1≤i≤d2 |Zi/σ̂i|.

7. CONCLUSION

This paper introduced a framework for analyzing the sensitivity of counterfactuals to
parametric assumptions about the distribution of latent variables in structural models. In
particular, we derived bounds on the set of counterfactuals obtained as the distribution of
latent variables spans nonparametric neighborhoods of a given parametric specification
while other “structural” model features are maintained. We illustrated our procedure with
empirical applications to matching models and dynamic discrete choice.
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