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Abstract. Imaging biomarkers derived from medical images play an
important role in diagnosis, prognosis, and therapy response assessment.
Developing prognostic imaging biomarkers which can achieve reliable
survival prediction is essential for prognostication across various diseases
and imaging modalities. In this work, we propose a method for discov-
ering patch-level imaging patterns which we then use to predict mor-
tality risk and identify prognostic biomarkers. Specifically, a contrastive
learning model is first trained on patches to learn patch representations,
followed by a clustering method to group similar underlying imaging
patterns. The entire medical image can be thus represented by a long
sequence of patch representations and their cluster assignments. Then a
memory-efficient clustering Vision Transformer is proposed to aggregate
all the patches to predict mortality risk of patients and identify high-
risk patterns. To demonstrate the effectiveness and generalizability of
our model, we test the survival prediction performance of our method on
two sets of patients with idiopathic pulmonary fibrosis (IPF), a chronic,
progressive, and life-threatening interstitial pneumonia of unknown eti-
ology. Moreover, by comparing the high-risk imaging patterns extracted
by our model with existing imaging patterns utilised in clinical practice,
we can identify a novel biomarker that may help clinicians improve risk
stratification of IPF patients.

Keywords: Imaging biomarker discovery · Survival analysis · Contrastive
learning · Clustering Vision Transformer · Idiopathic pulmonary fibrosis
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1 Introduction

An imaging biomarker is defined as a characteristic derived from a medical im-
age, that can be used as an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic intervention [12,2]. Clin-
icians often assess imaging biomarkers through visual assessment of medical im-
ages. Though some computer-based methods have been proposed for automated
and quantitative measurement of imaging biomarkers [2], these methods often
require expert labelling of potential biomarkers as training data. This is not only
time-consuming, expensive and susceptible to inter-observer variability, but also
restricts computer-based methods to evaluating limited numbers of predefined
imaging biomarkers. Such strategies are insufficient to adequately mine the rich
information contained within medical images [29].

There remains a long-term unmet need for quantitative and novel imaging
biomarker development to inform the prediction of disease outcomes such as
mortality. Many deep learning methods have been proposed recently for sur-
vival prediction using imaging data without the requirement of manual anno-
tations [13,24]. One major limitation of these end-to-end deep learning survival
models is that they often extract high-dimensional biomarkers which are difficult
to interpret. Motivated by this, some researchers looking at histopathology im-
ages have tried to learn low-level prognostic imaging biomarkers that can under-
pin image-based survival models [1,30]. These methods often extract patch-level
features and aggregate them to predict patient survival. Different strategies then
associate the underlying patterns with high mortality risk. Accordingly, learning
generalizable representations, aggregating sequences of patch information, and
recognizing high-risk patterns become the main challenges for this task.

Recent success in self-supervised learning methods highlights the potential for
learning discriminative and generalizable representations from unlabelled data.
Contrastive learning, a dominant group of self-supervised learning methods,
aims to group similar samples together while separating samples that differ [18].
Transformer neural networks have gained increasing interest from the medical
imaging field because of their ability to capture global information [27]. The Vi-
sion Transformer (ViT) [8] accepts an image as a sequence of patch embeddings
allowing for the fusion of patch information. However, medical images can often
be split into thousands of patches, which results in a much longer sequence and
a computationally expensive ViT when compared with natural images.

Motivated by challenges in prognostic biomarker discovery and survival anal-
ysis, we propose a framework that leverages plausible properties of contrastive
learning and ViT, and validate its performance in a highly heterogeneous disease,
idiopathic pulmonary fibrosis (IPF). IPF is a chronic lung disease of unknown
cause, associated with a median survival of between 2.5 to 3.5 years [22]. The gen-
erally poor prognosis of IPF belies its highly heterogeneous disease progression
between patients. A lack of reliable prognostic biomarkers hampers the ability
to accurately predict IPF patient survival [29].

In our study, as shown in Fig. 1, we first learn patch representations via
contrastive learning, on computed tomography (CT) imaging of IPF patients,
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Fig. 1. An overview of the proposed model. (a) We first learn patch representations
h by using a modified contrastive learning method [1]. All patch representations are
clustered into K clusters by using spherical KMeans. (b) With trained models in (a),
CT scans can be represented as a sequence of patch representations and their cluster
assignments, which are then fed to a clustering ViT for survival prediction.

followed by a clustering method to extract underlying patterns in the patches.
We then use an efficient clustering ViT to aggregate the extremely long sequence
of patch representations for survival prediction and high-risk pattern recognition.

The contributions of this paper are as follows. First, we propose a framework
tailored for prognostic imaging biomarker discovery and survival analysis based
on large medical images. Experiments on two IPF datasets show that our model
outperforms end-to-end ViT and deep 3D convolutional neural networks (CNN)
in terms of mortality prediction performance and generalizability. Second, by
comparing discovered biomarkers with existing visual biomarkers, we identify a
novel biomarker that can improve the prediction performance of existing visual
biomarkers which will aid patient risk stratification.
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2 Method

2.1 Contrastive Learning of Patch Representations

We modify a contrastive learning method [1] to learn representations of lung
tissue patches. For preparing the training data, we first segment the lung area
by using a pre-trained U-Net [26,16]. Then we split the segmented lung area into
patches. The network structure is a convolutional autoencoder as shown in Fig. 1.
The contrastive learning process has two stages and is conducted in a divide-
and-rule manner. The basic idea of contrastive learning is to make similar sample
pairs (positive pairs) close to each other while dissimilar pairs (negative pairs)
far apart. With the divide-and-rule principle, the method gradually expands the
positive sample set by discovering class consistent neighbourhoods anchored to
individual training samples within the original positive pair [17].

In the first stage, the model is optimized by minimizing a reconstruction loss
and an instance-level contrastive loss jointly. Specifically, we denote patch as
I(x,y,z), where (x, y, z) is the location of the patch central voxel in original CT
scans. The ResNet-18 [15] encoder maps input patches I(x,y,z−1), I(x,y,z+1) into
the 512-dimensional latent representation h, and the decoder reconstructs the
patch I(x,y,z) adjacent to them from h. Mean squared error (MSE) loss LMSE

is used to measure the difference between patch I(x,y,z) and the reconstructed
patch. For contrastive learning, we consider patches 50% overlapped with patch
i as its similar samples Si and other patches in the training dataset as dissimilar
samples. For calculating the similarity between samples, h is projected to a
128-dimensional variable v by a multi-layer perception (MLP) [5]. The instance-
level contrastive loss is defined as Linst = −

∑
i∈Binst

log(
∑

j∈Si
p(j | i)), where

p(j | i) = exp(v⊤
j vi/τ)∑N

k=1 exp(v⊤
k vi/τ)

, Binst is the set of instance samples in a mini-batch.

In the second stage, the method discovers other similar patches (neighbour
samples Ni) for a given patch i based on relative entropy to expand the positive
sample set. Lower entropy indicates a higher similarity between a patch i and its
neighbourhoods, and these patches can be anchored together in the subsequent
training process (anchored neighbourhoods, ANs). Higher entropy implies that
the given patch is dissimilar with its neighbourhoods and so the pair should
remain individuals (instance samples) rather than grouped together. AN-level
contrastive loss is defined as LAN = −

∑
i∈BAN

log(
∑

j∈Si∪Ni
p(j | i)), where

BAN is the set of ANs in a mini-batch. The total loss for two stages can be
defined as L = Linst + 1(stage = 2) · LAN + LMSE .

The second stage can be performed over multiple rounds with an increasing
number of ANs. This will progressively expand the local consistency to find the
global class boundaries. A memory bank is used to keep track of the similarity
matrix. h is used as patch representation after training the model. All patch
representations are clustered into K clusters by using spherical KMeans [33].
These clusters are common patterns found in CT scans.
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2.2 Survival Analysis via Clustering ViT

The objective of survival analysis is to estimate the expected duration be-
fore an event happens. The Cox proportional hazards model [6] is a widely
used survival analysis method. Given the input data x, the hazard function
is modeled as h(t|x) = h0(t) exp(f(x)), where h0(t) is a base hazard func-
tion and exp(f(x)) is a relative risk function learned by models. Deep-learning
based Cox methods [21,9] have been proposed to model more complicated non-
linear log-risk function f(x). These methods optimize Cox log partial likelihood

Lcox =
∏

i:Ei=1
exp(f̂(xi))∑

j∈R(Ti)
exp(f̂(xj))

, where Ti, Ei, xi, f̂(xi) are the event time

(or censored), event indicator, baseline data, and estimated log-risk of patient i,
and R(t) is the risk set of patients who are still alive at time t.

Inspired by [32], we propose a clustering ViT for survival analysis and high-
risk pattern identification, that can handle long sequences (Fig. 1). For given
CT scans, a sequence of patch representations and their cluster assignments are
generated using the trained model in Sec. 2.1. We pad all input sequence to
be a fixed length N . We first map patch representations to D dimensions with
a linear layer, where D is the hidden size, and then pass the sequence into a
Transformer encoder with L layers (L = 6). Each layer includes a clustering
attention layer with 8 heads and a MLP. The original attention layer computes
interaction between each pair of input patches, with a O(N2) complexity. The
assumption of the clustering attention is that patches within the same cluster
have similar attention maps. Queries within the same cluster can be represented
by a prototype, which is the centroid of queries within this cluster. The clustering
attention layer only calculates the attention maps between K prototypes and
N keys, and then broadcasts it to queries within each cluster. This reduces
complexity to O(NK).

The sequential output of the L-layer ViT is defined as xL ∈ RB×N×D, where
B is the batch size. After going through a linear layer g, g(xL) ∈ RB×N×1

can be seen as sequences of patch-level risk scores. We then propose attention
pooling, a variant of sequence pooling [14], to get the patient-level log-risk r =
softmax(g(xL)

⊤)g(xL) ∈ RB×1. This pooling method can assign different impor-
tance weights across patches with different risks. The network is trained based
on average negative partial log-likelihood loss Lneglog = − 1

nE=1

∑
i:Ei=1(ri −

log
∑

j∈R(Ti)
exp (rj)), where r is log-risk estimated by the ViT, nE=1 is the

number of events observed. After training the ViT, we take the mean of risk
scores of patches within a cluster as the cluster-level risk Rk, k ∈ [1,K], which
will help us to identify high-risk patterns.

2.3 Novel prognostic biomarker identification

High-risk imaging patterns discovered by our method may overlap the clinically-
established patterns. With a CT dataset which includes annotated regions of
lung tissue patterns predefined by clinicians (normal lung, ground-glass opacity,
emphysema, and fibrosis), we propose an approach to identify novel prognostic



6 A. Zhao et al.

biomarkers by disentangling them from the established ones 9 (see Supplemen-
tary Fig. 1). The hypotheses are that: 1) The novel biomarker should not have
a strong or moderate positive correlation (correlation coefficient > 0.3) with the
extents of existing patterns [25]. 2) The novel biomarker should be significantly
predictive of mortality (p-value < 0.05) independent of existing biomarkers when
inputting both of them into the Cox model. 3) Centroids of representations of
novel prognostic patterns should be relatively far from those of existing patterns.

3 Experiment

In this section, we first evaluate mortality risk prediction performance of the
proposed model and compare it with CNN-based prediction models. A series of
ablation studies are conducted to understand the contribution of each compo-
nent. We also show representative patches of discovered high-risk patterns.

3.1 Datasets

For training the contrastive learning model, we use a dataset (Dataset 1) that
contains 313 CT scans (186 death observed) of IPF patients from the Nether-
lands and Turkey. 1,547,467 patches are generated by using a 64 × 64 sliding
window with a step size of 32 across the lung area. Dataset 1 is used for train-
ing and evaluating the ViT with 5-fold cross-validation. We randomly split the
dataset into 5 folds. 1 fold is used as an internal test set, while the remaining 4
folds are randomly split into training and validation sets with a ratio of 4 : 1.
To evaluate the generalizability, we introduce an external test dataset (Dataset
2) from University Hospital Southampton, comprising 98 CT scans (48 death
observed). For each split, we train the model on the training set in Dataset 1,
choose the best model with the lowest loss on the validation set, and test the
model on internal and external test sets. For novel prognostic biomarker identifi-
cation, we use a subset of Dataset 1 and 2 with visual scores in step 1) and 2) of
Sec. 2.3. In 253/313 (81%) CTs in Dataset 1, and all CTs in Dataset 2, fibrosis
and emphysema extents have been visually scored by radiologists. We also use
a publicly available interstitial lung disease dataset with annotated lung tissue
patterns [7] for calculating centroids of existing patterns in step 3) of Sec. 2.3.

3.2 Implementation Details

For contrastive learning, we train the model with an Adam optimizer [20,23], a
learning rate of 10−4, and batch size of 128. We run the first stage for 1 round
and the second stage for 3 rounds with τ = 0.05, which takes about a week. Every
round has 25 epochs. The number of clusters K is 64 for spherical KMeans. For
clustering ViT, the sequence length N is 15,000 and the batch size is 6. We

9 We use the extent of a high-risk pattern as a prognostic biomarker, obtained by
calculating the percentage of this pattern within the whole lung.
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Table 1. 5-fold cross-validation results on internal and external datasets compared with
other survival prediction models. P-value shows significance of better performance of
our proposed model (⋆p < 0.05,† p < 0.01,‡ p < 0.001).

Methods # Pars
Internal Test Set External Test Set

IPCW C-index IBS IPCW C-index IBS

Ours 21.96M 0.676±0.033 0.165±0.025 0.698±0.013 0.133±0.003

K-M method - - 0.192±0.028 - 0.144±0.002†

3D ResNet-18 32.98M 0.639±0.032† 0.184±0.028 0.618±0.001‡ 0.149±0.006⋆

3D ResNet-34 63.28M 0.657±0.048 0.180±0.032 0.631±0.032⋆ 0.156±0.028

use Mixup [31] for data augmentation. The hidden size D is 256 and dropout
rate is 0.1. We use a pre-trained model [3] for training our ViT. We adopt the
Sharpness-Aware Minimization (SAM) algorithm [10] and use Adam as the base
optimizer, with a learning rate of 2×10−5 and weight decay of 10−4. The ViT is
trained for 100 epochs (3 hours) 10. We use an inverse-probability-of-censoring
weighted version of C-index (IPCW C-index) [28] for assessing the discrimination
of model, which quantifies the capability of discriminating patients with different
survival times. For measuring the calibration (i.e. the capability of predicting
true probabilities), we use the Integrated Brier Score (IBS) [11] which measures
the difference between predicted probabilities and observed status by integrating
Brier Score across the time span of test set. The paired t-test is used for testing
statistical differences between the proposed method and other methods. More
experiments of hyperparameters are provided in Supplementary Table 1.

3.3 Experiment Results

Comparison with Other Survival Prediction Models. We compare our
method with end-to-end survival prediction models based on 3D ResNet-18 and
3D ResNet-34 [4]. 3D ResNets are trained with average negative partial log-
likelihood loss [6]. Data splitting for each fold is the same as our model to ensure
a fair comparison. Kaplan-Meier (K-M) method [19] is used as a baseline of the
IBS. As shown in Table 1, our method achieves at least comparable or often
significantly better performance in terms of discrimination and calibration with
fewer parameters, especially in the external test dataset.

Ablation Study. To investigate the contribution of each component in the pro-
posed method, we conduct ablation studies as shown in Table 2. The ablation
study without contrastive learning in Sec. 2.1 is identical to train a regular ViT
[8] end-to-end for survival prediction. We also remove attention pooling (using
average pooling instead), Mixup [31] data augmentation and SAM algorithm [10],

10 Our method is implemented by Pytorch 1.8. All models were trained on one
NVIDIA RTX6000 GPU with 24GB memory. Code is available at https://github.
com/anzhao920/PrognosticBiomarkerDiscovery

https://github.com/anzhao920/PrognosticBiomarkerDiscovery
https://github.com/anzhao920/PrognosticBiomarkerDiscovery
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Table 2. 5-fold cross-validation results of ablation studies on internal and external
datasets. P-values show the significance of better performance of the proposed model
(⋆p < 0.05,† p < 0.01,‡ p < 0.001).

Methods
Internal Test Set External Test Set

IPCW C-index IBS IPCW C-index IBS

Proposed model 0.676±0.033 0.165±0.025 0.698±0.013 0.133±0.003

w/o contrastive learning 0.633±0.042† 0.183±0.032⋆ 0.561±0.017‡ 0.163±0.011†

w/o attention pooling 0.659±0.025 0.177±0.034 0.699±0.011 0.133±0.002
w/o Mixup 0.660±0.038 0.177±0.034 0.686±0.023 0.139±0.006

w/o SAM 0.666±0.020 0.174±0.030 0.631±0.022† 0.154±0.010⋆

Fig. 2. Representative patches of top-6 high-risk clusters discovered by our model.
Cluster 36 (C36) is a novel prognostic pattern.

and compare their performance with the proposed method. Contrastive learning
contributes the most to the performance. Using SAM optimizer significantly im-
proves the generalizability, with 6.7% increase of IPCW C-index in the external
test set. Mixup and attention pooling provide slightly better performance.

Biomarker Discovery. Based on cluster-level risk scores generated by the ViT,
we show representative samples of clusters that have the 6 highest risk scores in
Fig. 2. We can observe that these clusters not only focus on imaging patterns
but also the location of the patterns. We also identify a novel pattern (C36 in
Fig. 2) which is morphologically different from existing patterns. C36 is centered
on the lateral border of the lung by the ribs, in a typical distribution for IPF-
related fibrosis. The patches identify the commingling of high and low density
extremes. The low density can be a combination of honeycombing, emphysema
and traction bronchiectasis. The high density comprises primarily consolidation
(not uncommonly representing a radiological pleuroparenchymal fibroelastosis
pattern) and reticulation. The mortality prediction performance when using the
novel biomarker (extent of C36) and visual scores (fibrosis extent and emphysema
extent) is better than using visual scores alone (Supplementary Table 2), with ≈
1% increase of IPCWC-index in both test sets. This suggests the novel biomarker
is likely to be complementary to existing biomarkers in predicting mortality risk.
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4 Discussion

There are some limitations to this work. First, the homogeneity of some clusters
is unsatisfactory (Supplementary Fig. 2a). The challenge is how to set the num-
ber of clusters to find a balance between having homogeneous clusters but ones
that still have enough patches within the cluster to make them clinically useful.
Second, the method of identifying novel biomarkers in Sec. 2.3 is intuitive and
more research should be done. Third, this work mainly focuses on axial plane,
and other planes need further exploration.

In this work, we propose a framework for prognostic imaging biomarker dis-
covery and survival analysis. Experiments on two IPF datasets demonstrate that
the proposed method performs better than its CNN counterparts in terms of
discrimination and calibration. The novel biomarker discovered by our method
provides additional prognostic information when compared to previously defined
biomarkers used in IPF mortality prediction. This method can be potentially ex-
tended to broader applications for different diseases and image modalities.
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