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Abstract 

China is playing an increasing role in global climate change mitigation, and local authorities 

need more city-specific information on the emissions trends and patterns when designing low-

carbon policies. This study provides the most comprehensive CO2 emission inventories of 287 

Chinese cities from 2001 to 2019. The emission inventories are compiled for 47 economic 

sectors and include energy-related emissions for 17 types of fossil fuels and process-related 

emissions from cement production. We further investigate the state of the emission peak in 

each city and reveal hidden driving forces. The results show that 38 cities have proactively 

peaked their emissions for at least five years and another 21 cities also have emission decline, 

but passively. The 38 proactively peaked cities achieved emission decline mainly by efficiency 

improvements and structural changes in energy use, while the 21 passively emission declined 

cities reduced emissions at the cost of economic recession or population loss. We propose 

that those passively emission declined cities need to face up to the reasons that caused the 

emission to decline, and fully exploit the opportunities provided by industrial innovation and 

green investment brought by the low-carbon targets to achieve economic recovery and carbon 

mitigation goals. The proactively peaked cities need to seek strategies to maintain the 

downward trend in emissions and avoid an emission rebound and thus provide successful 

models for other non-declined cities to achieve an emission peak. 
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1 Introduction 

With the accelerating climate emergency, decision-makers need specific sub-national 

information on sources of carbon emissions, reduction potentials, and mitigation measures. 

Cities are at the heart of climate change mitigation and the sustainability of human 

development [1]. On the one hand, cities are emission and development hotspots, with urban 

economic activity accounting for 80% of global GDP, 60-80% of energy consumption, and 75% 

of carbon emissions [2-4]. On the other hand, cities are basic administrative units capable of 

carrying out targeted emission reduction measures. Although more than 500 cities have 

committed to low-carbon and carbon neutrality goals worldwide, there is still lacking 

agreement on how to best account for emissions and achieve decarbonization at the city level 

[5]. 

This is particularly the case in China - the world’s largest developing country with the highest 

national energy consumption [6] and CO2 emissions [7, 8]. China has been working hard to 

target its climate change mitigation goals at the national level (e.g., achieving the peak of 

national emissions before 2030, reducing its emission intensity by 60-65% by 2030 compared 

to the level of 2005, and achieving carbon neutrality by 2060) [9-11]. Fortunately, China has 

made great strides in the progress of emission reduction. The latest accounts of China’s 

national emissions have found that the 2020 carbon intensity mitigation target was achieved 

ahead of schedule in 2018 [12]. The next step strategies of emission reduction in China should 

be focused on the cities with specific attention to their development levels and emission 

patterns. 

Cities in China show huge differences in terms of emission patterns and interactions between 

emissions and economic development. Although some cities have achieved emission decline 

in recent years, the reasons could be quite diverse. Human efforts towards decarbonization 

(e.g., decarbonizing industry and improving the efficiency of production) could have led to 

emission decline in some cities, whereas other drivers such as economic recession or 

population loss could have contributed to a decrease in emissions in other cities [13]. 

Therefore, the reasons for cities’ emission decline and peak need to be carefully examined.  

Following the concept of the Environment Kuznets Curve [14-17], carbon peaks are 

hypothesized to follow the development of the economy and a process of industrialization 

followed by deindustrialization [18, 19]. Highly industrialised cities with well-established 

infrastructure and post-industrialised cities with service-oriented economic structures (e.g., 

Beijing and Shanghai) have already peaked their CO2 emissions and achieved decoupled 

economic growth from emissions [20, 21]. Emerging cities with lower per capita GDP but fast 

growth (e.g., Langfang in Hebei and Luoyang in Henan) are vital to the national emissions peak, 

given their large numbers and their large absolute emissions. Their emission peaks will appear 



after those economically advanced cities (post- and highly industrialised cities) [22, 23]. Heavy-

industrial cities with reliance on energy-intensive manufacturing and coal consumption (e.g., 

Tangshan in Hebei and Dezhou in Shandong) might start to level off CO2 emissions after years 

(e.g., 2025 in the case of Dezhou [24]). Energy cities that are mainly based on extractive 

industries (e.g., Yulin in Shaanxi, Ordos in Inner Mongolia, and Lvliang in Shanxi) are usually 

underdeveloped, and their potential emission peak is further in the future and depends on 

technical upgrading and a more balanced and diversified industrial portfolio [25]. 

Exploring the status of emission peaks in cities and the hidden drivers needs a detailed, 

transparent, and accurate accounting of historical emissions of cities over longer time periods. 

Although numerous studies presented city-level emissions, long time-series emission 

inventories for cities are still rare [26]. First, most studies focused only on individual well-

developed metropolises (e.g., Shanghai [20, 27, 28] and Chongqing [29]), or selected cities 

with high population density [21]. Second, research mostly accounted for emissions for a 

single year, missing dynamic changes in city emissions [30, 31]. Third, previous accounts only 

considered one or several specific economic sectors based on activity data from point sources 

or mobility records [32-35], lacking a comprehensive overview of city emissions covering all 

economic sectors. Fourth, some studies downscaled national or regional emissions to cities 

based on simple indicators (e.g., population density, value-added, and output), ignoring the 

specific characteristics of cities in contrast to the larger administrative unit [36]. Fifth, these 

emission inventories are inconsistent and incomparable across cities, due to differences in 

sources of activity data, emission factors, and the selected accounting scope. As a result, huge 

uncertainties in the emissions of cities have been witnessed by previous studies. For example, 

self-reported emissions of American cities are on average 18.3% less than the estimates based 

on atmospheric measurements [37]. 

Here, we present the most comprehensive and long-reaching time series (2001 to 2019) of 

CO2 emission inventories of 287 Chinese cities, which cover 98%+ of China’s population, 99%+ 

of GDP, and 97%+ of CO2 emissions (compared to the national emissions from EDGAR [38]) in 

2014. Our city-level emission inventories include energy-related emissions from 17 types of 

fossil fuels and process-related emissions from cement production. The inventories are 

compiled for 47 economic sectors consistent with the System of National Accounts in China. 

The city-level emission inventories are consistent with our previous national emission accounts 

[7, 8] in terms of methods, scope, and data sources, allowing for comparison across scales. 

The emission inventories of cities can be found in the supplementary document and can be 

freely downloaded from Carbon Emission Accounts and Datasets for Emerging Economies 

(CEADs). 

Using emission data, we identify the status of emission peaks of cities with the Mann-Kendall 

(MK) trend test and their degree of decoupling of emissions and social development indexes 

(i.e., level of economic development and size of the population). We further quantify the 



contributions of key drivers to the emission decline in cities. We conclude this study by 

providing policy recommendations for achieving emission peaks and carbon neutrality in 

different cities. 

2 Materials and methods 

2.1 Emission accounts 

There are several approaches to account for the emissions of a city [39]. Production-based 

emissions (PBE) account for emissions that result from the production of goods and services 

within a city [31]. Whereas, consumption-based emissions (CBE or carbon footprints) link local 

consumption of goods and services to emissions along the entire supply chain using input-

output or lifecycle analysis and thus include the emissions along the entire supply chain [26, 

40]. Extraction-based emissions (EBE) make it possible to trace back all local emissions to the 

point where fossil fuels are extracted [41], even if these fuels are processed in and re-exported 

from an intermediate city. In comparison, the Intergovernmental Panel on Climate Change 

(IPCC) administrative-territorial approach captures all direct emissions from human economic 

activities within the territory of a city. Unlike PBA, it does not include emissions from 

international aviation or shipping [42, 43]. Territorial emissions are widely used for designing 

low-carbon policies and allocating responsibility for global climate change targets. Therefore, 

we adopt the territorial approach when compiling the emission inventories for cities in this 

study. 

We consider both fossil fuel-related emissions from 47 socioeconomic sectors and 17 types of 

fossil fuels, as well as process-related emissions from cement production. The inventories are 

constructed as 47 by 17 matrixes. Each column presents emissions from one type of fossil fuels 

or industrial process. 47 rows present the socio-economic sectors, which are consistent with 

the System of National Accounts (SNA) in China. To follow the accounting scope of territorial 

emissions and avoid double accounting, emissions associated with electricity/heat use are 

allocated to the power sector, based on the fossil fuel inputs for electricity/heat generation. 

Eq. (1) and Eq. (2) are used to calculate the fossil fuel-related and process-related emissions, 

respectively. 𝐶𝐸𝑖𝑗   represent emissions from the combustion of fuel 𝑖  in sector 𝑗 ; 𝐴𝐷𝑖𝑗 

refers to activity data (i.e., consumption of corresponding fossil fuel types and sectors); 𝑁𝐶𝑉𝑖 

(net caloric value), 𝐶𝐶𝑖  (carbon content), and 𝑂𝑖𝑗   (oxygenation efficiency) are emission 

factors for fuel 𝑖. 𝐶𝐸𝑐𝑒𝑚𝑒𝑛𝑡 are process-related emissions from cement production, which 

are calculated as the product of activity data (𝐴𝐷𝑐𝑒𝑚𝑒𝑛𝑡 , i.e., production of cement) and 

emission factor (𝐸𝐹𝑐𝑒𝑚𝑒𝑛𝑡, i.e., emissions per unit cement production). 

𝐶𝐸𝑖𝑗 = 𝐴𝐷𝑖𝑗 × 𝑁𝐶𝑉𝑖 × 𝐶𝐶𝑖 × 𝑂𝑖𝑗  (1) 



𝐶𝐸𝑐𝑒𝑚𝑒𝑛𝑡 = 𝐴𝐷𝑐𝑒𝑚𝑒𝑛𝑡 × 𝐸𝐹𝑐𝑒𝑚𝑒𝑛𝑡  (2) 

City-level activity data (𝐴𝐷𝑖𝑗 and 𝐴𝐷𝑐𝑒𝑚𝑒𝑛𝑡) are collected from cities’ statistical yearbooks or 

downscaled from the corresponding provincial data based on socioeconomic indexes [31, 44, 

45]. We exclude the amount of non-energy use in the chemical sectors (i.e., fossil fuels used 

as chemical raw inputs) as well as the energy loss during transportation and transformation. 

The emission factors of fossil fuels (𝑁𝐶𝑉𝑖, 𝐶𝐶𝑖, and 𝑂𝑖𝑗) are collected based on a wide survey 

of over 4,243 state-owned Chinese coal mines in China [8, 46]. The emission factors of process-

related emissions (𝐸𝐹𝑐𝑒𝑚𝑒𝑛𝑡) are collected from Liu, et al. [46]. 

2.2 Emission decline and peak 

To assess the status of emissions peak in each city (including both fossil fuel and cement-

related emissions), we introduce an integrated approach based on several conditional 

functions, the Mann-Kendall (MK) trend test [47], and decoupling analysis. Emission peaked 

cities are defined as those that have reduced emissions significantly for more than five years 

while their economy and population grow stably over the period. 

First, we limit the analysis to cities with a time series of emissions inventories longer than 12 

years and identify the year each city has its maximum emission. If the maximum emission is 

observed within the most recent five years, we think the decline of the emissions is not long 

enough to be considered a trend that can continue into the future. We classify these cities to 

be at a non-declined stage [48]. 

Second, for cities with declining emissions for more than five years, we apply the MK test to 

check if the cities’ emissions fall significantly (i.e., passed the MK test with a p-value less than 

0.05) within the descending period. If yes, the city will be considered to have continuously 

declined its CO2 emissions (i.e., emission declined cities); otherwise, it will be seen as still being 

at a plateau phase [47]. The MK trend test is a nonparametric statistical method recommended 

by the World Meteorological Organization (WMO) and has been widely used to detect time-

series trends of climate sequences (e.g., temperature [49, 50] and carbon emissions [51]), 

hydrological characterization (e.g., precipitation [52] and streamflow [53, 54]), and other 

factors. 

Third, for those emission declined cities, we test the degree of decoupling of their emissions 

and social development indexes, see section 2.3 below. If the cities have a strong decoupling 

of emissions and social development indexes (i.e., emission decline with stable development 

in economy and population), we consider the city as an emission peaked one; otherwise, the 

city will be seen as a passively emission declined one. 

2.3 Decoupling 

The concept of decoupling is widely used to describe the relationship between environmental 



pressure (e.g., greenhouse gas emissions) or resource use and economic development, which 

is seen as a key indicator for regional sustainable development. “Decoupling occurs when the 

growth rate of an environmental pressure is less than that of its economic driving force (e.g. 

GDP) over a given period (page 1)” [55]. Although it is controversial whether absolute 

decoupling can be achieved at a global scale [56-58], some studies have found evidence of 

achieving decoupling at regional levels [59-65]. 

Several indexes have been developed to quantify the degree of decoupling based on the 

elasticity changes in GDP and the environmental pressure [66-71]. Following previous studies 

[68, 71], we calculate the decoupling index (𝐷𝐼𝐺𝐷𝑃) in Eq. (3), in which 𝐺𝐷𝑃1 and 𝐶𝐸1 refer 

to the GDP and CO2 emissions of reporting year while 𝐺𝐷𝑃0 and 𝐶𝐸0 refer to the base year. 

Three categories of decoupling are defined based on the decoupling index: absolute 

decoupling (𝐷𝐼𝐺𝐷𝑃 > 1) refers to a decline of emissions; relative decoupling (0 < 𝐷𝐼𝐺𝐷𝑃 ≤ 1) 

refers to the growth of emissions being no faster than the growth of GDP; and no decoupling 

(𝐷𝐼𝐺𝐷𝑃 ≤ 0) refers to a situation where emissions grow to the same extent or faster than GDP. 

To involve cities that are experiencing economic recession, we include the degree of 

decoupling in the second and third quadrants of the cartesian coordinates (x-axis: changes in 

GDP; y-axis: changes in CO2 emissions) [69], as shown in Table 1. 

𝐷𝐼𝐺𝐷𝑃 = (∆𝐺𝐷𝑃% − ∆𝐶𝐸%) ∆𝐺𝐷𝑃%⁄ = (
𝐺𝐷𝑃1−𝐺𝐷𝑃0

𝐺𝐷𝑃0
−

𝐶𝐸1−𝐶𝐸0

𝐶𝐸0
)

𝐺𝐷𝑃1−𝐺𝐷𝑃0

𝐺𝐷𝑃0
⁄   (3) 

Many previous studies only investigated the decoupling between economic growth and CO2 

emissions. However, decoupling could occur between emissions and any socioeconomic 

indicator. For example, some recent studies explored the degree of decoupling of emission 

growth from population growth, the changing structure of energy consumption, and 

government expenditure [72, 73]. Population growth is a key driving factor of CO2 emissions, 

reducing emissions should be achieved independent of changes in population or urban decline. 

That means we need to achieve decoupling of emissions and population as well. Therefore, 

we further quantify the degree of decoupling of emissions and population (𝐷𝐼𝑝𝑜𝑝) in cities 

(shown in Eq. (4) and Table 1). 

𝐷𝐼𝑝𝑜𝑝 = (∆𝑃𝑂𝑃% − ∆𝐶𝐸%) ∆𝑃𝑂𝑃%⁄ = (
𝑃𝑂𝑃1−𝑃𝑂𝑃0

𝑃𝑂𝑃0
−

𝐶𝐸1−𝐶𝐸0

𝐶𝐸0
)

𝑃𝑂𝑃1−𝑃𝑂𝑃0

𝑃𝑂𝑃0
⁄   (4) 

Table 1 Decoupling index and quadrant of the cartesian coordinates (x-axis: changes in GDP or 

population; y-axis: changes in CO2 emissions) 

 1st quadrant 2nd quadrant 3rd quadrant 4th quadrant 

GDP or population + - - + 

CO2 emissions + + - - 



𝐷𝐼 ≤ 0 No decoupling n/a 
Recessive no 

decoupling 
n/a 

0 < 𝐷𝐼 ≤ 1 Weak decoupling n/a 
Recessive weak 

decoupling 
n/a 

𝐷𝐼 > 1 n/a 
Recessive strong 

decoupling 
n/a 

Strong 

decoupling 

Note: we calculate the decoupling index of CO2 emissions versus GDP and population growth separately. 

Each city has two decoupling indexes, one is for emissions and economic growth, and the other one is 

for emissions and population growth. 

2.4 Index decomposition analysis 

This study employs Index Decomposition Analysis (IDA) [74] to quantify the driving forces of 

emission changes in cities. Compared to other decomposition models, such as the Structural 

Decomposition Analysis (SDA) [75], IDA has fewer data requirements and can capture the 

effects of structural changes in emissions and economy [63, 76, 77]. We decompose the 

changes in cities’ emissions into six drivers based on the Kaya identity [78-80], as shown in Eq. 

(5). 

𝐶𝑂2 = 𝑖𝑛𝑡𝐶 × 𝑆𝑡𝑟𝑢𝑒𝑛 × 𝑖𝑛𝑡𝑒𝑛 × 𝑆𝑡𝑟𝑢𝑒𝑐𝑜𝑛 × 𝐸𝑐𝑜 × 𝑃𝑜𝑝  

= ∑ (
𝐶𝑖𝑗

𝐸𝑛𝑖𝑗
×

𝐸𝑛𝑖𝑗

𝐸𝑛𝑗
×

𝐸𝑛𝑗

𝐺𝐷𝑃𝑗
×

𝐺𝐷𝑃𝑗

𝐺𝐷𝑃
×

𝐺𝐷𝑃

𝑃𝑜𝑝
× 𝑃𝑜𝑝)𝑖𝑗   

(5) 

in which, 

𝑖𝑛𝑡𝐶 = 𝐶𝑖𝑗 𝐸𝑛𝑖𝑗⁄  is carbon intensity in sector 𝑗  and is calculated as emissions per 

energy use; 

𝑆𝑡𝑟𝑢𝑒𝑛 = 𝐸𝑛𝑖𝑗 𝐸𝑛𝑗⁄  is the proportion of energy 𝑖 (i.e., coal, oil, and gas) in total energy 

use in each sector and reflects the sectoral energy consumption; 

𝑖𝑛𝑡𝑒𝑛 = 𝐸𝑛𝑗 𝐺𝐷𝑃𝑗⁄  is energy intensity, which is quantified as energy use per GDP; 

𝑆𝑡𝑟𝑢𝑒𝑐𝑜𝑛 = 𝐺𝐷𝑃𝑗 𝐺𝐷𝑃⁄  is sector 𝑗 ’s share (i.e., primary, secondary, and tertiary 

industry) in GDP, which reflects the economic structure; 

𝐸𝑐𝑜 = 𝐺𝐷𝑃 𝑃𝑂𝑃⁄  is GDP per capita and reflects the economic level; 

𝑃𝑜𝑝 is the population of the city. 

To quantify the contribution of each driver to cities’ emissions, we employ the log mean Divisia 

index method (LMDI) [74], as shown in Eq. (6). LMDI has inherent advantages regarding path 

independence, its ability to handle zero values with no unexplained residual terms, and its 

consistency in aggregation [81, 82]. 

∆𝐶𝑂2 = 𝐶𝑂2
𝑡 − 𝐶𝑂2

0 = ∆𝐶𝑖𝑛𝑡−𝑐𝑎𝑟𝑏𝑜𝑛 + ∆𝐶𝑆𝑡𝑟𝑢−𝑒𝑛𝑒𝑟𝑔𝑦 + ∆𝐶𝑖𝑛𝑡−𝑒𝑛𝑒𝑟𝑔𝑦 +

∆𝐶𝑠𝑡𝑟𝑢−𝑒𝑐𝑜𝑛𝑜𝑚𝑦 + ∆𝐶𝑒𝑐𝑜𝑛𝑜𝑚𝑦 + ∆𝐶𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛   
(6) 

GDP and population of cities are collected from the “China city statistical yearbook” [83]. GDP 



is adjusted to 2010 constant price based on the deflator of each province [84]. The 

consumption of different energy types is converted to tons of standard coal equivalent. To 

match the scope of GDP, we only include the fossil fuel-related emissions from economic 

sectors (excluding the emissions from household energy use) in the decomposition analysis. 

2.5 Limitations and uncertainties 

There are some limitations in the method, in particular laying in the accounting of city-level 

emissions and the index decomposition analysis, and thus lead to uncertainties. 

First, there are uncertainties in the city-level emission accounting, mainly caused by the data 

availability of cities. For example, only 39% of cities published comprehensive data on energy 

use in their statistical yearbooks in 2014 (i.e., energy balance table, sectoral energy 

consumption, and data on energy transformation). The remaining 61% of cities only have data 

on sectoral energy consumption of industry (covering more than 70% of the total energy 

consumption of a city). For the remainder beyond the industrial energy consumption in the 

61% of cities, we use socioeconomic indexes (e.g., population, GDP, and industrial output) to 

downscale from provincial data based on the assumption that the city has the same per capita 

household emissions and same emission intensity as the respective province. Despite these 

uncertainties, this method is still the most accurate approach for cities. Reliable and 

transparent city-level energy statistics are needed for more accurate emission accounts in the 

future. 

We compared our emissions with a bottom-up study aggregated from enterprise-level point 

sources [63, 85]. The results show that our total estimates of all the cities are 11% higher than 

the bottom-up emissions, due to the choice of different sources of activity data and emission 

factors. However, about one-third of the cities in the two databases have emissions differences 

of more than 25%. The differences are likely caused by different definitions of city boundaries 

in the two databases. 

Second, our analysis of the emission drivers using the concept of Kaya identity has limitations. 

Although the concept of Kaya identity is one of the most popular tools used by scholars and 

the IPCC to examine the drivers of greenhouse gas emissions [86-88] and even to predict future 

emissions under different scenarios [89, 90], there are shortcomings of potential interaction 

effects between the driving factors like multicollinearity and endogeneity in regression 

analysis [91, 92]. Thus, they can only serve as heuristics. 

3 Results 

3.1 Differences in city emissions 

Chinese cities have a huge range of emissions (ranging from 2.12 to 258.71 million tons in the 

year 2014), per capita emissions (0.58 to 149.41 tons), and emission intensity (0.02 to 1.59 



tons per thousand constant 2010 CNY), indicating a huge disparity of cities’ emissions as well 

as their size and level of development (shown in Figure 1). 

Figure 1 CO2 emission patterns of cities in 2014. a) total CO2 emissions of cities in million tons; b) per 

capita emissions in tons; c) emission intensity in tons per thousand constant 2010 CNY. Darker shaded 

cities have higher values. Considering the data availability, we use the emissions in 2014 to show the 

patterns of cities. The year 2014 has the largest data points of 252 cities. We assume that the differences 

in emission patterns of the cities keep unchanged for the short time period. 

The top ten cities in total emissions (as shown in Figure 2) are either megacities due to the 

large size of the economy and high consumption (e.g., Shanghai and Nanjing in Jiangsu) [93, 

94] or energy-intensive manufacturing cities (e.g., Tangshan in Hebei and Yulin in Shaanxi). In 

contrast, the bottom-ranked cities (namely, Huangshan in Anhui, Ganzi in Sichuan, Greater 

Khingan in Heilongjiang, Wuzhou in Guangxi, and Hechi in Guangxi) have relatively small 

economies with a low level of industrialization. The top ten cities contribute 18.2% of the 252 

cities’ total emissions in 2014, with 8.5% of the total population and 15.3% of GDP, while the 

bottom half or 126 cities emitted 19.0% of total emissions with 41.5% of the population and 

24.7% of GDP. Such inequality in cities’ emissions provides us with substantial room for 

emission reduction when focusing on those super-emitting cities and sectors [31]. 

The heterogeneity of cities’ carbon emissions is a reflection of differences in the structure of 

energy and economy. Although coal is dominating cities’ emissions (on average rising from 

70.3% in 2000 to 75.4% in 2007, then declining to 67.0% in 2019), the share of coal-related 

emissions ranges from 0.51% in Haikou (a tourism city in Hainan) to 97.3% in Shizuishan (a coal 

mining city in Ningxia). Natural gas’s proportion in cities’ total emissions ranges from 0.0% 

(Hechi in Guangxi) to 39.8% (Zhongshan in Guangdong), with an average proportion rising 

from 1.3% (2000) to 5.8% (2019). Energy-production and heavy manufacturing sectors are the 

major sources of emissions, accounting for respectively 40.9% (ranging from 0% to 92.6%) and 

36.8% (0.3% to 92.4%) on average in 2014. Service sectors emit another 10.2% of emissions, 

followed by household energy use (4.8%), light manufacturing (4.1%), agriculture and 

construction (2.5%), and high-tech manufacturing (0.7%). 

Figure 2 Structure of emissions in the top ten cities, 2014. a) CO2 emissions by energy type in million 

tons; b) CO2 emissions by economic sectors in million tons. Similar to Figure 1, we use the emissions in 

2014 to show the structure of the top ten cities. 

3.2 Emission peak in cities 

With the slowdown of emission growth at the national level [80], some cities also declined 

their emissions or entered a plateau phase. Figure 3 shows that of the 218 cities with more 

than 12 years of observations of emission inventories, 59 (27.1%) cities have declined their 

emissions (i.e., emissions declined for more than five years). 20 (9.2%) cities are at a plateau 

phase in terms of emissions (i.e., emissions declined for more than five years but might 



rebound to a higher level afterward). The remaining 139 (63.8%) cities are still increasing their 

emissions or reduced emissions temporarily for less than five years. 

Figure 3 Emission peak of cities. 

The emission decline has been observed not only in developed and highly industrialized 

regions (e.g., Beijing and Shanghai), but also in rural and laggard regions (e.g., Zhangye in 

Gansu), energy-producing cities (e.g., Fuxin in Liaoning and Shuangyashan in Heilongjiang), 

and manufacturing cities (e.g., Changchun in Jilin and Shenyang in Liaoning). That is to say, 

cities could peak their emissions with any level of development and with any structure of 

economy or energy. 

Although 59 cities have declined their emissions, the reasons could differ. Some cities peaked 

emissions on their own initiative by actively reducing their emission intensities (e.g., improving 

the structure of energy and sectors, improving production and energy efficiency). Those 

proactively peaked cities have decoupled economic and population growth from emissions. In 

other words, their emissions decreased while the economy and the population kept growing. 

In contrast, some cities reduced emissions due to factors such as economic recession or 

population loss [95]. In this case, these passively emission declined cities show a coupling 

between their emissions and economic level, and population. 

We calculate the degree of decoupling of CO2 emissions versus GDP and population in cities 

(shown in Figure 4). If both the GDP and population of a city are strongly decoupled from its 

emissions after the peak, the city is defined as a proactively peaked city (located in the fourth 

quadrant of the cartesian coordinates). Otherwise, if either GDP or the population of a city is 

not strongly decoupled from emissions, it is defined as a passively emission declined city, 

rather than an emission peaked city. 

The results show that among the 59 cities that have achieved emission decline, 38 cities 

(defined as proactively peaked cities) have strongly decoupled both GDP and population from 

emissions after the emission peak (shown as cities in the 4th quadrant). Four cities (Shenyang, 

Hohhot, Fuxin, and Mudanjiang) that had declining GDP after the emission maximum year, are 

in the recessive 3rd quadrant of Figure 4-a. They are, therefore, defined as passively emission 

declined cities in terms of the economic dimension. Meanwhile, 19 cities are passively 

emission declined ones in terms of the dimension of population. Fuxin (a coal mining city in 

Liaoning) is an example of a passively emission declined city in terms of both economic and 

population dimensions. The emissions in Fuxin peaked in 2011 at 35.49 million tons and then 

kept decreasing to 19.90 million tons in 2016 (-10.9% per year on average). Meanwhile, GDP 

and population in Fuxin also decreased by 12.0% (from 45.0 to 39.6 billion CNY) and 1.6% 

(from 1.92 to 1.89 million people), respectively. 

Figure 4 Decoupling of CO2 emissions and economic growth (a) and population growth (b) for cities. For 

cities that have declined their emissions, the decoupling indexes are calculated from the peak year to 



the most recent inventory year. For cities at the plateau stage and non-declined cities, the decoupling 

indexes are calculated based on the most recent five years period. 

3.3 Emission drivers for proactively peaked and passively emission declined cities 

Figure 5 shows the contribution of key emission drivers in 59 cities that have declined 

emissions, including both proactively peaked and passively emission declined cities. Generally 

speaking, the economic level is the major driver to increase emissions with a median 

contribution of 167% of all emission declined cities. Population is the second major driver with 

a median contribution of 7%. A decrease in energy intensity is the major driver for emission 

reduction in cities (a median of -197%). The decline in the share of the secondary industry (a 

median of -77%) and coal consumption (a median of -10%) are the other two factors that 

reduce cities’ emissions. Other drivers play minor roles to increase emissions. 

We find that the effects of drivers vary widely across cities, especially between the proactively 

peaked and passively emission declined cities (as shown in Figure 5-b to k). For example, the 

median decreasing effect of energy intensity on emissions in proactively peaked cities is 217%, 

which is much stronger than that (97%) in passively emission declined cities. Similarly, 

proactively peaked cities show a larger decline in the share of coal in the energy mix (a median 

of 22%) than passively emission declined cities (a median of 4%). What’s more, the economy 

and population in all proactively peaked cities are increasing. But in some passively emission 

declined cities, the economy and population contributed to a decline in emissions due to a 

recessive economy and shrinking population. Therefore, proactively peaked cities reduced 

their emissions via efforts such as reducing coal consumption and energy intensity whereas 

the emission decline in passively emission declined cities was to a large extent the result of an 

economic recession and population decline. 

Figure 5 Boxplots of emission drivers of cities that have declined emissions. Subfigure a) shows the 

contributions of drivers in all emission declined cities; subfigures b-k) show the differences of drivers 

between proactively peaked cities and passively emission declined cities. 

We use Beijing, Taizhou (Zhejiang), Fuxin (Liaoning), and Shenyang (Liaoning) as representative 

cities to show the detailed role of emission drivers in different types of cities (shown in Figure 

6). Beijing and Taizhou peaked emissions proactively, while Fuxin and Shenyang are cases of 

passively emission declined cities. 

The decline in carbon and energy intensity in Beijing led to a decline of 0.8 and 35.7 million 

tons of emissions (2010-2019), respectively, while economic and population growth increased 

emissions by 46.1 million tons in total. Such a decline in carbon and energy intensity reflects 

the improvement of production and energy efficiency. The structural change in energy use and 

composition of sectors also contribute another 13.7 and 11.4 million tons of emission decline 

from 2010 to 2019. Those decreasing effects more than offset increased emissions from 

economic and population growth during these periods. Similarly, Taizhou’s energy intensity 



decreased its emissions by 37.3 million tons after the emission peak, which offset the total 

emission increase from economic (21.8 million tons) and population growth (1.5 million tons). 

These cities have thus achieved a strong decoupling of emissions and economic growth and 

embarked on the path toward low-carbon development. 

As for passively emission declined examples, Fuxin’s population shrank from 192.1 in 2011 to 

189.0 thousand in 2016 and thus contributes to a decline of 0.4 million tons in the city (or 3%). 

We also notice that the shrinkage in Fuxin’s secondary industry decreased the city’s emissions 

by another 12.1 million tons. The reason is that Fuxin is gradually losing its pillar industry (i.e., 

coal mining and production), due to the exhaustion of coal resources. Fuxin had to shut down 

a large number of coal mining enterprises and started an economic transformation since 2001. 

The share of the coal industry in Fuxin’s industrial output has dropped from 32.4% in 2001 to 

2.3% in 2021. Meanwhile, the effect of energy intensity only decreased the city’s emissions by 

0.7 million tons (or 4%). This declining model, based on exhausted coal resources, can serve 

as an example of the difficulties in cities and sectors that transition away from fossil fuels. 

Shenyang is another representative case of passively emission declined cities. It suffered a 

serious economic recession from 2014 to 2019 (per capita GDP decreased from 92.9 to 79.1 

thousand CNY), which reduced the emissions by 10.1 million tons. Similar to Fuxin, the 

economic recession in Shenyang is also caused by a sharp loss in pillar industries. Shenyang is 

a typical old industrial base in Northeast China from the last century. However, the share of its 

secondary industry decreased by 12.1% from 2014 to 2019, thus contributing to 19.6 million 

tons of emission reduction. 

Figure 6 Emission drivers of representative cities that have achieved emission decline. The representative 

time points for each city are chosen as the year emission peaked and the latest year with available data. 

Coal%, Oil%, and Gas% reflect the effect of changes in the energy mix; primary%, secondary%, and 

tertiary% reflect the effects of structural change in industries; c-int is the carbon intensity (CO2 emissions 

per unit of energy use); e-int is the energy intensity (energy use per GDP); eco stands for economic level, 

which is quantified by GDP per capita; pop is population, which reflects the size of the city. 

4 Discussion and conclusion 

This study provides the most comprehensive emission inventories of 287 Chinese cities from 

2001 to 2019. Cities show huge inequality in emissions, GDP, and population. We then 

investigate the state of emission peak in each city and reveal the hidden driving forces. 59 

cities have declined their emissions for at least five years, 38 of them peaked the emissions 

proactively and 21 cities reduced emissions passively with a recessionary economy or 

population loss. 

Our study shows that, first, 287 Chinese cities have huge heterogeneity in the structure of 

energy and economy, emission patterns, and the phase of emission peak. Therefore, instead 



of using a one-size-fits-all approach, the emission targets of cities need to be set individually 

considering cities’ resource endowment, industrialization level, socio-economic characteristics, 

and development goals. Super-emitting cities with laggard technologies and production 

efficiency should develop stringent policies and targets for emission reduction [31], while less 

developed regions could have more emission space for economic development. 

Second, the experiences and lessons learned from the 59 emission declined cities can be used 

as benchmarks for other cities. In general, economic level and population growth are two key 

drivers of increasing CO2 emissions, while declining shares of secondary sectors and coal 

consumption considerably contribute to emission reductions. However, the impact of 

emission drivers varies considerably among these cities, especially for the proactively peaked 

and passively emission declined cities. The decreasing effects of energy intensity and the coal 

share in the energy mix contribute largely to the emission reduction of proactively peaked 

cities. In this way, these cities successfully reduced their emissions without harm to their 

economy. We suggest that these proactively peaked cities should take the leading role in 

achieving the emission reduction faster and set precedents for China to fully realize the Dual-

Carbon goals (i.e., achieving carbon emission peak by 2030 and carbon neutrality by 2060). By 

doing so, these proactively peaked cities could create more space for less-developed regions. 

In contrast, passively emission declined cities need to face up to the fact that the emission 

decline is mainly caused by a recessive economy, exhausted natural resources, insufficient 

competitiveness of industry, or even shrinking population, rather than by vigorously 

promoting low-carbon actions. These passively emission declined cities need to fully exploit 

the opportunities and financial budget/investment brought by the Dual-Carbon goals (e.g., 

reducing carbon and energy intensity or achieving economic structural transition through 

industrial innovation and green investment). 

In this context, local authorities can borrow the concept of the common but differentiated 

principle of global climate change mitigation, also applied in the Intended Nationally 

Determined Contributions (INDCs), and formulate a bottom-up mitigation framework in 

combination with an eco-compensation mechanism that allows for payments from highly 

resource-consuming regions to less-consuming regions reflecting their diverse development 

and emission conditions. All participants who submit Intended Regionally Determined 

Contributions to emission reduction should establish clear verification mechanisms, detailed 

timelines, and implementation routes, which should be supervised by multi-level governments 

and third-party organizations. 
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Figures 

 

Figure 1 CO2 emission patterns of cities in 2014. a) total CO2 emissions of cities in million tons; b) per 

capita emissions in tons; c) emission intensity in tons per thousand constant 2010 CNY. Darker shaded 

cities have higher values. Considering the data availability, we use the emissions in 2014 to show the 

patterns of cities. The year 2014 has the largest data points of 252 cities. We assume that the differences 

in emission patterns of the cities keep unchanged for the short time period. 

 

Figure 2 Structure of emissions in the top ten cities, 2014. a) CO2 emissions by energy type in million tons; 

b) CO2 emissions by economic sectors in million tons. Similar to Figure 1, we use the emissions in 2014 

to show the structure of the top ten cities. 

 



 

Figure 3 Emission peak of cities. 



 

Figure 4 Decoupling of CO2 emissions and economic growth (a) and population growth (b) for cities. For 

cities that have declined their emissions, the decoupling indexes are calculated from the peak year to 

the most recent inventory year. For cities at the plateau stage and non-declined cities, the decoupling 

indexes are calculated based on the most recent five years period. 

 

Figure 5 Boxplots of emission drivers of cities that have declined emissions. Subfigure a) shows the 



contributions of drivers in all emission declined cities; subfigures b-k) show the differences of drivers 

between proactively peaked cities and passively emission declined cities. 

 

 

Figure 6 Emission drivers of representative cities that have achieved emission decline. The representative 

time points for each city are chosen as the year emission peaked and the latest year with available data. 

Coal%, Oil%, and Gas% reflect the effect of changes in the energy mix; primary%, secondary%, and 

tertiary% reflect the effects of structural change in industries; c-int is the carbon intensity (CO2 emissions 

per unit of energy use); e-int is the energy intensity (energy use per GDP); eco stands for economic level, 

which is quantified by GDP per capita; pop is population, which reflects the size of the city. 


