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Abstract

Mitigating emissions in line with climate goals requires the rapid integration of low
carbon energy sources, such as solar photovoltaics (PV) into the electricity grid.
However, the energy produced from solar PV fluctuates due to clouds obscuring
the sun’s energy. Solar PV yield nowcasting is used to help anticipate peaks and
troughs in demand to support grid integration. This paper compares multiple low-
resource approaches to nowcasting solar PV yield. To do so, we use a dataset of
UK satellite imagery and solar PV energy readings over a 1 to 4-hour time range.
Our work investigates the performance of multiple nowcasting models. The paper
also estimates the carbon emissions generated and averted by deploying models
such as these, and finds that short-term PV forecasting may have a benefit several
orders of magnitude greater than its carbon cost and that this benefit holds for small
models that could be deployable in low-resource settings around the globe.

1 Introduction

Solar photovoltaics (PV) is one of the safest and cleanest sources of energy, as measured in death
rates from accidents and air pollution, and greenhouse gas emission [11]. However, the fluctuations
in the energy output, or yield, from solar PV makes it challenging for the electricity grid to rely at
large scale on solar energy. The yield of solar PV is inherently uncertain because clouds can obscure
the sun, and clouds can become thicker, thinner, and their movement across the sky is hard to predict
[2]. In order to guarantee stable energy supply, grid operators often have to keep gas spinning-reserve
online, releasing carbon dioxide into the atmosphere [7]. Forecasting over less than one day in
advance is called ‘nowcasting’ [13] to emphasize its dynamic use. Nowcasting solar energy input
into the grid accurately could reduce the need to keep the reserves on standby, allowing to use every
kilowatt efficiently and enhancing the grid resilience to the fluctuations of renewable energy sources.

Since 2019, Open Climate Fix (OCF) has been working with National Grid ESO, the electricity system
operator for Great Britain, to build accurate PV nowcasting models that can enhance the resilience
of the energy grid [5]. This paper complements the work done by OCF. Specifically, we research
alternative low-resource methods (in terms of smaller/shallower neural networks architectures) for
predicting PV yield, and analyse their performance, their carbon footprints and aim to estimate, even
if roughly, the net emissions that could be averted by their potential use.

As more of the world incorporates solar PV into energy grids, there will be an increased need
to develop accurate solar PV forecasts. While a body of recent work has emphasized building
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more computationally efficient models, most of the machine learning work still focuses on the
opposite: building larger models with more parameters to tackle more complex tasks [8]. Recent
work poses the question of how much is the performance gain worth [8], specially in these applications
where deployment of a simple technology could already have a big impact. The move towards less
computationally intensive models has already happened once in weather forecasting, as deep learning,
despite its competitiveness, has often lower computational requirements than numerical weather
prediction based on differential equations [12, 13].

Through our work, we study low-resource and shallower predictive models and try to estimate the
benefit that they could bring if they were deployed large-scale for solar nowcasting2. The models,
which are build on one Tesla T4 GPU available through Google Colab, could be deployed large-scale
around the world independently of hardware limitations. The reason we are interested in researching
this low-resource setting, by studying smaller models, is because those are the models that could
be deployed to support the grid in emerging economies, which are where the real need is for clean
energy solutions, i.e. where the energy demand is rapidly growing.

2 An empirical comparison of PV yield nowcasting: Experimental results

For the task at hand, we study convolutional neural networks (CNNs), Long Short-Term Memory
networks (LSTMs) and their intersection [13] (ConvLSTMs). In theory, this comparison may seem
futile as LSTMs and ConvLSTMs should outperform CNNs, because of their use of state information.
However, Bai et al [1] argue that simpler CNNs can often outperform LSTMs. Moreover, ConvLSTMs
require a large amount of memory simultaneously available in order to process and update the state
information used in its predictions, which means they often take longer to train, leading to more
energy usage and hence higher emissions.

Dataset Solar generation data refers to the yield from specific solar panels. The dataset3 is
composed of satellite imaging and PV readings. The satellite images are provided by EUMETSAT,
covering the northern third of the Meteosat disc every five minutes. Open Climate Fix developed the
eumetsat_uk_hrv dataset [6] which takes the ‘high resolution visible’ (HRV) channel for a reduced
time period and geospatial extent. The dataset was reduced in this paper to meet computing resources
available. A 64 x 64 crop was randomly chosen to focus on Devon, selecting images taken between
05:00 and 20:00 as there is minimal PV output outside of this window for most of the year. However,
this still left many readings in winter when the sun was below the horizon, and the PV yield was
zero, so readings when the solar altitude was below 10 degrees were also dropped. Open Climate Fix
provided a dataset of 1311 energy yield readings from PV systems in 5 minute increments for most
of 2018-2021, originally provided by a PV operator. The size of the dataset varied slightly based on
the prediction window. For the shortest window, there were 2018 observations of (12, 64, 64) and
(12, 1) to predict a series of 12 readings. For the longest prediction window, there were 659 blocks of
the same sizes described earlier to predict a series of 48 readings.

Learning task We formulate our learning task as predicting a sequence of values representing
the future PV yield. All models take as input 12 sets of 5 min data, i.e., 1 hour of data as input,
and predict forward between 1 and 4 hours. We also consider two learning scenarios: i) learning
exclusively from past PV data only, and ii) learning from both past PV and satellite data as inputs.

Models compared For each learning scenario (with and without satellite imaging), we test both
CNNs and LSTMs, our objective being comparing their prediction efficiency and carbon footprint at
the task at hand. Additionally, LSTMs encode time relationships explicitly, and we are interested
in evaluating if this additional complexity increases the prediction performance of our models to a
significant extent (and at what potential carbon cost). For the PV only models (CNN and LSTM),
which are the simplest models we test, we take in past PV through multiple layers of CNNs, followed
by a fully connected layer. The other PV only model has a similar structure but uses LSTMs in place
of CNNs. The second group of models take both satellite images and past PV yield as input. The
Conv3D is a CNN which uses multiple levels to try to learn abstract features. After each convolutional

2Our low-resource settings are not simulated, this project has been done as part of a MSc thesis dissertation,
with no other computational resources.

3Thanks to Open Climate Fix for providing the datasets.
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layer, a MaxPooling layer is used to reduce the dimensionality and learn the features. This is followed
by two dense layers to resize the output to predict a sequence of values. The CNN treats the sequence
as one vector. The ConvLSTM model (see 2) is similar to the Conv3D but uses recurrent modelling,
with ConvLSTMs to process the images and LSTMs to process the PV input sequence.

Figure 1: The ConvLSTM model, using both satellite images and past PV yield.

Model training and dataset split The model is trained on 22 months of data from 1/1/2020 to
7/11/2021. To avoid autocorrelation, the datasets are drawn from each month: days 1 to 20 are for
training, days 22 to 24 for validation, and days 27 to 29 for testing. For all models, the models are
trained to optimise MSE until convergence. Bayesian hyperparameter tuning was done: The learning
rate was varied between [0.01, 0.001, 0.0001, 0.00001], and dropout rate was varied between [0.05,
0.5] in steps of 0.05. For the CNNs and the ConvLSTMs, the kernel size was varied between [3,5,7].
For ConvLSTMs the number of filters was varied between [16,32,64]. For the fully connected layers
the number of nodes was varied in the set [12,24,48]. The ConvLSTM has three ConvLSTM layers
applied to images, and one LSTM layer applied to past PV. The CNN model has three convolutional
layers applied to the images, and one convolutional layer applied to past PV readings. For the PV-only
models, the LSTM model has three layers of LSTMs, and the CNN model has three layers of CNNs.

2.1 Results

The task is to predict a sequence of values of variable lengths, from 1 hour to 4h. Table 2.1 shows
normalised MAE and RMSE by model over different prediction windows. All models outperform
the persistence baseline, often used for physical processes. ConvLSTM outperforms other models,
especially over longer time horizons. Interestingly, an LSTM model taking PV only delivers results
competitive with a Conv3D which also uses satellite data five out of eight times. Does time series
modelling improves predictions? The recurrent designs have a lower error metric five out of eight
times, but often by less than 0.2%. Do satellite images improve performance? Yes, on six of
eight times, and by margins approximately increasing 0.2%-1.2%. Overall, it appears that explicit
modelling of temporal information improves the performance to a large extent. This is most significant
for the comparison between ConvLSTM and CNN, which is when the inputs include image data.
Perhaps this is because image data carries important trend information, such as motion of clouds.

Baseline PV only Sat and PV
Time Metric Persistence CNN LSTM Conv3D ConvLSTM

60 mins
RMSE 11.60% 10.46% 9.42% 9.44% 9.29%
MAE 7.91% 7.92% 6.60% 6.81% 6.60%

120 mins
RMSE 15.18% 11.86% 11.93% 11.77% 11.55%
MAE 11.03% 8.72% 9.07% 8.55% 8.41%

180 mins
RMSE 17.84% 12.83% 12.94% 13.20% 12.26%
MAE 13.10% 10.13% 10.00% 9.84% 9.15%

240 mins
RMSE 20.32% 13.16% 13.02% 13.75% 12.52%
MAE 14.95% 10.16% 10.14% 10.08% 9.53%

Table 1: Normalised prediction error over different time horizons, with best results highlighted in
bold.
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2.2 Carbon emissions

This section estimates the energy requirements of our models. The carbon costs are calculated through
the time taken multiplied by estimates of the carbon intensity of time using a GPU. Each of the
models was run on a Tesla T4 GPU available through Google Colab, assumed to be in Northern
Europe, the region closest to our location, which has a carbon efficiency of 0.21 kgCO2eq/kWh.
Energy usage simulations were conducted using the Machine Learning Impact calculator [9]. Table
2.2 uses the computational time required to train and make inferences over a two-hour prediction
window and compare the ConvLSTM and 3D CNN. It is assumed that the predictions are generated
for each of the 330 UK grid supply points, and are generated every hour, from 06:00 to 20:00, and for
a whole year, giving 330 * (20-6) * 365 = 1686,300 forecasts per year.

Conv3D ConvLSTM
Time to train model (s) 916.39 673.11
Time for inference, one forecast (s) 0.16 2.21
Implies: Total time for year (training + 1686,300 * inferences) (hrs) 75 1024
Emissions generated (tonnes CO2-equiv) from [9] 0.0108 0.152

Table 2: Estimates of emissions generated through training and deploying Conv3D and ConvLSTM

.

The carbon reductions through increased model accuracy are harder to quantify. In 2020, the UK
energy grid was estimated to produce 51 million tonnes of C02-equivalent emissions [10]. Currently,
2% of UK energy currently comes from solar PV, which could rise to 7% by 2050 [4]. Emissions of
C02 per gigawatt hour of electricity over the lifecycle of solar plant is 5 tonnes [11], where gigawatt
hour is the annual electricity consumption of 150 Europeans. Based on this data, and assuming
67.22 million people in UK and a similar electrical consumption than Europeans, a 2% of solar
energy would generate annually 45,000 tonnes of emissions, which is 2450 times less than keeping
gas-reserves online for generating the same electricity [11]. Even if we assume that the models in
Table 2.2 are 0.1% better at estimating solar output than the current standard of energy grid operators
(which would be a lower bound as in our analysis these models are still much better than persistence,
often a baseline followed for physical processes), and that in this 0.05% of cases we may be able to
turn off gas-reserves, we may be looking at a reduction of around 5500 tonnes of C02 annually. Given
the costs of training the two models and generating the forecasts for a year are between than 1/10th
and 1/6th of a tonne of C02-equivalent, the benefits far outweigh the costs. This puts in perspective
the reduction that could be possible if we were to deploy these low-resource models at large scale.

2.3 Analysing predictions and activations

The task addressed by this paper was predicting a sequence of PV values, and was evaluated by
performance on rMSE and MAE. But are the sequences of predictions realistic? Appendix A examines
the predictions given by the best model, the ConvLSTM, over a one-hour time horizon by overlaying
predicted values an hour ahead with observed values. The predicted values generally trend up and
down correctly suggesting the model has learned the dynamics of the sequence. However, this section
also shows that the model consistently under-predicts PV yield across the year, most strongly in
early afternoon in summer. This could be caused by the model having insufficient examples of sunny
weather, long periods of low yield, and by the use of a symmetric loss function. Further work could
explore whether loss functions which more heavily penalise under-predictions improve results.

A frequent criticism of neural networks is that it is hard to interpret how they determine their results.
Appendix B examines the activations in a simpler single-period neural network, to understand what
drives the results, using an filter visualisation approach inspired by Chollet [3]. This analysis suggests
the model might be learning to recognise the contrast between land and sea. These activations would
be associated with higher PV readings, as high contrast would mean a bright and clear day. But the
model might not be serving our intended purpose of learning cloud dynamics. As a result, the model
might perform worse on satellite areas with no coastline. Further work could examine the activations
of the sequence models explored in the rest of this paper.
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3 Conclusions

This paper includes an estimate of carbon emissions for training and running the inference of low-
resource shallow neural architectures for solar photovoltaic nowcasting for a year. We attempt to
estimate as well the emissions that would be averted by having a better integration of solar in the
energy grid, showing that even under very pessimistic assumptions there is an important benefit in
terms of total carbon footprint averted from integrating solar nowcasting machine learning models
into the grid. Our analysis focuses on low-resource models that could be integrated into emerging
economies, where energy requirements may be growing quickly. Further analyses are needed to
understand the benefit that larger and deeper models could bring.

The paper also examined the prediction errors and activations of a similar but simpler neural network.
This suggested the model might be influenced by an unbalanced dataset, and that an augmented
dataset or a different loss function might improve results. Analysis of the activations suggested the
model might be learning to recognise contrast between land and sea, and further research could
examine performance on satellite images with no coastline.

A more in depth analysis of the current strategies implemented by grid operators used to meet
energy demands in case of disruption to the renewable solar supply would be needed to better put in
perspective the climate change mitigation potential of nowcasting models.
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A Analysing the predictions

This section explores the predictions for the best model, the ConvLSTM model, over a one-hour time
horizon. It begins by comparing the predictions against true values for three randomly chosen days in
the test set.

Figure 2: Predicted and observed PV yield across three randomly chosen days in the test set.
Predictions an hour ahead are in orange and observed values in light blue. Note the variation in y
values (solar yield) across days. The model tends to under-predict sunny and cloudy days. The day
on the left is a darker winter day, the middle day is sunny from summer, and the right day is a cloudy
day in autumn.

Interestingly, it appears that the ConvLSTM generally predicts the overall gradient of the prediction
correctly - if the prediction window is getting brighter or darker. However, in the middle day shown
above, the model consistently predicts that the PV yield will decrease. The middle day has PV
readings up to 75% of the two-year maximum, and is much brighter than the other two examples
which peak at around 30% and 60%. This suggests that the model does not deal well with sunnier
days, and might under-predict on those days.

The plot below shows the total relative prediction errors per mean prediction error over the sequence,
across a two-year period. Since there are 12 predicted values with a range of [0,1], the largest possible
magnitude of error is 12. The models optimise for mean square error, which is not sensitive to the
sign of the error. This plot shows the direction of the error.

Figure 3: Plot of relative prediction error over two years - mean error over sequence. Overall the
model tends to have a negative error - unpredicts PV yield. This is more extreme in summer, with
smaller errors in winter.

It appears that the model tends to have the errors with the largest magnitude in summer, lower
magnitude errors in November, December, and January. Since the test set days are three days chosen
from the end of each month, the values appear in lines which span the test set ranges.
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B Interpretability

A frequent criticism of neural networks is that it is hard to interpret how they determine their results.
For simplicity, a simpler neural network was trained to infer a single PV reading from a single image.
The model was trained for 10 epochs on a randomly selected sample of 1000 satellite images, and it
achieved a test set performance of a 2% mean square error. Below are the activations for three images
taken at different times with different characteristics.

Activations for Case A - Bright conditions, high PV

Activations for Case B - Dark conditions, some cloud

Activations for Case C - Bright conditions, thick cloud

On the first layer on the left we see bright activations for the sea and the land, as expected since the
first layer of a CNN often learns textures. The second layer shows high activation around the coast
line and the sea, and the third layer on the right seems to be mostly highly activated around the coast
line.
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From these examples it seems that this network is learning to recognise contrast between land and
sea. Intuitively, a high contrast will mean a bright sky with no clouds. This will be when the PV is
highest, and so the activations will be associated with better predictions.

But in this case the model might not have learnt any cloud features. This might also be true for our
main models - are they also just recognising contrast? A useful area of further research would be
examining the activations in the more complex, time series models used in the rest of the paper.
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