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ABSTRACT

Using data from the Pantheon Type la supernovae (SN Ia) compilation and the Sloan Digital Sky Survey, we propose an
estimator for weak-lensing convergence incorporating positional and photometric data of foreground galaxies. The correlation
between this and the Hubble diagram residuals of the supernovae has 3.60 significance, and is consistent with weak-lensing
magnification due to dark matter haloes centred on galaxies. We additionally constrain the properties of the galactic haloes, such
as the mass-to-light ratio I' and radial profile of the halo matter density p(r). We derive a new relationship for the additional
rms scatter in magnitudes caused by lensing, finding ojeps = (0.06 £ 0.017)(dc(2)/dc(z = 1))*?, where dc(z) is the comoving
distance to redshift z. Hence, the scatter in apparent magnitudes due lensing will be of the same size as the intrinsic scatter of
SN Ia by z ~ 1.2. We propose a modification of the distance modulus estimator for SN Ia to incorporate lensing, which can be
easily calculated from observational data. We anticipate this will improve the accuracy of cosmological parameter estimation
for high-redshift SN Ia data.
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1 INTRODUCTION

Type la supernovae (SN Ia) are used extensively in cosmology as
standard candles, due to an empirical relation between their absolute
magnitudes and observable light-curve properties (Phillips 1993;
Tripp & Branch 1999). Their high luminosities allow them to be
observed out to redshift z ~ 2 (Riess et al. 2018). Thus, they serve as
a key cosmological resource, connecting the expansion history of the
universe from when it was matter-dominated, through to the current
epoch of dark energy domination.

The relative luminosities of SN Ia may be assembled in a Hubble
diagram and used to constrain cosmological parameters such as the
matter density 2y and the equation of state of dark energy w in
simple extensions of A cold dark matter (ACDM; Scolnic et al.
2018). If their absolute magnitude is calibrated, the Hubble constant
Hjy may be determined (e.g. see Freedman et al. 2019; Lemos et al.
2019; Riess et al. 2021, and for a review of the distance ladder, see
Shah, Lemos & Lahav 2021).

However, for supernovae to be accurate and unbiased distance
estimators, the scatter of their observed magnitudes must be well
characterized. Gravitational lensing forms an important part of the
scatter because it is an effect that increases with distance. Treated as
random scatter, it therefore degrades the precision of survey data
(Holz & Linder 2005). Also, for magnitude-limited surveys, the
calculation the Malmquist bias correction requires an understanding
of the sources of scatter (Kessler & Scolnic 2017). Therefore, to
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make the most of modern high-redshift SN Ia data sets, it is essential
to understand lensing magnification.

Gravitational lensing can also be used as a cosmological probe
in its own right. The lensing signal is sensitive to the amount,
distribution, and type of dark matter. For example, Metcalf & Silk
(1999) and Seljak & Holz (1999) examined the case of dark matter
being a mixture of weakly interacting massive particles or massive
compact halo objects (MACHOs; e.g. black holes). They showed
that the skew of the lensing probability distribution function (pdf),
proxied by the difference between the mode and the mean, is sensitive
to @, and 2, independently, but most sensitive to the form of
dark matter. They argued that even a modest sample of 100 SN
Ia would be sufficient to constrain the fraction of MACHOs to
within 20 per cent. In a similar argument, Hada & Futamase (2016)
show how SN Ia magnification may be used to bound the sum of
neutrino masses. Going further, the moments of the lensing pdf may
be fitted by simulations to the power spectrum of matter density
fluctuations (Marra, Quartin & Amendola 2013). This is particularly
interesting in the context of moderate tensions that have arisen
between measurements of the power spectrum normalization o g from
the cosmic microwave background (CMB) and galaxy surveys (see
e.g. Lemos et al. 2021; Troster et al. 2021).

Gravitational lensing magnification is also complementary to time-
delay and shear lensing studies, which have been used to measure
the Hubble constant Hy (Wong et al. 2020), and build maps of
foreground mass (Oguri et al. 2018; Giblin et al. 2021; Jeftrey
et al. 2021). However, these studies have some drawbacks. They
are distance-limited, as the shape of the galaxy must be resolved for
it to work. Nuisance parameters and some bias may be introduced by
an intrinsic alignment model. They are low resolution, and require
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sufficient numbers to average over. Lastly, they suffer from the ‘mass-
sheet degeneracy’ whereby the cosmological parameters, but not the
lensing observables, are changed by the addition of a matter sheet
of constant density along the line of sight (LOS; see section 5.2
of Bartelmann & Schneider 2001). A measurement of the absolute
magnification of a background source breaks this degeneracy (Falco,
Gorenstein & Shapiro 1985).

SN Ia seem ideal for magnification studies as, once standardized,
their luminosities have an intrinsic scatter of o, >~ 0.1 mag. Also,
SN Ia can be seen at distances great enough for the magnification
to be measurable. The scatter caused by magnification is thought to
be 0jens = 0.04z-0.09z mag, where z is the redshift, on the basis of
simulations (Frieman 1997; Holz & Linder 2005; Marra et al. 2013).
A small number of well-magnified SN Ia with Am < —0.25 mag are
expected. However, four problems exist in observing it. First, existing
survey numbers peak at z ~ 0.3 where the magnification is likely to
be small. Secondly, SN Ia are rare, transient events, so the sample to
work with is smaller by two orders of magnitude compared to galaxy
or quasar samples. Thirdly, the analysis must be centred around the
set of sources, rather than lenses (as weak-lensing surveys are), so
itis ‘pot luck’ what lies close to the LOS. Additionally, the limiting
magnitude (also known as the detection efficiency) of a supernova
survey is not so straightforward to determine, meaning biases are
harder to estimate. Lastly, it is far from certain that a limited set
of SN Ia would fairly sample the distribution of magnification, and
selection processes could obscure its effect (we expand on this further
in Section 5).

Observational studies of SN Ia magnification have been made
by some authors. Jonsson et al. (2010) used 175 SN Ia from the
Supernova Legacy Survey (SNLS) to detect magnification at a
confidence of ~1.40, and estimated that lensing contributes an extra
dispersion of ojeps = 0.055z mag to supernovae. This value continues
to be used in most cosmological analyses involving SN Ia, notably
by the SHOES team (Riess et al. 2021) in estimating H,, and is
embedded in Pantheon SN Ia data (Scolnic et al. 2018). Smith et al.
(2014) combined a larger sample of 608 Sloan Digital Sky Survey
(SDSS) SN Ia with number counts of a homogeneous sample of
foreground galaxies. The authors also found a detection significance
of ~1.40. Macaulay et al. (2020) used SN Ia and galaxies from
the Dark Energy Survey (DES) 1Y data to compute the skew of
the magnitude distribution (assuming intrinsic scatter is Gaussian,
the skew may be attributed to lensing) with a simulated fit given
by Marra et al. (2013) to derive a constraint on the matter power
spectrum, and report a ~1.30 detection of magnification.

In this paper, we have two main goals. First, we seek to establish
lensing is occurring with more certainty and measure its scatter.
Secondly, we aim to constrain the mass and profile of galactic dark
matter haloes within our chosen modelling framework. Adopting a
Bayesian approach, we test a two-parameter family of physically
motivated halo profiles, including the Navarro—Frenk—White (NFW;
Navarro, Frenk & White 1996) and Hernquist (Hernquist 1990)
profiles as special cases. We calculate posterior distributions of the
parameters that describe our haloes.

Our paper is organized as follows. In Section 2, we derive the
magnification in the weak-lensing regime of our halo profile, and
connect this to lensing over cosmological distances. In Section 3,
we describe our data and selection criteria. In Section 4, we specify
our estimator for lensing convergence, what observables we will
correlate, and our Bayesian model. Results are presented in Section 5,
which we compare to the literature. We summarize our results in
Section 6. A future paper will be devoted to cosmological parameters
derived using SN Ia lensing. We retain factors of ¢ in equations.
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2 LENSING MODEL

2.1 Weak lensing by haloes

For extended matter distributions, it is useful to adopt the lensing
potential formalism of Schneider (1985), for which we state the
relevant formulae in this subsection. The convergence is defined as

z(6)
= 5 1

K 5. (1)
where the surface density is

3(0) = /,0(0, 2)dz , )
and the critical surface density is

Dy c?
DdDdS 4G

Here, Dy, Dy, and Dy are the angular diameter distances to the lens,
source, and between lens and source, respectively.

We define §m = mye,s — myp as the change in magnitude of a source
due to a single lens, relative to the background cosmology in the
absence of the lens. When the magnification is small, it may be taken
to first order in the convergence and shear y as

sm = —(5/1log 10)c + O (k*,¥?) . 4)

Hence, we can compute the magnification expected from a galactic
halo of a given density profile p(r) by the following recipe:

(i) Obtain the critical density X from the angular diameter dis-
tances Dys, Ds, and Dy in the background cosmology by equation (3).

(ii) Calculate the surface density ¥ from equation (2) and conver-
gence « from equation (1).

(iii) Use equation (4) to calculate the magnification.

We note two important points. First, magnification is a concave
function of the distance from the observer to the lens; hence, when
magnification is strongest, it will be relatively insensitive to moderate
errors in the distances (the gradient of magnification with lens dis-
tance will be small); this will be helpful when using distances derived
from photometric redshifts. Secondly, as magnification is inversely
proportional to (a power of) the impact parameter b via equation (2),
its distribution will be skewed towards high magnification. Therefore,
the commonly used assumption of Gaussian scatter in SN Ia residuals
is not correct.

Equation (4) is valid to first order in the gravitational potential
®/c?, the light deflection angle «, and the convergence «. These
assumptions can be expected to hold for lensing by extended diffuse
haloes; Jonsson et al. (2010) have checked the validity of this against
ray tracing around such halo types, finding the difference to be less
than 5 per cent. We have also checked that including shear for the
NFW halo does not change our results.

2.2 Halo model
We define a double-power-law halo with profile

8C C
p(riy. B) = & : 5)

() (+(2)

where p. = 3H(z)*/8nG is the critical density of the universe at
redshift z, 8. is a density parameter, and 7y is the scale radius. Our
data will not have sufficient resolving power to constrain the inner
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Figure 1. The magnification m (in units of magnitude) by a typical galaxy
of absolute magnitude M = —21.25 located at z = 0.2, of a source located at
z = 0.5. The mass of each halo profile has been normalized to give the same
observed magnification at b = 300 kpc, about the magnification-weighted
average of our data sample. Although SN Ia LOSs passing within 100 kpc of
a lensing galaxy centre are rare, we obtain the most constraining power from
them.

slope y, so we fix y = 1 and leave S as a free parameter. Then, at
small radii p oc 7~!, whereas at large radii p oc 7~ ~#.

Standard spherical collapse theory implies that a sphere of radius
00 With average density p = 2000, may be considered gravitation-
ally bound. The scale radius 7y is then defined relative to rygo as

rszrz()o/(,’, (6)

where ¢ ~ 5-15 is the concentration," which we take as a second

free parameter. We make g9 a function of the mass M,y = M(r <
r200) it encloses

8007t
Moo = Tpci’;oo, @)
from which we obtain 8. = 2%¢? f(c), where
1
cfln((-+ll) B=1
f((') = In(14-c)—c/(1+c) ﬂ =2 (®)
B=2)(B=1) ﬁ # 1,2 .

(= DT P((B=De+1)

Note that 8 = 2 corresponds to the NFW profile (Navarro et al. 1996),
and B = 3 is the Hernquist profile (Hernquist 1990). The convergence
and shear have analytical formulae for integer B, and we state those
formulae (which have been derived in the literature) together with
that for a singular isothermal sphere (SIS) in Appendix A.

For general 8, we must obtain the surface density numerically. This
is simplified by making the substitutiont = /r /(r + ry)(x + 1) — x,
which results in

(1—2)""

(1 —x)t2 +2x

1
B(x; B) = 48cpers(x + 1)1 P / dr | ©)
0

where
x =b/rg (10)

is the dimensionless impact parameter in units of the scale radius.
We illustrate the magnification calculation for a range of our halo
profiles in Figs 1 and 2.

! Any potential confusion with the speed of light ¢ should be clear from the
context.
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Figure 2. The magnification (in units of magnitude) due to a typical galaxy
as detailed in Fig. 1. Here, we illustrate the NFW profile magnification at
different values of the concentration parameter ¢, again normalizing to the
same observed magnification at b = 300 kpc. It is evident from the graph that
¢ will only be weakly constrained by our data .

We may expect many galaxies to lie at large distances from the
LOS, so it is worthwhile to examine the lensing profile at large x.
Taking the limit of equation (9) and re-expressing the surface density
as a function of the impact parameter b, we find

g1 f(o) 3¢

X(x, B) — D x (Mao) 3 —=pc” = forx > 1, (11)
cB-2 bB

where D is a numeric constant of the order of unity. We see from the
above that, as expected, ¥ o b= P, but in the pre-factors, there is a
degeneracy between the mass of the halo M, and a function of the
concentration parameter c in the large x limit.

Hence, for a given fixed slope 8, a heavy but high concentration
halo will magnify to the same extent as a lighter, less concentrated
halo. We will therefore find it useful to adopt a model for c.

2.2.1 Concentration models

In the original paper of Navarro et al. (1996), the NFW halo
was characterized as a one-parameter family where ¢ = c(Mpy).
Recent studies have updated this result. Dufty et al. (2008, hereafter
DO08) used Wilkinson Microwave Anisotropy Probe (WMAP)-derived
cosmological parameters to simulate haloes in the mass range 10—
105 h=! M, fitting

¢ =AM/ M) (1 +2)° (12)

where A =5.71£0.12, B=—0.084 4 0.006, and C = —0.47 £ 0.04.
Muioz-Cuartas et al. (2011, hereafter MC11) also use a WMAP-
derived cosmology with similar resolution and fit

loge = a(z) log Mago/[h~ Mq] + b(z) (13)

a(z) =wz—m (14)

b= —2 P (15)
YTty Tty

where w = 0.029, m = 0.097, « = —110.001, g = 2469.72, and
y = 16.885. Finally, Mandelbaum, Seljak & Hirata (2008, hereafter
MO8) compile weak-lensing analyses of SDSS galaxies in the mass
range 10'2-10" h~! Mg, and fit

-B
C=L<M) , (16)
(1+2) \ M,
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where ¢g = 46 £ 07, g = 0.13 + 0.07, and M, =
1.56 +£0.12 x 10" A~ Mg,

For our data, we find (c) = 5.2, 8.0, and 6.9 for the DO8, MC11, and
MOS8 models, respectively. We test our results on all concentration
models, and also ¢ as a uniform global parameter for comparative
purposes. For our main result, we will prefer the MO8 model as it
has been derived from observations.

2.3 Homogeneous cosmology

For our background cosmology, we assume a spatially flat ACDM
model, and neglect 2, so that 2, = 1 — Q,,. We have for the angular
diameter distance D, and luminosity distance Dy the standard
formulae

dz’/
E@)’

c Zcos
Di(z) = - +Zobs)/
0 0

Da(z) = Dr/(1 + zows)*,
E(2) = Qo1 + 2Zeos)’ + Q4. 0, (17)

where Hj is the present-day Hubble constant, H(z) = HyE(z), and
Qi o is the present-day component density. zqps refers to the observed
heliocentric redshift, and z.s the redshift corrected for peculiar
velocity to the CMB rest frame. When using standard candles, it
is convenient to re-express the luminosity distance as the distance
modulus

w(z) = 5logo(DL(z)/10pe) . (18)

Our results depend only very weakly on the cosmological parameters
used (via the angular diameter distances used in X, and p. used
to normalize the halo density), except in the case of the physical
mass-to-light ratio. However, to be concrete, we set & = 0.674 and
Qn = 0.298, where Hy = 100 2 kms™! Mpc71 and 2., is the best fit
to the Pantheon sample.

2.4 Density model

Our model for the matter density is

p(r, 2) = Puoia(2) + Y _ Phato(F, 71, 2), (19)

where ppao(r, r;, z) is the density profile of a dark matter halo located
at r; and redshift z. pyeiq(z) is a spatially uniform minimum density
that is a function of redshift only; it represents the average remaining
density of the universe if the virial masses of galactic haloes were
removed, and is determined by the requirement that p = p.. We take
the form of these haloes to be the spherically symmetric profiles
as described in the previous section. Although we can in general
expect the haloes to be non-spherical, it has been shown that after
taking the average over randomly oriented non-spherical haloes for a
lensing calculation, spherical symmetry is a very good approximation
(Mandelbaum et al. 2005). We neglect additional inhomogeneous
contributions due to filaments or sheets, and assume that baryons are
distributed with the same profile as dark matter for the purposes of a
magnification calculation.

2.4.1 Flux conservation

It can be shown that in the weak-lensing approximation, the average
magnification (over a large number of sources) compared to a
homogeneous background is unity (see e.g. Kainulainen & Marra
2009). In fact, this argument, which was originally made in a
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more general context by Weinberg (1976), depends on three key
assumptions. First, the universe is assumed to be transparent and
LOSs are not ‘special’ in some way. [Weinberg argued that if galaxies
are opaque discs, and hence the LOSs are those that are unobscured
by foreground galaxies, the average result will be de-magnification;
Kainulainen & Marra (2011a) give a quantitative prescription for
calculating this effect in terms of a survival probability as a function
of impact parameter.] Secondly, the distance of sources is unaffected
by lensing, which introduces perturbations to the sphere of constant
redshift. Kaiser & Peacock (2016) have shown that this is equivalent
to working to first order in the convergence «. Thirdly, by working
to first order in post-Newtonian potential &, the ‘back reaction’
of inhomogeneity on space—time is neglected and it is assumed
that the homogeneous universe formulae (17) may continue to
be used. What may happen in the more general non-perturbative
case is still the subject of active research (see e.g. Buchert et al.

2015).

Therefore, working to first order in the convergence,” we take

(X;0m; ;) =0, (20)

where sum is over j = 1...N; foreground galaxies and the average
is over i = 1...N; sources in the redshift bin z € (zx, 24+ 1). For
lensing by galactic haloes at z < 1, our typical calculated Am =
%;8m are O(1072) to O(107%). We therefore expect equation (20)
to be a good approximation at redshifts z < 1 for sources that are
weakly lensed. However, were we to be analysing sources at redshift
z ~ 2 with Am ~ O(10™"), second-order effects should not be
ignored.

3 DATA

3.1 Supernovae

SN Ia magnitudes are standardized by the Tripp estimator (Tripp &
Branch 1999), which is a function of observable features of their
light curves. A commonly used form expresses the distance moduli
s of an SN Ia as

nw=mpg— Mp+ax;—pc+ Ay+ Ag, 21

where the observables are mp, the peak apparent AB magnitude of
the supernova; x, the ‘stretch’ of its light curve (a dimensionless
parameter typically between —2 and 2 representing the duration of
the curve); and c, the deviation of the B — V colour from the mean
colour. My is the absolute magnitude of a fiducial mean SN Ia light
curve. Ay is a correction based on the host galaxy mass or other
environmental effects, and Ag is a bias correction derived from
simulations to account for the selection process of the sample. The
nuisance parameters « and B are fitted for to minimize residuals
versus a background cosmology.

For this analysis, we use the Pantheon data set® (Scolnic et al.
2018). The file ANCILLIARY_G10 . FITRES contains the apparent
magnitudes (adjusted using equation 21), redshifts, positions, stretch
x1, and colour ¢ of 1048 SN Ia compiled from multiple surveys,
with bias corrections determined according to the intrinsic scatter
model of Guy et al. (2010). We also use the covariance matrix

21t is the flux of photons that is conserved on average, not any non-linear
quantity such as magnitude derived from it. However, the correction is second
order and we neglect it.

3https://github.com/dscolnic/Pantheon
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sys_full_long.txt. We select the 901 SN Ia within the SDSS
footprint.

3.1.1 Field selection

To obtain a clean lensing signal, we must identify the host galaxy:
The supernovae will not be lensed by its host halo. If we fail to
identify the host, due to errors in galaxy redshifts (see below), the
true host may be present in the foreground close to the LOS, and so
add a large spurious amount to the lensing estimate. We identify the
galaxy closest in angular distance to the location of the supernova as
the host, and exclude it from our lensing estimator. We also check
that the redshift of the putative host is compatible with the redshift
of the SN Ia. A limitation of this is that the SDSS photometric
redshift confidence intervals are not always reliable, so in our results
section we also quote the correlation using angular distance only for
comparison.

To check we have indeed correctly identified the host, we also
calculate the impact parameter of the closest galaxy in units of
galactic scale length x = b/r,. Large values will indicate doubt that
we have identified the correct host, and we discard fields with x >
4 (corresponding to 100 kpc for a typical galaxy). The cutoff for
x should not be too small as to unnecessarily remove supernovae
originating in faint nearby satellite galaxies or the stellar halo, but
not extend past the virial radius x ~ c¢. This selection reduces the
sample to 762 supernovae.

To reduce noise, we further exclude fields that are more than
50 per cent masked in the foreground galaxy sample, as the lensing
estimate is unlikely to be accurate for them. 35 per cent of our fields
have some masking in them, with the average fraction of masked
objects in those fields ~ 20 per cent. Our final sample therefore
comprises 720 SN Ia.

3.2 Galaxies

We use galaxies drawn from the SDSS (Eisenstein et al. 2011).
The survey performed deep imaging of 8400 deg® of the high
Galactic latitude sky, and spectroscopy of over 1.5 million galaxies.
A supernova survey was conducted of the so-called Stripe 82, a strip
2°5 wide along the celestial equator from right ascension 20" to 4",
and this is a prominent overlap with the Pantheon footprint. The
galaxy survey is expected to be 95 per cent complete at r = 22.2 mag
limit (Abazajian et al. 2009), and the faintest sources categorized as
galaxies are up to r ~ 26.

We initially select all photometric objects in the SDSS Data
Release 16 view Galaxy, which are in an aperture of radius 8
arcmin around the LOS to each supernova. For redshift z = 0.2,
this corresponds to a physical distance of ~1.5 Mpc. We discuss
and test the choice of aperture in Section 5. We find 728280
galaxies, of which 176 872 are in the foreground of their supernovae.
The average redshift of our foreground sample is z ~ 0.34. We
select photometric data in the gri passbands, using the cMode1Mag
magnitudes m; as the best representation of the brightness of
galaxies.

We select galaxies with clean photometry identified by the flags
InsideMask=0and Clean=1, which reduces our sample size by
33 per cent. We derive the absolute magnitude M, of the galaxy in a
given passband as

M, =my — u(z,) — Ky — Ay, (22)

where the survey-reported K-corrections K, and Milky Way ex-
tinction A, are used. The distance modulus p is derived using the
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Figure 3. Number distribution of our galaxy and supernovae sample by
calculated r-band absolute magnitude M, and redshift z. The red dotted line
shows the SDSS survey limiting magnitude m, = 22, the effect of which is
clear in the sample.

photometric redshift z,, by equations (17) and (18). We floor M, at
—25 to reduce outliers. Our sample is illustrated in Fig. 3.

3.2.1 Photometric redshifts

We use the SDSS photometric redshifts z, that were last updated
in Data Release 12. The methodology used to determine them is
outlined by Beck et al. (2016). The errors are calculated for each
galaxy and are distributed as 6z, ~ 0.09 £ 0.04, and the relative
error 8z,/(1 + z,,) is largely uncorrelated with redshift. The algorithm
provides a flag photoErrorClass to indicate the quality of
the fit, which is given as values between —7 and +7. There is
some correlation between photoErrorClass and redshift, and
to minimize selection bias, we therefore only exclude galaxies with
photoErrorClass < —4, which is indicative of a poor-quality
extrapolation from the training set.

For each galaxy j in the field of SN Ia i, we compute the angular
diameter distances and impact parameter b = 0D, using formulae
(17), using the photometric galactic redshift z,, and the spectroscopic
SN Ia redshift z. We also use z, to determine the average matter
density at the location of the galaxy p.(z) = 3H(z)*/87G, which
given the mass of the halo Myyy will determine its physical radius
200 by equation (7).

We have already discussed that the lensing efficiency (equation 3)
is relatively insensitive to redshift error near its peak. Whilst the
average relative redshift error on the whole galaxy sample is ~
35 per cent, we find a relative error on the lensing efficiency of
~ 20 per cent.

Our final sample then comprises 68 039 galaxies. Our selection
parameters are summarized in Table 1, and in Section 5, we test the
dependence of our results on these choices.

MNRAS 515, 2305-2321 (2022)
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Table 1. Summary of parameter choices and selection criteria of foreground galaxies. See Section 2.5

for a description of the concentration models.

Parameter Rationale Value
Max radius Include galaxies within an annulus (arcminutes) 8
photoErrorClass Exclude galaxies with low-quality redshifts —3to+7
InsideMask Exclude galaxies that are in masked areas 0
Clean Exclude galaxies with poor photometry 1
Magnitude Cap abs mag of galaxies to reduce outliers —-25
Concentration Cap derived concentration to reduce outliers 15
Masked fraction Exclude SN Ia with heavily masked foregrounds 50 per cent
Host radius Exclude hostless SN Ia (within scale radii) 4
Concentration model Degeneracy between halo mass and concentration MO8

4 METHODOLOGY

4.1 Estimating the lensing signal

We take dark matter haloes to be aligned to the photometric centre
of individual galaxies. Hence, for magnification of supernovae i due
to galaxy j, we set

(Smi’j = (Sm(b,-j, ?,Uj), (23)

where dm is given by equation (4). The impact parameter is b; =
0iiDg, j, where 6;; is the angular separation between galaxy j and
supernova i and Dy ; the angular diameter distance to the galaxy.

The halo parameters are @; = {Msqo,;, ¢;, B}. To estimate Mg,
we convert the galactic absolute magnitude M, using a halo mass-
to-light ratio I by

Moy = T'(Mago, p)10°4Mor=M), (24)

where M, ; is the solar absolute magnitude. I'(Myy, p) will in
general depend on both Mgy and galaxy type p (e.g. morphology
or colour).

Previous weak-lensing shear studies have examined the relation-
ship between mass-to-light ratios and luminosities, morphological
type, or colour. Mandelbaum et al. (2006) derive a relation between
the luminosity of central galaxy in a cluster and the fotal cluster
mass of M oc L?, but this is not applicable for our model. Van
Uitert et al. (2011) finds little dependence of I' in the SDSS sample
on luminosity for L < 7 x 10" Ly, but early-type galaxies are
heavier (see table 2 and fig. 9 of that paper). Brimioulle et al. (2013)
finds I oc LO12 %011 for galaxies from the Canada—France—Hawaii
Telescope Legacy Survey, with red (defined as B — V > 0.7) galaxies
being heavier than blue at the same luminosity.

We do not have morphological information p for most galaxies
in our sample. Additionally, the size of our SN Ia sample is not
sufficient to adequately constrain mass-to-light ratios for subsamples
by colour or luminosity. Therefore, we adopt I'(Map9, p) = I' as a
uniform sample average for our analysis.

Summing contributions of individual galaxies, we obtain the
unnormalized magnification

Ni
Ami = "smi; (25)
j=1

where N, is the number of foreground galaxies in the supernova field.
We impose the flux conservation of equation (20) and define our
magnification estimator as

Am; = Am; = (Am(z) - o
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In the second term, the average is taken over all supernovae i in the
redshift bin z; < z; < zx 1. Hence, by construction, (Am;) = 0 in
each bin (although our result for correlation does not depend on this).
In practice, most LOSs do not pass very close to a foreground galaxy,
and those supernovae will be mildly de-magnified. A smaller number
will be magnified and hence the distribution of Am; is skewed with
the median and mode positive.

4.1.1 SN Ila colour

The Spectral Adaptive Light-curve Template (SALT2) fitter for
supernovae (Guy et al. 2007) outputs a colour parameter ¢ = (B
— V) — (B — V), which is the difference between the colour at peak
B-band magnitude and the average for the training sample.* This
may be interpreted as the sum of some intrinsic colour scatter, plus
reddening E(B — V). Some portion of this reddening will be due to
the host galaxy, and some will be due to extinction by dust embedded
in foreground galactic haloes. SN Ia magnitudes are de-reddened by
the Tripp estimator (equation 21), which subtracts the reddening fSc,
where B ~ 3 is a fitted parameter consistent with Ry = 3.1.

However, we may estimate the amount of reddening due to dust
in foreground galactic haloes in the following way. The combined
effect of magnification and extinction is

F = Fyve ™, (27)

where v = Fis/F) is the lensing magnification factor, and 1, is the
wavelength-dependent optical depth. In magnitudes, we obtain

Am(A) = 1.08(t, — Av), (28)

where Av = v — 1. As lensing is achromatic, it follows that E(B
— V) >~ 1.08(Am(B) — Am(V)). Menard et al. (2010) investigated
dust extinction in galactic haloes by correlating the colours and
magnitudes of quasars in the range 1 < z < 2.5 with the angular
distance to SDSS foreground galaxies, finding that the visual band
magnification is offset about 1/3 by extinction.

By using the dust-to-mass ratio Y = 1.1 x 107> derived in
Meénard, Kilbinger & Scranton (2010) and a typical host galaxy dust
mass opacity ky = 1540 m? kg_] (Weingartner & Draine 2001), we
estimate

Ac >~ 0.01694 X(r) mag, (29)

where X(r) is the surface density of the galactic halo.

4The distinction between the NFW concentration parameter ¢ and colour
should be clear from the context.
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4.1.2 SN la stretch

Supernovae have a finite size, and there will be some time delay
(due to both the differential path-length and time dilation) between
light arriving from opposite sides of the expanding photosphere.
In principle, at least, this may result in some of the magnification
being subtracted out as an increased stretch parameter x; of the light
curve when the magnitude is standardized by the Tripp estimator
(see equation 21). The differential time delay is proportional to the
product of light traveltime across the ejecta and the deflection angle &
(which is the gradient of the time delay across the ray bundle). Thus,
taking an ejecta velocity of ~0.05c¢, a light-curve duration of ~30d,
and a deflection angle of 1072 rad, the differential time delay will
be roughly 30 min. However, this translates into a change in stretch
parameter of only Ax ~ 5 x 1073 (for the relation between x; and
the duration of the light curve, see fig. 2 of Guy et al. 2007). Hence,
the magnitude will be adjusted upwards by ~0.001 mag for a typical
value of o ~ 0.15 in the Tripp estimator. This is less than 5 per cent
of the calculated magnification for the same light deflection angle.
We therefore ignore this effect.

4.2 Correlating with Hubble diagram residuals

We determined the SN Ia distance modulus residuals .5 by fitting
a Hubble diagram to minimize

X2 = /’LrTes -ch. Mres s (30)

where Mres = U — Hmodel and Mmodel(HO’ Qm’ Z) is given by equa-
tion (18), where u is the apparent SN Ia distance modulus u = m —
M.

C is the Pantheon covariance matrix (Scolnic et al. 2018), which
is the sum of statistical and systematic errors C = C*** + C**, The
statistical error matrix is diagonal with entries given by

stat __ 2 2 2 2 2 2
Cii =0y + OMass + Oy, + Olens + Oint + OBias » (31)

where the largest term is the intrinsic SN Ia dispersion oy ~
0.08. The (Gaussian) term for the dispersion caused by lensing is
O lens(27) = 0.055z;, as estimated by Jonsson et al. (2010) (for details
on the other terms, see section 3.2 of Scolnic et al. 2018). C** is the
covariance matrix induced by the training of the SALT2 model on a
sample light-curve set.

Fitting was done using POLYCHORD (Handley, Hobson & Lasenby
2015), where we fix the SN Ia fiducial absolute magnitude M =
—19.43, which is equivalent to setting & = 0.674. We find Q,, =
0.298 £ 0.022, consistent with Scolnic et al. (2018) (although our
sample is a little smaller), and we use the central value to compute
the residuals. The standard deviation of the residuals was o s >~ 0.14,
which combines intrinsic, lensing, and all other sources of scatter.

We compute the bin k& sample Pearson correlation coefficient py
between (s and Am given in equation (26), which is

Ez[e(z,ﬁz,(Jr])(ﬂi,res - (Ml‘es))Ami

- \/Z(l‘l’i,res - (Mres))z\/z AmIZ ’

where the sum runs over all supernovae in bin k£ and (Am;) = 0 in
each bin by construction. We will also calculate the correlation of
the colour parameter ¢ and stretch x; with our lensing estimator Am
to check for dust extinction and any lensing time delay.

As an additional cross-check, we also obtain the partial correlation
coefficient r;j between variable i (i.e. Am, [is, ¢, or x1) and variable
j. The partial correlation is defined as the Pearson correlation
coefficient between the residuals of the two variables of interest
when the others have been fitted out by linear regression. Setting

Pk (32)

Weak-lensing magnification of Type la SN 2311
Q = (p;j)7!, itis given by
rij = — (33)

4.3 Constraining halo parameters

‘We are additionally interested in deriving Bayesian posteriors for the
halo model parameters @ . We use Bayes’ theorem
L (@) pq(w
P(w|x, M) = Lm(@)mm(@) , (34)
Zm

where x = [tres — Am is our data vector, and 7, = P(@w | M) is our
prior belief in the parameters given the model M. Z,, = P(x|M)is
the evidence given by integrating the likelihood £ = P(x|w, M)
over the prior, calculated as

Zpm = /EM(w)nM(w)dw . (35)
We adopt the likelihood
InL=x"(C)"'x, (36)

where the adjusted covariance C’ is derived from the Pantheon
covariance by removing the stated lensing variance:

C = C—(0.055z,)* . (37)

Although in principle extra variance from uncertainties in our lensing
calculation should be included, they are relatively small compared
to the intrinsic SN Ia residual variation, and we can neglect them.
Indeed, we find that the distributional properties of x for our
sample match this likelihood very well, with residual non-Gaussian
properties being small.

We use uniform priors where the mass-to-light ratio I' € (40, 400)
and the halo radial profile slope B € (0.5, 4.0), and when extending
to a variable uniform concentration, the halo concentration ¢ € (2,
15). To derive our posteriors, we use the nested sampling method
implemented in POLYCHORD (Handley et al. 2015).

5 RESULTS

5.1 Description of the lensing signal

In this subsection, we describe the features of the unnormalized
magnification estimate given by equation (25), with the MOS8 con-
centration model and maximum-likelihood halo parameters (I', 8)
(see Eqn.1).

The majority of lensing signal comes from galaxies whose impact
parameters lie within scale radius x ~ 5-30. For a typical Milky
Way-sized galaxy, this would be an impact parameter of b >~ 0.15—
1.0 Mpc. We illustrate this in Fig. 4. Comparing this to our profiles
from Figs 1 and 2, we can see that we should be able to obtain
moderate constraints on the slope parameter g, but that c is unlikely
to be constrained very well by our sample.

In terms of which galaxies contribute to lensing, we show in
Fig. 5 the aggregate estimate bucketed by galaxy absolute magnitude.
Although the numbers of galaxies peak at M ~ —20, the lensing
signal peaks at M ~ —21.5, which is equivalent to a Milky Way-type
galaxy. In the plot, we have marked the absolute magnitude of an
m, = 22 galaxy located at z = 0.25, 0.4.

In Fig. 6, we show an illustration by redshift where the lensing
estimate peaks. As expected, it is generally midway in redshift
between the SN Ia and z = 0. For an SN Ia at z ~ 0.5 and a
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Figure4. The aggregate unnormalized magnification of our sample, summed
over all galaxies j and SN Ia hosts indexed by i. The lower axis is the impact
parameter normalized to units of the scale radius x = b/rg, where rg = rygo/c.
The upper axis is the impact parameter b averaged over the given x bin. Our
host identification criteria of the projected distance of the SN Ia to the nearest
galaxy in scale radii x < 4 are marked as a vertical black line at » ~ 100 kpc.
Galaxies that are not SN Ia hosts will still contribute to our lensing calculation
for r < 100 kpc.
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Figure 5. The upper panel shows the counts of galaxies in our sample binned
by absolute magnitude M,, with M>oo shown on the upper x-axis in units of
Mg . The lower panel shows our total lensing signal summed over galaxies
and binned by absolute magnitude of the galaxy lens. The majority of our
signal is within the SDSS limiting magnitude m, = 22, marked for redshift
z = 0.25, 0.4 as the vertical black dashed and dotted lines.

typical lensing galaxy at redshift z ~ 0.25, the magnitude limit m, =
22 corresponds to M, = —18.5, equivalent to the Large Magellanic
Cloud (LMC). The mass of the LMC is ~1/100 of a typical galaxy,
and so galaxies below the survey limit at such intermediate redshifts
will contribute a relatively small amount to the overall lensing signal,
even taking into account their larger number density. However, for
SN Ia at redshift z ~ 1.0, the typical lensing galaxy is z ~ 0.4 and so
M, < —20.3. We can now expect to be missing some fraction of the
true lensing amount. We indeed see this in the top right-hand side
of Fig. 6 as the reduced density of the lensing signal close to the
diagonal line, compared to low and intermediate redshifts.
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Figure 6. An illustration of the density of our lensing signal per SN Ia as a
function of source redshift zgn and lens redshift zgajaxy. Units are arbitrary,
and are not shown. The lensing density peaks as expected, that is, roughly
midway between the source and observer. The effect of the galaxy magnitude
limit is to reduce the density in the upper right-hand corner of the plot.
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Figure 7. The bootstrap resampling distribution of correlation for our 0.2
< z < 1.0 sample. The statistical significance of lensing signal detection
obtained is p/o, = 3.6.

5.2 Correlation of lensing estimate with SN Ia observables

For our best-fitting model, we find a correlation between our
lensing estimate Am and Hubble diagram residual p.s of p =
0.166 £ 0.045(stat) for SN Ia with 0.2 < z < 1.0. This is a significance
of 3.70 before allowance for systematics.

The errors quoted have been derived from 10000 bootstrap
resamples of data (Fig. 7). It is clear we should exclude low-z SN Ia,
as we do not expect them to be measurably lensed. We also exclude
z > 1 SN Ia for several reasons. First, we expect them to be lensed
to a significant degree by galaxies below the magnitude limit of the
SDSS survey. Secondly, they are drawn from surveys conducted by
the Hubble Space Telescope (HST; see e.g. Riess et al. 2007), so
the targeting and detection efficiency may differ considerably from
ground-based surveys. In any case, there are not enough numbers of
them for this exclusion to affect our result. The result is not greatly
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Figure 8. The correlation p between the Hubble diagram residuals and weak-
lensing convergence estimate of our SN Ia sample, shown for individual
redshift bins. Errors are computed by bootstrap resampling. The horizontal
axis shows the average redshift in each bin. Our main result of p =
0.166 £ 0.046 for the sample in the range 0.2 < z < 1.0 is shown as the
shaded purple bars at 1o and 20 confidence. As expected, for a signal due to
lensing, we see a generally increasing trend with distance, and a linear fit to
the correlation is marked. The trend towards larger error bars with increasing
redshift is due to the smaller numbers of SN Ia in distant bins. Additionally,
for the bins z > 0.8, the reduced significance is also due to the small angular
field of the high-z HST surveys: There is not enough variation in the density
of foreground galaxies across the field to show a correlation (this is discussed
further in Section 5.5).

changed for other concentration models; for the DO8 model, itis p =
0.166 + 0.046(stat), for MC11, itis p = 0.166 % 0.046(stat), and for
afixed c = 6, itis p = 0.151 £ 0.048(stat).

Our other parameter choices were specified in Table 1. As
expected, the correlation drops if we do not exclude SN Ia with
poorly identified hosts: for no exclusions, p ~ 0.11. We discuss
the dependence on other analysis parameter choices in the next
subsection.

For the NFW profile, we find p = 0.159 £ 0.046(stat), and for
the SIS halo profile, p = 0.149 £ 0.046(stat). The dependence of
the SIS correlation on aperture radius is greater than for the NFW
model, and as expected the correlation declines with wider aperture
as remote field galaxies dilute the lensing signal. Anticipating the
results from the full Bayesian analysis described in the next section,
profiles close to NFW are likely to be preferred to those close to SIS.
The result for the 8 = 3 Hernquist profile is p = 0.097 £ 0.046(stat).

In Fig. 8, we show the correlation per redshift bin; as we would
expect, we see a generally increasing trend with redshift, within the
limitations of Poisson noise given ~50 SN Ia per bin. We show
scatter plots of our residuals in Fig. 9. As previously argued, the
majority of our SN Ia are de-magnified and a smaller number of SN
Ia are magnified. The intrinsic scatter dominates for low redshifts,
but for larger redshifts, the correlation is visible in the grouping of
dots towards the bottom left-hand and top right-hand quadrants. Our
correlation is lowered by a few outliers, notably the SNLS supernovae
05D3hh, 04D3nr, 05D3km, 05D3mh, and 04D3gx, which are points
well inside the upper left-hand quadrants in the bins 0.6 < z < 1.0.
These are SN Ia that have foreground galaxies close to the LOS
but are dimmer than the Hubble diagram fit. Four out of five of
these were originally classified by the survey as ‘probable’ (rather
than certain; see Conley et al. 2011) SN Ia due to some ambiguity
in their spectral classification. The proportion of probable SN Ia
in the survey is ~ 20 per cent, so it is possible that they represent
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contamination of the sample by non-SN Ia. Nevertheless, they have
passed Pantheon quality cuts for their light-curve fitting, and there is
no objective reason to exclude them. Without the additional criteria
of compatibility of redshift between the host galaxy and SN Ia, the
correlation is p = 0.177 + 0.046. Hence, the effect of the outliers is
to modestly reduce the statistical significance from 3.90 to 3.70.

The correlation of our lensing estimate with colour is not signifi-
cant at p. = 0.024 £ 0.05. This result means we have no evidence
for dust extinction in galactic haloes. This is consistent with Smith
et al. (2014), who also found no correlation between colour and their
lensing estimate, but does not contradict the results of Menard et al.
(2010). The reason for this is that we find the average colour variation
for our sample, as computed by equation (29), to be Ac ~ 0.002,
whereas for magnification, our lensing signal is between 10 per cent
and50 per cent of the intrinsic variation, and for colour our signal
is just 2 per cent of the intrinsic variation of o, ~ 0.1. We would
therefore only expect dust extinction to be detected only if we had a
sample exceeding 10 000 SN Ia.

The correlation between lensing and stretch is not significant
at oy, = 0.047 4= 0.047 [in the literature, Smith et al. (2014) have
reported a 2.2¢0 significance]. As a further test, we confirm that the
partial correlation coefficients are consistent with our results.

We summarize our results on correlation in Tables 2 and 3.

5.2.1 Correlation systematics

We test the robustness of our results to our parameter choices; our
correlation is unlikely to be overestimated by a ‘bad’ parameter
choice, but we seek to estimate a systematic error to complement our
statistical errors.

We perform the following tests on photometric selection criteria.
We vary the passband used to calculate the absolute magnitude (and
hence mass) of the lensing galaxies. We test the effect of varying
the magnitude limit for galaxies above and below the formal survey
limit at m, = 22. As we would expect, if we adopt a lower limit, we
exclude some galaxies that would contribute to the lensing signal,
and the correlation drops. We additionally test the effect of varying
our criteria for accepting heavily masked fields. If this selection
parameter is too low, we drop too many SN Ia and the correlation
drops. Alternatively, adopting too many masked fields adds noise to
the signal and again the correlation drops. We find that our chosen
cut of 50 per cent works well.

Photo-z errors will affect all physical distances used in our calcula-
tion, including angular diameter distances, the impact parameter b =
Dy(z2)6, and the critical surface density ¥.(z). As the convergence
Kk oc 1/bP, it is immediately clear that a bias might be introduced into
our lensing calculation, even if the underlying photometric redshifts
are themselves unbiased. In particular, the steeper the halo profile, the
larger the potential bias. Further, it is likely that photo-z errors will be
correlated to some degree (given the size of the training set relative
to the survey size), but the degree of such covariance is difficult to
estimate.

We address photo-z errors by multiplying each z by a random
lognormal error of width o,/(1 + z), and rerunning our analysis.
We also test the relatively extreme scenario of always multiplying
or dividing by the relative error — this is intended to determine the
effect of fully correlated errors in redshifts. We additionally test the
exclusion criteria for poor-quality redshifts by varying the maximum
and minimum photo-z error class we select.

Adopting the average of the change in our correlation across
our choices as an estimate of potential systematics, we find o, =

MNRAS 515, 2305-2321 (2022)

220Z JaqWaA0ON €z uo Jasn dieys auuayied Aq 059/ 199/S0£2/2/S L S/e|onie/Seluw/woo dno-oiwspese)/:sdny wolj pepeojumoq


art/stac1746_f8.eps

2314  P. Shah, P. Lemos and O. Lahav

02<z<0.25 0.25<z<03 03<z<04 0.4<z<0.5
°
4 e® . ° . .
=
3, e pe Il . o® i - s ’%
B q' .
5 o ® i
= ) ° [ ]
£ 0 1 < 1 | < o'-'.
) oo L1 ot“
=) [ ] L ° . ™ [ ] ..‘
z * e o &
T -2 e o.. o b o
.
'y ®
4 L 4 4 L4 o
0.5<z<0.6 0.6<z<0.8 08<z<l1 1<z<1.5
°
4 e E E :
= ® e
3, ®e _ s e .o o 1 = °--* . .
= o
3 . - ‘* ..o .:.:.:.‘ e °
3. ° = | Y 4 A “ %o ® ‘ e
@ ‘.. "y 3
2 ] .\' L4 o ® ° b [ ]
z ‘e . o, 8 o« B
=2 e ® . . ] o
o b b
a4 i i i
-4 -2 0 2 -4 -2 0 -4 -2 0 2 —4 -2 0 2

AMyens/0.062 AMyens/0.062

AMiens/0.062 AMiens/0.062

Figure 9. Scatter plots of Hubble diagram residuals ftres = 4 — ftmodel Of SN Ia (y-axis) and the lensing estimate Am (x-axis). We have normalized the scales
by dividing by the expected dispersion ojens = 0.06z and intrinsic dispersion oy = 0.1. For low-redshift bins, we see the intrinsic dispersion of magnitudes,
which has low skew and oj; ~ 0.1. For higher redshift bins, the correlation is apparent as the clustering of points in the top right-hand quadrant (the majority of
LOSs are through underdense regions) and a small number of magnified supernovae in the bottom left-hand quadrant. A small number of outliers are present;
in particular, in the 0.6 < z < 0.8 bin, the point in the top left-hand quadrant is SN 05D3hh (see text for comment).

Table 2. Pearson correlation coefficient between the lensing signal Am, SN
Ia Hubble diagram residual jires, colour ¢, and stretch x;. The significance
of each correlation (including systematics) is also given in parentheses. Our
main result is highlighted in bold.

c X1 Am
Mres —0.020(0.3) —0.027(0.5) 0.166(3.6)
c - 0.025(0.5) 0.024(0.5)
X1 - - 0.047(1.0)

Table 3. Partial correlation coefficient between the lensing signal Am, SN Ia
Hubble diagram residual pires, colour ¢, and stretch x;. The results are largely
unchanged compared to the Pearson correlation.

c X1 Am
res —0.023 —0.035 0.168
c - 0.024 0.026
X1 - - 0.051

0.011(sys). Adding this in quadrature to our statistical error gives
our main result p = 0.166 £ 0.046 (stat + sys). This is a detection
significance of 3.60.

5.3 Halo parameters

We find for the MO8 model mean values of § = 1.8 + 0.3 and
r= 1971’% h Mg L;g where marginalized 65 per cent confidence
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intervals are indicated.’ The posteriors on our model parameters
imply an additional error on p of o, = 0.007(post). For comparison,
the maximum-likelihood values are 8 =1.7and "' = 196 1 Mg L .
Fixing B = 2, the NFW profile gives I = 224Jj§§ h Mg L;'O.

We find that our results are again largely unaftected by the choice
of concentration model; the DO8 model prefers a slightly higher B
as its average concentration is lower than M08, and conversely the
MC11 model prefers a lower g for the same reason.

We find for the power-law model that 8 > 1.2 at 95 per cent
confidence regardless of the concentration model used, and thus 8 =
1 (the modified SIS profile) is disfavoured to high confidence. We are
also able to rule out the Hernquist profile at > 95 per cent confidence.
The posteriors are illustrated in Fig. 10. As discussed in Section 2
in the context of concentration, we see some degeneracy between B
and I', whereby a higher  favours more massive haloes to produce
equivalent lensing power.

We test the effect of allowing a (uniform) c¢ to vary globally
across our galaxy sample. For the NFW model, we find ¢ = 4.3710.
This value is consistent with our concentration models above. We
also test running a loosely constrained model where all of (I", B,
c) are allowed to vary. In this case, we find marginal values of
[ = 1855 h Mg LiL. B= 1.8%02, and ¢ = 7.57%3. These values
are consistent with our main result above, although of course the
confidence intervals are wider.

SWe have re-introduced & = 0.674 to normalize our result here.
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Figure 10. The derived posteriors for our power-law halo profile slope 8
and mass-to-light ratio I'g. 8 = 2 corresponds to the NFW profile. We also
show the correlation posterior implied by the range of halo profiles; our core
result of lensing detection is largely insensitive to the details of the profile. As
explained earlier, there is some degeneracy between concentration determined
by either B or ¢, and I'g: A more concentrated halo profile requires a higher
mass to produce the same amount of magnification.

As a check to derive pieces of evidence for model compari-
son, we also run the SIS profile and derive a posterior for I' =
70, kMg ;L.

The results for our runs are presented in Table 4. Comparing the
Bayesian evidence, we find little preference between our different
concentration models (first four lines). The SIS and NFW models
are somewhat disfavoured compared to allowing a variable slope;
to a certain extent, this is due to the presence of the small number
of outliers (see Fig. 9), otherwise we would find g aligned with the
NFW model.

5.4 Malmquist bias

Both our galaxy and supernova surveys are magnitude-limited, and
and we estimate its effect on our results here.

The effect of the magnitude limitation mg, of the galaxy survey is
straightforward to understand. An SN Ia will be lensed by all galaxies
along the LOS, whether seen or unseen. The redshift of a given SN
Ia defines a volume limit applicable to foreground galaxies. Then,
for SN Ia surveys paired with galaxy surveys on similar platforms,

Weak-lensing magnification of Type la SN 2315

we will observe all contributing galaxies brighter than the SN Ia (and
generally better than that, if the galaxy survey is deeper). Hence,
we will be largely unaffected by the galaxy survey limit. However,
the SNLS and HST surveys are deeper than SDSS, and we will
underestimate the number of galaxies contributing to lensing. Hence,
the signal-to-noise ratio and correlation will be lower, and the mass
of low-z galaxies (i.e. the surface density attributed to them) will be
overestimated.

The effect of the magnitude limitation m; of our supernova
survey is more complex. For a magnitude-limited sample, a small
number of sources that would have been too faint to be seen in
a homogeneous universe will magnify into the observed sample
(and will be identified as overluminous SN Ia by their redshifts).
Conversely, along underdense LOSs, SN Ia that are close to the
magnitude limit will drop out of our sample. Taking the magnified
SN Ia in isolation, flux conservation no longer holds: They represent
overdense LOSs not representative of the homogeneous average. As
their brightnesses sample the high-magnification tail of the lensing
distribution, they will also show a greater dispersion. Hence, we can
expect to see a spike in the dispersion of magnitudes in the redshift
bucket containing z(m;) of the SN Ia sample.

A practical difficulty for SN Ia is that m; is not well defined.
The Pantheon compilation merges surveys with different limiting
magnitudes. Further, only a small proportion of candidate supernovae
(sometimes as little as 1 in 100) are targeted for a spectroscopic
follow-up, and the transient nature of the source means the decision-
making process may be influenced by many factors such as instru-
ment availability, local seeing conditions, SN la environment, and
so on, as well as magnitude. Hence, there is no m, but instead a
detection efficiency f € (0, 1) is defined as the ratio of SN Ia that will
be in the spectroscopically selected sample, compared to one with
no selection. fis determined by a model of the targeting algorithm
and intrinsic scatter, and is thought to be well characterized by the
observed magnitude m such that f = f(m) (see e.g. the discussion in
section 3.3 and fig. 6 of Scolnic et al. 2018). However, if a preference
for a ‘clean’ LOS influences the selection, a sample biased towards
underdense LOSs will result.

Taking the limits as where the survey is ~ 50 per cent complete,
we set mgy = 22.5, mgpss = 22.5, mps; = 23.0, and mgni s = 24.3 (we
will not use HST data for reasons discussed in the next subsection).
Interestingly, in Pantheon, the average stretch and colour parameters
¢, Xy drift with higher redshift towards brighter SN Ia, and are most
different from their mean of zero for the sharply truncated SNLS
survey (see fig. 10 of Scolnic et al. 2018). If this is due to selection
bias, it is probable that lensing will have a similar effect (however,

Table 4. A summary of the marginalized mean values and confidence intervals for I', 8, and ¢, for a range of models and fixed or free parameters. Conc.
refers to the concentration model used. T is in physical units of Mg L, o !, but is not normalized by 4 here. log Z is the log of the mean likelihood as
output by POLYCHORD. The first three rows correspond to different concentration models. The fourth row shows the result when ¢ = 6 fixed — as this lower
than is preferred in the free fit shown in the fifth row, so I' is pushed high as a result. The sixth to ninth rows show I" when the profile and concentration
model are fixed. The last row shows a ‘global’ result where all parameters are allowed to vary, and is shown as a consistency check. Priors were I € (40,
400) and B € (0.5, 4.0), and when extending to a variable fixed concentration, ¢ € (2, 15).

Profile Conc. I 65percent 95percent f 65 per cent 95 per cent c 65 per cent 95 percent log Z 65 per cent
Power law MO8 133 79/176 46/229 1.8 1.4/2.1 1.2/2.4 - - - 688.3 0.2
Power law D08 140 84/185 51/238 1.9 1.6/2.2 1.2/2.6 - - 688.6 0.2
Power law MCl11 121 72/158 41/209 1.7 1.4/1.9 1.2/2.2 - - - 688.4 0.3
Power law Fixed 164 50/211 36/355 2.1 1.6/2.4 1.4/3.1 6 - - 688.9 0.2
NFW Fixed 134 85/177 49/228 2 - - 4.3 2.3/5.2 1.6/8.4 688.3 0.2
SIS - 47 40/50 38/65 - - - - - - 689.5 0.3
NFW MO8 151 98/190 64/249 2 - - - - - 689.3 0.1
Power law Fixed 125 71/162 38/227 1.8 1.3/2.0 1.1/2.7 7.5 22/13.8  1.8/146  688.6 0.2
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the drift might instead be attributed to population evolution at higher
redshift; Nicolas et al. 2021).

We tested the effect of these magnitude limits using the pencil-
beam light-cones of Henriques et al. (2012), which are magnitude
complete to z ~ 1, derived from the Millennium Simulation (Springel
et al. 2005; Lemson & Virgo Consortium 2006; Guo et al. 2010), and
sourced from the German Astrophysical Virtual Observatory.® As
a cross-check, we also used the broader MICE-Grand Challenge
Galaxy and Halo Light-cone Catalog (Micecatv2.0), which is com-
plete to i < 24 (Carretero et al. 2015; Crocce et al. 2015; Fosalba
et al. 2015a,b; Hoffmann et al. 2015), sourced from CosmoHub’
(Carretero et al. 2017; Tallada et al. 2020).

Using random LOSs and a fiducial I' = 150, we examined the
effect of imposing galaxy magnitude limits. The effect was to
raise I' by 15 per cent (SNLS), 5 per cent (PS1), and negligible
change for the SDSS SN Ia survey. As a further test of the galaxy
magnitude limit, we reran POLYCHORD for Pantheon and SDSS real
data restricted to redshift 0 < z < zyax for zmax between 0.5 and 1.0.
This transitions our data sample towards (but not fully) volume-
limited rather than magnitude-limited. We found a modest drift
upwards in the maximum-likelihood I' for lower z.,, by about
8 per cent for zy,x = 0.5. This is consistent with the results from
simulations above.

We next tested the effect of imposing the SN Ia survey limit. The
dispersion of lensing was increased in the redshift bucket including
the survey limit. As a result of the bias to overdense LOSs, I' was
lowered by about 15 per cent for SDSS, 5 per cent for PS1, and
unchanged for SNLS.

Hence, the combined effect of the SN Ia and galaxy magnitude
limits is somewhat offsetting in our data. By appropriately weighting
the biases according to the number counts of each survey, we
find that Malmquist bias is expected to be < 10 per cent on our
derived parameters, well within the 1o confidence intervals for the
parameters we derive. We therefore do not adjust our fits.

5.5 Lensing dispersion

We present the dispersion of lensing for the § = 1.8 model with M08
concentration and mean I' = 133 Mg L;g in Fig. 11. At redshifts
z > 0.8, the dispersion starts to drop below trend as expected due
to magnitude limits. We also show the dispersion for the 1 < z <
1.5 bucket, which seems anomalously low. We only have nine SN Ia
that pass our quality criteria in the bucket 1.0 < z < 1.5, and all are
from the HST surveys GOODS, CANDELS, and CLASH. There is
a straightforward explanation: These were pencil-beam surveys, and
most of the SN Ia are within a few arcminutes of each other. There
will then be little variation between LOSs!

The standard deviation is sensitive to the high-magnification tail.
Jonsson et al. (2010) argued that due to Poisson noise and the limited
size of their sample (175 SN Ia), they were missing highly magnified
Am < —0.25 supernovae that would increase the dispersion. The
authors replaced the dispersion from their actual sample oy =
0.035z with oeps = 0.055z, which was the dispersion from their
best-fitting model across a large number of randomly selected LOSs.
We are less likely to be affected by Poisson noise as we have higher
numbers of SN Ia; Fig. 9 shows that there are adequate numbers of
SN Ia with Am < —0.25 for z < 0.8 but less so for the last two

Ohttp://gavo.mpa- garching. mpg.de/Millennium/
"https://cosmohub.pic.es/home
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Figure 11. The dispersion of SN Ia magnitudes due to lensing. The error
bars have been computed by bootstrap resampling. For z < 0.8, we estimate
01ens = 0.053z. This does not extrapolate well, and we introduce the new fit
Olens = 0.06(dc(2)/dc(z = 1))>2, which is better motivated. The outlier in
the 1 < z < 1.5 bucket is due to the limited numbers of SN Ia in this bucket
being within a few arcminutes of each other.

buckets. We therefore restrict our fit to z < 0.8 where the bias is
small.

It is usual to fit for oy = Az, perhaps because the data appear
visually linear. If we do so, we find A = 0.053 £ 0.015. This is
consistent with Jonsson et al. (2010), and also with Bergstrom et al.
(2000), who found o5 = 0.04z, but lower than Holz & Linder
(2005), who estimated oe,s = 0.088z, both from simulations.

Obviously, this fit has a limited range, and extrapolating it beyond
z > 1 is dubious. In Appendix B, we show that in the case of no
clustering of galaxies,® a better fit is provided by

Otens = B(dc(2)/dc(z = 1))*?, (38)

where we have normalized to the comoving distance at z = 1, and
dc(z = 1) = 3400 Mpc for our fiducial cosmology. We find B =
0.06 £0.017 and the fitis shown in Fig. 11. This is likely to be a lower
bound on the true dispersion, due to both the magnitude limitation
of the survey and the effect of clustering (which introduces extra
covariance between sources and lensing galaxies). We recommend
to use this in cosmological parameter estimation, as it is generally
higher than previously assumed values.

As a cross-check, we simulated 10000 LOSs from randomly
selected galaxies in the SDSS footprint, and recomputed the lensing
variance. We did not find any significant difference from the above,
and therefore conclude that our fit is unaffected by shot noise.

5.6 Comparison with shear studies

Direct comparisons of the mass-to-light ratio we derive to the litera-
ture are complicated by the selection of which luminosity to compare
to which mass, and also differing halo profiles and truncations. For
example, the comparison may be between the luminosity of the single
brightest galaxy in a cluster and the mass of the entire cluster.
Regarding the radial dependence of the convergence, Menard et al.
(2010) studied the magnification of quasars by galaxies drawn from
the SDSS survey, finding the projected X (r) o< #~%8 from 10 kpc to 10
Mpc. This is consistent with other shear studies (see e.g. Sheldon et al.

8This is equivalent to the ‘stochastic’ approaches of authors such as Holz &
Linder (2005), Jonsson et al. (2010), and Marra et al. (2013).
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Figure 12. Our total lensing signal summed over galaxies and binned by
angular distance 6 from the SN Ia host. In the upper plot, we show the SIS
halo calculation. We obtain a flat profile for the lensing signal as a function
of angular separation because the increase in the numbers of galaxies within
each increasing size of annulus of sets the lower surface density with larger
separation. In the lower plot, we show the best-fitting 8 = 2.14 profile. In this
case, the lensing signal is well fitted by !, which is consistent with shear
studies.

2004). We find that after stacking our lensing estimate into angular
buckets, the power-law model with g = 1.8 fits X(6) o« 68, This
is shown in Fig. 12. This is because a SIS profile for a total surface
density surrounding a fiducial galaxy is mimicked by the overlapping
contributions of nearby NFW haloes. For luminous red galaxies from
the SDSS survey, Mandelbaum et al. (2006) found the NFW profile
was preferred to the SIS at a confidence level of 96 per cent, and
found an average ¢ = 5.3 = 1.2.

There is good evidence that mass-to-light ratios depend on galactic
morphology and colour. The value we derive here should be seen as
a population average, weighted by luminosity. In a shear study, Van
Uitert et al. (2011) compare the total luminosity within r < 709
to the mass My for an NFW profile with the DO8 concentration
model. For bright early-type galaxies with L > 5 x 10'! L, they
findI" ~ 2602 Mg L;_IQ, but considerably lower values for late-types
or lower luminosities. In a galaxy—galaxy lensing study, Brimioulle
etal. (2013) find ' = 178733 h Mg, L, | atareference luminosity of
L, =16x101r72L, .

Weak-lensing magnification of Type la SN 2317

We may also compare our value to a ‘cosmic’ mass-to-light ratio;
that is to say the value approached on large scales. Bahcall & Kulier
(2014) examine shear around SDSS clusters and derive a cosmic I' =
409 4+ 23hMg Lo ~! (which is equivalent to Q, = 0.26 & 0.02).
The authors state that the lensing signal of the entire cluster can be
replicated by the sum of the contributions from individual galactic
haloes; that is, there is no additional cluster dark matter beyond that
centred on galaxies, as we have assumed in our model. It is interesting
to note that this result in combination with ours would imply that the
matter fraction not virialized into haloes is pyoia/p ~ 0.5.

In summary, we find our results for power-law slope consistent
with the literature, and the mass-to-light ratio consistent with the
(albeit large) range of values quoted.

6 SUMMARY AND DISCUSSION

In this paper, we have developed an estimator (equation 26) for the
weak-lensing convergence based on the astrometric properties of
foreground galaxies. The key assumptions underlying the estimator
are

(i) a matter density comprised of universal halo profiles superim-
posed on a homogeneous background,

(ii) the magnification is weak,

(iii) the LOSs to SN Ia are equivalent to a random sample, and

(iv) the masses of dark matter haloes may be estimated from
galactic magnitudes using an average mass-to-light ratio.

We have demonstrated the effectiveness of the estimator by
correlating it with SN Ia residuals to a best-fitting Hubble diagram.
Using a B = 1.8 profile with the MO8 concentration model, this is
p = 0.166 £ 0.046(stat) £ 0.011(sys) for SN Ia with 0.2 < z < 1.0.
This is a detection significance of >3o, which improves on previous
results of ~1.40 (Jonsson et al. 2010; Smith et al. 2014; Macaulay
et al. 2020). Our results are not greatly affected if the NFW profile
is used, or the choice of concentration model or analysis parameters
within reasonable bounds.

It is natural to ask why we find a greater significance of our
detection than the previous literature. First, we have a four times
larger sample of SN Ia than Jonsson et al. (2010), and our use
of a smooth halo profile incorporating the well-established NFW
profile may capture the true density profile better than a truncated
isothermal sphere as used by those authors. Secondly, as we explained
in Section 2, magnification is highly sensitive to chance encounters
with a low impact parameter. Although Smith et al. (2014) have
similar numbers of SN Ia to us, the lensing is estimated from the
number counts of foreground galaxies only; in our method, it would
be equivalent to setting B = 0 and each halo to the same mass.
As we saw in Section 5, lower 8 has a lower correlation detection
significance. While Macaulay et al. (2020) used just 196 SN Ia,
better photometry from the DES platform assisted their analysis.
Nevertheless, it may be challenging to use skew as a detection
method.

Using Bayesian analysis, we find the mean § = 1.8 £ 0.3 and ' =
197fgg hMg L;g. The SIS halo profile is ruled out at > 95 per cent
confidence. Comparing the Bayesian evidence of the power-law and
NFW profiles, we find no significant difference between the two.

In our model, I and B are uniform parameters over our entire
galaxy sample, which extends in the range —17 < M, < —24.
As there may be variation by colour, luminosity, morphology, and
environment, they should be interpreted as a weighted population
average, with the peak of weighting at M, ~ —21.
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We have considered the effects of Malmquist bias on our results.
We show that due to magnitude limits in the SN Ia data, I" is likely
biased low by ~ 10 per cent. This is well within the confidence
interval of our posterior, and so we do not adjust our results for this.
We have also shown that the lensing dispersion is biased low in the
longer redshift buckets z > 0.8 due to magnitude limits and the small
footprint of the HST surveys used in Pantheon.

We show that the lensing dispersion is fitted by

Olens = (0.06 & 0.017)(dc(z)/dc(z = 1))*?, (39)

which is consistent with the often cited o,y = (0.055 £ 0.04)z
(Jonsson et al. 2010) for z < 0.8 but starts to diverge higher for
z > 1.0. We can compare this number to intrinsic scatter o iy,
which is the variation in SN Ia absolute magnitude once the light
curves are standardized for colour, stretch, bias, and environment
(see equation 21). Scolnic et al. (2018) report that o, = 0.09 for
Pantheon. However, the scatter is largest for the older low-z survey,
and lowest for the newest Pan-STARRS data. Early results from the
DES and Foundation SN Ia surveys indicate the true o, ~ 0.07
(Brout et al. 2019). Equation (39) therefore shows that lensing will
match intrinsic scatter at z ~ 1.2, which is closer than previously
estimated (Jonsson et al. 2010). As a result, cosmological parameter
precision will be degraded in high-z surveys (Holz & Linder 2005
estimate by a factor of 3 at z ~ 1.5).

Based on the above, we propose that inference of cosmological
parameters may be improved in high-z surveys by modifying the
Tripp estimator to include a specific term to de-lens the magnitudes
as follows:

nw=mp—Mp+ax;— pc+ Au+ Ap — Yy Anijeps - (40)

The estimator Amye,s (Which may be seen as an environmental
variable analogous and comparable in size to the host mass correction
Aypp) is given by equation (26). Mean parameters given in Table 4 can
be used with y = 1.° Testing this, we find for the Pantheon sample
that equation (40) improves the standard deviation of the Hubble
diagram residuals by 0.005 mag for z > 0.4.

In addition to correcting magnitudes, SN Ia lensing may be used
as a source of cosmological information in itself, and we will explore
this in future work.

6.1 Future surveys

In this work, we used the Pantheon SN Ia compilation because of
its uniform calibration, well-characterized bias corrections, and large
overlap with the SDSS galaxy survey. However, the drawbacks are the
lack of a single SN Ia detection efficiency function (due to Pantheon
merging several surveys) and shallow SDSS photometry. This meant
the Malmquist bias was not straightforward to estimate.

The Dark Energy Survey (DES Collaboration 2016) offers several
advantages. The associated supernova survey is expected to catalogue
a few thousand photometrically classified SN Ia, down to a deep field
depth of r < 25.5 (Smith et al. 2020). As a result of photometric
classification, the detection efficiency will be simpler to model
and there is less risk of a biased selection of LOSs. In addition,
the foreground galaxy catalogue will be of equivalent depth as

9 A similar modification was proposed by Smith et al. (2014) with an estimator
based on spectroscopic-only galaxies. The authors find y ~ 4, which is
driven mainly by the ratio of the number density of spectroscopic galaxies
to photometric ones. However, as the spectroscopic galaxy coverage may not
be uniform across a given survey, this estimator seems less practical.
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the supernova survey, and as a result bias should be small and
straightforward to calculate. DES data have been used to produce
a map of lensing convergence derived from a weak-lensing shear
analysis (Jeffrey et al. 2021), and it will be particularly interesting
to compare such maps derived from shear to those derived from
magnification.

The Rubin LSST Observatory, expected to commence survey
operations in 2023 October, will reach approximately 2 mag deeper.
It is expected to catalogue ~ 10 000 SN Ia each year (Zhan & Tyson
2018) in the range 0.2 < z < 0.8 in the southern sky. With these
enlarged data sets, we anticipate improved luminosity, morphological
and colour characterization of I'(M, p).

Looking at space missions, the Roman Space Telescope will
conduct an SN Ia search as part of its galaxy survey mission. With
an optimized survey strategy (Hounsell et al. 2018), it may discover
> 10000 SN Ia out to z ~ 2.5 over the course of its mission. The
fractional distance modulus uncertainty per 0.1z bin is expected to
be 4 x 1073 (a factor of 10 improvement on the Pantheon data set).
With this high-precision data set, we would expect to detect lensing
at >150 confidence. It will be particularly interesting to test the
modified Tripp estimator we proposed in equation (40) on this data
set.
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APPENDIX A: SPECIFIC HALO PROFILES

In this appendix, we summarize analytical results for the lensing
magnification by certain halo profiles.

A1 Singular isothermal sphere

The singular isothermal sphere (SIS) is derived from the assump-
tion that dark matter haloes are thermalized with a homogeneous
temperature. The density profile is

2

UU
2nGr?’ A

where o is the isotropic velocity dispersion of dark matter. The mass
inside rygg is Moyy = % Pe rSOO, and if this is assumed to be fully
virialized, we can obtain the velocity dispersion as a function of Mg
from the virial theorem as

psis(r) =

6_ T 2 3
0 = 22009 M3, G, (A2)

It is then straightforward to integrate pg;s for the surface density, and
we obtain convergence and shear as
Go?l 1

2% b

(see e.g. Bartelmann & Schneider 2001, equation 3.19). Hence, the
magnification is

Ksis = Ysis = (A3)

0
= — A4
h=5 5" (A4)
where
On = 4-7'(0'1)2 Dy (AS)
E 2 D

is the Einstein radius of the halo.

We see that at large radii, A = O(#~") and so in the case of a
uniform surface density of lensing galaxies with overlapping haloes,
the total lensing amount does not converge as we extend our field
radius. Nevertheless, we use the SIS profile as a useful control profile
to compare with others that are better motivated.

A28 =1

A form of softened isothermal sphere, the convergence has a closed
form expression for g = 1, which is

—Wepels _apctanh (/1=2) x < 1
/ 22 1+4+x

Kﬁ:l = ):645(17)( ) ] (A6)
cpel's x—
arctan x>1,
S/ (x2-1)2 ( 1“)

where x = b/r; is the dimensionless impact parameter in units of the
scale radius.
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A3 NFW halo

Navarro et al. (1996) proposed an NFW profile to empirically fit
their N-body simulations of collapsed dark matter haloes over a wide
range of masses. The density profile is

8 pe

(£) (1+2)

The scale radius ry = ryp/c, where the concentration parameter ¢
is thought to be weakly dependent on the halo mass, with smaller
haloes being more concentrated (Navarro et al. 1996).

The profile is softer than the isothermal sphere at small radii,
and turns over at ry to r—3. Although its total mass diverges
logarithmically, we may equate M>oy = M(r0) and obtain

pNEw(r) = (AT)

200 I
c = —— . (A8)
3 In(l4+c¢)—c/(1+c)
Wright & Brainerd (2000) find that
2rdepe )] __2__grctanh 1;"} x <1
Tex2-1) { /1—x2 14+x
— 2rsdcpe ’ —
KNFW = § "33, x=1 (A9)
zir(fchcn {l - \/jzi arctan %} x> 1.
The shear is
rs;%/kg<(x) x <1,
INFW = rsa):cfc [g +41n %] x =1, (A10)
g (x) x>1,
where
8arctanh /(1 — x)/(1 + x) 4  x
8< = + - In -
N 2202
2 n 4arctanh/(1 — x)/(1 + x)
x2=1 x2 =1 —xHl2 7
8arctan/(x — 1)/(1 + x) N 4 I X
> = — n =
8 [N x2 2
2 4arctany/(x — 1)/(1 + x)
- . All
x2—=1 + (1 — x2)3/2 (ALD)
A4 Hernquist profile
For the Hernquist profile (8 = 3), the convergence is
8<:,0crs 2
Kiem = SR ((2+x%) S(x)=3) , (A12)
L log (14 /(1 — x2 1
Sy = 4 177 og(l+ (0 —=x)/x) x<1, (A13)
77 arccos 1/x x>1,

as given by Hernquist (1990).

APPENDIX B: ANALYTIC DERIVATION OF
OLENS

Gravitational lensing is a two-body interaction. We may estimate the
interaction rate per source as o n.V, where n, is the comoving number
density and V is an applicable comoving volume. Therefore, we may
expect oo ¢ V2 if n, is approximately constant and galaxies are
randomly distributed. The applicable volume should be related to the
lensing efficiency squared (i.e. the ‘cross-section’ of the interaction)
integrated over the distance to the source.
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Figure Bl. oeps computed by numerical integration with parameters Moo =
10" Mg, ¢ = 6, n. = 2.5 Mpc 3, together with the approximate formula
(B13) for byin = rsc.

A general formula for the variance of the lensing convergence due
to haloes has been derived in Kainulainen & Marra (2009, 2011a),
who used the same density model as we do. We summarize their
derivation, and explicitly integrate it for the case of NFW haloes.

It is convenient for this calculation to split the convergence as

K =Kkpg +Kg , (BI)
where
s 3Q2
Kp = — / 22/21’0 Hy (1 + 2(r))diens(r)dr (B2)
0

is the ‘empty beam’ value corresponding to maximum de-
magnification, which is constant for a given source distance. djens =
r('j—:’) is the lensing efficiency for a source at comoving distance
ry and a lens at r. The convergence due to matter haloes along a
given LOS to a source may be written as the sum of contributions
discretized over Ny bins in comoving distance {r;} and N bins in
comoving impact parameter {b,, }:

Ns Ng

kn =YY kinkiin - (B3)

i=1 m=1
The k;,, are random number counts of lensing haloes in the comoving
volume defined by the interval (r;, r; + Ar;) and (b, b,, + Ab,,)
where the binning is arbitrary, but small enough such that the
convergence k|, ;, of single haloes can be taken to be a fixed value
over the bin.

The k;,, have Poisson statistics

P(k;,,) ~ Poisson(AN;,,) (B4)
- Yeim
= Il exp — ANy, (B5)

where the Poisson parameter is the expectation of the number of
haloes in each bin

AN;, = nC(27'tbmAbm)Ar,v. (B6)

Photon conservation is ensured by the requirement that the matter
density of haloes averages to the homogeneous matter density Q2.

B1 0 for a general halo profile

For simplicity here, we take all haloes that have the same mass and
parameters — an extra bucketing scheme can be easily introduced to
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generalize this if desired. We also assume that the comoving number
density of haloes is constant with time, the matter distribution along
LOSs to supernovae has the same distribution as randomly drawn
LOSs, and the Poisson numbers k;,, are uncorrelated.

The assumption of a randomly drawn and unbiased LOS, while
consistent with the ‘stochastic’ treatments of Holz & Linder (2005),
Jonsson et al. (2010), and Kainulainen & Marra (2009), is not
trivial: SN Ia are not located randomly in empty space but in-
stead in galaxies. To the extent that galaxies cluster (i.e. exhibit
positive spatial correlation of their number density), SN Ia may
be expected to lie preferentially in overdense regions, and the
Poisson numbers k;, will indeed be correlated. Kainulainen &
Marra (2011b) examined spatial correlations in this model by
using the halo model, which splits the contribution into one-
halo (peak) and two-halo (background) components, and found
that the additional contribution to the variance due to the two-
halo term was relatively small. However, taking into account mass
variability and potential halo substructure, there formulae stated
here should be seen as a lower bound for the true lensing disper-
sion.

Equation (B3) is the weighted sum of uncorrelated (but not iden-
tically distributed) Poisson random numbers k;,,. We can therefore
write

Var(k) = > k7, (2) ANy, (B7)

im

where we have used the properties of variance that Var(X;
+ ¢) = Var(X;) for any random variable X; and constant c,
Var(a;y X)) = ZaizVar(X,v) for any uncorrelated random vari-
ables, and specifically for the Poisson distribution Var(k;,) =
ANjy.

Converting the sum into an integral, we have (see also equation 70
of Kainulainen & Marra 2011a)

3 HZ 2 rs
ol = 21, {fszm.oc—g} /0 drd}, (r, ro)(1 + z(r))

2
2
/‘bmax bdb ( bmax zxdx p(x’ r))
bunin b NXT=Db> Pm 7
where by, and b, are the arbitrary comoving cutoff radii imposed
to regularize the integrals (b,,x may be taken to be a truncation
radius). The latter integral is the comoving halo surface density
at impact parameter b normalized to units of the average mat-
ter density p,. We see that the volume element enters via the
product d2, dr.

(B8)

Weak-lensing magnification of Type la SN 2321

B2 0}ens for the NFW halo profile

We use the formula for «knpw specified in Appendix A and define
f. = U(log(1 + ¢) — c/(c + 1)). In the limit x > 1, we have

2G My f- 1
Kuim = = den 1, - (BY)
and in fact this will be an adequate proxy for our purposes. ¢ in the
denominator is the speed of light. The proportionality to 1/b% is due
to p(r) 1/ for the NFW halo at large r.

Substituting this into equation (B8)

Opons = A X I, (B10)
where the constant of proportionality
2GM :
A= (%‘J) 2, (B11)
and ¢
r b 2 2
K 'max — 1
I =/ dr/ db%i . (B12)
0 bnin g b

All variables are expressed as comoving distances. With the final
assumption that by, > by, are fixed and not functions of r, we
arrive at

[A )
Olens = — = .
60 bmin

In fact, the integral without assuming the large x approximation can
be done numerically, in which case we find by >~ re = rago/c, as
shown in Fig. B1.

The behaviour o s o /2 is generic provided our assumptions
hold, and we checked our formula matches that of a randomly
generated galaxy catalogue. We have also checked the formula
against o, calculated from a galaxy catalogue generated from
the Millennium Simulation by Henriques et al. (2012). There is a
modest extra variance, increasing with distance, indicating the spatial
correlation of galaxies. However, when centring the LOSs on random
galaxies, we find that o |, is larger than our formula by ~ 50 per cent
atz = 1.

It is this last point that has interesting implications for supernova
cosmology: the Pantheon SN Ia may be special if they lie preferen-
tially where the matter density and clustering are different than the
background average.

(B13)

This paper has been typeset from a TEX/IATEX file prepared by the author.
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