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Abstract
Objective: Affective disorders are frequent comorbidities of temporal lobe epi-
lepsy (TLE). The endogenous opioid system has been implicated in both epilepsy 
and affective disorders, and may play a significant role in their bidirectional re-
lationship. In this cross- sectional study, we investigated the association between 
μ- opioid receptor binding and affective disorders in patients with TLE.
Methods: Nine patients with TLE and depression/anxiety underwent 11C- 
carfentanil positron emission tomography (CFN PET) and neuropsychiatric as-
sessment, including the Hospital Anxiety and Depression Scale and the Positive 
and Negative Affect Schedule. The normalized CFN PET scans were compared 
with those of 26 age- matched healthy controls. Correlation analyses with affec-
tive symptoms were performed by region of interest- based analysis focusing on 
the limbic circuit and orbitofrontal cortex.
Results: We observed widely reduced CFN binding potential (BP) in bilateral 
frontal lobes and striata in patients with TLE compared to healthy controls. In 
the TLE group, more severe anxiety and negative affect were associated with de-
creased CFN BP in the posterior cingulate gyrus.
Significance: In patients with TLE, interictally reduced binding in the opioid 
system was associated with higher levels of anxiety and negative affect. We spec-
ulate that seizure- related agonist- driven desensitization and downregulation of 
opioid receptors could be a potential underlying pathomechanism.
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1  |  INTRODUCTION

Affective disorders, in particular depression and anxi-
ety,1,2 are frequent comorbidities in patients with epilepsy. 
These affect approximately 20%– 30% of patients with tem-
poral lobe epilepsy (TLE)3,4 and critically impact their 
quality of life.5 Individuals with depression have an in-
creased risk of developing epilepsy, and may have a poor 
response to pharmacotherapy for seizures.6 The underly-
ing biological mechanisms of this bidirectional associa-
tion are unknown.

The opioid neurotransmitter system has an import-
ant role in emotion regulation and stress response. 11C- 
Carfentanil (CFN), a selective μ- opioid receptor subtype 
1 agonist,7 and 11C- diprenorphine, a nonselective opioid 
receptor antagonist, are positron- emitting radiopharma-
ceuticals, which reversibly bind to either μ- opioid recep-
tors selectively (CFN) or reflect alterations at all the opioid 
receptors except opioid receptor- like receptor, that is, μ, κ, 
and/or δ.8 Differences in binding potential of these posi-
tron emission tomography (PET) tracers reflect changes 
in opioid receptor density, or occupancy of the receptor by 
endogenous transmitters (endorphins, enkephalins, and 
endomorphins).

The endogenous opioid system has been implicated 
in both affective disorders and epilepsy.6 Decreased opi-
oid receptor binding with positive mood after enjoyable 
stimuli such as a movie or music, corresponding to an en-
dogenous opioid release, was demonstrated in the orbitof-
rontal and mesiotemporal areas including the amygdala.9 
Conversely, increased μ- opioid receptor binding, sugges-
tive of reduced endogenous opioid release, was seen in the 
anterior cingulate, ventral pallidum, amygdala, and infe-
rior temporal cortex during a sustained negative emotion 
state.10 Further evidence points to a dysregulation of the 
opioid neurotransmitter system during emotion regula-
tion in patients with depression. Paradoxically, patients 
with depression presented with decreased μ- opioid recep-
tor binding, suggestive of either a downregulation of μ- 
opioid receptors or increased endogenous opioid release 
in response to a sustained negative emotion state.11 This 
might represent a pathological stress response to negative 
emotion stimuli in depression. A recent retrospective PET 
study in healthy controls showed reduced CFN binding 
with subclinical depression and anxiety scores in cortical 
and subcortical areas, notably in amygdala, hippocam-
pus, ventral striatum, and orbitofrontal and cingulate 
cortices.12

In patients with epilepsy, PET studies implicated a role 
of the opioid system in the termination of seizures, sug-
gesting an ictal release of opioidlike substances.13 This 
ictal opioid release leads to a subsequent hyperexpression 
of opioid receptors.13 These adaptive processes start within 

hours after seizures and are likely to persist for several 
days. At a later stage, lateralized increases of opioid recep-
tor binding were observed in the ipsilateral temporal lobe 
in patients with TLE, pointing to an interictally altered 
opioid system.14,15 The explanation for relatively increased 
binding in the temporal neocortex and reduced binding 
in the amygdala in TLE remains unclear.15 Postictal and 
interictal changes of opioid transmission might lead to af-
fective dysregulation, as reflected in impaired emotional 
processing in TLE patients.16,17

Given these shared disturbances in affective disorders 
and epilepsy, we hypothesized a role of the opioid neu-
rotransmitter system in the pathophysiology of interictal 
depression. We investigated the relationships between μ- 
opioid receptor binding and affective disorders in patients 
with TLE using CFN PET. We aimed to detect alterations 
of the opioid system affecting the limbic circuit and orbi-
tofrontal cortex, that is, areas that are crucial for emotion 
regulation.9,10 Based on our observations and previous 
data, we propose a hypothetical model for the pathophysi-
ology of interictal depression.

2  |  MATERIALS AND METHODS

2.1 | Participants

We recruited nine consecutive patients with TLE 
(mean ± SD age  =  42.7 ± 10.1 years, four females) from 
the neurology and neuropsychiatry clinics at the National 
Hospital for Neurology and Neurosurgery London, and 
the details are shown in Table  1. The lateralization and 
localization of epilepsy were determined by qualified 
neurologists based on seizure semiology and ictal/inter-
ictal electroencephalographic recordings. We excluded 
cases with (1) pregnancy or breastfeeding, (2) current or 
recent (<6  months) treatment with opioids, (3) alcohol 

Key Points
• The endogenous opioid neurotransmitter sys-

tem has an important role in both epilepsy and 
affective disorders.

• Studies also suggested ictal opioid release 
and subsequent hyperexpression of opioid 
receptors.

• Using CFN PET, we found widely reduced CFN 
binding potentials in patients with TLE and af-
fective symptoms.

• This study suggested the potential involvement 
of opioid systems in affective disorders in TLE.

 15281167, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/epi.17463 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [21/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



422 |   SONE et al.

consumption of >21 units per week, or (4) a history of 
drug abuse or use of illegal drugs. All patients were as-
sessed by a consultant neuropsychiatrist (J.F.) via a clini-
cal interview. Nine patients diagnosed with current or 
past mood and anxiety disorders, fulfilling criteria accord-
ing to the Diagnostic and Statistical Manual of Mental 
Disorders, 4th edition revised, were recruited into the 
study. At the time of the PET scan, depressive and anxi-
ety symptoms were evaluated using the Hospital Anxiety 
and Depression Scale (HADS). Additionally, the Positive 
and Negative Affect Scale (PANAS) was used to measure 
the two affective dimensions.18 All patients underwent 
3- T magnetic resonance imaging (MRI) scans, which 
identified no structural lesions except for one case with 
unilateral hippocampal sclerosis (Patient 7). We obtained 
written informed consent from all patients, and the study 
protocol was approved by the London- Bromley Research 
Ethics Committee (15/LO/1767).

As a comparison group, we used data from 26 age- 
matched healthy controls (mean ± SD age = 39.9 ± 
10.0 years, all males) that were previously acquired on the 
same scanner in other studies.19,20

2.2 | Image acquisition

All PET/computed tomography (CT) scans were performed 
on a Siemens Healthcare HiRez 6 scanner. A low- dose CT 
scan was performed for attenuation correction. CFN was 
injected intravenously (mean ± SD dose  =  211 ± 74 MBq, 
range  =  110– 330  MBq), followed by the PET/CT scan; 
the emission scan duration was 90 min in 26 frames 
(8 × 15 s, 3 × 60 s, 5 × 120 s, 5 × 300 s, and 5 × 600 s, to a total 
of 5400 s). Three- dimensional volumetric T1- weighted 
structural MRI was also obtained in each participant by 
the following protocol: a magnetization prepared rapid 
gradient echo sequence (repetition time = 2300 ms, echo 
time = 2.98 ms, inversion time = 900 ms, flip angle = 9°, 
field of view = 256 mm, image matrix = 240 × 256) with an 
isotropic resolution of 1 mm (Magnetom Trio Syngo MR 
B13, Siemens, 3 T).

2.3 | Image processing

The dynamic PET data of patients with TLE and healthy 
controls were processed by MIAKAT software (www.mi-
akat.org) and Statistical Parametric Mapping 12 (SPM12; 
http://www.fil.ion.ucl.ac.uk/spm/). Initially, the PET 
images underwent attenuation correction and motion 
correction by frame- by- frame realignment. For motion 
correction, large movements detected on video resulted 
in frame realignments or exclusion of frames. We also T
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confirmed that the global motion (between the first and 
last frames) was <5 mm. After coregistration to the struc-
tural MRI, the nonlinear deformation parameters derived 
from unified segmentation of MRI were applied to the PET 
images. The nondisplaceable binding potential (BPND) 
values of CFN were quantified by the simplified reference 
tissue model with occipital lobe gray matter as the refer-
ence.21,22 The mean images of BPND values in TLE and 
healthy control groups are shown in Figure 1A.

2.4 | Voxel- based analysis

We calculated whole- brain voxelwise differences between 
TLE patients and healthy controls in CFN BPND using 
spatially normalized CFN BPND images smoothed with 
an 8- mm full width at half maximum Gaussian kernel. 
We compared groups using a two- sample t- test design in 
SPM12, with age as a covariate.

2.5 | Region of interest analysis

Based on previous literature,9,10 we expected to detect 
changes in the limbic circuit and orbitofrontal areas. 
Thus, we used the following region of interests (ROIs) 

in this study: amygdala, hippocampus, parahippocampal 
gyrus, anterior cingulate gyrus, middle cingulate gyrus, 
posterior cingulate gyrus, and orbitofrontal cortex (OFC). 
These ROIs were extracted for the left and right hemi-
sphere from the Automated Anatomical Labeling atlas,23 
and the locations of ROIs are shown in Figure  1B. The 
mean BPND values within the gray matter of each ROI 
were calculated by the PETPVE12 toolbox,24 in the un-
smoothed, spatially normalized CFN BPND images.

To determine seizure activity- related alterations of the 
opioid system, we analyzed values ipsi-  and contralateral 
to the focus in TLE separately.

2.6 | Statistics

We compared ipsilateral, contralateral, and control BPND 
values using one- way analysis of variance and the post 
hoc Tukey test. In addition, we assessed the correlation 
between BPND in each ROI and the scores of HADS and 
PANAS using Pearson correlation coefficient in the TLE 
group. We also assessed correlations between BPND with 
gender, age, age at seizure onset, duration of epilepsy, 
presence of focal aware seizures or focal to bilateral tonic– 
clonic seizures, log10 of interval since last seizure in days, 
and log10 of overall seizure frequency. The Shapiro– Wilk 

F I G U R E  1  (A) The mean nondisplaceable binding potential (BPND) images of 11C- carfentanil (CFN) positron emission tomography 
within each the temporal lobe epilepsy (TLE) and healthy control groups. (B) The location of volumes of interests in this study focusing 
on limbic circuit and orbitofrontal cortex. Red, orbitofrontal cortex; light green, anterior cingulate gyrus; yellow, middle cingulate gyrus; 
orange, posterior cingulate gyrus; dark blue, amygdala; blue, hippocampus; green, parahippocampal gyrus. Details are described in the 
Materials and Methods section. (C) Whole- brain voxelwise comparison with age as a covariate revealed widespread reduction of CFN BPND 
within bilateral frontal lobes and striatum in TLE with height uncorrected p < .001 (T = 3.37) and cluster p < .05 with familywise error 
correction. L, left; R, right.
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test did not detect significant deviations from a nor-
mal distribution for these variables. A p- value < .05 was 
deemed significant. For voxelwise comparisons with SPM, 
we used an uncorrected threshold of p < .001 at the voxel 
level combined with a familywise error- corrected p < .05 
at the cluster level. SPSS software, version 25.0, was used 
for statistical analyses.

3  |  RESULTS

3.1 | Demographics and psychiatric 
symptoms in patients with TLE

Clinical data including psychiatric episodes and affective 
scales are shown in Table 1. All the patients had a history of 
psychiatric comorbidities (Table 1). Three showed HADS- 
Depression (HADS- D) scores > 8 points, a frequently used 
cutoff for depression. Six patients showed raised anxiety 
scores (HADS- Anxiety [HADS- A] > 8 points).

3.2 | Voxel- based and ROI- based 
comparison of CFN binding between 
TLE and healthy controls

The voxelwise group comparison revealed a widespread 
reduction of CFN BPND mainly in the frontal lobes and 
basal ganglia, including caudate and putamen (Figure 1C 
and Table 2) in patients with TLE, all of whom had cur-
rent or past comorbid affective symptoms. There were no 
areas of increased CFN BPND in the TLE group. These 
findings were confirmed using ROI analysis in the OFC 
and cingulate gyri (Figure 2). The reductions were bilat-
eral and did not differ between the ipsi-  and contralateral 
hemisphere in patients with TLE. There was no differ-
ence in CFN BPND within the mesial temporal structures 
between patients with TLE and healthy controls. The ef-
fect sizes and percentages of reductions for each ROI are 
shown in Table 3. Furthermore, each patient's CFN BPND 
is presented in Figure S1.

3.3 | Correlation with clinical variables

We found lower CFN BPND in the contralateral posterior 
cingulate gyrus in patients with TLE and higher anxiety 
scores (HADS- A, r  =  −.785, p  =  .012; Figure  3). There 
was no association with HADS- D at the uncorrected 
p < .05 level. In patients with TLE, higher negative affect 
scores measured with the PANAS questionnaire corre-
lated with lower CFN BPND; the higher the negative af-
fect scores, the lower the CFN BPND in the contralateral 

posterior (r  =  −.734, p  =  .024) and anterior cingulate 
gyrus (r = −.789, p =  .012; Figure 3). These correlations 
did not reach statistical significance with false discovery 
rate (FDR) correction (p = .084, corrected for the number 
of ROIs).

Demographic and clinical variables did not correlate 
with CFN BPND in any ROIs. The detailed results are 
shown in Table S1.

4  |  DISCUSSION

We investigated the role of the opioid receptor system in 
interictal affective disorders in TLE. We observed widely 
reduced CFN BPND in bilateral frontal lobes and striata 
in patients with TLE compared to healthy controls. Lower 
CFN BPND in the posterior cingulate gyrus correlated 
with more severe anxiety and negative affect within TLE 
subjects. These results support the involvement of a dys-
regulated opioid system in the pathogenesis of interictal 
depression and anxiety.

The opioid system plays a role in both epilepsy and af-
fective disorders. Endogenous opioids are released during 
spontaneous and provoked seizures and may be involved 
in seizure termination.13,25 Opioids are also released 
during positive mood induction in healthy individuals.9 
In people with depression, there is a paradoxical release 
of opioids during a sustained negative emotion state,11 
which may contribute to dysregulated emotion process-
ing. As the previous PET studies on seizure- related opioid 
release utilized 11C- diprenorphine, which labels multiple 
subtypes of receptors,13,25 it remains unclear whether both 
seizures and affective disorders involve the same classes 
of opioid receptors and endorphins. However, given the 
therapeutic effect of electroconvulsive therapy on depres-
sion,26 seizure activity may also involve the μ- opioid neu-
rotransmission system.

The interictal changes observed in our study are novel. 
We observed that the opioid system is altered interic-
tally and that some of these disturbances correlate with 
measures of anxiety and negative affect, suggesting that 
these differences between patients and controls are either 
induced, by recurrent seizure- induced opioid release re-
sulting in a downregulation of receptors, or preexisting 
lower expression of receptors, reflecting a vulnerability to 
mood disorders. Previous studies analyzing CFN binding 
in TLE did not include healthy volunteers.14,15 Thus, the 
authors only focused on lateralized changes and could not 
detect the widespread, bilateral, and largely symmetric re-
ductions of CFN binding in the frontal lobes and striata 
observed in our study (Figure  1C). Reduced CFN bind-
ing can be interpreted as either a reduced density of μ- 
opioid receptors or an increased receptor occupancy due 
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to an increased endogenous opioid tone. We have previ-
ously demonstrated that endogenous opioids are released 
during spontaneous seizures but also that the opioid tone 
returns to baseline in 4– 12 h following a seizure. The opi-
oid tone is at normal or low- normal levels interictally.13,25 
Our patients were scanned several days (median = 2 days, 
interquartile range = 19 days) after the last seizure. Thus, 
an increased interictal endogenous opioid tone is an un-
likely explanation for the reduced CFN BPND observed 
in this study.

Due to these considerations, the reduced CFN BPND in 
bilateral frontal lobes and striata of patients with TLE may 
reflect reduced μ- opioid receptor density. A reduced number 
of μ- opioid receptors may be related to receptor desensiti-
zation following pulsatile opioid release during chronic re-
peated seizures. Agonist- driven desensitization of receptors 
occurs within minutes after agonist exposure and involves 
internalization and downregulation of receptors.27 Release 
of endogenous opioids caused a reduced density of opioid 
receptors in rodent stress experiments28 and rodent models 

T A B L E  2  Detailed voxelwise results of reduced CFN BP in TLE

Regions of peaks
Cluster 
size

Cluster  
p (FWE) x y z T

Height  
p (FWE)

Left anterior prefrontal cortex (BA10), 
orbitofrontal cortex (BA11), premotor 
cortex/supplementary motor area (BA6), 
dorsolateral prefrontal cortex (BA9), Broca 
(Pars Triangularis) (BA45), frontal eye 
fields (BA8)

Right premotor cortex/supplementary motor 
area (BA6), frontal eye fields (BA8), 
anterior prefrontal cortex (BA10)

13 037 <.001 −15 63 −9 6.82 .001

−12 36 52 6.14 .003

10 27 60 5.84 .006

−16 16 64 5.78 .007

16 −3 70 5.64 .011

16 36 54 5.63 .011

10 45 48 5.58 .012

−9 10 69 5.45 .016

−10 22 63 5.27 .025

−18 50 38 5.23 .028

−10 54 38 5.13 .035

−51 20 10 5.01 .047

10 64 −10 4.97 .052

−10 62 22 4.93 .057

27 24 52 4.71 .093

−28 26 50 4.68 .099

Right Broca (Pars Opercularis) (BA44), 
primary motor cortex (BA4), frontal 
eye fields (BA8), premotor cortex/
supplementary motor area (BA6), putamen

3969 .002 54 10 15 5.13 .036

46 12 8 4.96 .053

58 −2 14 4.62 .113

42 6 40 4.48 .154

44 16 46 4.45 .163

50 12 32 4.13 .307

54 −4 38 4.09 .334

28 −6 −3 3.86 .485

30 3 9 3.79 .542

Left orbitofrontal cortex (BA11), caudate, 
dorsal anterior cingulate cortex (BA32)

Right anterior prefrontal cortex (BA10), 
orbitofrontal cortex (BA11)

1899 .025 −21 42 −15 4.79 .079

9 46 9 4.22 .262

−8 21 −9 4.11 .323

−10 16 −3 4.02 .377

3 28 −12 3.84 .500

−4 39 −3 3.42 .808

Note: Coordinates are shown in Montreal Neurological Institute space. The height threshold for uncorrected p < .001 was T = 3.37. All local maxima at least 
8 mm apart are shown.
Abbreviations: BA, Brodmann area; BP, binding potential; CFN, 11C- carfentanil; FWE, familywise error; TLE, temporal lobe epilepsy.
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of drug addiction.29 We speculate that chronic exposure to 
endogenous opioids released during repeated seizures origi-
nating in the temporal lobe could cause a desensitization of 
receptors in the frontal lobes and striata, areas that are well 
connected with the epileptic focus.

Given the involvement of the OFC and cingulate gyri 
in emotional processing and decision- making,30,31 we hy-
pothesized that our findings might relate to psychiatric 
impairments in TLE. In our study, dysregulation of opi-
oid receptors in the posterior cingulate gyrus correlated 
with measures of anxiety and negative affect. There were 
no correlations with other clinical or demographic vari-
ables. The posterior cingulate gyrus plays a role in several 

neuropsychiatric disorders.32 An event- related functional 
MRI study reported a significant deactivation of the poste-
rior cingulate gyrus in response to threat- related words in 
patients with anxiety disorders.33 The posterior cingulate 
gyrus is also involved in chronic pain,34 and given the po-
tential similarities between epilepsy and chronic pain, for 
example, hyperexcitability, our findings in posterior cin-
gulate gyrus might be of relevance. Another study showed 
decreased functional connectivity in these areas in people 
with higher levels of anxiety.35 The observation of reduced 
CFN BPND in those with higher levels of anxiety and 
more negative affect underlines the role of the opioid sys-
tem in emotion regulation in people with epilepsy.

F I G U R E  2  Group comparison of nondisplaceable binding potential of 11C- carfentanil positron emission tomography in each volume 
of interest, among ipsilateral, contralateral, and control values. ACG, anterior cingulate gyrus; AMY, amygdala; HIP, hippocampus; MCG, 
middle cingulate gyrus; N.S., not significant; OFC, orbitofrontal cortex; PCG, posterior cingulate gyrus; PHG, parahippocampal gyrus.

T A B L E  3  Mean/SD values and effect sizes of ROI- based CFN BP in the group comparisons

Region

Ipsilateral Contralateral HC

Mean SD Reduction, % Cohen d Mean SD Reduction, % Cohen d Mean SD

OFC 1.03 .15 21% −1.74 .99 .17 24% −1.88 1.30 .16

ACG 1.31 .15 10% −.90 1.28 .17 12% −1.03 1.45 .16

MCG 1.09 .12 12% −1.10 1.09 .12 12% −1.10 1.24 .15

PCG .54 .08 13% −.83 .51 .08 19% −1.14 .62 .11

AMY 1.39 .22 6% −.48 1.42 .19 4% −.35 1.48 .15

HIP .62 .13 4% −.26 .59 .12 8% −.54 .65 .10

PHG .77 .11 −4% .29 .75 .08 −1% .11 .74 .10

Note: Bold font denotes significant changes compared with HC. Effect sizes and reduction % are calculated in comparison with HC values.
Abbreviations: ACG, anterior cingulate gyrus; AMY, amygdala; BP, binding potential; CFN, 11C- carfentanil; HC, healthy control; HIP, hippocampus; MCG, 
middle cingulate gyrus; OFC, orbitofrontal cortex; PCG, posterior cingulate gyrus; PHG, parahippocampal gyrus; ROI, region of interest.
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It is also notable that the correlations with CFN BPND 
were found only in anxiety or negative affect and not in 
HADS- D. There have been arguments on the different 
characteristics of depressive symptoms in epilepsy from 
major depression in the general population, and dysphoric 
mood has been suggested as a potential feature,36,37 de-
spite some controversies.38 Therefore, our findings would 
be possibly consistent with such interesting clinical obser-
vations on affective symptoms in epilepsy.

It is important to note that other factors in addition 
to the opioid system play a role in interictal affective dis-
orders, including atrophy of limbic structures, network 
dysfunction and synaptic disconnection, or alterations to 
serotonin homeostasis.6 The psychosocial effects of sei-
zures, medication, and their impact on the ability to work, 
drive, and participate in social gatherings additionally 
contribute to affective disorders.

This study has several limitations. We assessed a 
small population of patients with TLE. We only ob-
served a correlation with negative affect and levels of 
anxiety but did not find a correlation with the severity 
of depression measured with HADS- D. It should also be 
noted that only three patients presented suprathreshold 
depressive symptoms (i.e., HADS- D ≥ 8), whereas six pa-
tients met the threshold for anxiety disorder. Moreover, 
the correlation results did not survive after FDR correc-
tion (p =  .084), and careful interpretation is necessary. 
Larger studies might expand on our findings and be 
able to demonstrate effects related to these symptoms. 
Additionally, more comprehensive comparisons, for 
example, TLE without depression versus TLE with de-
pression versus depression without TLE versus healthy 
controls, should be considered in the future. Like other 
studies,39,40 the group of healthy controls only included 
males due to the ethical considerations and the potential 

risk of radiation in females of childbearing age. There 
is no established evidence on sex differences in CFN 
BPND, and our results should be carefully interpreted 
with this limitation. Moreover, like other studies,39,40 we 
did not perform partial volume effect correction. MRI 
did not show any lesions or focal atrophy except for 
only one case, so that partial volume effect correction 
is likely not to alter the findings, although we cannot 
exclude the possibility of subtle atrophy in the patients 
with depression. Lastly, we mainly recruited patients 
with TLE who were undergoing psychiatric evaluation. 
Some patients also took antidepressants, which might 
have possibly affected brain CFN BPND. Thus, our re-
sults showing reduced CFN BPND in the frontal lobes 
and striata may not be generalizable to all patients with 
TLE and may mainly apply to those presenting with psy-
chiatric symptoms.

5  |  CONCLUSIONS

We demonstrated interictal alterations of the opioid sys-
tem in patients with TLE that were related to higher levels 
of anxiety and negative affect. Building on these observa-
tions and previous research, we propose a hypothetical 
model of the role of the opioid system in the development 
of interictal affective disorders. Targeting this system may 
provide novel treatment avenues for affective disorders in 
TLE.
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