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Dangers of hyperoxia
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Abstract 

Oxygen  (O2) toxicity remains a concern, particularly to the lung. This is mainly related to excessive production of reac-
tive oxygen species (ROS). Supplemental O2, i.e. inspiratory  O2 concentrations  (FIO2) > 0.21 may cause hyperoxaemia (i.e. 
arterial (a)  PO2 > 100 mmHg) and, subsequently, hyperoxia (increased tissue  O2 concentration), thereby enhancing ROS 
formation. Here, we review the pathophysiology of  O2 toxicity and the potential harms of supplemental  O2 in various 
ICU conditions. The current evidence base suggests that  PaO2 > 300 mmHg (40 kPa) should be avoided, but it remains 
uncertain whether there is an “optimal level” which may vary for given clinical conditions. Since even moderately 
supra-physiological  PaO2 may be associated with deleterious side effects, it seems advisable at present to titrate  O2 to 
maintain  PaO2 within the normal range, avoiding both hypoxaemia and excess hyperoxaemia.
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Background
Since its discovery [1–3], oxygen  (O2) has been recog-
nised as “friend and foe” [4]. It is vital for aerobic res-
piration within the mitochondria, yet mitochondrial 
respiration also forms reactive oxygen species (ROS) 
[5], production of which relates to  O2 concentration 
[6–8]. Supplemental  O2, i.e. inspiratory  O2 concentra-
tions  (FIO2) > 0.21, may cause hyperoxaemia (arterial 
 PO2 > 100  mmHg) and subsequently increased ROS for-
mation [9–11]. This is particularly pronounced during 
ischaemia/reperfusion (I/R) and/or hypoxia/re-oxygen-
ation [6–8]. ROS are as “Janus-headed” as  O2: ROS are 
vital for host defence, and also toxic [12]. Consequently, 
 O2 toxicity, especially pulmonary, is a matter of concern 
[13–15], and optimal dosing remains unclear in critical 
care. This review discusses potential harms of  O2 in vari-
ous underlying critical illnesses. Figure 1 summarises the 

possible dangers of hyperoxia, highlighting pathophysi-
ological mechanisms and their impact on specific disease 
conditions. The most important clinical studies are listed 
in Table  1; “Additional file  1” shows the complete study 
list.

Pathophysiology
Oxygen generally exists as di-atomic molecule  (O2); 
its two atoms bond to each other through single bonds 
leaving two unpaired electrons.  O2 performs its actions 
through these unpaired electrons which act as radicals. 
ROS are even more reactive molecules formed through 
oxygen’s electron receptivity (e.g. superoxide, peroxide, 
and hydroxyl anion).

Over 90% of  O2 consumption is utilised by mitochon-
dria, predominantly for ATP production (oxidative 
phosphorylation), but also for heat generation through 
uncoupling, and superoxide production.  O2 is the termi-
nal electron acceptor at Complex IV of the electron trans-
port chain (ETC), being reduced to water in this process. 
For each mole of glucose metabolised, anaerobic respira-
tion (glycolysis) generates only 2 ATP moles compared to 
approximately 28–30 from oxidative phosphorylation. In 
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health, 1–3% of mitochondrial  O2 consumption is used 
at the ETC Complexes I and III to generate superoxide, 
an important signalling molecule [16]. Superoxide is nec-
essary for enzyme processes, e.g. oxidases (catalysing 
oxidation–reduction reactions) and oxygenases (incor-
porating oxygen into a substrate). Activated immune 
cells utilise  O2 for extra-mitochondrial ROS produc-
tion: NADPH oxidase generates superoxide (“respiratory 
burst”) for phagocytosis. Unless overwhelmed by ROS 
over-production, antioxidant capacity (e.g. superoxide 
dismutase, glutathione, thioredoxin) prevents oxidative 
damage to DNA, proteins and lipids, and subsequent cell 
death.

O2 also affects the inflammatory response. Experimen-
tal models and volunteer and patient studies demonstrate 
that hyperoxia (and hypoxia) can induce pro- and anti-
inflammatory responses, with both protective and harm-
ful sequelae [17]. Hyperbaric oxygen is used to aid wound 
healing and treat gas gangrene, but may cause neurotox-
icity. Whether the response to hyperoxia relates to its 
degree and/or duration, specific cell types, background 
inflammation, or other factors remains uncertain; clearly, 
 O2 toxicity can be induced de novo without underlying 
pathology, predominant organs being lung, brain, and 
eye.

Pulmonary toxicity was first described by Lor-
rain Smith: pure  O2 at hyperbaric pressures caused 

inflammatory pneumonitis [18]. At atmospheric pres-
sure pneumonitis was seen after days in non-human 
primates breathing 60–100%  O2 [19–21]. After initially 
affecting the airways (tracheobronchitis) with reduced 
mucociliary clearance [22], the lung parenchyma 
becomes involved. In humans, this occurs especially 
when the inspiratory  PO2 is significantly enhanced in 
a hyperbaric environment. Initial complaints are ret-
rosternal chest pain, then coughing and dyspnoea as 
a pneumonitis develops with pulmonary oedema and 
diffuse radiological lung shadowing. In healthy volun-
teers breathing 98–100%  O2, chest pain commenced 
after 14 h, coughing and dyspnoea between 30 and 74 h 
[22]. Due to nitrogen washout [23], there may also be 
atelectasis in lung regions with low ventilation/perfu-
sion ratios [24].

Whether hyperbaric vs. normobaric  O2 toxicity mecha-
nisms and onset are similar is unclear. Pulmonary injury 
was accelerated by hyperbaric hyperoxia, but was less 
inflammatory in character and driven by a neurogenic 
component that could be blocked by inhibiting neuronal 
nitric oxide synthase or vagal nerve transection [25]. Pos-
sible synergistic effects on  O2 toxicity of underlying lung 
pathology are poorly characterised, especially at the more 
moderate degrees of hyperoxia inflicted on patients. This 
is, however, well-recognised with bleomycin toxicity 
where mild hyperoxia may be damaging [26].

Fig. 1 Potential harm of hyperoxia. AIS acute ischaemic stroke; MI myocardial infarction; ARDS acute respiratory distress syndrome;  FIO2 fraction 
of inspired  O2; HPV hypoxic pulmonary vasoconstriction; ICB intracranial bleeding;  PaO2 arterial  O2 partial pressure; NO nitric oxide;  ONOO‒ 
peroxynitrite;  O2

•‒ superoxide anion; ROS reactive oxygen species; SAB subarachnoidal bleeding; TBI traumatic brain injury. * Note that while 
hyperoxia and hyperoxaemia are well defined as  FIO2 > 0.21 and  PaO2 > 100 mmHg, respectively, there is no general threshold for “tissue hyperoxia”, 
because the normal tissue  PO2 depends on the macro- and microcirculatory perfusion and the respective metabolic activity. Nevertheless, it is 
noteworthy that  PO2 levels as low as 0.3 – 0.7 mmHg suffice for correct functioning of the mitochondrial respiratory chain [17, 162]



Page 3 of 15Singer et al. Critical Care          (2021) 25:440  

Ta
bl

e 
1 

M
ai

n 
fe

at
ur

es
 o

f t
he

 s
tu

di
es

 d
is

cu
ss

ed
 in

 th
e 

te
xt

. A
BG

 a
rt

er
ia

l b
lo

od
 g

as
; A

C
S 

ac
ut

e 
co

ro
na

ry
 s

yn
dr

om
e;

 A
IS

 a
cu

te
 is

ch
ae

m
ic

 s
tr

ok
e;

 A
M

I a
cu

te
 m

yo
ca

rd
ia

l i
nf

ar
ct

io
n;

 C
I 

co
nfi

de
nc

e 
in

te
rv

al
; C

PR
 c

ar
di

op
ul

m
on

ar
y 

re
su

sc
ita

tio
n;

 E
D

 e
m

er
ge

nc
y 

de
pa

rt
m

en
t; 

G
C

S 
G

la
sg

ow
 c

om
a 

sc
or

e;
 G

O
SE

 G
la

sg
ow

 o
ut

co
m

e 
sc

al
e 

ex
te

nd
ed

; I
C

U
 in

te
ns

iv
e 

ca
re

 u
ni

t; 
IQ

R 
in

te
rq

ua
rt

ile
 ra

ng
e;

 IC
B 

in
tr

ac
ra

ni
al

 b
le

ed
in

g;
 m

o 
m

on
th

; M
V 

m
ec

ha
ni

ca
l v

en
til

at
io

n;
 O

R 
od

ds
 ra

tio
; R

C
T 

ra
nd

om
is

ed
 c

on
tr

ol
le

d 
tr

ia
l; 

RO
SC

 re
tu

rn
 o

f s
po

nt
an

eo
us

 c
irc

ul
at

io
n;

 
SA

B 
su

ba
ra

ch
no

id
al

 b
le

ed
in

g;
 S

IR
S 

sy
st

em
ic

 in
fla

m
m

at
or

y 
re

sp
on

se
 s

yn
dr

om
e;

  S
pO

2 
pu

ls
e 

ox
im

et
ry

 h
ae

m
og

lo
bi

n 
 O

2 
sa

tu
ra

tio
n;

 S
O

FA
 s

eq
ue

nt
ia

l o
rg

an
 fa

ilu
re

 a
ss

es
sm

en
t; 

SS
I 

su
rg

ic
al

 s
ite

 in
fe

ct
io

n;
 S

TE
M

I S
T 

se
gm

en
t e

le
va

tio
n 

m
yo

ca
rd

ia
l i

nf
ar

ct
io

n;
 T

BI
 tr

au
m

at
ic

 b
ra

in
 in

ju
ry

; T
W

A
 ti

m
e-

w
ei

gh
te

d 
av

er
ag

e

St
ud

y 
na

m
e

D
es

ig
n/

sa
m

pl
e 

si
ze

Se
tt

in
g

O
xy

ge
na

tio
n 

pa
ra

m
et

er
M

aj
or

 fi
nd

in
gs

Re
f. 

no
.

IO
TA

M
et

a-
an

al
ys

is
/2

5 
RC

T,
 n

 =
 1

6,
03

7
G

en
er

al
 IC

U
“C

on
se

rv
at

iv
e”

 v
s. 

“L
ib

er
al

”, i
.e

. l
ow

er
 

vs
. h

ig
he

r t
ar

ge
t a

cc
or

di
ng

 to
 in

di
-

vi
du

al
 s

tu
dy

 d
es

ig
n

H
ig

he
r m

or
ta

lit
y 

ris
k 

(re
la

tiv
e 

ris
k 

1.
21

 [9
5%

C
I 1

.0
–1

.4
3]

) w
ith

 “l
ib

er
al

” 
 O

2 s
tr

at
eg

y 
(m

ed
ia

n 
ba

se
lin

e 
 Sp

O
2 

96
%

 [I
Q

R 
96

–9
8%

])

38

IC
U

-R
O

X
M

ul
tic

en
tr

e 
RC

T/
n 
=

 9
65

G
en

er
al

 IC
U

; M
V

“C
on

se
rv

at
iv

e”
 (l

ow
es

t  F
IO

2 p
os

si
bl

e 
ke

ep
in

g 
 Sp

O
2 b

et
w

ee
n 

91
 a

nd
 9

7%
) 

vs
. “

U
su

al
” (

no
 li

m
it)

N
o 

di
ffe

re
nc

e 
in

 d
ay

 2
8 

ve
nt

ila
to

r-
fre

e 
da

ys
 a

nd
 d

ay
 9

0/
18

0 
m

or
ta

lit
y

39

PR
O

SP
ER

O
M

et
a-

an
al

ys
is

 +
 Tr

ia
l S

eq
ue

nt
ia

l 
A

na
ly

si
s/

36
 R

C
T,

  n
 =

 2
0,

16
6

G
en

er
al

 IC
U

“L
ow

er
” v

s. 
“H

ig
he

r”,
 i.

e.
 lo

w
er

 v
s. 

hi
gh

er
 ta

rg
et

 a
cc

or
di

ng
 to

 in
di

-
vi

du
al

 s
tu

dy
 d

es
ig

n

N
o 

di
ffe

re
nc

e 
in

 m
or

ta
lit

y 
or

 
m

or
bi

di
ty

42

O
2-

IC
U

M
ul

tic
en

tr
e 

RC
T/

n 
=

 4
00

G
en

er
al

 IC
U

; e
xp

ec
te

d 
IC

U
 

st
ay

 >
 2

 d
ay

s; 
≥

 2
 S

IR
S 

cr
ite

ria
O

xy
ge

na
tio

n 
ta

rg
et

:  P
aO

2 8
–1

2 
vs

. 
14

–1
8 

kP
a 

(≈
 6

0–
90

 v
s. 

10
5–

13
5 

m
m

H
g)

N
o 

di
ffe

re
nc

e 
in

 S
O

FA
 s

co
re

; l
im

ita
-

tio
n:

  P
aO

2 <
 ta

rg
et

 in
 “h

ig
h-

no
rm

al
 

ox
yg

en
at

io
n”

 g
ro

up

43

LO
CO

2
M

ul
tic

en
tr

e 
RC

T/
n 
=

 2
05

A
RD

S
“C

on
se

rv
at

iv
e”

  (P
aO

2 5
5–

70
 m

m
H

g,
 

 Sp
O

2 8
8–

92
%

) v
s. 

“L
ib

er
al

”  (
Pa

O
2 

90
–1

05
 m

m
H

g,
  S

pO
2 ≥

 9
6%

) u
nt

il 
da

y 
7

Pr
em

at
ur

e 
ha

lt 
fo

r h
ig

he
r m

or
ta

lit
y 

in
 “C

on
se

rv
at

iv
e”

 g
ro

up
 (d

ay
 2

8:
 3

4.
3 

vs
. 2

6.
5%

; d
ay

 9
0:

 4
4.

4 
vs

. 3
0.

4%
); 

lim
ita

tio
n:

 >
 5

0%
 p

at
ie

nt
s 

ha
d 

 Pa
O

2 >
 u

pp
er

 le
ve

l

63

H
O

T-
IC

U
M

ul
tic

en
tr

e 
RC

T 
/ 

n 
=

 2
,8

88
G

en
er

al
 IC

U
; a

cu
te

 h
yp

ox
em

ic
 

re
sp

ira
to

ry
 fa

ilu
re

“L
ow

er
”  (

Pa
O

2≈
60

 ±
 7

.5
 m

m
H

g)
 v

s. 
“H

ig
he

r” 
 (P

aO
2≈

90
 ±

 7
.5

 m
m

H
g)

N
o 

di
ffe

re
nc

e 
in

 d
ay

 9
0 

m
or

ta
lit

y
64

LU
N

G
 S

A
FE

Su
b-

st
ud

y 
of

 m
ul

tic
en

tr
e,

 p
ro

sp
ec

-
tiv

e,
 c

oh
or

t s
tu

dy
/ n

  =
 2

,0
05

A
RD

S
Pr

es
en

ce
 o

f d
ay

 1
 “h

yp
er

ox
em

ia
” 

 Pa
O

2 >
 1

00
 m

m
H

g)
, “

su
st

ai
ne

d”
 

(d
ay

 1
 a

nd
 d

ay
 2

) o
r “

ex
ce

ss
iv

e”
  O

2 
 (F

IO
2 ≥

 0
.6

 +
  P

aO
2 >

 1
00

 m
m

H
g)

30
%

 h
yp

er
ox

ae
m

ia
 d

ay
 1

, 1
2%

 
“s

us
ta

in
ed

 h
yp

er
ox

ae
m

ia
”, 2

0%
 

“e
xc

es
si

ve
  O

2”

65

IM
PA

C
T 

M
ul

tic
en

tr
e 

re
tr

os
pe

ct
iv

e/
n 
=

 1
6,

32
6

C
PR

; A
BG

 w
ith

in
 2

4 
h

Pa
O

2 <
 6

0 
(“h

yp
ox

ia
”),

 6
0–

30
0 

(“n
or

-
m

ox
ia

”),
 ≥

 3
00

 m
m

H
g 

(“h
yp

er
ox

ia
”)

Pa
O

2 ≥
 3

00
 m

m
H

g 
si

gn
ifi

ca
nt

ly
 

hi
gh

er
 m

or
ta

lit
y 

63
(C

I:6
0–

66
)%

 v
s. 

no
rm

ox
ia

 4
5[

C
I4

3-
48

]%
) v

s. 
hy

po
xi

a 
(5

7[
C

I5
6-

59
]%

)

68

H
YP

ER
2S

M
ul

tic
en

tr
e 

RC
T/

n 
=

 4
42

Se
pt

ic
 s

ho
ck

 w
ith

in
 fi

rs
t 6

 h
; M

V
F IO

2 =
 1

.0
 d

ur
in

g 
fir

st
 2

4 
h 

vs
. “

st
an

d-
ar

d 
tr

ea
tm

en
t”

Pr
em

at
ur

e 
sa

fe
ty

 s
to

p 
fo

r h
ig

he
r 

m
or

ta
lit

y 
w

ith
 “F

IO
2 =

 1
.0

” (
da

y 
28

: 
43

 v
s. 

35
%

, p
 =

 0
.1

2;
 d

ay
 9

0:
 4

8 
vs

. 
42

%
, p

 =
 0

.1
6)

; l
ow

er
 n

um
be

r o
f 

ve
nt

ila
to

r-
fre

e 
da

ys
, m

or
e 

se
rio

us
 

ad
ve

rs
e 

ev
en

ts
 d

es
pi

te
 lo

w
er

 S
O

FA
 

at
 d

ay
 7

75

H
YP

ER
2S

Po
st

 h
oc

 a
na

ly
si

s 
of

 m
ul

tic
en

tr
e 

RC
T/

n 
=

 3
93

Se
pt

ic
 s

ho
ck

 w
ith

in
 fi

rs
t 6

 h
 a

cc
or

d-
in

g 
to

 S
ep

si
s-

3;
 M

V
F IO

2 =
 1

.0
 d

ur
in

g 
fir

st
 2

4 
h 

vs
. “

st
an

d-
ar

d 
tr

ea
tm

en
t”

H
ig

he
r m

or
ta

lit
y 

w
ith

 “F
IO

2 =
 1

.0
” 

an
d 

la
ct

at
e 

>
 2

 m
m

ol
/L

 (d
ay

 
28

: 5
7 

vs
. 4

4%
); 

no
 e

ffe
ct

 la
c-

ta
te

 ≤
 2

 m
m

ol
/L

76



Page 4 of 15Singer et al. Critical Care          (2021) 25:440 

Ta
bl

e 
1 

(c
on

tin
ue

d)

St
ud

y 
na

m
e

D
es

ig
n/

sa
m

pl
e 

si
ze

Se
tt

in
g

O
xy

ge
na

tio
n 

pa
ra

m
et

er
M

aj
or

 fi
nd

in
gs

Re
f. 

no
.

IC
U

-R
O

X
Po

st
 h

oc
 a

na
ly

si
s 

of
 m

ul
tic

en
tr

e 
RC

T/
n 
=

 2
51

Se
ps

is
; M

V
“C

on
se

rv
at

iv
e”

 (l
ow

es
t  F

IO
2 p

os
si

bl
e 

ke
ep

in
g 

 Sp
O

2 b
et

w
ee

n 
91

 a
nd

 9
7%

) 
vs

. “
U

su
al

” (
no

 li
m

it)

M
or

ta
lit

y 
da

y 
90

 “C
on

se
rv

at
iv

e”
 3

6.
2 

vs
. “

U
su

al
” 2

9.
2%

 (p
 =

 0
.2

4)
; “…

po
in

t 
es

tim
at

es
 o

f t
re

at
m

en
t e

ffe
ct

s c
on

sis
t-

en
tly

 fa
vo

ur
ed

 u
su

al
 O

2 t
he

ra
py

…
”

77

M
ul

tic
en

tr
e,

 re
tr

os
pe

ct
iv

e/
n 
=

 1
,1

16
TB

I; 
M

V
Pa

O
2 <

 1
0.

0 
kP

a 
(≈

 <
 7

5 
m

m
H

g)
 o

r 
10

.0
–1

3.
3 

kP
a 

(≈
 7

5-
10

0 
m

m
H

g)
 o

r 
 Pa

O
2 >

 1
3.

3 
kP

a 
(≈

 >
 1

00
 m

m
H

g)

Pa
O

2 >
 1

3.
3 

kP
a 

no
 re

la
tio

ns
hi

p 
to

 
ou

tc
om

e
86

M
ul

tic
en

tr
e 

re
tr

os
pe

ct
iv

e/
n 
=

 2
,8

94
M

V;
 1

9%
 A

IS
, 3

2%
 S

A
B,

 4
9%

 IC
B

Pa
O

2 <
 6

0,
 6

0–
30

0 
or

 ≥
 3

00
 m

m
H

g
Pa

O
2 ≥

 3
00

 m
m

H
g 

in
-h

os
pi

ta
l m

or
-

ta
lit

y 
57

 v
s. 

46
/4

7%
 (p

 <
 0

.0
01

)
87

M
ul

tic
en

tr
e 

re
tr

os
pe

ct
iv

e/
n 
=

 4
32

SA
B;

 M
V

24
 h

 T
W

A
  P

aO
2: 

“lo
w

”/
“in

te
rm

ed
ia

te
”/

“h
ig

h”
 

(<
 9

7.
5/

97
.5

–1
50

/ >
 1

50
 m

m
H

g)

TW
A

-P
aO

2: 
su

rv
iv

or
s 

11
8(

IQ
R9

0-
15

5)
 

vs
. n

on
-s

ur
vi

vo
rs

 1
37

(IQ
R1

04
-1

67
)

m
m

H
g 

(p
 <

 0
01

); 
m

ul
tiv

ar
ia

te
 a

na
ly

-
si

s 
no

 re
la

tio
n 

be
tw

ee
n 

TW
A

-P
aO

2 
an

d 
ou

tc
om

e

91

SO
2S

M
ul

tic
en

tr
e 

RC
T/

n 
=

 7
,6

35
A

IS
Co

nt
in

uo
us

 (2
-3

L/
m

in
) v

s. 
no

ct
ur

na
l 

na
sa

l  O
2 v

s. 
co

nt
ro

l
N

o 
di

ffe
re

nc
e 

in
 m

or
ta

lit
y 

an
d 

ne
ur

ol
og

ic
al

 o
ut

co
m

e
92

M
ul

tic
en

tr
e 

re
tr

os
pe

ct
iv

e/
n 
=

 2
4,

14
8

TB
I; 

M
V

Pa
O

2 5
0 

m
m

H
g-

in
cr

em
en

ts
; h

yp
er

-
ox

ia
  P

aO
2 >

 3
00

 m
m

H
g

N
o 

re
la

tio
n 

 Pa
O

2 v
s. 

m
or

ta
lit

y 
ex

ce
pt

 
fo

r  P
aO

2 <
 6

0 
m

m
H

g 
an

d 
G

C
S 

>
 1

2
93

M
ul

tic
en

tr
e 

re
tr

os
pe

ct
iv

e/
n 
=

 3
,6

99
TB

I; 
M

V
Pa

O
2 <

 6
0,

 6
0–

30
0 

vs
. 

 Pa
O

2 ≥
 3

00
 m

m
H

g
N

o 
re

la
tio

n 
 Pa

O
2 ≥

 3
00

 m
m

H
g 

vs
. 

G
O

SE
 <

 5
 a

t 6
 m

o
95

Si
ng

le
 c

en
tr

e 
re

tr
os

pe
ct

iv
e/

n 
=

 6
88

ED
; M

V,
 n

or
m

ox
ia

  (P
aO

2 
60

-1
20

 m
m

H
g)

 o
n 

da
y 

1 
IC

U
H

yp
ox

ia
/n

or
m

ox
ia

/h
yp

er
ox

ia
 

 Pa
O

2 <
 6

0,
 6

0–
12

0,
 >

 1
20

 m
m

H
g

H
yp

er
ox

ia
 p

re
se

nt
 in

 4
3%

; m
or

ta
lit

y 
29

.7
 v

s. 
19

.4
 (n

or
m

ox
ia

) a
nd

 1
3.

2 
(h

yp
ox

ia
) %

 (p
 =

 0
.0

21
 v

s. 
no

rm
ox

ia
)

10
9

M
ul

tic
en

tr
e 

re
tr

os
pe

ct
iv

e/
n 
=

 3
,4

64
Po

ly
tr

au
m

a;
 IC

U
 w

ith
in

 2
4 

h
Pa

tie
nt

-h
ou

rs
 w

ith
  S

pO
2 9

0–
96

%
 

(“n
or

m
ox

ia
”) 

vs
. >

 9
6%

 (“
hy

pe
ro

xi
a”

); 
hy

pe
ro

xi
a 

in
 1

0%
-  F

IO
2 i

nc
re

m
en

ts
 

un
til

 d
3 

an
d 

d4
-7

In
cr

ea
se

d 
ris

k 
of

 m
or

ta
lit

y 
w

ith
 

hi
gh

er
  F

IO
2 d

ur
in

g 
hy

pe
ro

xi
a

11
4

IM
PA

C
T 

Po
st

 h
oc

 o
f m

ul
tic

en
tr

e 
re

tr
os

pe
ct

iv
e/

n 
=

 4
,4

59
C

PR
; A

BG
 w

ith
in

 2
4 

h
H

ig
he

st
  P

aO
2 2

4 
h 

IC
U

10
0 

m
m

H
g 

 Pa
O

2-
in

cr
em

en
ts

 
24

%
 m

or
ta

lit
y 

ris
k 

in
cr

ea
se

 
(O

R1
.2

4[
C

I1
.1

8–
1.

31
])

12
1

M
ul

tic
en

tr
e 

pr
os

pe
ct

iv
e/

n 
=

 2
80

C
PR

; t
he

ra
pe

ut
ic

 h
yp

ot
he

rm
ia

Pa
O

2 >
 3

00
 m

m
H

g 
1 

or
 6

 h
 p

os
t-

RO
SC

3%
 (O

R1
.0

3[
C

I1
.0

2–
1.

05
]) 

ris
k 

in
cr

ea
se

 in
 p

oo
r n

eu
ro

lo
gi

ca
l o

ut
-

co
m

e 
pe

r 1
 h

 h
yp

er
ox

ia
 d

ur
at

io
n

12
4

M
ul

tic
en

tr
e 

re
tr

os
pe

ct
iv

e/
n 
=

 1
2,

10
8

C
PR

; t
he

ra
pe

ut
ic

 h
yp

ot
he

rm
ia

Pa
O

2 ≥
 3

00
 m

m
H

g 
w

ith
in

 2
4 

h
Pa

O
2 ≥

 3
00

 m
m

H
g 

m
or

ta
lit

y 
59

(C
I5

6-
61

)%
 v

s. 
47

(C
I4

5-
50

%
 

(6
0-

30
0 

m
m

H
g)

/5
8(

C
I5

7-
58

)%
 

(<
 6

0 
m

m
H

g)

12
5

FI
N

N
RE

SU
SC

I
M

ul
tic

en
tr

e 
pr

os
pe

ct
iv

e/
n 
=

 4
09

C
PR

 o
ut

-o
f-h

os
pi

ta
l

Pa
O

2 <
 7

5 
(“l

ow
”),

 7
5–

15
0 

(“m
id

-
dl

e”
), 

15
0–

22
5 

(“i
nt

er
m

ed
ia

te
”),

 
 Pa

O
2 >

 2
25

 m
m

H
g 

(“h
ig

h”
)

N
o 

as
so

ci
at

io
n 

be
tw

ee
n 

hy
pe

ro
xi

a 
an

d 
ne

ur
ol

og
ic

al
 o

ut
co

m
e

12
6



Page 5 of 15Singer et al. Critical Care          (2021) 25:440  

Ta
bl

e 
1 

(c
on

tin
ue

d)

St
ud

y 
na

m
e

D
es

ig
n/

sa
m

pl
e 

si
ze

Se
tt

in
g

O
xy

ge
na

tio
n 

pa
ra

m
et

er
M

aj
or

 fi
nd

in
gs

Re
f. 

no
.

TT
M

Po
st

 h
oc

 a
na

ly
si

s 
of

 m
ul

tic
en

tr
e 

RC
T/

n 
=

 8
69

C
PR

 o
ut

-o
f-h

os
pi

ta
l; 

th
er

ap
eu

tic
 

hy
po

th
er

m
ia

Pa
O

2, 
TW

A
  P

aO
2 3

7 
h 

po
st

-R
O

SC
;  P

aO
2 >

 4
0 

kP
a 

(≈
Pa

O
2 >

 3
00

 m
m

H
g)

, 8
 ≤

  P
aO

2 ≤
 4

0 
(≈

60
 ≤

  P
aO

2 ≤
 3

00
 m

m
H

g)
, 

 Pa
O

2 <
 8

 k
Pa

 (≈
Pa

O
2 <

 6
0 

m
m

H
g)

N
o 

as
so

ci
at

io
n 

w
ith

 6
-m

o 
ne

ur
o-

lo
gi

ca
l o

ut
co

m
e

12
9

M
et

a-
an

al
ys

is
/7

 R
C

T,
 n

 =
 4

29
C

PR
“H

ig
he

r” 
(“l

ib
er

al
”) 

vs
. “

lo
w

er
” (

“c
on

-
se

rv
at

iv
e”

)  O
2 t

ar
ge

t
M

or
ta

lit
y 

50
%

 li
be

ra
l v

s. 
41

%
 c

on
-

se
rv

at
iv

e,
 p

 =
 0

.0
4

13
0

IC
U

-R
O

X
Po

st
 h

oc
 a

na
ly

si
s 

of
 m

ul
tic

en
tr

e 
RC

T/
n 
=

 1
66

“S
us

pe
ct

ed
 h

yp
ox

ic
 is

ch
ae

m
ic

 
en

ce
ph

al
op

at
hy

”; 
M

V
“C

on
se

rv
at

iv
e”

 (l
ow

es
t  F

IO
2 p

os
si

bl
e 

91
 ≤

  S
pO

2 <
 9

7%
) v

s. 
“U

su
al

” (
no

 
lim

it)

D
ay

 1
80

: m
or

ta
lit

y 
43

%
 c

on
se

rv
at

iv
e 

vs
. 5

9%
 “u

su
al

” (
p 
=

 0
.1

5)
; “

un
fa

vo
ur

-
ab

le
 n

eu
ro

lo
gi

ca
l o

ut
co

m
e”

 5
5%

 
co

ns
er

va
tiv

e 
vs

. 6
8%

 u
su

al
 (p

 =
 0

.1
5)

13
4

D
ET

O
2X

-S
W

ED
EH

EA
RT

 
M

ul
tic

en
tr

e 
RC

T/
n 
=

 6
62

9
A

M
I

6L
/m

in
O

2 6
-1

2 
h

N
o 

eff
ec

t o
n 

1-
ye

ar
 o

ut
co

m
e

13
8

O
xy

ge
n 

Th
er

ap
y 

in
 A

cu
te

 C
or

on
ar

y 
Sy

nd
ro

m
es

M
ul

tic
en

tr
e 

cr
os

so
ve

r R
C

T/
n 
=

 4
0,

87
2

A
C

S
6-

8L
/m

in
O

2 v
s. 

 Sp
O

2 9
0–

95
%

N
o 

eff
ec

t o
n 

da
y 

30
-m

or
ta

lit
y

14
0

PR
O

XI
M

ul
tic

en
tr

e 
RC

T/
n 
=

 1
,3

86
El

ec
tiv

e/
ac

ut
e 

la
pa

ro
to

m
y

F IO
2 0

.8
 v

s. 
0.

3 
un

til
 2

 h
 p

os
t-

op
F IO

2 0
.8

 1
9.

1%
 v

s. 
 F IO

2 0
.3

 2
0.

1%
 S

SI
 

(p
 =

 0
.6

4)
14

3

Su
pp

le
m

en
ta

l O
xy

ge
n 

in
 C

ol
or

ec
ta

l 
Su

rg
er

y
Si

ng
le

 c
en

tr
e 

pr
os

pe
ct

iv
e/

n 
=

 5
,7

49
M

aj
or

 in
te

st
in

al
 s

ur
ge

ry
 >

 2
 h

F IO
2 =

 0
.8

 v
s. 

0.
3 

ev
er

y 
2 

w
ee

ks
 

al
te

rn
at

in
g 

in
te

rv
en

tio
n 

st
ud

y
30

d-
SS

I  F
IO

2 =
 0

.8
 1

0.
8 

vs
. 1

1.
0%

 
(p

 =
 0

.8
5)

14
4

In
tr

ao
pe

ra
tiv

e 
In

sp
ira

to
ry

 O
xy

ge
n 

Fr
ac

tio
n 

an
d 

Po
st

op
er

at
iv

e 
Re

sp
ira

-
to

ry
 C

om
pl

ic
at

io
ns

M
ul

tic
en

tr
e 

re
tr

os
pe

ct
iv

e/
n 
=

 7
9,

32
2

G
en

er
al

 s
ur

ge
ry

Q
ui

nt
ile

s 
 F IO

2 0
.3

1,
 0

.4
1,

 0
.5

2,
 0

.7
9

D
os

e-
de

pe
nd

en
t a

ss
oc

ia
tio

n 
 F IO

2 
vs

. d
ay

 7
 “M

aj
or

 re
sp

ira
to

ry
 c

om
-

pl
ic

at
io

ns
 c

om
po

si
te

” a
nd

 v
s. 

da
y 

30
-m

or
ta

lit
y

15
1

W
H

O
 M

et
a-

an
al

ys
is

/1
2 

RC
T,

 n
 =

 5
,9

76
G

en
er

al
 s

ur
ge

ry
F IO

2 0
.8

 v
s. 

0.
30

–0
.3

5
F IO

2 =
 0

.8
 re

du
ce

s 
SS

I r
is

k 
vs

. 
0.

30
–0

.3
5 

(O
R0

.8
0[

C
I0

.6
4–

0.
99

], 
p 
=

 0
.0

43
): 

on
ly

 g
en

er
al

 a
na

es
th

es
ia

 
w

ith
 tr

ac
he

al
 in

tu
ba

tio
n

15
3

Si
ng

le
 c

en
tr

e 
RC

T/
n 
=

 2
10

O
pe

n 
su

rg
er

y 
fo

r a
pp

en
di

ci
tis

F IO
2 =

 0
.8

 v
s. 

0.
30

 u
nt

il 
2 

h 
po

st
-o

p
F IO

2 =
 0

.8
 S

SI
 5

.6
 v

s.1
3.

6%
 (p

 =
 0

.0
4)

; 
ho

sp
ita

l s
ta

y 
2.

51
 v

s. 
2.

92
 (p

 =
 0

.0
1)

15
6

Co
ch

ra
ne

 P
er

io
pe

ra
tiv

e 
O

xy
ge

n 
Re

vi
ew

M
et

a-
an

al
ys

is
/1

0 
RC

T,
 n

 =
 1

,4
58

G
en

er
al

 s
ur

ge
ry

“H
ig

he
r” 

vs
. “

lo
w

er
”  F

IO
2

“H
ig

he
r” 

vs
. “

lo
w

er
”  F

IO
2 “

ve
ry

 lo
w

 
ev

id
en

ce
” s

er
io

us
 a

dv
er

se
 e

ve
nt

 ri
sk

15
7

M
et

a-
an

al
ys

is
/1

2 
tr

ia
ls

, n
 =

 2
8,

98
4

G
en

er
al

 IC
U

; M
V

F IO
2 “

lo
w

” v
s. 

“h
ig

h”
 (a

s 
de

fin
ed

 b
y 

au
th

or
s)

F IO
2 “

hi
gh

”; 
no

 im
pa

ct
 o

n 
pn

eu
m

o-
ni

a,
 A

RD
S,

 M
V 

du
ra

tio
n;

  F
IO

2 ≥
 0

.8
 

in
cr

ea
se

d 
ris

k 
of

: a
te

le
ct

as
is

15
8



Page 6 of 15Singer et al. Critical Care          (2021) 25:440 

Neurotoxicity was described over a century ago [27]: 
3Atm of  O2 produced convulsions and death. Seizures or 
syncope occurred after 40  min at 4Atm  O2, and within 
5 min at 7Atm [28]. This was usually preceded by milder 
symptoms such as tunnel vision, tinnitus, twitching, con-
fusion, and vertigo. The impact of high concentration 
normobaric  O2 on neurotoxicity, however, is unclear.

Mitochondrial ROS production increases either with 
 O2 deficit or excess, but particularly during excess  O2 
(hyperoxia). This can occur in sepsis and/or I/R injury, 
i.e. whole-body (e.g. resuscitation from cardiac arrest or 
major haemorrhage), or organ-specific (e.g. revasculari-
sation after myocardial infarction or stroke). A similar 
injury may be induced by acute hypoxaemia followed 
by rapid correction (hypoxia/re-oxygenation-injury). 
The impact of reperfusion injury may be as severe as the 
ischaemic insult. Although preclinical and clinical studies 
are not consistent [29–31], reperfusion injury is gener-
ally exacerbated by hyperoxia. The hyperoxia effect may 
be exacerbated by acidification of the hypoxic tissues; the 
right-shifted oxyhaemoglobin dissociation curve of blood 
(re-)entering the hypoxic tissue augments  O2 release, 
with a subsequent increase in superoxide production 
[31].

Teleologically, the body has not evolved to deal with 
high tissue  O2 tensions. Tissues not metabolising ade-
quately, e.g. due to toxins or switching off (“hibernating”) 
in response to hypoperfusion, reduce  O2 utilisation. As 
a normal protective response, negative feedback signals 
reduce local blood flow by vasoconstriction to miti-
gate local build-up of  O2 and subsequent toxicity. Acute 
hyperoxia thus induces vasoconstriction, reducing local 
blood flow [32], particularly in the cerebral and coronary 
vasculature [5–7]. This vasoconstriction is in part related 
to reduced release of nitric oxide (NO) from S-nitroso-
haemoglobin binding [33]. Vasoconstriction has been 
shown in patients with and without coronary artery dis-
ease, where supplemental  O2 reduced cardiac output and 
coronary sinus blood flow [34, 35]. Seizures associated 
with neurological  O2 toxicity occur with paradoxical vas-
odilation during hyperbaric hyperoxia [6].

General ICU patients
The Oxygen-ICU trial was the first major study to suggest 
clinically important harm from liberal  O2 administration 
in a general ICU population [36]. This single-centre, RCT 
included 480 patients expected to stay in the ICU for at 
least 72  h. ICU mortality was 20.2% with conventional 
and 11.6% with conservative  O2 therapy. Around two-
thirds of patients included were mechanically ventilated 
at baseline, around a third had shock, and the illness 
acuity was relatively low. The difference was statistically 
significant although the study was stopped early after a 

non-preplanned interim analysis, and the magnitude of 
the reported treatment effect was larger than hypoth-
esised [36]. Given the variety of mechanisms of death in 
ICU patients [37], such a high proportion of deaths in a 
heterogeneous population of ICU patients is unlikely to 
be attributable to the dose of  O2 therapy used. However, 
the Oxygen-ICU trial [37] did highlight the need for fur-
ther investigation.

Subsequently, the IOTA systematic review and meta-
analysis [38] reported that conservative  O2 use in acutely 
ill adults significantly reduced in-hospital mortality. 
Although these findings were concordant with the Oxy-
gen-ICU trial [36], they provided only low certainty evi-
dence: First, the Oxygen-ICU trial [36] contributed 32% 
of the weight to the mortality analysis. Second, predomi-
nant conditions were acute myocardial infarction and 
stroke, and a range of  O2 regimens were tested so that the 
analysis provided only indirect evidence about the opti-
mal  O2 regimen for patients in the ICU. Third, the over-
all mortality treatment effect estimates were imprecise. 
Finally, an updated systematic review and meta-analysis 
found no evidence of benefit or harm comparing higher 
vs. lower oxygenation strategies in acutely ill adults [39].

The multicentre randomised ICU-ROX trial found 
that conservative  O2 therapy did not significantly affect 
the primary end point of number of days alive and free 
from mechanical ventilation (ventilator-free days) com-
pared with usual (liberal)  O2 therapy [40]. Overall, 32.2% 
of conservative and 29.7% of usual  O2 patients died in 
hospital. While these findings provide some reassurance 
to clinicians about the safety of the liberal  O2 use that 
occurs in standard practice, they do not exclude clinically 
important effects of the  O2 regimens tested on mortal-
ity risk. Indeed, based on the distribution of data, there 
is a 46% chance that conservative  O2 therapy increases 
absolute mortality by more than 1.5% points, and a 19% 
chance that conservative  O2 therapy decreases absolute 
mortality by more than 1.5% points [41, 42]. Finally, a 
recent RCT conducted in ICU patients fulfilling the sys-
temic inflammatory response syndrome criteria, found 
no significant difference between high-normal and low-
normal oxygenation targets for non-respiratory organ 
dysfunction over the first 14 days, or in Day-90 mortality 
[43]. Accordingly, the most appropriate dose of  O2 to give 
to adult ICU patients remains uncertain.

ARDS
Clinicians should titrate  O2 therapy to avoid both hypox-
aemia and hyperoxaemia. While the harmful effects 
of tissue hypoxia are clearly understood [44], over-
correction leads to tissue hyperoxia which may also be 
deleterious. Hyperoxia injures the lung via ROS produc-
tion, causing oxidant stress with pro-inflammatory and 
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cytotoxic effects [35, 45, 46]. Pathophysiologic conse-
quences include arterial vasoconstriction [35, 47–49], 
alveolar-capillary “leak” and even fibrogenesis [50, 51]. 
Clinicians use higher  FIO2 than necessary to correct 
hypoxia in the critically ill [52], possibly to avoid (occult) 
tissue hypoxia [53, 54], to provide a “buffer” should rapid 
clinical deterioration occur, or because the consequences 
of hyperoxia are considered less severe. The lack of clearly 
defined targets for  PaO2 and/or  SaO2 is also an issue. The 
ARDS Network trials targeted a  PaO2  of  55-80  mmHg 
[55], while the British Thoracic Society suggests a target 
 SpO2 of  94–98% in acutely ill patients [56].

In ARDS, the potential for hyperoxia to impact out-
comes is further complicated by the severity of gas 
exchange impairment. Specifically, extreme hyperox-
aemia (i.e.  PaO2 > 300  mmHg), associated with harm in 
other critically ill populations, is impossible to achieve in 
ARDS (see Table  1). However, moderate hyperoxaemia 
is possible and could be harmful as well [57]. Further-
more, high  FIO2 can directly injure the lung [58], sensi-
tise it to subsequent injury [59], adversely affect its innate 
immune response [60], and worsen ventilation-induced 
injury [61, 62]. It is therefore necessary to distinguish 
between hyperoxaemia and high  FIO2 use when assessing 
the effects of hyperoxia on the lung.

The recent LOCO2 trial in ARDS was stopped early for 
futility and safety concerns regarding mesenteric ischae-
mia in the conservative  O2 group. Moreover, 90-day 
mortality was significantly higher in patients receiving 
conservative  O2 therapy [63]. The HOT-ICU trial stud-
ied ICU patients with acute hypoxaemic respiratory fail-
ure and found no difference in 90-day mortality between 
conservative and liberal  PaO2 targets [64]. In the LUNG 
SAFE observational cohort study, both systemic hyper-
oxaemia and excess  FIO2 use were prevalent, with frank 
hyperoxaemia (30% of patients) more prevalent than 
hypoxaemia in early ARDS [65]. Two-thirds of these 
patients received excess  O2 therapy. Hyperoxaemia did 
not appear to be used as a “buffer” in unstable patients: 
frequency was similar in shocked patients. While a simi-
lar proportion of patients were hyperoxaemic on day-2, 
higher  FIO2 use did decrease. Both hyperoxaemia and 
excess  O2 use were mostly transient, although more sus-
tained hyperoxaemia was seen. Reassuringly, no rela-
tionship was found between the degree and duration of 
hyperoxaemia, or excessive  O2 use, and mortality in early 
ARDS.

While these findings contrast with findings in other 
ICU cohorts, a key differentiating factor is the reduced 
potential for extreme hyperoxia in ARDS patients. The 
potential for harm from hyperoxia appears to be related 
to the severity of hyperoxaemia [54, 61, 66, 67]; those 
with relatively preserved lung function are at greatest 

risk [68]. However, no dose–response relation was found 
between  PaO2 and mortality [67]. Hence, paradoxically, 
patients with ARDS may be at less risk as they are una-
ble to achieve extreme degrees of hyperoxia. A recent 
observational study suggested a U-shaped relationship 
between  PaO2 and mortality in ARDS patients; patients 
with a time-weighted  PaO2  of  93.8-105  mmHg had the 
lowest mortality risk [69]. Intriguingly, this range is near 
identical to the “liberal” target  PaO2 range targeted in the 
LOCO2 [63]. Hence, much remains to be learned about 
optimal targeting of  PaO2 in patients with ARDS.

Sepsis and septic shock
Theoretically, hyperox(aem)ia might help septic patients 
due to its vasoconstrictor effect, counteracting hypo-
tension [6–8], and to the antibacterial effects of  O2 [70, 
71]. However, hyperoxaemia did not affect cardiac out-
put in septic patients [72]. The number of days with 
 PaO2 > 120  mmHg was an independent risk factor for 
ventilator-associated pneumonia (VAP) [73]; however, 
these patients had other risk factors, e.g. more frequent 
use of proton pump inhibitors and sedatives, higher inci-
dence of circulatory shock with prolonged and higher 
catecholamine infusion rates, and more red blood cell 
transfusion. In an observational study on VAP patients, 
the same group reported that hyperoxaemia did not affect 
mortality [74]. The HYPER2S RCT [75] compared stand-
ard therapy vs. 100%  O2 over the first 24 h after diagnos-
ing septic shock. Despite a significantly lower SOFA score 
at day 7, the trial was prematurely stopped due to higher, 
albeit not statistically significant mortality in the hyper-
oxia group at Day-28 and Day-90. The hyperoxia group 
had significantly more serious adverse events, including 
ICU-acquired weakness (p = 0.06). A post hoc analy-
sis based on Sepsis-3 criteria found increased Day-28 
mortality in patients with hyperlactataemia > 2  mmol/L 
(p = 0.054), but not with normal lactate levels [76]. The 
authors speculated that a hyperoxaemia-related increase 
in tissue  O2 availability may have led to excess ROS pro-
duction and, consequently, oxidative stress-related tissue 
damage.

The opposite hypothesis, i.e. attenuation of oxidative 
stress-induced tissue damage by reducing  O2 exposure 
did not beneficially influence outcome in septic patients 
either. A post hoc analysis of the ICU-ROX trial [40] of 
the septic cohort showed no statistically significant dif-
ference with respect to ventilator-free days or Day-90 
mortality for the “conservative” when compared to 
the “usual” oxygenation [77]. Point estimates of treat-
ment effects even favoured the latter. Hence, it seems 
reasonable to avoid  PaO2 > 100-120  mmHg due to the 
possible deleterious consequences of excess tissue  O2 



Page 8 of 15Singer et al. Critical Care          (2021) 25:440 

concentrations in the presence of sepsis-related impair-
ments of cellular  O2 extraction [78].

Acute brain injury
Increasing  FIO2 in acutely brain-injured patients, along-
side other clinical interventions [79], can improve brain 
tissue  PO2  (PbtO2) [80, 81]. The effects of normobaric 
hyperoxia are less significant in large hypoperfused brain 
regions [82], but highly relevant in small pericontusional 
areas [83]. Moreover, incremental  FIO2 increased cerebral 
excitotoxicity in severe traumatic brain injury (TBI) [84]. 
The association of hyperoxia with outcome is even more 
controversial. After TBI, both hypoxaemia and hyperoxia 
were [85] or were not [86] independently associated with 
worse outcome. In two retrospective studies, including a 
mixed population of brain-injured patients, hyperoxae-
mia, defined as  PaO2 > 300  mmHg [87] or > 120  mmHg 
[88], was associated with increased in-hospital mortality 
and poor neurological outcome, even after adjusting for 
confounders. Patients with subarachnoid haemorrhage 
exposed to higher  PaO2 levels were also more likely to 
develop cerebral vasospasm [89, 90]; however, a retro-
spective analysis of patients needing mechanically ven-
tilation did not find any relation between time-weighted 
 PaO2 and outcome [91]. Studies in acute ischaemic stroke 
in general [92], and in a sub-group needing mechanical 
ventilation [93], found no association between outcome 
and  PaO2 within the first 24 h. Even early hyperoxaemia 
 (PaO2 > 300 mmHg) did not affect mortality in mechani-
cally ventilated TBI patients, notwithstanding severity on 
admission [94, 95]. Finally,  PaO2≈150-250 mmHg within 
the first 24  h post-TBI was associated with better long-
term functional outcome after TBI [96]; however, the 
study excluded patient who died. Normobaric hyperoxia 
combined with intravenous thrombolysis was associated 
with more favourable neurological outcome than throm-
bolysis alone after ischaemic stroke [97].

Prospective studies have evaluated the effects of tar-
geted hyperoxia after acute brain injury: Small studies 
in patients with acute ischaemic stroke not eligible for 
thrombolysis found either transient clinical improve-
ment and smaller infarct size with high-flow  O2 [98, 99] 
or no effect of normobaric hyperoxia [100]. In a small 
RCT in mechanically ventilated TBI patients,  FIO2 = 0.8 
(vs. 0.5) improved 6-month neurological outcome [101], 
but conclusions should be cautioned due to methodo-
logical concerns. Exposure to  FIO2 = 0.7 or 0.4 for up to 
14 days after TBI influenced neither markers of oxidative 
stress or inflammation nor neurological outcome [102]. 
Finally, the Normobaric-Oxygen-Therapy-in-Acute-
Ischemic–Stroke-Trial (NCT00414726) was prema-
turely halted after inclusion of 85/240 patients because 

of higher mortality in the high-flow  O2 group, although 
most deaths occurred following early withdrawal of 
life-support.

It remains open in acute brain injury, whether normox-
aemia vs. targeted hyperoxaemia influences brain func-
tion and neurological recovery. Optimal  PaO2 targets, 
study populations, and specific forms of brain injury are 
currently unknown.

Trauma‑and‑haemorrhage
Supplemental  O2 is used because increasing the amount 
of physically dissolved  O2 during blood loss-related 
reductions in  O2 transport is thought to faster repay a 
tissue  O2 debt [103]. Despite its vasoconstrictor proper-
ties [6–8], ventilation with 100%  O2 during experimental 
haemorrhage improved tissue  PO2 [104] and attenuated 
organ dysfunction [105, 106].

However,  PaO2 > 100  mmHg may enhance ROS for-
mation [9–11], especially during I/R and/or hypoxia/
re-oxygenation, e.g. resuscitation from trauma-and-
haemorrhage [6–8].

A recent retrospective study in patients with prehospi-
tal emergency anaesthesia demonstrated that hyperoxia 
was present in most patients upon arrival in the hospital, 
however without relation to outcome [107]. Clinical data 
on the impact of hyperoxia on morbidity and mortality 
remain equivocal. No association was seen between mor-
tality and  PaO2 in the first 24 h (median Injury Severity 
Score ISS = 29) [108]. Another observational study noted 
that 44.5% of patients mechanically ventilated in the 
emergency department had hyperoxaemia, this cohort 
having a higher Day-28 mortality [109]. From a French 
trauma registry (median ISS = 16), univariate analysis 
showed that admission  PaO2 > 150 mmHg coincided with 
a higher mortality, however, propensity score matching 
yielded the opposite result, namely supra-physiological 
 PaO2 levels were associated with significantly lower mor-
tality [110]. Lower Day-28 mortality and less nosocomial 
pneumonia were seen in patients early after blunt chest 
trauma [111]. An analysis of 864,340 trauma patients 
(median ISS = 9) investigated the impact of supplemen-
tal  O2 in the ED; in all three patient categories predefined 
according to incremental  SpO2, supplemental  O2 was 
associated with a significantly higher ARDS incidence 
and mortality [112]. A retrospective analysis of patients 
with ISS ≥ 16 studied the impact of  PaO2 ≥ 300  mmHg 
during resuscitation [113]; while prolonged ICU stay 
was seen in patients not intubated in the ED, no effect 
was seen in the sicker cohort of mechanically ventilated 
patients. Finally, a retrospective multicentre study of 
trauma patients found  SpO2 > 96% over the first seven 
days was common place; the adjusted mortality risk was 
higher with greater  FIO2 [114]. The currently recruiting 
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“Strategy-to-Avoid-Excessive-Oxygen-for-Critically-
Ill-Trauma-Patients (SAVE-O2)” (NCT04534959) will 
address any causality between hyperoxia and outcome.

Despite  O2 supplementation being common practice in 
patients with pronounced blood loss, no optimal target 
for  PaO2 is available.

Cardiopulmonary resuscitation and myocardial 
infarction
During cardiac arrest,  PbtO2 drops rapidly to levels 
close to zero [115]. With cardiopulmonary resuscitation 
(CPR)  PbtO2 increases slowly, driven by the achieved 
cerebral perfusion pressure [116]. Guidelines recom-
mend ventilation with 100%O2 even though no clini-
cal study has compared this against lower  FIO2 [117]. 
Observational data suggest an association between 
higher  PaO2 during CPR and a higher likelihood of 
return of spontaneous circulation (ROSC), survival, and 
neurological outcome [118, 119]. After ROSC blood 
and brain  PO2 levels increase; mostly, this appears inev-
itable as  FIO2 titration is impossible during CPR [120]. 
Given the connection between hyperoxia and ROS 
formation, there has been great interest in assessing 
whether avoidance of hyperoxaemia in the post-arrest 
phase could mitigate brain injury. Results are conflict-
ing, either showing an association between hyperoxia 
and poor outcome [68, 121–124], or not [125–129]. 
Smaller randomised trials and sub-group analysis from 
larger trials have also been performed [130]. Overall, 
the evidence suggests that lower rather than higher 
 O2 targets are beneficial, even though any sweet spot 
for optimal  PaO2 is unknown [131]. The COMACARE 
pilot trial compared different  PaO2 targets and found 
no difference in two brain injury biomarkers [132, 133]. 
A sub-group analysis of the ICU-ROX study showed 
improved outcomes in restrictive compared to liberal 
 O2 treated patients at risk of hypoxic brain injury [134]. 
Opposite findings were seen in a sub-group of the 
HOT-ICU trial [64]. Current guidelines recommend 
targeting strict normox(aem)ia. The evidence suggests 
a signal to harm and, importantly, no indication of ben-
efit from extreme hyperox(aem)ia; thus, this should be 
avoided [135].

Supplemental  O2 use has been standard practice for 
decades in acute myocardial infarction (AMI) [136]. 
Studies have nonetheless suggested side effects includ-
ing coronary artery vasoconstriction [137]. Several 
large studies have shown either harm or lack of benefit 
from supplemental  O2 use in patients without hypoxae-
mia [138, 139]. A large cluster randomised controlled 
trial of > 40,000 patients with acute coronary syn-
drome (including patients with AMI) found no ben-
efit with supplemental  O2 use overall, but evidence was 

inconclusive in patients with ST-elevation AMI [140]. 
Importantly, these trials included patients without 
hypoxaemia [138, 140]. Despite the lack of high-qual-
ity evidence, it appears prudent to avoid hypoxaemia 
 (SaO2 < 90%) in AMI patients.

Perioperative hyperoxia
Trials of intraoperative hyperoxia have mainly been 
performed in elective surgery to prevent surgical 
wound infection through increased tissue oxygenation 
[141, 142]. Initial enthusiasm was followed by larger tri-
als with similar wound complication frequencies with 
 FiO2 = 0.80 vs. 0.30 perioperatively [143, 144]. Con-
cerns have been raised by shorter cancer-free survival 
in patients given  FiO2 = 0.80 [145, 146]. A higher  FIO2 
is used to ensure adequate or, in some cases, supranor-
mal end-organ oxygenation, although there is sparse 
evidence of benefit.

Both preoxygenation and high intraoperative  FIO2 can 
cause resorption atelectasis [147], especially in patients 
with pulmonary comorbidity, as general anaesthesia 
itself reduces functional residual capacity and causes 
airway closure [148]. As ventilation-perfusion mismatch 
and shunt contribute to impaired oxygenation, use of 
 FIO2 = 0.30–0.35 is therefore considered normal during 
general anaesthesia [149, 150].  FIO2 ≥ 0.80 caused sig-
nificant atelectasis during preoxygenation, but this can 
be eliminated with a recruitment manoeuvre followed 
by 5-10cmH2O PEEP [14], which clearly is not common 
practice. Failure to correct such iatrogenic atelectasis 
may trigger the use of excessive perioperative  FIO2. In a 
large observational study [151], high intraoperative  FIO2 
was dose-dependently associated with major pulmonary 
complications and mortality after adjustment for all rel-
evant risk factors. This association has not yet been con-
firmed in RCTs [152].

Based on a sub-group analysis in a systematic review, 
the World Health Organization proposed using 
 FIO2 = 0.80 in all intubated patients to prevent postoper-
ative wound infections [153]. This engendered controver-
sial discussion [154, 155]. Most of the evidence for risks 
and benefits of hyperoxia during emergency surgery arise 
from RCTs of 385 laparotomy procedures and 210 open 
appendicectomies [143, 156]. While wound infections 
were significantly reduced with  FIO2 = 0.80 in the appen-
dicectomy study, the frequencies of surgical site infec-
tions, serious adverse events and mortality did not differ 
in the laparotomy trial [156, 157].

Acute perioperative patients should be carefully treated 
with respect to their ongoing medical conditions; most 
current evidence suggests greatest safety with  O2 titra-
tion to normoxaemia.
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Conclusions
Current evidence suggests that  PaO2 > 300mmmHg 
should be avoided in most ICU patients. It remains 
uncertain whether there is a “sweet spot”  PaO2 target, 
which may vary for given clinical conditions. System-
atic reviews using trial sequential analysis to take into 
account high vs. low bias risk found no effect (including 
all patients [39]) or increased mortality (including only 
ICU patients [157]) from higher oxygenation targets. 
Certainty evidence was low with futility for a 15% relative 
mortality risk increase. The currently recruiting “Mega-
Randomised-Registry-Trial-Comparing-Conservative-vs.-
Liberal-Oxygenation (Mega-ROX trial)” (CTG1920-01) 
in 40,000 patients should provide any “ideal target  PaO2”: 
The trial tests the hypothesis that conservative vs. liberal 
 O2 targets reduce mortality by 1.5% points in mechani-
cally ventilated, adult ICU patients, i.e. 1,500 lives saved 
for every 100,000 patients treated. Since both con-
servative and liberal  O2 therapy may be best for certain 
patients, several parallel trials will evaluate pre-specified 
hypotheses in specific patient cohort patients accompa-
nied by separate power calculations. For example, antici-
pating heterogeneity of treatment response, in septic 
patients or patients with acute brain pathologies (other 
than hypoxic brain injuries), the trial will test the oppo-
site hypothesis that liberal (rather than conservative) 
 O2 will reduce mortality. Finally, the trial design cannot 
exclude that for some patient sub-groups, a different win-
dow of  O2 exposure is most suited.

So far, it appears prudent to target  PaO2 values within 
the normal range, i.e. carefully titrating  PaO2 to avoid 
both hypoxaemia and excess hyperoxaemia [158], par-
ticular as no clinically useful biomarker of  O2 toxicity is 
available, and data on the effects of hyperoxia on markers 
of oxidative stress are equivocal [10, 159–161].
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