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What is already known about this subject (up to three short bullet points, less than 50 

words) 

• nlmixr offers parameter estimation algorithms including SAEM and FOCE with or without 

interaction. 

• Transit compartment model can be implemented with Stirling or log-gamma approximation 

to 𝑛! but the resultant difference in estimated bioavailability has not been explored. 

• Influence of flip-flop pharmacokinetics over the performance of nlmixr estimation algorithms 

was unknown 



What this study adds (up to three short bullet points, less than 50 words) 

• Non-linear mixed-effect modeling of flip-flop systems without external software dependency 

is possible with nlmixr 

• SAEM is marginally superior to FOCEi with lower bias and higher precision when flip-flop is 

present, and is more robust. 

• The log-gamma function is preferred in the transit compartment model over Stirling’s 

approximation for n! 
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ABSTRACT 

Aim: nlmixr offers first-order conditional estimation with or without interaction (FOCE or FOCEi) 

and stochastic approximation estimation-maximisation (SAEM) to fit nonlinear mixed-effect models 

(NLMEM). We modelled metformin’s population pharmacokinetics with flip-flop characteristics 

within nlmixr framework and investigated FOCEi and SAEM’s performance with respect to bias, 

precision, and robustness. 

Method: Compartmental pharmacokinetic models were fitted. The final model was determined 

based on the lowest objective function value and visual inspection of goodness-of-fit plots. To 

examine flip-flop pharmacokinetics, 𝑘𝑎 values of a typical concentration-time profile based on the 

final model were perturbed and changes in the steepness of the terminal elimination phase were 

evaluated. The bias and precision of parameter estimates were compared between FOCEi and 

SAEM using stochastic simulations and estimations. For robustness, parameters were re-

estimated as the initial estimates were perturbed 100-times and resultant changes evaluated. 

Results: A one-compartment model with transit compartment for absorption best described the 

data. At low 𝑛, Stirling’s approximation of 𝑛! over-approximated plasma concentration unlike the 

log-gamma function. Flip-flop pharmacokinetics were evident as the steepness of the terminal 

elimination phase changed with 𝑘𝑎. Mean rRMSE for fixed-effect parameters were 0.932. When 

initial estimates were perturbed, FOCEi estimates of 𝑘𝑎 and food effect on 𝑘𝑎 appeared bimodal 

and were upward biased. 

Discussion: nlmixr is reliable for NLMEM even if flip-flop is present but caution should be exercised 

when using Stirling’s approximation for 𝑛! in the transit compartment model. SAEM were marginally 

superior to FOCEi in bias and precision, but SAEM was superior against initial estimate 

perturbations. 

  



INTRODUCTION 

Nonlinear mixed-effects models (NLMEMs) are important tools to characterise pharmacokinetics 

(PK) and pharmacodynamics (PD) of a drug in a patient population. The adoption of commercial 

software for nonlinear mixed effect (NLME) modelling, the most popular of which are NONMEM 

and Monolix, has created a paradigm shift in drug development process [1]. Population PK/PKPD 

models are increasingly used to support new drug applications globally. This is demonstrated by 

the 2019 release of a US Food and Drug Administration draft guidance on population PK to assist 

pharmaceutical companies in the application of population PK analysis as an essential component 

of drug development [2]. 

As NLMEM becomes established in the pharmaceutical industry, the needs to ensure transparency 

and reproducibility of the modelling process and to improve accessibility to these tools have 

become apparent. Fidler et al (2019) developed an open-source R package nlmixr as an 

alternative to commercial tools. It is freely available and does not have software dependencies 

beyond the R environment [3]. Currently, nlmixr supports three parameter estimation algorithms: 

nlme by Pineiro and Bates [4], stochastic approximation-estimation maximisation (SAEM) [5], and 

first-order conditional estimation with or without interaction (FOCEi and FOCE) [6]. 

These estimation algorithms may produce different degree of bias and precision. FOCE takes into 

consideration all possible individual parameter values when evaluating the joint density of 

observed data and random effects (ETAs). It utilises a first-order Taylor series approximation 

around the posterior mode of ETAs [1]. SAEM, however, is a type of stochastic algorithm that 

computes the maximum likelihood estimates under the general setting of incomplete data 

(unobserved individual parameters) [7]. It was first introduced by Delyon et al (1999) [5] and has 

the benefit of often converging to a solution while other conditional estimation algorithms fail. 

SAEM has been reported to be relatively insensitive to the choice of initial parameters [1]. 

Since the release of nlmixr on the Comprehensive R Archieve Network (CRAN), there have been 

few publications beyond those published by the nlmixr developers [3,8,9]. As such, the aim of our 

study was twofold: to develop and evaluate a population PK model exclusively within the nlmixr 



framework, and to evaluate and compare the FOCEi and SAEM algorithms with respect to bias 

and precision of parameter estimates as well as robustness of estimation to perturbation in initial 

estimates. 

To achieve this we chose a metformin dataset with potentially complex PK to challenge nlmxir. 

Metformin is a widely used anti-diabetic medication but it may exhibit flip-flop PK when 

administered orally. It is a highly ionised molecule and shows incomplete oral absorption with an 

estimated absolute bioavailability between 40%-60% [10,11]. The oral absorption rate of metformin 

demonstrates an inverse relationship with the dose ingested (ranging from 0.5g to 1.5g) [12]. 

Pentikäinen et al (1979) first described the flip-flop PK characteristics of metformin [13], the finding 

of which was further supported by subsequent studies [14,15]. 

METHOD 

Clinical dataset 

Plasma concentration and subject demographic data from the reference formulation (250mg 

immediate release tablet) of two metformin bioequivalence (BE) studies were used [16,17]. The BE 

study design was identical apart from the condition under which metformin was administered: fed 

or fasted. All subjects received a single dose at baseline and had 15 blood samples taken within 

24-hours. 

Handling observations below the limit of quantification 

Observations below the quantification limit (BQL) of the analytical assay were set to one-half of the 

limit of quantification (LoQ) such that 𝐷𝑉 =
𝐿𝑜𝑄

2
, where 𝐷𝑉 was the dependent variable [18,19], and 

the subsequent 𝐵𝑄𝐿 observations were omitted from the analysis as these observations could be 

assumed to reflect a decresing true concentration after single dose administration. 



Model development and diagnostic tools 

A population PK analysis of metformin was conducted with nlmixr (version 2.0.4). Pre- and post-

processing of data was conducted in R (version 4.0.5) using the R package xpose.nlmixr (version 

0.2.0). 

Pharmacokinetic model 

The classical one-, two-, and three-compartment model with first-order oral absorption and first-

order elimination kinetics were considered to described metformin’s PK characteristics. Several 

studies had reported delays in metformin absorption especially when co-administered with food 

[11,20,21]. As such, we also considered the transit compartment model first described by Savic et 

al (2007) to model such delays in absorption [22]. The authors originally estimated the optimal 

number of transit compartments using the function 𝑎𝑛(𝑡) = 𝐹 ⋅ 𝐷𝑜𝑠𝑒 ⋅
(𝑘𝑡𝑟⋅𝑡)

𝑛

𝑛!
⋅ 𝑒−𝑘𝑡𝑟⋅𝑡 where 𝑎𝑛(𝑡) 

denotes the drug amount in the 𝑛th compartment at time 𝑡, 𝐹 denotes bioavailability, 𝑘𝑡𝑟 denotes a 

first-order transit rate constant from (𝑛th-1) compartment to the 𝑛th compartment, and 𝑛 denotes 

the number of transit compartment. 

Stirling’s approximation to 𝑛! was used in the paper where 𝑛! ≈ √(2𝜋) ⋅ 𝑛𝑛+0.5 ⋅ 𝑒−𝑛 [22]. However, 

it was mentioned that if the 𝑛 value was smaller than 2, the approximation error may be 

substantial. It should be noted that Stirling’s approximation always under-approximate 𝑛!, hence 

any further deviations from such under-approximations (when 𝑛 is small) would be undesirable. 

The original equation of Stirling’s approximation used by Savic et al (2007) is written as follow: 

𝑑(𝑑𝑒𝑝𝑜𝑡)

𝑑𝑡
= 𝑒(𝑙𝑜𝑔(𝐹⋅𝐷𝑜𝑠𝑒)+𝑙𝑜𝑔(𝑘𝑡𝑟)+𝑛⋅𝑙𝑜𝑔(𝑘𝑡𝑟⋅𝑡)−𝑘𝑡𝑟⋅𝑡−𝑆(𝑛)) − 𝑘𝑎 ⋅ 𝑑𝑒𝑝𝑜𝑡          (Eq. 1) 

where 𝑆(𝑛) = 𝑙𝑜𝑔(2.5066) + (𝑛 + 0.5) ⋅ 𝑙𝑜𝑔(𝑛) − 𝑛 

To mitigate potential errors when 𝑛 was small, we opted to use the log-gamma function to 

approximate 𝑛!. This was coded using ordinary differential equation (ODE) as follows: 



𝑑(𝑑𝑒𝑝𝑜𝑡)

𝑑𝑡
= 𝑒(𝑙𝑜𝑔(𝐹⋅𝐷𝑜𝑠𝑒)+𝑙𝑜𝑔(𝑘𝑡𝑟)+𝑛⋅𝑙𝑜𝑔(𝑘𝑡𝑟⋅𝑡)−𝑘𝑡𝑟⋅𝑡−𝑙𝑜𝑔𝛤(𝑛+1)) − 𝑘𝑎 ⋅ 𝑑𝑒𝑝𝑜𝑡          (Eq. 2) 

where 𝑙𝑜𝑔𝛤(𝑛 + 1) represented the log-gamma function 𝑙𝑜𝑔𝛤(𝑛) = 𝑙𝑜𝑔 ∫ 𝑥𝑛−1
∞

0
𝑒−𝑥𝑑𝑥, ℜ(𝑛) > 0. 

The transit compartment model was preferred as we deemed it more physiologically plausible 

compared to the “all-or-none” lag-time model [1]. 

Covariance between clearance and volume of distribution parameters was considered. Absolute 

bioavailability was fixed to 1 but we estimated the relative bioavailability of fed versus fasted 

condition. 

Statistical models were used to describe variability. We modelled the interindividual variability (IIV) 

on an exponential scale to ensure the population PK parameter values were greater than zero, and 

each IIV term was introduced sequentially to the base model. Additionally, to ensure comparability 

between estimation methods, we expressed the parameters in a manner that was analogous to 

“mu-referencing” in NONMEM such that the equations took the following general form: 𝑃𝑖 =

𝑒
(𝑙𝑜𝑔(𝑃𝑝𝑜𝑝+𝜂𝑖)) where 𝜂𝑖 is the IIV for the 𝑖th individual assumed to be normally distributed with a 

mean of zero and variance of 𝜔2, 𝑃𝑖 is the individual PK parameter, and 𝑃𝑝𝑜𝑝 is the typical value of 

the parameter. 

Three error models, additive, proportional, and combined (additive and proportional), were used to 

describe residual unexplained variability at the 𝑗th time for the 𝑖th individual, 𝜀𝑖𝑗 which is assumed 

to be independent and identically normally distributed with a mean of zero and variance of 𝜎2. 

Covariate model and structure 

Covariates considered included weight and food status. Weight was introduced into the model via 

allometric scaling with a fixed exponent of 
3

4
 for clearance terms and 1 for volume terms [23]. Food 

status was tested separately on to the first-order absorption rate constant (𝑘𝑎) and relative 

bioavailability (𝐹). 



Model selection 

Model selection was generally based on four criteria: (i) a reduction in the objective function value 

(OFV) for nested models with one degree of freedom by more than 3.84 unit (Chi-square [𝜒2], 

p<0.05), (ii) an improvement in the goodness-of-fit plots and visual predicitive checks (VPCs) as 

recommended by the International Society of Pharmacometrics Model Evaluation Group [24] (iii) a 

reduction in IIV, (iv) parameter estimates that were precise and biologically plausible. 

Model evaluation 

The following diagnostic plots were used for model evaluation: dependent variable versus 

population predictions, dependent variables versus individual predictions, normalised prediction 

distribution versus population predictions, individual weighted residual versus time, and conditional 

weighted residual versus conditional population prediction. The VPCs were produced by simulating 

1000 datasets under the final model and the 5𝑡ℎ, 50𝑡ℎ, and 95𝑡ℎ percentiles were plotted against 

data of the same percentiles from the original dataset. 

Estimation algorithm 

The SAEM algorithm [5] was used for model building. Once the final model was determined, the 

parameters were re-estimated again with FOCEi [6]. 

Area-under-the-curve (AUC) 

The 𝐴𝑈𝐶0−∞ for the subjects in the analysis data was calculated with three different approaches: (i) 

using non-compartmental analysis (termed the “NCA method”), (ii) using the algebraic equation, 

𝐴𝑈𝐶0−∞ =
𝐹𝐸𝐵𝐸⋅𝐷𝑜𝑠𝑒

𝐶𝐿𝐸𝐵𝐸
, which was based on the empirical Bayes estimate (EBE) of 𝐹 and 𝐶𝐿 (termed 

the “algebraic method”), (iii) solving the system of ODE with an additional ODE added to the final 

model where 
𝑑𝐴𝑈𝐶

𝑑𝑡
= 𝑐𝑝, 𝑐𝑝 denotes plasma concentration (termed the “model-based method”). 

To account for and to quantify potential estimation error in Stirling’s approximation, we derived a 

bias factor for the Stirling’s approximation and log-gamma function versus the exact values of 𝑛! for 



different 𝑛. Three bias factors were derived based on the following equation: (i) 
𝑛!𝑙𝑜𝑔.𝑔𝑎𝑚𝑚𝑎

𝑛!𝑒𝑥𝑎𝑐𝑡
; (ii) 

𝑛!𝑆𝑡𝑖𝑟𝑙𝑖𝑛𝑔

𝑛!𝑒𝑥𝑎𝑐𝑡
; and (iii) 

𝑛!𝑆𝑡𝑖𝑟𝑙𝑖𝑛𝑔

𝑛!𝑙𝑜𝑔.𝑔𝑎𝑚𝑚𝑎
. We then simulated a typical subject’s concentration-time profile with the 

R package RxODE (version 1.0.8) using parameter estimates from the final model but with the 

value of 𝑛 perturbed to 0.25, 0.5, 1, 2, 3, 4, and 5. 𝐴𝑈𝐶0−∞ was then derived from the typical 

concentration-time profile by the model-based method (which approximated 𝑛! using Stirling’s 

approximation that had the tendency to over-estimate 𝐴𝑈𝐶0−∞) and the algebraic-method (which 

was invariant to approximation error). We then applied the bias factor to correct model-based 

𝐴𝑈𝐶0−∞ and compared the resultant values to the algebraic-method. 

Flip-flop pharmacokinetic 

To investigate the presence of flip-flop PK in the dataset, we used final parameter estimates from 

both SAEM and FOCEi to predict a typical subject’s concentration-time profile but perturbed 𝑘𝑎 by 

a factor of 0.5, 1, or 2 to observe if the steepnes of the terminal elimination phase changed with 

different 𝑘𝑎 values. RxODE (version 1.0.8) was used for simulations. Resultant concentration-time 

profiles under each 𝑘𝑎 scenario were plotted on a semi-logarithmic scale to evaluate any changes 

to the terminal slope. 

Bias and precision 

A stochastic simulation and estimation study (SSE) was performed to evaluate bias and precision 

of parameter estimates given by the SAEM and FOCEi algorithms using RxODE (version 1.0.8). 

One hundred and fifty data sets were simulated, each containing 20 subjects with fasted and fed 

status respectively (total of 40 subjects in each set). Each simulated subject received one dose of 

250mg metformin with 15 blood samples over a 24-hour period. The simulation code is available 

on the corresponding author’s Github page. 

Parameters were re-estimated with SAEM and FOCEi. Initial estimates of the models were set to 

true values used for simulation that were slightly perturbed. Percentage relative estimation error 

(%REE), mean prediction error (MPE) and root mean square error (RMSE) were used to evaluate 



bias and precision of parameter estimates given by the algorithms. Denoting 𝜃𝑒𝑠𝑡 as the estimated 

value and 𝜃𝑡𝑟𝑢𝑒 as the true value of the parameter, %𝑅𝐸𝐸 was given by %𝑅𝐸𝐸 =
𝜃𝑒𝑠𝑡−𝜃𝑡𝑟𝑢𝑒

𝜃𝑡𝑟𝑢𝑒
⋅ 100%; 

𝑀𝑃𝐸 was given by 𝑀𝑃𝐸 = 𝑁−1 ⋅ ∑(𝜃𝑒𝑠𝑡 − 𝜃𝑡𝑟𝑢𝑒); 𝑅𝑀𝑆𝐸 was given by 𝑅𝑀𝑆𝐸 =

√𝑁−1∑ (𝜃𝑒𝑠𝑡 − 𝜃𝑡𝑟𝑢𝑒)
2𝑁

𝑖=1 ; relative RMSE (rRMSE) of SAEM was calculated by dividing each RMSE 

value calculated by SAEM by RMSE calculated for the same parameter but with FOCEi (𝑟𝑅𝑀𝑆𝐸 =

𝑅𝑀𝑆𝐸𝑆𝐴𝐸𝑀

𝑅𝑀𝑆𝐸𝐹𝑂𝐶𝐸𝑖
). When the value of rRMSE was less than 1, it indicated that SAEM was more precise 

than FOCEi and vice versa. 

Robustness towards perturbation of initial estimates 

The original set of initial estimates used in the final model (see Table 1S in Supplement I) were 

perturbed 100-times by up to 2-fold randomly (either by multiplying or dividing the initial estimates). 

These 100 sets of perturbed initial estimates were sequentially fed into the ini block of nlmixr to 

specify new starting points for subsequent estimations by SAEM and FOCEi. The model block 

remained unchanged. We then evaluated the robustness of each algorithm against perturbation in 

initial estimates by comparing the parameter estimates produced in each perturbation run with that 

of the final model. The distribution of each parameter estimates and %𝑅𝐸𝐸 were plotted. 

RESULTS 

Clinical dataset 

A total of 660 samples of plasma concentration from 44 subjects were available for analysis. The 

demographic characteristics are illustrated in Table 1. No aberrant plasma concentration was 

detected, but there were 37 (5.61%) post-dose samples with BQL concentration. These BQL 

observations were transformed according to M6 method and included in the analysis. The semi-

logarithmic concentration-time profile of the raw data is shown in Figure 1S in Supplement I. 



Population pharmacokinetic model of metformin 

A one-compartment model with first-order absorption and elimination kinetics as well as with the 

delay in absorption described by a transit compartment model fitted the data best. The time course 

of drug concentration was described by the following equation: 

𝑑𝐴(1)

𝑑𝑡
= 𝑒(𝑙𝑜𝑔(𝐹⋅𝐷𝑜𝑠𝑒)+𝑙𝑜𝑔(𝑘𝑡𝑟)+𝑛⋅𝑙𝑜𝑔(𝑘𝑡𝑟⋅𝑡)−𝑘𝑡𝑟⋅𝑡−𝑙𝑜𝑔𝛤(𝑛+1)) − 𝑘𝑎 ∗ 𝐴(1) 

𝑑𝐴(2)

𝑑𝑡
= 𝑘𝑎 ⋅ 𝐴(1) −

𝐶𝐿

𝑉
⋅ 𝐴(2) 

                                                 𝐶𝑝 =
𝐴(2)

𝑉
                                          (Eq. 3) 

The model has seven parameters: 𝑘𝑡𝑟, 𝑛, 𝑘𝑎, 𝐶𝐿, 𝑉, 𝜃𝑓𝑒𝑑,𝑘𝑎, and 𝜃𝑓𝑒𝑑,𝐹. The inclusion of the 

interindividual variability (IIV) component on 𝑘𝑎, 𝐶𝐿, and 𝑉 on the final model produced significant 

improvements in model fit. The combined error model was selected as it best described the data 

(𝛥𝑂𝐹𝑉 = −130). Final parameter estimates are given in Table 2 and the full model parameterised 

by ODE is shown in Table 1S in Supplement I. Food status was found to be a significant covariate 

on 𝑘𝑎 (𝜃𝑓𝑒𝑑,𝑘𝑎) abd bioavailability, 𝐹 (𝜃𝑓𝑒𝑑,𝐹) respectively. The addition of food status as a covariate 

on 𝑘𝑎 reduced BSV from 8.6% to 1.9% and improved overall global fit (𝛥(𝑂𝐹𝑉) = −18.4). Food 

status as a covariate on 𝐹 also improved model fit as seen in the VPC (not shown). 

Diagnostic plots of the final model are shown in Figure 1. They suggested no apparent 

mispecification of model components. Two VPCs for the final model are presented in Figure 2 for 

SAEM and FOCEi respectively. The 5𝑡ℎ, 50𝑡ℎ and 95𝑡ℎ percentiles of the population PK model 

predicted plasma metformin concentration (represented by the blue colour bands) matched the 

percentiles of observed concentration values well. The final PK models provided an adequate 

description of the observed data. Individual plots are available in Figure 2S of Supplement I. 



Area-under-the-concentration-curve (AUC) 

The values of 𝐴𝑈𝐶0−∞ calculated from three approaches were in agreement with each other as 

illustrated in Figure 3. The NCA method was considered as the gold standard with which the other 

two methods were compared. Plots in the top row of Figure 3 (model-based method) suggested 

that 𝐴𝑈𝐶0−∞ derived from the final model ODE (which utilised log-gamma function instead of 

Stirling’s approximation of 𝑛!) corresponded closely to the algebraic method, which relied on the 

values of 𝐶𝐿𝐸𝐵𝐸. 

However, when the 𝑛! was approximated using Stirling’s approximation, 𝐴𝑈𝐶0−∞ derived from the 

model-based method became consistently larger than values derived from the algebraic method 

regardless of the values of 𝑛 (see Table 3). When the value of 𝑛 decreased further (e.g. 0.5 or 

0.25), the values of 𝐴𝑈𝐶𝑚𝑜𝑑𝑒𝑙 diverged greater from 𝐴𝑈𝐶𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 (see Figure 3S in Supplement I). 

Such a divergence was not observed when the log-gamma function was used to approximate 𝑛!. 

When the bias factor (
𝑛!𝑠𝑡𝑖𝑟𝑙𝑖𝑛𝑔

𝑛!𝑙𝑜𝑔.𝑔𝑎𝑚𝑚𝑎
) was applied to 𝐴𝑈𝐶𝑚𝑜𝑑𝑒𝑙−𝑏𝑎𝑠𝑒𝑑, the resultant values were 

corrected to match 𝐴𝑈𝐶𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 (see Table 3). 

Flip-flop pharmacokinetic 

Two typical concentration-time profiles with perturbation of 𝑘𝑎 by a factor of 0.5, 1, and 2, 

estimated with SAEM and FOCEi respectively are shown in Figure 4. The figures clearly showed 

doubling the 𝑘𝑎 value led to a faster rate of elimination while halving the 𝑘𝑎 led to a slower rate of 

elimination. When all else remained unchanged, fed subjects who tend to have lower 𝑘𝑎 also 

appeared to have slightly more significant flip-flop in PK as compared to the fasted subjects, and 

the difference between fasted and fed was more prominent when final estimates given by FOCEi 

was used. 

Bias and precision 

Simulations were performed using the final parameter estimates from the SAEM algorithm (see 

Table 2) as they were more closely aligned with the figures reported in the literature. 



The distribution of parameter estimates and the respective %REE were illustrated in Figure 5. 

Estimates for 𝑘𝑎, 𝐶𝐿, 𝑉, 𝜃𝑓𝑒𝑑,𝑘𝑎 and 𝜃𝑓𝑒𝑑,𝐹 were equally precise and unbiased for both FOCEi and 

SAEM. Parameter estimates for 𝑘𝑡𝑟 and 𝑛 were more imprecise for both algorithms, judging from 

the greater spread of the parameter point estimates. Additionally, estimates of 𝑘𝑡𝑟 and 𝑛 given by 

FOCEi were more biased compared to other parameters and against SAEM. 

Values of MPE and RMSE for fixed-effect parameters are tabulated in Table 4. The results further 

suggested that no apparent difference existed between two algorithms in estimating population PK 

of a flip-flop system. 

Robustness against perturbation in initial estimates 

One hundred runs of parameter re-estimation with perturbed initial estimates were performed with 

SAEM and FOCEi respectively. The distribution of parameter point estimates and %REE were 

illustrated in Figure 6. 

Both algorithms demonstrated different degrees of robustness towards changes in initial estimates, 

with FOCEi being less robust towards such changes. In particular, parameter estimates of 𝑘𝑎 and 

food effect on 𝑘𝑎 (i.e. 𝜃𝑓𝑒𝑑,𝑘𝑎) were significantly biased and imprecise when FOCEi was compared 

to SAEM. 𝑘𝑎, 𝑉, and 𝜃𝑓𝑒𝑑,𝑘𝑎 estimated by FOCEi appeared to be bimodal, while no such bimodality 

was observed with SAEM. 

DISCUSSION 

In this study, we have assessed the R package nlmixr for fitting compartmental PK models. The 

performance of its two main estimation algorithms in terms of bias, precision, and robustness 

against perturbations in initial estimates were challenged with metformin PK data that 

demonstrated flip-flop pharmacokinetics. In general, nlmixr was a reliable open-source tool for 

NLMEM, where a complete model-building, qualification and evaluation procedure could be 

completed entirely within the R environment. This package provided the much-needed tools to 



researchers, particularly those working under a resource-limited setting, to analyse population 

PK/PKPD data as well as to promote better reproducibility and transparency in pharmacometrics. 

Our study showed that a one-compartment model with first-order absorption and elimination 

kinetics as well as with the delay in absorption described by a transit compartment model best 

described the population PK of metfomin in healthy volunteers when the compound was 

administered with or without food. The transit compartment model was particularly important to 

model the absorption phase as first-order absorption model had the tendency to underestimate 

maximum concentration (𝐶𝑚𝑎𝑥). Parameter estimates from SAEM were closer to values reported in 

the literature, and more plausible biologically. Despite the differences in parameter estimates, both 

algorithms appeared to give similar fit to the data as shown in the VPCs (Figure 2). This could be 

attributed to flip-flop where two sets of parameter estimates could give rise to the same 

concentration-time profile for a one-compartment model. 

Several earlier studies used either the first-order absorption or lag-time model to describe 

metformin absorption [25–27]. Nonetheless, Cvijic et al (2014) summarised that metformin 

absorption appears to be quite complex, of which is characterised by saturable paracellular and 

transcellular pathway [20]. In fact, recent population PK studies on metformin showed that 

metformin absorption is better described by complex models such as first-order absorption 

followed by zero-order absorption with lag time [28] or two separate absorption pathways to 

account for different absorption sites in the gastrointestinal tract [29]. 

When using Stirling’s approximation to 𝑛!, caution should be exercised when 𝑛 is small. In our 

study, population estimate for 𝑛 was 0.791 (relative standard error=0.0138). Stirling’s 

approximation to 𝑛! would underestimate its value. Since in transit compartment, dose was 

normalised by 𝑛!, an under-approximated 𝑛! would lead to an over-approximated 
𝐷𝑜𝑠𝑒

𝑛!
 in the 

equation 𝑎𝑛(𝑡) = 𝐹 ⋅ 𝐷𝑜𝑠𝑒 ⋅
(𝑘𝑡𝑟⋅𝑡)

𝑛

𝑛!
⋅ 𝑒−𝑘𝑡𝑟⋅𝑡, thereby resulting in an over-approximated 𝑎𝑛(𝑡), and 

subsequently distort other parameter estimates. This was exemplified in the calculation of 𝐴𝑈𝐶0−∞ 

by model-based method which relied on Stirling’s approximation rather than log-gamma function 



where the values were consistently over-estimated. This over-estimation persisted even as 

bioavailability and clearance remained unchanged, and the magnitude of such over-estimation was 

invariant to the magnitude of 𝑘𝑎, thus confirming that the presence of flip-flop pharmacokinetic did 

not influence this over-estimation (see Supplement II). Additionally, when the bias factor was 

included in the 𝐴𝑈𝐶0−∞ calculation, the values derived from the corrected model-based method 

matched that of the algebraic method, which confirmed that the log-gamma function should be the 

preferred method to approximate 𝑛! in the transit compartment equation. 

Our metformin dataset also demonstrated the hallmark feature of flip-flop pharmacokinetics: the 

rate of absorption being slower than the rate of elimination. If the absorption process is not rate-

limiting, the terminal elimination phase will be invariant to changes in 𝑘𝑎, i.e. the terminal slopes 

would run in parallel to one another. SAEM and FOCEi produced parameter estimates that were 

different although the model inputs were identical and model outputs were largely similar. This 

could be explained by local structural non-identifiability in the parameter estimates, i.e. flip-flop, 

where there were more than one set of parameter values that could give the same input-output 

relationship. In essence, flip-flop pharmacokinetics is a permutation of the rank order of parameter 

values where the two sets of parameter estimates (produced by SAEM and FOCEi respectively) 

would give the same input-output relationship in a one-compartment model (see Table 5). 

Nonetheless, clearance (𝐶𝐿) should remain invariant to flip-flip pharmacokinetics as shown in the 

parameter estimates of both algorithms (𝐶𝐿𝐹𝑂𝐶𝐸𝑖 = 53.6𝐿 ⋅ ℎ−1; 𝐶𝐿𝑆𝐴𝐸𝑀 = 54.8𝐿 ⋅ ℎ−1). This was 

demonstrated in the SSE study too where 𝐶𝐿 was invariant to flip-flop but 𝑘𝑎 and 𝑉 were not. The 

𝐶𝐿𝐸𝐵𝐸 based on SAEM and FOCEi were also largely similar (not shown). As a result, the 

𝐴𝑈𝐶𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 calculated based on 𝐶𝐿𝐸𝐵𝐸 were also largely similar and matched that determined 

based on the NCA method and the model-based method (Figure 3). 

Low bias and high precision in parameter estimates are two most important properties for an 

estimation algorithm [30]. Based on our SSE results, the SAEM algorithm was marginally superior 

to FOCEi in estimating fixed-effects parameters (mean rRMSE=0.932). The distribution of all fixed-



effect parameter estimates appeared to be normal and centred around the true value used for 

simulation (Figure 5). 

Robustness against changes in initial estimates is another highly desirable trait of an algorithm. 

Johansson et al (2014) states that robustness depends strongly on the shape of the likelihood 

surface [30]. A likelihood surface with many local minima will results in a stronger dependence of a 

good starting point (i.e. initial estimates) compared to simple likelihood surface. As these initial 

estimates were perturbed, the SAEM algorithm was superior against FOCEi, as shown in Figure 6, 

where the algorithm was able to produce parameter estimates that were close to the final model. 

Overall, user experience with nlmixr was good as we received great support from the developers 

who were responsive and helpful, and the algorithms functioned as intended to arrive at models 

that were stable in our study. Although the documentation for certain aspects of NLMEM with 

nlmixr were limited at the times of this work, we acknowledged the efforts from developers to 

update these documentations frequently and consistently throughout our study. 

Limitation 

The final model had slightly under-estimated plasma concentration at times between 2.5-hour to 5-

hour. This was consistent with the goodness-of-fit plots. Regardless, we decided to retain the 

transit compartment model to describe the delay in absorption as it provided a better fit compared 

to models without the transit compartment such as the conventional first-order absorption model or 

the lag-time model (data not shown). Additionally, at the population level, we noticed that FOCEi 

arrived at much imprecise parameter estimates compared to SAEM despite using the same model 

and identical inputs (Table 2). For example, the %𝑅𝑆𝐸 for the estimates of 𝑘𝑡𝑟, 𝑛, and 𝜃𝑓𝑒𝑑,𝑘𝑎 was 

650%, 82.6% and 103% for FOCEi but were all under 15% for SAEM. 

CONCLUSION 

In this study, a population PK model for metformin was developed, evaluated, and used for 

simulations with nlmixr and related R packages, all of which are open-source tools developed for 



NLME modeling entirely within the R environment. Both the SAEM and FOCEi algorithms 

performed well for population PK modelling but SAEM offer some advantage when flip-flop 

pharmacokinetics are present, as well as being more robust with respect to initial estimates 

changes. Overall, nlmixr appears well suited for NLME modelling. 

  



Table legends 

Table 1: Patient characteristics. 

Table 2: Parameter estimates for the final PK model, estimated by SAEM and FOCEi. 

Abbreviations: 𝑘𝑡𝑟, transfer rate constant; 𝑛, number of transit compartment; 𝑘𝑎, absorption rate 

constant; 𝐶𝐿, clearance; 𝑉, volume of distribution; 𝜃𝑓𝑒𝑑,𝐹, food effect on bioavailability; 𝜃𝑓𝑒𝑑,𝑘𝑎, food 

effect on absorption rate constant; %𝑅𝑆𝐸, percentage of relative standard error; 𝐶𝑉, coefficient of 

variation; 𝜎, standard deviation of IIV; RUV, random unexplained variability; add, additive; prop, 

proportional 

Table 3: 𝐴𝑈𝐶0−∞ derived from the model-based and algebraic method, and corrected 

𝐴𝑈𝐶𝑚𝑜𝑑𝑒𝑙−𝑏𝑎𝑠𝑒𝑑 by the bias factors. 

Table 4: Mean prediction error (MPE) and root mean square error (RMSE) of fixed and random 

parameters obtained with FOCEi and SAEM algorithms. 

Table 5: Possible permutations for a one-compartment model using 𝐶𝐿, 𝑉,and 𝑘𝑎. 

Figure legends 

Figure 1: Goodness-of-fit plots for final metformin PK model with FOCEi (top) and SAEM (bottom) 

algorithm. Black dots are observed values. Blue lines are loess smooths through the data. Grey 

lines are lines of identity. DV, observations; CPRED, conditional population prediction; IPRED, 

individual prediction; NPD, normalised prediction distribution; WRES, weighted residuals; IWRES, 

individual weighted residuals. 

Figure 2: Visual predictive check of the final metformin PK model with FOCEi (top) and SAEM 

(bottom) algorithm. Black dots are observed values. Solid black lines are the observed median, 

while the dash black lines are the observed 5th and 95th percentiles. Blue shaded areas represent 

90% confidence intervals around simulated 5th, 50th, and 95th percentiles. 12 bins are used. 

N=1000. 



Figure 3: Estimates of area-under-the-curve derived from model-based approach (top) or algebraic 

approach (bottom) against non-compartmental analysis. Black dots are estimated values. Blue 

lines are linear regression line. Black dashed lines are lines of unity. 

Figure 4: Simulated plasma concentration of metformin of a typical subject based on parameter 

estimates of the final model. 

Figure 5: Distribution of parameter estimates obtained from SAEM and FOCEi algorithm (top) and 

the respective relative estimation error (bottom) from the SSE study. 

Figure 6: Distribution of parameter estimates obtained from SAEM and FOCEi algorithm (top) and 

the respective relative estimation error (bottom) when the initial estimates were perturbed. 
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