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Abstract. We study low order terms of Emerton’s spectral sequence
for simply connected, simple groups. As a result, for real rank 1
groups, we show that Emerton’s method for constructing eigenva-
rieties is successful in cohomological dimension 1. For real rank 2
groups, we show that a slight modification of Emerton’s method al-
lows one to construct eigenvarieties in cohomological dimension 2.
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Throughout this paper we shall use the following standard notation:

• k is an algebraic number field, fixed throughout.

• p, q denote finite primes of k, and kp, kq the corresponding local fields.

• k∞ = k ⊗Q R is the product of the archimedean completions of k.

• A is the adèle ring of k.

• Af is the ring of finite adèles of k.

• For a finite set S of places of k, we let

kS =
∏

v∈S

kv, AS =
∏

v/∈S

′
kv.
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1 Introduction and Statements of Results

1.1 Interpolation of classical automorphic representations

Let G be a connected, algebraically simply connected, semi-simple group over
a number field k. We fix once and for all a maximal compact subgroup
K∞ ⊂ G(k∞). Our assumptions on G imply that K∞ is connected in the
archimedean topology. This paper is concerned with the cohomology of the
following “Shimura manifolds”:

Y (Kf ) = G(k)\G(A)/K∞Kf ,

where Kf is a compact open subgroup of G(Af ). Let W be an irreducible finite
dimensional algebraic representation of G over a field extension E/k. Such a
representation gives rise to a local system VW on Y (Kf ). We shall refer to the
cohomology groups of this local system as the “classical cohomology groups”:

H•class.(Kf ,W ) := H•(Y (Kf ),VW ).

It is convenient to consider the direct limit over all levels Kf of these cohomol-
ogy groups:

H•class.(G,W ) = lim
−→
Kf

H•class.(Kf ,W ).

There is a smooth action of G(Af ) on H•class.(G,W ). Since W is a represen-
tation over a field E of characteristic zero, we may recover the finite level
cohomology groups as spaces of Kf -invariants:

H•class.(Kf ,W ) = H•class.(G,W )Kf .

It has become clear that only a very restricted class of smooth representations
of G(Af ) may occur as subquotients of the classical cohomology Hn

class.(G,W ).
For example, in the case E = C, Ramanujan’s Conjecture (Deligne’s Theorem)
gives an archimedian bound on the eigenvalues of the Hecke operators. We shall
be concerned here with the case that E is an extension of a non-archimedean
completion of k.
Fix once and for all a finite prime p of k over which G is quasi-split. Fix a
Borel subgroup B of G ×k kp and a maximal torus T ⊂ B. We let E be a
finite extension of kp, large enough so that G splits over E. It follows that
the irreducible algebraic representations of G over E are absolutely irreducible
(§24.5 of [8]). By the highest weight theorem (§24.3 of [8]), an irreducible
representation W of G over E is determined by its highest weight ψW , which
is an algebraic character ψW : T ×kp

E → GL1/E.
By a tame level we shall mean a compact open subgroup Kp ⊂ G(Ap

f ). Fix a
tame level Kp, and consider the spaces of Kp-invariants:

H•class.(K
p,W ) = H•class.(G,W )Kp

.
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Eigenvarieties in Small Cohomological Dimensions 365

The group G(kp) acts smoothly on H•class.(K
p,W ). We also have commuting

actions of the level Kp Hecke algebra:

H(Kp) :=
{
f : Kp\G(Ap

f )/Kp → E : f has compact support
}
.

In order to describe the representations of H(Kp), recall the tensor product
decomposition:

H(Kp) = H(Kp)ramified ⊗H(Kp)sph, (1)

where H(Kp)sph is commutative but infinitely generated, and H(Kp)ramified is
non-commutative but finitely generated. Consequently the irreducible repre-
sentations of H(Kp) are finite-dimensional.
Let q 6= p be a finite prime of k. We shall say that q is unramified in Kp if

(a) G is quasi-split over kq, and splits over an unramified extension of kq,
and

(b) Kp ∩ G(kq) is a hyper-special maximal compact subgroup of G(kq) (see
[38]).

Let S be the set of finite primes q 6= p, which are ramified in Kp. This is a
finite set, and we have

Kp = KS ×
∏

q unramified

Kq, KS = Kp ∩ G(kS), Kq = Kp ∩ G(kq).

This gives the tensor product decomposition (1), where we take

H(Kp)ramified = H(KS), H(Kp)sph =
⊗

q unramified

′
H(Kp).

For each unramified prime q, the Satake isomorphism (Theorem 4.1 of [12])
shows that H(Kq) is finitely generated and commutative. Hence the irreducible
representations of H(Kp)sph over Ē are 1-dimensional, and may be identified
with elements of (Spec H(Kp)sph)(Ē). Since the global Hecke algebra is in-
finitely generated, Spec H(Kp)sph is an infinite dimensional space. One might
expect that the representations which occur as subquotients of H•class.(K

p,W )
are evenly spread around this space. There is an increasing body of evidence
[1, 2, 3, 10, 11, 13, 14, 15, 18, 21, 22] that this is not the case, and that
in fact these representations are contained in a finite dimensional subset of
Spec H(Kp)sph, independent of W .
More precisely, let π be an irreducible representation of G(kp)×H(Kp), which
occurs as a subquotient of Hn

class.(K
p,W ) ⊗E Ē. We may decompose π as a

tensor product:
π = πp ⊗ πramified ⊗ πsph,

where πsph is a character of H(Kp)sph; πramified is an irreducible representation
of H(Kp)ramified and πp is an irreducible smooth representation of G(kp). We
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can say very little about the pair (W,π) in this generality, so we shall make
another restriction. We shall write JacqB(πp) for the Jacquet module of πp,
with respect to B(kp). The Jacquet module is a smooth, finite dimensional
representation of T(kp). It seems possible to say something about those pairs
(π,W ) for which πp has non-zero Jacquet module. Such representations πp

are also said to have finite slope. Classically for GL2/Q, representations of
finite slope correspond to Hecke eigenforms for which the eigenvalue of Up is
non-zero. By Frobenius reciprocity, such a πp is a submodule of a smoothly

induced representation ind
G(kp)

B(kp)θ, where θ : T(kp) → Ē× is a smooth character.

In order to combine the highest weight ψW , which is an algebraic character
of T, and the smooth character θ of T(kp), we introduce the following rigid
analytic space (see [32] for background in rigid analytic geometry):

T̂ (A) = Homkp−loc.an.(T(kp), A
×),

A a commutative
Banach algebra over E.

Emerton defined the classical point corresponding to π to be the pair

(θψW , πsph) ∈
(
T̂ × Spec H(Kp)sph

)
(Ē).

We let E(n,Kp)class. denote the set of all classical points. Emerton defined the
eigenvariety E(n,Kp) to be the rigid analytic Zariski closure of E(n,Kp)class.
in T̂ × Spec H(Kp)sph.
Concretely, this means that for every unramified prime q and each generator T i

q

for the Hecke algebra H(Kq), there is a holomorphic function tiq on E(n,Kp)

such that for every representation π in Hn
class.(K

p,W ) ⊗ Ē of finite slope at
p, the action of T i

q on π is by scalar multiplication by tiq(x), where x is the
corresponding classical point.
One also obtains a description of the action of the ramified part of the Hecke
algebra. This description is different, since irreducible representations of
H(Kp)ramified are finite dimensional rather than 1-dimensional. Instead one
finds that there is a coherent sheaf M of H(Kp)ramified-modules over E(n,Kp),
such that, roughly speaking, the action of H(Kp)ramified on the fibre of a clas-
sical point describes the action of H(Kp)ramified on the corresponding part of
the classical cohomology. A precise statement is given in Theorem 1 below.
Emerton introduced a criterion (Definition 1 below), according to which the
Eigencurve E(n,Kp) is finite dimensional. More precisely, he was able to prove
that the projection E(n,Kp) → T̂ is finite. If we let t denote the Lie algebra
of T(Ē), then there is a map given by differentiation at the identity element:

T̂ → ť,

where ť is the dual space of t. It is worth noting that the image in ť of a classical
point depends only on the highest weight ψW , since smooth characters have zero
derivative. Emerton also proved, assuming his criterion, that the projection
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E(n,Kp) → ť has discrete fibres. As a result, one knows that the dimension of
the eigencurve is at most the absolute rank of G.
The purpose of this paper is to investigate Emerton’s criterion for connected,
simply connected, simple groups. Specifically, we show that Emerton’s criterion
holds for all such groups in dimension n = 1. Emerton’s criterion typically fails
in dimension n = 2. However we prove a weaker form of the criterion for n = 2,
and we show that the weaker criterion is sufficient for most purposes.

1.2 Emerton’s Criterion

Let p be the rational prime below p. In [18] Emerton introduced the following
p-adic Banach spaces:

H̃•(Kp,Qp) =

(
lim
←−s

lim
−→
Kp

H•(Y (KpK
p),Z/ps)

)
⊗Zp

Qp.

For convenience, we also consider the direct limits of these spaces over all tame
levels Kp:

H̃•(G,Qp) = lim
−→
Kp

H̃•(Kp,Qp).

We have the following actions on these spaces:

• The group G(Ap

f ) acts smoothly on H̃•(G,Qp); the subspace H̃•(Kp,Qp)
may be recovered as the Kp-invariants:

H̃•(Kp,Qp) = H̃•(G,Qp)
Kp

.

• The Hecke algebra H(Kp) acts on H̃•(Kp,Qp) ⊗ E.

• The group G(kp) acts continuously, but not usually smoothly on the Ba-

nach space H̃•(Kp,Qp). This is an admissible continuous representation
of G(kp) in the sense of [33] (or [16], Definition 7.2.1).

• Recall that we have fixed a finite extension E/kp, over which G splits.
We let

H̃•(Kp, E) = H̃•(Kp,Qp) ⊗Qp
E.

The group G(kp) is a p-adic analytic group. Hence, we may define the

subspace of kp-locally analytic vectors in H̃•(Kp, E) (see [16]):

H̃•(Kp, E)loc.an..

This subspace is G(kp)-invariant, and is an admissible locally analytic
representation of G(kp) (in the sense of [16], Definition 7.2.7). The Lie

algebra g of G also acts on the subspace H̃•(Kp, E)loc.an..
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For an irreducible algebraic representation W of G over E, we shall write W̌ be
the contragredient representation. Emerton showed (Theorem 2.2.11 of [18])
that there is a spectral sequence:

Ep,q
2 = Extp

g(W̌ , H̃q(Kp, E)loc.an.) =⇒ Hp+q
class.(K

p,W ). (2)

Taking the direct limit over the tame levels Kp, there is also a spectral sequence
(Theorem 0.5 of [18]):

Extp
g(W̌ , H̃q(G, E)loc.an.) =⇒ Hp+q

class.(G,W ). (3)

In particular, there is an edge map

Hn
class.(G,W ) → Homg(W̌ , H̃n(G, E)loc.an.). (4)

Definition 1. We shall say that G satisfies Emerton’s criterion in dimension
n if the following holds:

For every W , the edge map (4) is an isomorphism.

This is equivalent to the edge maps from Hn
class.(K

p,W ) to

Homg(W̌ , H̃n(Kp, E)loc.an.) being isomorphisms for every W and every
tame level Kp.

Theorem 1 (Theorem 0.7 of [18]). Suppose Emerton’s criterion holds for G

in dimension n. Then we have:

1. Projection onto the first factor induces a finite map E(n,Kp) → T̂ .

2. The map E(n,Kp) → ť has discrete fibres.

3. If (χ, λ) is a point of the Eigencurve such that χ is locally algebraic and
of non-critical slope (in the sense of [17], Definition 4.4.3), then (χ, λ) is
a classical point.

4. There is a coherent sheaf M of H(Kp)ramified-modules over E(n,Kp) with
the following property. For any classical point (θψW , λ) ∈ E(n,Kp) of
non-critical slope, the fibre of M over the point (θψW , λ) is isomorphic
(as a H(Kp)ramified-module) to the dual of the (θψW , λ)-eigenspace of the
Jacquet module of Hn

class.(K
p, W̌ ).

In fact Emerton proved this theorem for all reductive groups G/k. He verified
his criterion in the case G = GL2/Q, n = 1. He also pointed out that the
criterion always holds for n = 0, since the edge map at (0, 0) for any first
quadrant E•,•2 spectral sequence is an isomorphism. Of course the cohomology
of G is usually uninteresting in dimension 0, but his argument can be applied
in the case where the derived subgroup of G has real rank zero. This is the
case, for example, when G is a torus, or the multiplicative group of a definite
quaternion algebra.
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1.3 Our Main Results

For our main results, G is connected, simple and algebraically simply connected.
We shall also assume that G(k∞) is not compact. We do not need to assume
that G is absolutely simple. We shall prove the following.

Theorem 2. Emerton’s criterion holds in dimension 1.

For cohomological dimensions 2 and higher, Emerton’s criterion is quite rare.
We shall instead use the following criterion.

Definition 2. We shall say that G satisfies the weak Emerton criterion in
dimension n if

(a) for every non-trivial irreducible W , the edge map (4) is an isomorphism,
and

(b) for the trivial representation W , the edge map (4) is injective, and its
cokernel is a finite dimensional trivial representation of G(Af ).

By simple modifications to Emerton’s proof of Theorem 1, we shall prove the
following in §4.

Theorem 3. If the weak Emerton criterion holds for G in dimension n, then

1. Projection onto the first factor induces a finite map E(n,Kp) → T̂ .

2. The map E(n,Kp) → ť has discrete fibres.

3. If (χ, λ) is a point of the Eigencurve such that χ is locally algebraic and
of non-critical slope, then either (χ, λ) is a classical point or (χ, λ) is the
trivial representation of T(kp) ×H(Kp)sph.

In order to state our next theorems, we recall the definition of the congruence
kernel. As before, G/k is simple, connected and simply connected and G(k∞)
is not compact. By a congruence subgroup of G(k), we shall mean a subgroup
of the form

Γ(Kf ) = G(k) ∩ (G(k∞) ×Kf ),

where Kf ⊂ G(Af ) is compact and open. Any two congruence subgroups are
commensurable.
An arithmetic subgroup is a subgroup of G(k), which is commensurable with a
congruence subgroup. In particular, every congruence subgroup is arithmetic.
The congruence subgroup problem (see the survey articles [30, 31]) is the prob-
lem of determining the difference between arithmetic subgroups and congruence
subgroups. In particular, one could naively ask whether every arithmetic sub-
group of G is a congruence subgroup. In order to study this question more
precisely, Serre introduced two completions of G(k):

Ĝ(k) = lim
←−
Kf

G(k)/Γ(Kf ),
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G̃(k) = lim
←−−−−−−−−
Γ arithmetic

G(k)/Γ.

There is a continuous surjective group homomorphism G̃(k) → Ĝ(k). The
congruence kernel Cong(G) is defined to be the kernel of this map. Recall the
following:

Theorem 4 (Strong Approximation Theorem [23, 24, 25, 28, 29]). Suppose
G/k is connected, simple, and algebraically simply connected. Let S be a set
of places of k, such that G(kS) is not compact. Then G(k)G(kS) is dense in
G(A).

Under our assumptions on G, the strong approximation theorem implies that
Ĝ(k) = G(Af ), and we have the following extension of topological groups:

1 → Cong(G) → G̃(k) → G(Af ) → 1.

By the real rank of G, we shall mean the sum

m =
∑

ν|∞

rankkν
G.

It follows from the non-compactness of G(k∞), that the real rank of G is at
least 1. Serre [37] has conjectured that for G simple, simply connected and
of real rank at least 2, the congruence kernel is finite; for real rank 1 groups
he conjectured that the congruence kernel is infinite. These conjectures have
been proved in many cases and there are no proven counterexamples (see the
surveys [30, 31]).
Our next result is the following.

Theorem 5. If the congruence kernel of G is finite then the weak Emerton
criterion holds in dimension 2.

Theorems 2 and 5 follow from our main auxiliary results:

Theorem 6. Let G be as described above. Then H̃0(G, E) = E, with the trivial
action of G(Af ).

Theorem 7. Let G be as described above. Then

H̃1(G, E) = Homcts(Cong(G), E)G(Ap

f
)−smooth,

where Cong(G) denotes the congruence kernel of G.

The reduction of Theorem 2 to Theorem 6 is given in §2, and the reduction
of Theorem 5 to Theorem 7 is given in §3. Theorem 6 is proved in §6 and
Theorem 7 is proved in §8.
Before going on, we point out that in some cases these cohomology spaces
are uninteresting. In the case E = C, the cohomology groups are related,
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via generalizations of the Eichler–Shimura isomorphism, to certain spaces of
automorphic forms. More precisely, Franke [19] has shown that

H•class.(Kf ,W ) = H•rel.Lie(g,K∞,W ⊗A(Kf )),

where A(Kf ) is the space of automorphic forms φ : G(k)\G(A)/K∞Kf → C.
The right hand side is relative Lie algebra cohomology (see for example [9]).
Since the constant functions form a subspace of A(Kf ), we have a (g,K∞)-
submodule W ⊂W ⊗A(Kf ). This gives us a map:

Hn
rel.Lie(g,K∞,W ) → Hn

class.(G,W ). (5)

We shall say that the cohomology of G is given by constants in dimension n if
the map (5) is surjective. For example the cohomology of SL2/Q is given by
constants in dimensions 0 and 2, although (5) is only bijective in dimension 0.
On the other hand, if G(k)\G(A) is compact then (5) is injective.
It is known that the cohomology of G is given by constants in dimensions
n < m and in dimensions n > d−m, where d is the common dimension of the
spaces Y (Kf ) and m is the real rank of G. One shows this by proving that the
relative Lie algebra cohomology of any other irreducible (g,K∞)-subquotient
of W ⊗A(Kf ) vanishes in such dimensions (see for example Corollary II.8.4 of
[9]).
If the cohomology is given by constants in dimension n, then Hn

class.(G,W ) is
a finite dimensional vector space, equipped with the trivial action of G(Af ).
From the point of view of this paper, cohomology groups given by constants
are uninteresting. Thus Theorem 2 is interesting only for groups of real rank
1, whereas Theorem 5 is interesting, roughly speaking, for groups of real rank
2.
In fact we can often do a little better than Theorem 3. We shall prove the
following in §5:

Theorem 8. Let G/k be connected, semi-simple and algebraically simply con-
nected and assume that the weak Emerton criterion holds in dimension n. As-
sume also that at least one of the following two conditions holds:

(a) Hp
class.(G,C) is given by constants in dimensions p < n and

Hn+1
rel.Lie(g,K∞,C) = 0; or

(b) G(k) is cocompact in G(A).

Then all conclusions of Theorem 1 hold for the eigenvariety E(n,Kp).

The theorem is valid, for example, in the following cases where Emerton’s
criterion fails:

• SL3/Q in dimension 2;

• Sp4/Q in dimension 2;
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• Spin groups of quadratic forms over Q of signature (2, l) with l ≥ 3 in
dimension 2;

• Special unitary groups SU(2, l) with l ≥ 3 in dimension 2;

• SL2/k, where k is a real quadratic field, in dimension 2.

Our results generalize easily to simply connected, semi-simple groups as follows.
Suppose G/k is a direct sum of simply connected simple groups Gi/k. Assume
also that the tame level Kp decomposes as a direct sum of tame levels Kp

i

in Gi(A
p

f ). By the Künneth formula, we have a decomposition of the sets of
classical points:

E(n,Kp)class. =
⋃

n1+···+ns=n

s∏

i=1

E(ni,K
p

i )class..

1.4 Some History

Coleman and Mazur constructed the first “eigencurve” in [15]. In our cur-
rent notation, they constructed the H1-eigencurve for GL2/Q. In fact they
showed that the points of their eigencurve parametrize overconvergent eigen-
forms. Their arguments were based on earlier work of Hida [20] and Coleman
[14] on families of modular forms. Similar results were subsequently obtained
by Buzzard [10] for the groups GL1/k, and for the multiplicative group of a
definite quaternion algebra over Q, and later more generally for totally definite
quaternion algebras over totally real fields in [11]. Kassaei [21] treated the case
that G is a form of GL2/k, where k is totally real and G is split at exactly one
archimedean place. Kissin and Lei in [22] treated the case G = GL2/k for a
totally real field k, in dimension n = [k : Q].

Ash and Stevens [2, 3] obtained similar results for GLn/Q by quite differ-
ent methods. More recently, Chenevier [13] constructed eigenvarieties for any
twisted form of GLn/Q which is compact at infinity. Emerton’s construction is
apparently much more general, as his criterion is formulated for any reductive
group over a number field. However, it seems to be quite rare for his crite-
rion to hold. One might expect the weak criterion to hold more generally; in
particular one might optimistically ask the following:

Question. For G/k connected, simple, algebraically simply connected and of
real rank m, does the weak Emerton criterion always hold in dimension m?
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group on Emerton’s work, organized by Kevin Buzzard. The author would like
to thank all the participants in the London number theory seminar for many
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2 Proof of Theorem 2

Let G/k be simple, algebraically simply connected, and assume that G(k∞) is
not compact. We shall prove in §6 that H̃0(G, E) = E, with the trivial action of
G(Af ). As a consequence of this, the terms Ep,0

2 in Emerton’s spectral sequence
(3) are Lie-algebra cohomology groups of finite dimensional representations:

Ep,0
2 = Hp

Lie(g,W ).

Such cohomology groups are completely understood. We recall some relevant
results:

Theorem 9 (Theorem 7.8.9 of [39]). Let g be a semi-simple Lie algebra over
a field of characteristic zero, and let W be a finite-dimensional representation
of g, which does not contain the trivial representation. Then we have for all
n ≥ 0,

Hn
Lie(g,W ) = 0.

Theorem 10 (Whitehead’s first lemma (Corollary 7.8.10 of [39])). Let g be
a semi-simple Lie algebra over a field of characteristic zero, and let W be a
finite-dimensional representation of g. Then we have

H1
Lie(g,W ) = 0.

Theorem 11 (Whitehead’s second lemma (Corollary 7.8.12 of [39])). Let g be
a semi-simple Lie algebra over a field of characteristic zero, and let W be a
finite-dimensional representation of g. Then we have

H2
Lie(g,W ) = 0.

We shall use these results to verify Emerton’s criterion in dimension 1, thus
proving Theorem 2. We must verify that the edge map 4 is an isomorphism
for n = 1 and for every irreducible algebraic representation W of G. The small
terms of the spectral sequence are:

E•,•2 :
Homg(W̌ , H̃1(G, E))

H0
Lie(g,W ) H1

Lie(g,W ) H2
Lie(g,W )

We therefore have an exact sequence:

0 → H1
Lie(g,W ) → H1

class.(G,W ) → Homg(W̌ , H̃1(G, E)) → H2
Lie(g,W ).

By Theorems 10 and 11 we know that the first and last terms are zero. There-
fore the edge map is an isomorphism.

�
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3 Proof of Theorem 5

Let G/k be connected, simple and simply connected, and assume that G(k∞)
is not compact. In §8 we shall prove the isomorphism

H̃1(G,Qp) = Homcts(Cong(G),Qp)G(Ap

f
)−smooth.

As a consequence, we have:

Corollary 1. If the congruence kernel of G is finite then H̃1(G,Qp) = 0.

In this context, it is worth noting that the following may be proved by a similar
method.

Theorem 12. If the congruence kernel of G is finite then H̃d−1(G,Qp) = 0,
where d is the dimension of the symmetric space G(k∞)/K∞.

We shall use the corollary to verify the weak Emerton criterion in dimension
2. Suppose first that W is a non-trivial irreducible algebraic representation of
G. We must show that the edge map (4) is an isomorphism. By Theorem 9 we
know that the bottom row of the spectral sequence is zero, and by the corollary
we know that the first row is zero. The small terms of the spectral sequence
are as follows:

E•,•2 :

Homg(W̌ , H̃2(G, E)loc.an.)

0 0 0

0 0 0 0

Hence in this case the edge map is an isomorphism.
In the case that W is the trivial representation, we must only verify that
the edge map is injective and that its cokernel is a finite dimensional trivial
representation of G(Af ). We still know in this case that the first row of the
spectral sequence is zero. For the bottom row, Theorems 10 and 11 tell us that
the spectral sequence is as follows:

E•,•2 :

Homg(E, H̃
2(G, E)loc.an.)

0 0 0

E 0 0 H3
Lie(g, E)

It follows that we have an exact sequence

0 → H2
class.(G, E) → Homg(E, H̃

2(G, E)loc.an.) → H3
Lie(g, E). (6)

The action of G(Af ) on H3
Lie(g, E) is trivial, since this action is defined by the

(trivial) action on H̃0(G, E) = E.
�
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Remark. It is interesting to calculate the cokernel of the edge map in (6). In
fact it is known that for any simple Lie algebra g over a field E of characteristic
zero, H3

Lie(g, E) = E. We therefore have by the Künneth formula:

H3
Lie(g, E) = Ed,

where d is the number of simple factors of G ×k k̄. In particular, this is never
zero. The exact sequence (6) can be continued for another term as follows:

0 → H2
class.(G, E) → H̃2(G, E)g

loc.an. → H3
Lie(g, E) → H3

class.(G, E)G(Af ).

In order to calculate the last term, we first choose an embedding of E in C,
and tensor with C. There is a map

H3
rel.Lie(g,K∞,C) → H3

class.(G,C)G(Af ).

If the k-rank of G is zero, then this map is an isomorphism. In other cases,
it is often surjective, although the author does not know how to prove this
statement in general. The groups H•rel.Lie(g,K∞,C) are the cohomology groups
of compact symmetric spaces (see §I.1.6 of [9]) and are completely understood.
In particular, it is often the case that H3

rel.Lie(g,K∞,C) = 0. This implies that
the edge map in (6) often has a non-trivial cokernel.

4 Proof of Theorem 3

Theorem 3 is a variation on Theorem 1. In order to prove it, we recall some of
the intermediate steps in Emerton’s proof of Theorem 1.
In [17], Emerton introduced a new kind of Jacquet functor, JacqB, from the
category of essentially admissible (in the sense of Definition 6.4.9 of [16]) lo-
cally analytic representations of G(kp) to the category of essentially admissible
locally analytic representations of T(kp). This functor is left exact, and its
restriction to the full subcategory of smooth representations is exact. Indeed,
its restriction to smooth representations is the usual Jacquet functor of coin-
variants.
Applying the Jacquet functor to the space H̃n(Kp, E)loc.an., one obtains an
essentially admissible locally analytic representation of T(kp). On the other
hand, the category of essentially admissible locally analytic representations of
T(kp) is anti-equivalent to the category of coherent rigid analytic sheaves on

T̂ (Proposition 2.3.2 of [18]). We therefore have a coherent sheaf E on T̂ .
Since the action of H(Kp) on H̃n(Kp, E)loc.an. commutes with that of G(kp),
it follows that H(Kp) acts on E. Let A be the image of H(Kp)sph in the sheaf
of endomorphisms of E. Thus A is a coherent sheaf of commutative rings on
T̂ . Writing Spec A for the relative spec of A over T̂ , we have a Zariski-closed
embedding Spec A → T̂ × Spec H(Kp)sph. Since A acts as endomorphisms of
E, we may localize E to a coherent sheaf M on Spec A.
Theorem 1 may be deduced from the following two results.
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Theorem 13 (2.3.3 of [18]). (i) The natural projection Spec A → T̂ is a
finite morphism.

(ii) The map Spec A → ť has discrete fibres.

(iii) The fibre of M over a point (χ, λ) of T̂ × Spec H(Kp)sph is dual to the
(T(kp) = χ,H(Kp)sph = λ)-eigenspace of JacqB(H̃n(Kp, E)loc.an.). In
particular, the point (χ, λ) lies in Spec A if and only if this eigenspace is
non-zero.

For any representation V of G(kp) over E, we shall write VW−loc.alg. for the sub-
space of W -locally algebraic vectors in V . Note that under Emerton’s criterion,
we have

Hn
class.(K

p,W ) ⊗ W̌ = H̃n(Kp, E)W̌−loc.alg.. (7)

Hence Hn
class.(K

p,W ) ⊗ W̌ is a closed subspace of H̃n(Kp, E)loc.an.. By left-
exactness of JacqB we have an injective map

JacqB(Hn
class.(K

p,W ) ⊗ W̌ ) → JacqB(H̃n(Kp, E)loc.an.)

There are actions of T(kp) and H(Kp) on these spaces, so we may restrict this
map to eigenspaces:

JacqB(Hn
class.(K

p,W ) ⊗ W̌ )(χ,λ) → JacqB(H̃n(Kp, E)loc.an.)
(χ,λ),

(χ, λ) ∈ T̂ × Spec H(Kp)sph.

The next result tells us that this restriction is often an isomorphism.

Theorem 14 (Theorem 4.4.5 of [17]). Let V be an admissible continuous rep-
resentation of G(kp) on a Banach space. If χ := θψW ∈ T̂ (Ē) is of non-critical
slope, then the closed embedding

JacqB(VW−loc.alg.) → JacqB(Vloc.an.)

induces an isomorphism on χ-eigenspaces.

We recall Theorem 3.

Theorem. If the weak Emerton criterion holds for G in dimension n, then

1. Projection onto the first factor induces a finite map E(n,Kp) → T̂ .

2. The map E(n,Kp) → ť has discrete fibres.

3. If (χ, λ) is a point of the Eigencurve such that χ is locally algebraic and
of non-critical slope, then either (χ, λ) is a classical point or (χ, λ) is the
trivial representation of T(kp) ×H(Kp)sph.
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Proof. To prove the first two parts of the theorem, it is sufficient to show that
E(Kp, n) is a closed subspace of Spec A. Since E(n,Kp) is defined to be the
closure of the set of classical points, it suffices to show that each classical point
is in Spec A.
Suppose π is a representation appearing in Hn

class.(K
p,W ) and let (θψW , λ)

be the corresponding classical point. This means that the (θ, λ)-eigenspace
in the JacqB(π) is non-zero. By exactness of the Jacquet functor on smooth
representations, it follows that the (θ, λ) eigenspace in the Jacquet module of
Hn

class.(K
p,W ) is non-zero. Hence by Proposition 4.3.6 of [17], the (θψW , λ)-

eigenspace in the Jacquet module of Hn
class.(K

p,W ) ⊗ W̌ is non-zero. By left-
exactness of the Jacquet functor, it follows that the (θψW , λ) eigenspace in the
Jacquet module of H̃n(G, E)loc.an. is non-zero. Hence by Theorem 13 (iii) it
follows that the classical point is in Spec A.
If (θψ, λ) is of non-critical slope then Theorem 14 shows that the converse also
holds. �

5 Proof of Theorem 8

We first recall the statement:

Theorem. Let G/k be connected, semi-simple and algebraically simply con-
nected and assume that the weak Emerton criterion holds in dimension n. As-
sume also, that at least one of the following two conditions holds:

(a) Hp
class.(G,C) is given by constants in dimensions p < n and

Hn+1
rel.Lie(g,K∞,C) = 0; or

(b) G(k) is cocompact in G(A).

Then all the conclusions of Theorem 1 hold for the eigenvariety E(n,Kp).

Proof. To prove the theorem, we shall find a continuous admissible Banach
space representation V , such that for every irreducible algebraic representation
W , there is an isomorphism of smooth G(Af )-modules

Hn
class.(G,W ) ∼= Homg(W̌ , Vloc.an.). (8)

Recall that by the weak Emerton criterion, we have an exact sequence of smooth
G(Af )-modules

0 → Hn
class.(G, E) → H̃n(G, E)g

loc.an. → Er → 0, r ≥ 0. (9)

It follows, either from Lemma 1 or from Lemma 2 below, that all such sequences
split. We therefore have a subspace Er ⊂ H̃n(G, E), on which G(Af ) acts
trivially. We define V to be the quotient, so that there is an exact sequence of
admissible continuous representations of G(Af ) on E-Banach spaces.

0 → Er → H̃n(G, E) → V → 0. (10)
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Taking g-invariants of (10) and applying Whitehead’s first lemma (Theorem
10), we have an exact sequence:

0 → Er → H̃n(G, E)g

loc.an. → V g

loc.an. → 0. (11)

On the other hand, Er is a direct summand of H̃n(G, E)g

loc.an., so this sequence
also splits. Comparing (9) and (11), we obtain

Hn
class.(G, E) = V g

loc.an. = Homg(E, Vloc.an.).

This verifies (8) in the case that W is the trivial representation.
Now taking W to be a non-trivial irreducible representation, and applying
Homg(W̌ ,−loc.an.) to (10), we obtain a long exact sequence:

0 → Homg(W̌ , H̃n(G, E)loc.an.) → Homg(W̌ , Vloc.an.) → Ext1g(W̌ ,Er).

By Whitehead’s first lemma, the final term above is zero. Hence, by the weak
Emerton criterion, we have:

H2
class.(G,W ) = Homg(W̌ , H̃n(G, E)loc.an.) = Homg(W̌ , Vloc.an.).

�

Lemma 1. Assume that Hq
class.(G,C) is given by constants in dimensions q < n

and Hn+1
rel.Lie(g,K∞,C) = 0. Then

Ext1G(Af )(E,H
n
class.(G, E)) = 0,

where the Ext-group is calculated from the category of smooth representations
of G(Af ) over E.

Proof. Since we are dealing with smooth representations, the topology of E
plays no role, so it is sufficient to prove that

Ext1G(Af )(C,H
n
class.(G,C)) = 0,

To prove this, it is sufficient to show that for every sufficiently large finite set
S of finite primes of k, we have

Ext1G(kS)(C,H
n
class.(G,C)) = 0.

For this, we shall use the spectral sequence of Borel (§3.9 of [7]; see also §2 of
[6]):

Extp
G(kS)(E,H

q
class.(G,C)) =⇒ Hp+q

S−class.(G,C),

where H•S−class.(G,−) denotes the direct limit over all S-congruence subgroups:

H•S−class.(G,−) = lim
−→
KS

H•Group(ΓS(KS),−),
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ΓS(KS) = G(k) ∩
(
G(k∞∪S) ×KS

)
.

By Proposition X.4.7 of [9], we know that

Extp
G(kS)(C,C) = 0, p ≥ 1.

Since Hq
class.(G,C) is a trivial representation of G(Af ) in dimensions q < n,

it follows from Borel’s spectral sequence that Ext1G(kS)(C,H
n
class.(G,C)) injects

into Hn+1
S−class.(G,C). On the other hand, it is shown in Theorem 1 of [6], that

for S sufficiently large, Hn+1
S−class.(G,C) is isomorphic to Hn+1

rel.Lie(g,K∞,C).

Under the hypothesis that Hn+1
rel.Lie(g,K∞,C) = 0, it follows that for S suffi-

ciently large, Ext1G(kS)(C,H
n
class.(G,C)) = 0. �

Lemma 2. Assume that G(k) is cocompact in G(A). Then

Ext1G(Af )(E,H
n
class.(G, E)) = 0,

where the Ext-group is calculated from the category of smooth representations
of G(Af ) over E.

(The argument in fact shows that Extp
G(Af )(E,H

q
class.(G, E)) = 0 for all p > 0.)

Proof. As in the proof of the previous lemma, we shall show that for S suffi-
ciently large,

Ext1G(kS)(C,H
n
class.(G,C)) = 0.

Recall that we have a decomposition:

L2(G(k)\G(A)) =
⊕̂

π

m(π) · π,

with finite multiplicities m(π) and automorphic representations π. Here the ⊕̂
denotes a Hilbert space direct sum. We shall write π = π∞ ⊗ πf , where π∞ is
an irreducible unitary representation of G(k∞) and πf is a smooth irreducible
unitary representation of G(Af ). This decomposition may by used to calculate
the classical cohomology (Theorem VII.6.1 of [9]):

H•class.(G,C) =
⊕

π

m(π) ·H•rel.Lie(g,K∞, π∞) ⊗ πf .

It is therefore sufficient to show that for each automorphic representation π, we
have (for S sufficiently large) Ext1G(kS)(C, πf ) = 0. The smooth representation
πf decomposes as a tensor product of representations of G(kq) for q ∈ S,
together with a representation of G(AS

f ):

πf =


⊗

q∈S

πq


⊗ πS

f .
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This gives a decomposition of the cohomology:

Ext•G(kS)(C, πf ) =


⊗

q∈S

Ext•G(kq)(C, πq)


⊗ πS

f . (12)

There are two cases to consider.
Case 1. Suppose π is the trivial representation, consisting of the constant
functions on G(k)\G(A). Then by Proposition X.4.7 of [9], we have

Extn
G(kq)(C,C) = 0, n ≥ 1.

This implies by (12) that Ext1G(kS)(C,C) = 0.
Case 2. Suppose π is non-trivial, and hence contains no non-zero constant
functions. If q is a prime for which no factor of G(kq) is compact, then it
follows from the strong approximation theorem that the local representation
πq is non-trivial. This implies that

Ext0G(kq)(C, πq) = HomG(kq)(C, πq) = 0.

If S contains at least two such primes, then we have by (12)

Ext1G(kS)(C, πf ) = 0.

�

Remark. At first sight, it might appear that Ext1G(Af )(C,H
n
class.(G,C)) should

always be zero; however this is not the case. For example, if G = SL2/Q then

Ext1SL2(Af )(C,H
1
class.(SL2/Q,C)) = C.

This may be verified using the spectral sequence of Borel cited above, together
with the fact that H2

rel.Lie(sl2,SO(2),C) = C.

6 Proof of Theorem 6

We assume in this section that G/k is connected, simple and algebraically
simply connected, and that G(k∞) is not compact.

Proposition 1. As topological spaces, we have Y (Kf ) = Γ(Kf )\G(k∞)/K∞.

Proof. By the strong approximation theorem (Theorem 4), G(k)G(k∞) is a
dense subgroup of G(A). Since G(k∞)Kf is open in G(A), this implies that
G(k)G(k∞)Kf is a dense, open subgroup of G(A). Since open subgroups are
closed it follows that

G(k)G(k∞)Kf = G(A).

Quotienting out on the left by G(k), we have (as coset spaces):

(G(k) ∩ G(k∞)Kf )\(G(k∞)Kf ) = G(k)\G(A).
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Substituting the definition of Γ(Kf ), we have:

Γ(Kf )\G(k∞)Kf = G(k)\G(A).

Quotienting out on the right by K∞Kf , we get:

Γ(Kf )\G(k∞)/K∞ = Y (Kf ).

�

In particular, this implies:

Corollary 2. Y (Kf ) is connected.

Proof. G(k∞) is connected. �

If Kf is sufficiently small then the group Γ(Kf ) is torsion-free. We shall assume
that this is the case. Hence Y (Kf ) is a manifold. Its universal cover is G(R)/K,
and its fundamental group is Γ(Kf ).

Corollary 3. If Γ(Kf ) is torsion-free then H•(Y (Kf ),−) =
H•Group(Γ(Kf ),−).

Proof. This follows because Γ(Kf ) is the fundamental group of Y (Kf ), and
the universal cover G(k∞)/K∞ is contractible. See for example [36]. �

Corollary 4. Let G/k be connected, simple, simply connected and assume
G(k∞) is not compact. Then as G(Af )-modules,

H̃0(G, E)loc.an. = H̃0(G, E) = E.

Proof. Since every Y (Kf ) is connected, we have a canonical isomorphism:

H0(Y (KpK
p),Z/ps) = Z/ps.

Furthermore, the pull-back maps

H0(Y (KpK
p),Z/ps) → H0(Y (K ′pK

p),Z/ps) (K ′p ⊂ Kp)

are all the identity on Z/ps. It follows that

lim
−→
Kp

H0(Y (KpKp),Z/p
s) = Z/ps.

Since the pull-back maps are all the identity, it follows that the action of G(kp)
on this group is trivial. Taking the projective limit over s and tensoring with
E we find that

H̃0(Kp, E) = E.

The action of G(kp) is clearly still trivial, and hence every vector is locally

analytic. The groups H̃0(Kp, E) for varying tame levelKp form a direct system
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with respect to the pullback maps. These pullback maps are all the identity
on E. Taking the direct limit over the tame levels, we obtain:

H̃0(G, E) = E.

Since the pullback maps are all the identity, it follows that the action of G(Ap

f )

on H̃0(G, E) is trivial. �

7 Some Cohomology Theories

In this section we introduce some notation and recall some results, which will
be needed in the proof of Theorem 7. It is worth mentioning that the theorem
is much easier to prove in the case that G has finite congruence kernel. In
that case one quite easily shows that H̃1 = 0 by truncating the proof given
in §8 shortly after the end of “step 1” of the proof. Furthermore, our main
application (Theorem 5) requires only this easier case.

7.1 Discrete cohomology

Let G be a profinite group acting on an abelian group A. We say that the
action is smooth if every element of A has open stabilizer in G. For a smooth
G-module A, we define H•disc.(G,A) to be the cohomology of the complex of
smooth cochains on G with values in A. Due to compactness, cochains take
only finitely many values, so we have

H•disc.(G,A) = lim
−→
U

H•Group(G/U,AU ).

Here the limit is taken over the open normal subgroups U of G, and the coho-
mology groups on the right hand side are those of finite groups.

Theorem 15 (Hochschild–Serre spectral sequence (§2.6b of [35])). Let G be a
profinite group and A a discrete G-module on which G acts smoothly. Let H
be a closed, normal subgroup. Then there is a spectral sequence:

Hp
disc.(G/H,H

q
disc.(H,A)) =⇒ Hp+q

disc.(G,A).

For calculations with adèle groups, we need the following result on countable
products of groups.

Proposition 2 (see §2.2 of [35]). Let

G =
∏

i∈N

Gi

be a countable product of profinite groups and let A be a discrete G-module.
For any finite subset S ⊂ N we let

GS =
∏

i∈S

Gi.
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Then
Hn

disc.(G,A) = lim
−→
S

Hn
disc.(GS , A).

Here the limit is taken over all finite subsets with respect to the inflation maps.

Corollary 5. Let G and A be as in the previous proposition, and assume that
the action of G on A is trivial. Assume also that for a fixed n, we have:

Hr
disc.(Gi, A) = 0, r = 1, . . . , n− 1, i ∈ N.

Then
Hn

disc.(G,A) =
⊕

i∈N

Hn
disc.(Gi, A).

Proof. Let S ⊂ N be a finite set and let i /∈ S. We have a direct sum decom-
position

GS∪{i} = GS ⊕Gi.

Regarding this as a (trivial) group extension, we have a spectral sequence:

Hp
disc.(GS ,H

q(Gi, A)) =⇒ Hp+q
disc.(GS∪{i}, A).

since the sum is direct, it follows that all the maps in the spectral sequence are
zero, and we have

Hn
disc.(GS∪{i}, A) =

n⊕

r=0

Hn−r
disc.(GS ,H

r
disc.(Gi, A)).

By our hypothesis, most of these terms vanish, and we are left with:

Hn
disc.(GS∪{i}, A) = Hn

disc.(GS , A) ⊕Hn
disc.(Gi, A).

By induction on the size of S, we deduce that

Hn
disc.(GS , A) =

⊕

i∈S

Hn
disc.(Gi, A).

The result follows from the previous proposition. �

7.2 Continuous cohomology

Again suppose that G is a profinite group, acting on an abelian topological
group A. We call A a continuous G-module if the map G×A→ A is continuous.
For a continuous G-module A, we define the continuous cohomology groups
H•cts(G,A) to be the cohomology of the complex of continuous cochains. If the
topology on A is actually discrete then continuous cochains are in fact smooth,
so we have

H•cts(G,A) = H•disc.(G,A).
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7.3 Derived functors of inverse limit

Let Ab be the category of abelian groups. By a projective system in Ab, we
shall mean a collection of objects As (s ∈ N) and morphisms φ : As+1 → As.
We shall write Ab

N for the category of projective systems in Ab. There is a
functor

lim
←−s

: Ab
N → Ab.

This functor is left-exact. It has right derived functors
(

lim
←−s

)•
: Ab

N → Ab.

It turns out that

(
lim
←−s

)n

is zero for n ≥ 2. The first derived functor has the

following simple description due to Eilenberg. We define a homomorphism

∆ :
∏

s

As →
∏

s

As,
(
∆(a•)

)
s

= as − φ(as+1).

With this notation we have

lim
←−s

As = ker ∆.

Eilenberg showed that
lim
←−s

1As = coker ∆.

A projective system As is said to satisfy the Mittag–Leffler condition if for
every s ∈ N there is a t ≥ s such that for every u ≥ t the image of Au in As is
equal to the image of At in As.

Proposition 3 (Proposition 3.5.7 of [39]). If As satisfies the Mittag–Leffler
condition then lim

←−s

1As = 0.

This immediately implies:

Corollary 6 (Exercise 3.5.2 of [39]). If As is a projective system of finite
abelian groups then lim

←−s

1As = 0.

We shall use the derived functor lim
←−s

1 to pass between discrete and continuous

cohomology:

Theorem 16 (Eilenberg–Moore Sequence (Theorem 2.3.4 of [27])). Let G be a
profinite group and A a projective limit of finite discrete continuous G-modules

A = lim
←−s

As.

Then there is an exact sequence:

0 → lim
←−s

1Hn−1
disc.(G,As) → Hn

cts(G,A) → lim
←−s

Hn
disc.(G,As) → 0.
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7.4 Stable Cohomology

For a continuous representation V of G(kp) over E, we shall write Vst for the
set of smooth vectors. The functor V 7→ Vst is left exact from the category
of continuous admissible representations of G(kp) (in the sense of [33]) to the
category of smooth representations. We shall write H•st(G(kp),−) for the right-
derived functors. This is called “stable cohomology” by Emerton (Definition
1.1.5 of [18]). It turns out that stable cohomology may be expressed in terms
of continuous group cohomology as follows (Proposition 1.1.6 of [18]):

H•st(G(kp), V ) = lim
−→
Kp

H•cts(Kp, V ).

There is an alternative description of these derived functors which we shall also
use. Let Vloc.an. denote the subspace of locally analytic vectors in V . There is
an action of the Lie algebra g on Vloc.an.. Stable cohomology may be expressed
in terms of Lie algebra cohomology as follows (Theorem 1.1.13 of [18]):

H•st(G(kp), V ) = H•Lie(g, Vloc.an.). (13)

8 Proof of Theorem 7

In this section, we shall assume that G/k is connected, simply connected
and simple, and that G(k∞) is not connected. We regard the vector space
Homcts(Cong(G),Qp) as a p-adic Banach space with the supremum norm:

||φ|| = sup
x∈Cong(G)

|φ(x)|p.

We regard Homcts(Cong(G),Z/ps) as a discrete abelian group. The group
G(Af ) acts on these spaces as follows:

(gφ)(x) = φ(g−1xg), g ∈ G(Af ), x ∈ Cong(G).

Lemma 3. The action of G(Af ) on Homcts(Cong(G),Z/ps) is smooth.

Proof. One may prove this directly; however it is implicit in the Hochschild–
Serre spectral sequence. It is sufficient to show that the action of some open
subgroup is smooth. Let Kf be a compact open subgroup of G(Af ), and write

write K̃f for the preimage of Kf in G̃(k). We therefore have an extension of
profinite groups:

1 → Cong(G) → K̃f → Kf → 1.

We shall regard Z/ps as a trivial, and hence smooth, K̃f -module. It follows
that each Hq

disc.(Cong(G),Z/ps) is a smooth Kf -module. On the other hand
we have

Homcts(Cong(G),Z/ps) = H1
disc.(Cong(G),Z/ps).

�
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Lemma 4. The action of G(Af ) on the p-adic Banach space
Homcts(Cong(G),Qp) is continuous.

Proof. It is sufficient to prove this for the open submodule
Homcts(Cong(G),Zp). We have, as topological G(Af )-modules:

Homcts(Cong(G),Zp) = lim
←−s

Homcts(Cong(G),Z/ps).

Continuity follows from the previous Lemma. �

We shall say that a vector v ∈ Homcts(Cong(G),Qp) is G(Ap

f )-smooth if its

stabilizer in G(Ap

f ) is open. The set of such vectors will be written

Homcts(Cong(G),Qp)G(Ap

f
)−smooth.

Theorem. Assume G/k is connected, simple and simply connected, and that
G(k∞) is not compact. Then we have an isomorphism of G(Af )-modules:

H̃1(G,Qp) = Homcts(Cong(G),Qp)G(Ap)−smooth.

Proof. Choose a level Kf small enough so that Γ(Kf ) is torsion-free. By Corol-
lary 3, we have:

H1(Y (Kf ),Z/ps) = H1
Group(Γ(Kf ),Z/ps).

Elements of H1
Group(Γ(Kf ),Z/ps) are group homomorphisms Γ(Kf ) → Z/ps.

Let K̃f be the preimage of Kf in G̃(k); this is equal to the profinite completion
of Γ(Kf ). It follows that homomorphisms Γ(Kf ) → Z/ps correspond bijectively

to continuous homomorphisms K̃f → Z/ps. We therefore have:

H1(Y (Kf ),Z/ps) = H1
disc.(K̃f ,Z/p

s).

We have an extension of profinite groups:

1 → Cong(G) → K̃f → Kf → 1.

This gives rise to a Hochschild–Serre spectral sequence (Theorem 15):

Hp
disc.(Kf ,H

q
disc.(Cong(G),Z/ps)) =⇒ Hp+q

disc.(K̃f ,Z/p
s).

From this we have an inflation-restriction sequence containing the following
terms:

0 → H1
disc.(Kf ,Z/p

s) → H1(Y (Kf ),Z/ps) →

→ H1
disc.(Cong(G),Z/ps)Kf → H2

disc.(Kf ,Z/p
s)

(14)

The proof of the theorem consists of applying the functors lim
−→
Kp

, lim
←−s

, −⊗Zp
Qp

and lim
−→
Kp

to the sequence (14).
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Step 1. We first substitute Kf = KpK
p, and apply the functor lim

−→
Kp

to (14).

We have by the Künneth formula:

lim
−→
Kp

H1
disc.(KpK

p,Z/ps) = H1
disc.(K

p,Z/ps),

lim
−→
Kp

H2
disc.(KpK

p,Z/ps) = H2
disc.(K

p,Z/ps).

By Lemma 3 we have:

lim
−→
Kp

H1
disc.(Cong(G),Z/ps)KpKp

= H1
disc.(Cong(G),Z/ps)Kp

.

Since the functor lim
−→
Kp

is exact, the sequence remains exact:

0 → H1
disc.(K

p,Z/ps) → lim
−→
Kp

H1(Y (KpKp),Z/p
s) →

→ H1
disc.(Cong(G),Z/ps)Kp

→ H2
disc.(K

p,Z/ps).

(15)

Interlude. Before going on, we make some restrictions on the tame level Kp,
and investigate the first and last terms in the sequence (15).
We shall assume that the tame level Kp is a product of local factors:

Kp =
∏

q 6=p

Kq,

where each Kq is a compact open subgroup of G(kq). Consider the following
sets of finite primes of k:

S = {q : q|p and q 6= p},

T = {q : q 6 |p and Kq 6= [Kq,Kq]}.

Both these sets are finite. We shall also assume from now on that for each
prime q ∈ T , the group Kq is chosen small enough so that it is a pro-q group,
where q is the rational prime below q. In particular, for each q ∈ T we have
for n ≥ 1,

Hn
disc.(Kq,Z/p

s) = 0. (16)

We have a decomposition of Kp:

Kp = KS ×KT ×KS∪T∪{p}, (17)

where we are using the notation:

KS =
∏

q∈S

Kq, KS =
∏

q 6∈S

Kq.
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By the Künneth formula and (16), (17), we have:

H•disc.(K
p,Z/ps) = H•disc.(KSK

S∪T∪{p},Z/ps). (18)

By assumption, the group KS∪T∪{p} is perfect, so we have

H1
disc.(K

S∪T∪{p},Z/ps) = 0. (19)

Again by the Künneth formula together with (18), (19), we have:

H1
disc.(K

p,Z/ps) = H1
disc.(KS ,Z/p

s). (20)

H2
disc.(K

p,Z/ps) = H2
disc.(KS ,Z/p

s) ⊕H2
disc.(K

S∪T∪{p},Z/ps). (21)

For each prime q /∈ S ∪ T ∪ {p}, there is an open normal pro-q subgroup
Lq ⊂ Kq. We shall write G(q) for the (finite) quotient group. We therefore
have a Hochschild–Serre spectral sequence:

Hp
Group(G(q),Hq

disc.(Lq,Z/p
s)) =⇒ Hp+q

disc.(Kq,Z/p
s).

This spectral sequence degenerates: for n ≥ 1 we have

Hn(Lq,Z/p
s) = 0.

Hence,

H•disc.(Kq,Z/p
s) = H•Group(G(q),Z/ps), q /∈ S ∪ T ∪ {p}. (22)

Since G(q) is a finite perfect group, it has a universal central extension. We
shall write π1(G(q)) for the kernel of this extension, i.e. the Schur multiplier
of G(q). By (22) we have:

H2
disc.(Kq,Z/p

s) = HomGroup(π1(G(q)),Z/ps). (23)

By Corollary 5 and (23) we have:

H2
disc.(K

S∪T∪{p},Z/ps) =
⊕

q/∈S∪T∪{p}

HomGroup(π1(G(q)),Z/ps). (24)

From (21) and (24) we have:

H2
disc.(K

p,Z/ps) = H2(KS ,Z/p
s) ⊕ Homcts(π

S∪T∪{p}
1 ,Z/ps), (25)

where we are using the notation

π
S∪T∪{p}
1 =

∏

q/∈S∪T∪{p}

π1(G(q)).

The only property of π
S∪T∪{p}
1 which we require, is that it is a product of finite

groups, not depending on s.
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Step 2. We are now ready to apply the functor lim
←−s

to the sequence (15). To

keep track of the exactness, we splice the sequence (15) into two:

0 → H1
disc.(KS ,Z/p

s) → lim
−→
Kp

H1(Y (KpKp),Z/p
s) → A(s) → 0, (26)

0 → A(s) → H1
disc.(Cong(G),Z/ps)Kp

→ H2
disc.(K

p,Z/ps). (27)

Step 2a. Applying the functor lim
←−s

to (26), we have a long exact sequence:

0 → lim
←−s

H1
disc.(KS ,Z/p

s) → lim
←−s

lim
−→
Kp

H1(Y (KpKp),Z/p
s) →

→ lim
←−s

A(s) → lim
←−s

1H1
disc.(KS ,Z/p

s).
(28)

In order to calculate the individual terms in (28), we shall use the Eilenberg–
Moore sequence (see Theorem 16):

0 → lim
←−s

1Hn−1
disc.(KS ,Z/p

s) → Hn
cts(KS ,Zp) → lim

←−s
Hn

disc.(KS ,Z/p
s) → 0. (29)

Taking n = 1 in (29) we have

lim
←−s

H1
disc.(KS ,Z/p

s) = H1
cts(KS ,Zp).

Since [KS ,KS ] is open in KS , it follows that:

lim
←−s

H1
disc.(KS ,Z/p

s) = 0. (30)

Also, since the groups H1
disc.(KS ,Z/p

s) are all finite, it follows by Corollary 6
that

lim
←−s

1H1
cts(KS ,Z/p

s) = 0. (31)

Substituting (30) and (31) into (28), we get

lim
←−s

lim
−→
Kp

H1(Y (KpKp),Z/p
s) = lim

←−s
A(s). (32)

Step 2b. Applying the left-exact functor lim
←−s

to (27) and substituting (32) we

obtain the following exact sequence:

0 → lim
←−s

lim
−→
Kp

H1(Y (KpKp),Z/p
s) → lim

←−s

(
H1

disc.(Cong(G),Z/ps)Kp
)

→ lim
←−s

H2
disc.(K

p,Z/ps).
(33)
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We shall investigate the second and third terms in this sequence further.
The functors lim

←−s
and −Kp

commute, so we have

lim
←−s

(
H1

disc.(Cong(G),Z/ps)Kp
)

=

(
lim
←−s

H1
disc.(Cong(G),Z/ps)

)Kp

. (34)

Again by the Eilenberg–Moore sequence (29) we have by (34):

lim
←−s

(
H1

disc.(Cong(G),Z/ps)Kp
)

= H1
cts(Cong(G),Zp)

Kp

. (35)

To calculate the third term in (33) we shall use (25). This shows that

lim
←−s

H2
disc.(K

p,Z/ps) = lim
←−s

H2
disc.(KS ,Z/p

s) ⊕ lim
←−s

Homcts(π
S∪T∪{p}
1 ,Z/ps).

(36)

Since π
S∪T∪{p}
1 is a product of finite groups, it follows that

lim
←−s

Homcts(π
S∪T∪p

1 ,Z/ps) = 0.

Substituting this into (36), we obtain:

lim
←−s

H2
disc.(K

p,Z/ps) = lim
←−s

H2
disc.(KS ,Z/p

s). (37)

Substituting (31) into the Eilenberg–Moore sequence (29), we have:

lim
←−s

H2
cts(KS ,Z/p

s) = H2
cts(KS ,Zp). (38)

Substituting (38) into (37) we have:

lim
←−s

H2
cts(K

p,Z/ps) = H2
cts(KS ,Zp).

The sequence (33) is therefore

0 → lim
←−s

lim
−→
Kp

H1(Y (KpKp),Z/p
s) → H1

cts(Cong(G),Zp)
Kp

→ H2
cts(KS ,Zp).

(39)

Step 3. We next apply the exact functor −⊗Zp
Qp to (39). Note that since Kp

and Cong(G) are compact, we have

C•cts(K
p,Zp) ⊗Zp

Qp = C•cts(K
p,Qp),

C•cts(Cong(G),Zp) ⊗Zp
Qp = C•cts(Cong(G),Qp).

Furthermore, since Qp is flat over Zp, we have

H•cts(K
p,Zp) ⊗Zp

Qp = H•cts(K
p,Qp),
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H•cts(Cong(G),Zp) ⊗Zp
Qp = H•cts(Cong(G),Qp).

Since H1
cts(Cong(G),Zp) is torsion-free, we have

(
H1

cts(Cong(G),Zp)
Kp
)
⊗Zp

Qp = H1
cts(Cong(G),Qp)

Kp

.

Again, since Qp is flat over Zp, we have an exact sequence:

0 → H̃1(Kp,Qp) → H1
cts(Cong(G),Qp)

Kp

→ H2
cts(KS ,Qp). (40)

Step 4. Applying the exact functor lim
−→
Kp

to (40), we have an exact sequence

0 → H̃1(G,Qp) → H1
cts(Cong(G),Qp)G(Ap)−smooth → H2

st(G(kS),Qp). (41)

As G(kS) is a Qp-analytic group, the stable cohomology may be expressed in
terms of Lie algebra cohomology (using (13)):

H2
st(G(kS),Qp) = H2

Lie(g ⊗k kS ,Qp),

where we are regarding g ⊗k kS as a Lie algebra over Qp. By Whitehead’s
second lemma (Theorem 11) we have

H2
st(G(kS),Qp) = 0.

Hence
H̃1(G,Qp) = H1

cts(Cong(G),Qp)G(Ap)−smooth.

�

9 Some Examples

9.1 SL2/Q

Let G = SL2/Q. Since g is 3-dimensional, the spectral sequence has non-
zero terms only in columns 0 to 3. Since arithmetic subgroups have virtual
cohomological dimension 1, it follows that H̃n = 0 for n > 1. Taking W to be
the trivial representation, the E2 sheet of the spectral sequence is as follows:

E•,•2 :
H̃1(G, E)g

loc.an. E 0 0

E 0 0 E

The connection map E1,1
2 → E3,0

2 is an isomorphism, and the spectral sequence
stabilizes at E3 as follows:

E•,•3 :
H̃1(G, E)g

loc.an. 0 0 0

E 0 0 0
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9.2 SL1(D) for an indefinite quaternion algebra D

Let k be a totally real field and let D be a quaternion algebra over k, which is
indefinite at exactly one real place of k. We shall consider the group G(−) =
SL1(D ⊗k −) over k. Arithmetic subgroups of G have virtual cohomological
dimension 2, so we have classical cohomology groups in dimensions 0, 1 and
2. In dimensions 0 and 2 these are given by constants, and are 1-dimensional.
On the other hand it is easy to show that H̃2(G,Qp) = 0. The E2 sheet of the
spectral sequence is as follows:

E•,•2 :
H̃1(G, E)g

loc.an. E2 0 0

E 0 0 E

The connection map E1,1
2 → E3,0

2 is surjective, and the spectral sequence sta-
bilizes at E3 as follows:

E•,•3 :
H̃1(G, E)g

loc.an. E 0 0

E 0 0 0

9.3 SL2/k for k real quadratic

Let k be a real quadratic field and consider the group G = SL2/k. The non-zero
classical cohomology groups are the following:

H0
class.(G,W ) = WG,

H2
class.(G,W ) infinite dimensional.

It is known in this case (see [37]) that the congruence kernel of G is trivial.
We therefore have H̃1(G, E) = 0, and we can also show that H̃3(G, E) = 0.
Therefore the weak Emerton criterion holds in dimension 2. We also have
H3(g,K∞,C) = 0. Therefore we may apply Theorem 8 to the eigenvariety
E(2,Kp). The E2-sheet of the spectral sequence is as follows:

E•,•2 :

H̃2(G, E)g

loc.an. 0 0 0

0 0 0 0

E 0 0 E

The map H̃2(G, E)g

loc.an. → E in the E3-sheet is surjective, and the spectral
sequence stabilizes at the E4-sheet:

E•,•4 :

H2
class.(G, E) 0 0 0

0 0 0 0

E 0 0 0
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9.4 SL3/Q

Arithmetic subgroups of SL3(Q) have virtual cohomological dimension 4, as
the symmetric space is 5-dimensional. We have the following non-zero classical
cohomology groups:

H0
class.(G,W ) = WG,

H2
class.(G,W ) = infinite dimensional,

H3
class.(G,W ) = infinite dimensional.

It was shown in [4] that the congruence kernel is trivial. Hence the weak
Emerton criterion holds in dimension 2, and in fact the only non-zero Banach
space representations are:

H̃0(G, E) = E,

H̃2(G, E) = infinite dimensional,

H̃3(G, E) = infinite dimensional.

Furthermore, H3
rel.Lie(g,K∞,C) = 0. We may therefore apply Theorem 8 to

the eigenvariety E(2,Kp). One can use Poincaré duality to construct an eigen-
variety interpolating H3

class..
The author has not been able to calculate all of the terms of the spectral
sequence. However the E2-sheet is as follows:

E•,•2 :

H̃3(G, E)g

loc.an. ? ? ? ? ? ? 0 0

H̃2(G, E)g

loc.an. Ext1g(E, H̃
2(G, E)loc.an.) ? ? ? ? ? ? ?

0 0 0 0 0 0 0 0 0

E 0 0 E 0 E 0 0 E

This is stable by the E5-sheet, and most things are known:

E•,•5 :

? 0 0 0 0 0 0 0 0

H2
class.(G, E) ? 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 0

9.5 Sp4/Q

Arithmetic subgroups of Sp4(Q) have cohomological dimension 5, as the sym-
metric space is 6-dimensional. It was shown in [5] that the congruence kernel
is trivial. Furthermore H3(g,K∞,C) = 0. We may therefore apply Theorem
8 to give a construction of the H2-eigencurve. By Poincaré duality, it is also
possible to construct a reasonable H4-eigenvariety.
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9.6 Spin(2, l) (l ≥ 3)

Let L be a Z-lattice equipped with a quadratic form of signature (2, l) with
l ≥ 3. We let G/Q be the corresponding Spin group. This has real rank 2, and
the corresponding symmetric space has dimension 2l. The congruence kernel
was shown to be trivial for such groups by Kneser [26]. Hence G satisfies the
weak Emerton criterion in dimension 2. It turns out that H3(g,K∞,C) = 0,
so we may apply Theorem 8 to E(2,Kp).
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