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Abstract

With the increasing penetration of inverter-based renewable
energy resources, deep reinforcement learning (DRL) has
been proposed as one of the most promising solutions to
realize real-time and autonomous control for future carbon-
neutral power systems. In particular, DRL-based frequency
control approaches have been extensively investigated to
overcome the limitations of model-based approaches, such
as the computational cost and scalability for large-scale sys-
tems. Nevertheless, the real-world implementation of DRL-
based frequency control methods is facing the following fun-
damental challenges: 1) safety guarantee during the learn-
ing and decision-making processes; 2) adaptability against
the dynamic system operating conditions. To this end, this
is the first work that proposes an Adaptive and Safe-Certified
DRL (AdapSafe) algorithm for frequency control to simul-
taneously address the aforementioned challenges. In particu-
lar, a novel self-tuning control barrier function is designed to
actively compensate the unsafe frequency control strategies
under variational safety constraints and thus achieve guaran-
teed safety. Furthermore, the concept of meta-reinforcement
learning is integrated to significantly enhance its adaptiveness
in non-stationary power system environments without sacri-
ficing the safety cost. Experiments are conducted based on
GB 2030 power system, and the results demonstrate that the
proposed AdapSafe exhibits superior performance in terms of
its guaranteed safety in both training and test phases, as well
as its considerable adaptability against the dynamics changes
of system parameters.

Introduction
To achieve the carbon-neutral target, high penetration of re-
newable energy sources (RES) is expected in power systems
(Zhang et al. 2020). Nevertheless, the wide deployment of
power electronic devices for RES integration renders the de-
crease of system synchronous inertia (Ulbig, Borsche, and
Andersson 2014), which may endanger the frequency sta-
bility or limit the penetration of RES (Teng, Trovato, and
Strbac 2015). For example, the UK suffered the most signif-
icant power outage in over a decade in 2019, lasting more
than 1.5 hours, causing widespread disruption to the traffic
light network and affecting about 1 million people. The main
driver of this blackout is the rapid frequency changes as a
significant amount of new devices and distributed resources
were added to the system in a very short time (Bialek 2020).

In the literature, load frequency control (LFC) has been
extensively studied to ensure frequency stability and im-
prove power quality in power systems. Traditional model-
based LFC methods are mainly designed based on the PID
control methods (Tan 2009; Zhang et al. 2013), and their
effectiveness is highly dependent on the specific physical
model and the precision of parameters. In order to achieve
self-tuning of PID parameters under model uncertainty, Ran-
jit et al. (Singh and Ramesh 2019) proposed a PID controller
with filtering for the LFC problem in a two-region intercon-
nected grid containing PV generation, which exhibits strong
robustness under parameter uncertainty. Furthermore, fuzzy
control (Sahu, Panda, and Pradhan 2015; Debnath, Jena, and
Sanyal 2019), BAT optimization algorithm (Abd-Elazim and
Ali 2016) and model predictive control (Ersdal, Imsland,
and Uhlen 2015) also show improvements to a certain ex-
tent compared to the traditional PID methods. However, it is
imperative to note that most model-based methods are com-
putationally expensive and thus significantly limit their im-
plementation and performance for real-time LFC scenarios
under uncertainty.

To this end, the data-driven approach, especially the Deep
Reinforcement Learning (DRL) control scheme, is consid-
ered as a promising solution to realize the real-time LFC,
especially in the carbon-neutral case, due to its capability
to deal with dynamic uncertainty and sequential decision-
making problems. In particular, Yin et al. (Yin et al. 2017)
proposed a novel emotional reinforcement learning (ERL)
with nine control strategies for designing controllers in a
two-area LFC power system, where each strategy is com-
bined with different converting functions, reward function,
and learning rate of RL. Moreover, a collaborative multi-
agent DRL method is proposed for multi-area power systems
(Yan and Xu 2020). The reward function is set up to mini-
mize the regional control error signals in all regions, and the
performance of the proposed method is demonstrated on the
New-England 39-bus system. For the existing DRL-based
LFC approaches, although fully exploring the whole action
space during the learning process can assist in obtaining the
optimal strategy, it may also lead to unsafe actions that need
to be avoided. Therefore, it is of great importance to balance
the exploration and safety of a DRL-based LFC method.

To solve the aforementioned challenge, safe DRL-based
control methods have been proposed in the machine learning



community. Xia et al. (Xia et al. 2022) established a safety
evaluation network to generate safe frequency control ac-
tions based on the historical data of off-line learning. In ad-
dition, Gupta et al. (Gupta, Pal, and Vittal 2021) designed
a DDPG algorithm based on bounded exploration control
(BEC), which can adapt to variational environments with un-
certainty and unexpected scenarios. Nevertheless, the afore-
mentioned safe DRL approaches lack a theoretical guaran-
tee for safety and can not take into account the time-varying
characteristics of the inherent parameters in the real physi-
cal system. Thereby, it is risky to directly implement exist-
ing approaches to real-world cyber-physical systems, such
as power systems, where safety and adaptability are both
crucial and fundamental requirements.

More specifically, it is of great importance to develop a
DRL-based LFC approach that can jointly deal with the fun-
damental challenges of 1) safety guarantee during the learn-
ing and decision-making processes; 2) adaptability against
the dynamic system operating conditions. Therefore, this
paper aims to fill this research gap and investigate the fun-
damental limitations of existing approaches by proposing a
novel adaptive and safe-certified DRL-based LFC method
with the integration of meta-reinforcement learning and self-
tuning control barrier function (CBF). To summarize, this
study makes the following original contributions:

(1) To the best of the authors’ knowledge, this is the first
work that proposes an Adaptive and Safe-Certified DRL
(AdapSafe) algorithm for power system frequency control
to handle the dynamic system operating conditions while
providing the guarantee that the executed control actions are
safe during both the offline learning and online implement-
ing procedures.

(2) Based on the proposed AdapSafe, we further improve
the efficiency of the meta-training phase using transition
post-processing and noise elimination measures. In addition,
parameter self-tuning is proposed for our CBF-based com-
pensator, thus enabling the adjustment of the compensation
according to the safety risk level.

(3) The effectiveness of the proposed AdapSafe is demon-
strated based on a GB 2030 power system, and the results
demonstrate that AdapSafe can minimize the control cost
without sacrificing safety.

Background and Problem Definition
Power System Frequency Control
A typical frequency trajectory after a generator outage,
shown in Figure 1, can be divided into four response stages
(Zhang et al. 2020). Firstly, the inertial response takes ef-
fect immediately after the accident. At this stage, due to
the control deadband, the rate of frequency (RoCoF) ∆ḟ is
solely determined by the system inertia. Then, when the fre-
quency exceeds the dead zone, the thermal unit governors
and frequency controllers of RES gradually contaminate the
frequency decline and pull the frequency back to the quasi-
steady state by adjusting their active power output (primary
frequency control). Finally, the automatic generation control
of generators is activated to reset the system frequency to its
nominal value (secondary frequency control), followed by

Figure 1: Power system frequency response: (a) typical sys-
tem frequency trajectory after a generator outage; (b) block
diagram of system frequency dynamics

.

a generation redispatch to achieve optimal economic opera-
tion and get ready for the next possible emergency (tertiary
frequency control). In this paper, without loss of generality,
we combine inertial response and primary frequency control
into phase I, the secondary and tertiary control as phase II.

In the end, the frequency response dynamics can be ex-
pressed by the following swing equation (Kundur, Balu, and
Lauby 1994; Zhang et al. 2020):

2H∆ḟ(t) +D∆f(t) = ∆Pg(t) + ∆Pv(t)−∆Pe(t) (1)

where H and D are the system inertia and load damping
constant, respectively; ∆f(t), ∆Pg(t), ∆Pv(t) and ∆Pe(t)
are the deviations of frequency, generator generation, RES
output power adjustment and total power imbalance, respec-
tively.

Frequency Control as a CMDP
In order to solve the above LFC problem subject to safety
constraints, we can naturally transform it into a Con-
strained Markov Decision Process (CMDP) (Altman 1999).
A CMDP is an MDP with constraints that limit the permis-
sible policy set. For the model-based method, it can be set
as the form of a tuple: < S,A, f, g,R, C >, where S is the
continuous state set, i.e., S ⊂ Rm, A is the continuous ac-
tion set, i.e., A ⊂ Rn, f : Rm → Rm is the unactuated
dynamics, g : Rm → Rn is the actuated dynamics, and the
state transitions can be defined as:

st+1 = st + (f(st) + g(st) at)∆t (2)

where st ∈ S , at ∈ A; ∆t is the interaction time step and
the system dynamics f and g are not immutable. In the later
experiment, we set up a f̂ and ĝ as nominal system dynam-
ics to simulate the difference between the nominal and the
actual environments. In addition, R is an immediate reward
after a state transition, and C is an additional set of safety
constraint which includes state constraints and action con-
straints, i.e., C := {c1, c2, ...ci}, i ∈ 1, 2, ..., Nc and each ci
can be equality or inequality constraints. More specifically,
the correspondence of the tuples of CMDP is as follows:

State S. Since the current frequency change ∆f is deter-
mined by both governor control and RES frequency control,
in addition to ∆f(t), the current power output from genera-
tors ∆Pg(t) should also be a state variable.

Action A. RES plants are generally connected to the
power system through power electronic devices, and thus



the output power adjustment ∆Pv(t) finally provided by the
RES to the power system is considered as the action a.

System Dynamics f, g. Through the s-domain transfor-
mation of Eq. 1 combined with the state variables ∆f and
∆Pg , the system dynamics f and g are expressed as follows:

f =

[
−D
2H ∆f +

∆Pg−∆Pe

2H
1

RgTg
∆f − ∆Pg

Tg

]
(3)

g =

[
1

2H
0

]
(4)

where a droop gain Rg and a low-pass filter with a time con-
stant Tg is used to represent the dynamics of governor con-
trol (Chu et al. 2020).

Constraint C. For frequency nadir, in phase I, our safe
constraint is that ∆fnadir can be above the maximum dead
zone limit ∆fbound; once the frequency is restored to a
quasi-steady state, our safety constraint will become keep
∆ḟ within the range of ∆ḟbound while ensuring that the
steady-state frequency is above a certain limit ∆fstable; at
the same time, the action bound that RES can execute is also
one of the constraints.

C :=


c1 : {∆fnadir ≥ ∆fbound}
c2 : {∆f ≥ ∆fstable}
c3 : {|∆ḟ | ≤ ∆ḟbound}
c4 : {∆Pmin ≤ ∆Pe < ∆Pmax}

(5)

where ∆ḟ is used to measure stability. In phase I, the con-
troller needs to meet constraints c1 and c4, while in phase II,
the constraints become c2, c3 and c4.

RewardR. As the safety constraints set C will change ac-
cording to the phase of the state, a segmented reward func-
tion based on the frequency control action a is set to adjust
the system state, as follows:

r =


− 100, if ∆fnadir < ∆fbound

−m1|a|+ (−1)qm2, else if |∆ḟ | ≤ ∆ḟbound

−m1|a| −m3t, otherwise
(6)

where q indicates whether the next state satisfy ∆f >
∆fstable; m1,m2,m3 ∈ R+ are the penalty coefficients of
the performed action, system stability and time step, respec-
tively.

AdapSafe: Adaptive and Safe-Certified
DRL-based Frequency Control

Problem Formulation for AdapSafe
Let Ssafe and Asafe denote the sets of safe state and safe
action, respectively, indicating that if the current state st and
action at are in the safe set, all the constraints in C can be
satisfied and the corresponding next state st+1 will also be
safe. To guarantee that arl ∈ Asafe and st+1 ∈ Ssafe can
be jointly satisfied, a compensation action u is introduced in
this work. Considering the dynamics of the investigated non-
stationary system, the safety policy π has to be adaptively
adjusted in response to different environments to maximize

Figure 2: The control framework of the proposed AdapSafe
for power system frequency control.

.

the overall rewards. To this end, the overall objective of the
optimization problem is to maximize the average episodes’
rewards for multi-tasks while satisfying safety constraints
with minimum compensation costs u, as expressed below:

max
π

1

Ntask

Ntask∑
k=1

min
ut

E
τk∼π

[ ∞∑
t=0

γtrk (st, arl + ut)

]
s.t.: st+1 ∈ Ssafe ⊂ S

at = (arl + ut) ∈ Asafe ⊆ A

(7)

where γ ∈ [0, 1) is the discount factor and arl is the deter-
ministic action of actor network output.

This section aims to introduce the proposed AdapSafe,
which includes two main steps 1) self-tuning safety certi-
fication; and 2) adaptiveness enhancement, as presented in
Figure 2.

Step 1: Self-tuning Safety Certification
To achieve the objective above, the safe state set Ssafe is
first defined as:

Ssafe = {s ∈ Rn : h(s) ≥ 0}
∂Ssafe = {s ∈ Rn : h(s) = 0}

Int(Ssafe) = {s ∈ Rn : h(s) > 0}
(8)

where h : Rn → R is a continuously differentiable function,
∂Ssafe and Int(Ssafe) represent the boundary and interior
of set Ssafe, respectively.

Inspired by using the Lyapunov-like function to prove
the stability of the set without calculating the exact solu-
tion of the system (Sloth, Wisniewski, and Pappas 2012;
Wisniewski and Sloth 2015), this paper employs the barrier
function to ensure the forward invariance of the safe set (see
Definition 1) and avoid the high computational complex-
ity of calculating all state reachable sets in every time step.
Compared with the Lyapunov-based methods (Berkenkamp
et al. 2017; Chow et al. 2018), barrier function-based ap-
proaches (Cheng et al. 2019) relax the condition to guaran-
tee the forward invariant property in the safe set and signifi-
cantly increase the feasibility.

Definition 1. A set S is forward invariant for a dynamical
system ẋ = f(x) if x0 ∈ S → φ (t, x0) ∈ S for all posi-
tive t where φ (t, x0) is the flow of f starting at (t, x0). In



our framework, that means once the state s0 is in the safe set
Ssafe, during the entire episode, st will not cross the bound-
ary of Ssafe.

To this end, we inherit the setting of barrier functions in
(Ames et al. 2016), and divide the selection of barrier func-
tions into reciprocal barrier functions (RBF) and zeroing
barrier functions(ZBF). The difference between them lies in
the different processing of the safe set and the corresponding
forward invariance guarantee. For ZBF, h(·) can be directly
selected as a candidate; however, the selection of RBF must
have the following properties:

inf
x∈Int(C)

B(x) ≥ 0, lim
x→∂C

B(x) =∞ (9)

On this basis, the corresponding reciprocal control bar-
rier functions (RCBF) and zeroing control barrier functions
(ZCBF) can be developed and ensure the forward invariance
for AdapSafe, which are defined in Definition 2 and Defini-
tion 3, respectively.

Definition 2. Given a continuously differentiable function
h : Rn → R and a set Ssafe ⊂ Rn defined by Eq. 8, the
function h(·) is called a ZCBF defined on the state space S
with Ssafe ⊆ S ⊂ Rn, ∀st ∈ S, if there exists a continuous
function α : (−b, a) → (−∞,∞) such that for all st ∈
Int(Ssafe):

sup
ut∈A

[Lfh(st) + Lgh(st)(arl + ut) + α(h(st))] ≥ 0

(10)
where Lf and Lg are the lie derivative of the environ-
ment dynamics f and g, respectively. Then any feasible
compensation ut ∈ UZCBF(st) = {(arl + ut) ∈ A :
Lfh(st) + Lgh(st)(arl + u) + α(h(st)) ≥ 0} will render
the set Ssafe forward invariant in time t.

Definition 3. Given a continuously differentiable function
h : Rn → R and a set Ssafe ⊂ Rn defined by Eq. 8. A
continuously differentiable function B : Int(Ssafe) → R
is called a RCBF if there exist three continuous functions
β1, β2, β3 : [0, a) → [0,∞) for some a > 0 such that, for
all st ∈ Int(Ssafe):

1

β1(h(st))
≤ B(st) ≤

1

β2(h(st))

inf
ut∈A

[LfB(st) + LgB(st)(arl + ut)− β3(h(st))] ≤ 0

(11)
then any feasible compensation ut ∈ URCBF(st) = {(arl +
ut) ∈ A : LfB(st) + LgB(st)(arl + u)− β3(h(st)) ≤ 0}
will render the set Ssafe forward invariant in time t.

In this way, the safety state and action constraints in Eq.
7 can be replaced with RCBF or ZCBF, which express the
safety guarantees in the form of inequality constraints. As
the action space is limited, there may not be a feasible so-
lution ut that can transfer current state st to Ssafe via only
one step in some extreme cases. Therefore, a slack variable ϵ
needs to be introduced to relax the computational safety con-
straints, and then the calculation of ut can be transformed

into an inner-level minimization problem as follows:

min
ut

u2
t + ϵ2

s.t.:Lf̂h(st) + Lĝh(st)(arl + ut) + α(h(st)) ≥ 0

or Lf̂B(st) + LĝB(st)(arl + ut)− β3(h(st)) ≤ 0

amin ≤ (arl + ut) ≤ amax

(12)

Note that the above problem can be solved via the Quadratic
Programs (QP) method, and the parameters of RCBF or
ZCBF need to be determined.

For the real-world implementation, it is imperative to note
that the aforementioned approach still can not guarantee
safety as there is a mismatch between the nominal environ-
mental parameters and the real-world parameters. In addi-
tion, the setting of hyperparameters α or β1, β2, β3 in CBF
inequality constraints will also significantly affect the com-
pensation action. In particular, tight constraints may lead to
conservative actions and thus increase the control cost. On
the other hand, loose constraints may result in the violation
of safety constraints and state oscillation. The following in-
novations in parameter adaptation are proposed to solve the
above issue.

Adaptive GP regression. For the non-stationary power
system environment, estimating the dynamics via the con-
ventional Gaussian Process (GP) model can not achieve high
confidence in the context of varying model parameters. On
the other hand, the model may encounter new scenarios that
have not been observed/learned during the training process.
Under this reality, if the GP model is established for each en-
vironment, the computational cost will be greatly increased
because of the huge number of training and testing tasks.

To this end, we propose to store the current impre-
cise model parameters in the buffer as part of each tran-
sition, that is, the transition in the GP buffer contains
(st, at, st+1, rt, f̂ , ĝ). During the training process, the cur-
rent environmental parameters f̂ , ĝ, and state st are taken
as inputs to predict the parameters’ error yt to realize
the follow-up safety compensation. The specific calculation
equation is expressed as follows:

yt = st+1 − (f̂(st) + ĝ(st)at)

p(y | Dgp, st, at, f̂ , ĝ) =

ngp∏
i=0

N (m(yi), cov(yi))
(13)

where Dgp is the buffer for GP update; to reduce the compu-
tational cost, we only save the most recent episode train data;
ngp is the number of samples in buffer, m(·) and cov(·) are
the mean function and covariance matrix in GP regression,
respectively.

Safety constraint adaptation. Take ZCBF as an exam-
ple, the larger the value of parameter α, the looser the safety
constraint is, and vice versa. When the safety risk is large,
α needs to be reduced, and more conservative compensation
u will be implemented to guarantee that the states can be
kept in the safe area; while α needs to be increased to re-
lax restrictions when the safety risk is small, thus reduce the
oscillation caused by compensation. To improve the adapt-
ability of the parameter, we propose to establish a nonlinear



function to map the relationship between safety risk and pa-
rameter α:

α = e2 e
−tan(e3 clip(∆f−δfbound,−π

2 ,π2 )) (14)

where the current risk is defined as the numerical error be-
tween ∆f with the safe constraint ∆fbound and the error is
clipped to (−π

2 ,
π
2 ); e2, e3 are hyperparameters that control

the safety risk and compensation intensity. Then the tangent
function is used to extend it to the whole domain, and finally,
α is adaptive by the mapping of the exponential function.

Step 2: Adaptiveness Enhancement
To enhance the performance of DRL under multi-tasks, Ra-
sool et al. (Fakoor et al. 2019) take advantage of the current
meta reinforcement learning in adaptive control (Sæmunds-
son, Hofmann, and Deisenroth 2018) and introduce one of
the state-of-the-art meta-reinforcement learning algorithms
Meta Q Learning (MQL). The meta-training phase of MQL
is only set to maximize the average reward of all training
tasks. The objective functions of meta-training and meta-
adaptation are set in Eq. 16 and Eq. 17, respectively.

ℓk(θ) = E
s,τ∼Dk

[Q (s, πθ(s), cθ(τ))] (15)

θ̂train = argmax
θ

1

Ntask

Ntask∑
k=1

ℓk(θ) (16)

θ∗ = argmax
θ

E
s,τ∼Dmeta

[
β ℓeval(θ)

]
−λ

∥∥∥θ − θ̂train

∥∥∥2
2

(17)

where Ntask denotes the number of training tasks, ℓk(θ) is
the optimization target corresponding to the k training task
or evaluation task; cθ(τ) is the context information gener-
ated by gate recurrent unit based on the data from each tra-
jectory τ ; β (s, cθ(τ), Deval ,Dmeta ) is the propensity score
calculated based on the similarity between the training tasks
and the evaluation tasks; λ is based on the coefficient related
to the Effective Sample Size (ESS) obtained by β to limit
the update amplitude of policy parameters.

Given that the future carbon-neutral power systems ex-
hibit the characteristics of high uncertainty and frequently
varying system operation conditions, the next step for Adap-
Safe is to improve its adaptiveness while still meeting the
safety constraints. To this end, based on meta Q-learning,
we propose two improvement schemes to ensure frequency
safety in the meta-training process without affecting the
learning performance.

Transition post-processing. The first improvement
scheme we developed to MQL is the post-processing of
the transition (st, at, rt, st+1) deposited into the train tasks’
buffers. Due to the action compensation ut, there exists a
discrepancy between the output by the actor-network arl and
the final executed action at. Since the real executed action
at is compensated by the CBF-based method, directly de-
positing (st, at, rt, st+1) into the DRL replay buffer will in-
evitably make all training experiences safe and high-value.
Consequently, it will make the actor-network greatly depen-
dent on the compensation term during the training process

and then reduce the speed of DRL learning to the safety pol-
icy.

Therefore, we carry out the post-processing of the action
and choose to store the unprocessed action arl in the replay
buffer. However, this will cause a mismatch between rt and
arl as the reward in the buffer is calculated using arl+ut and
thus, the reward post-processing needs to be implemented.
Given that a safe strategy is required by the agent (i.e., the
learned action does not need compensation ut), the form of
reward post-processing is designed as follows:

rbuffer(st, at) = rt(st, at)− e1 |ut| (18)

where e1 is the penalty factor for CBF-based compensation.
Noise elimination. Furthermore, the second improvement

is eliminating the noise about state and action during the
exploration. For the LFC problem, frequency stability is
judged based on the frequency derivative ∆ḟ < ∆ḟbound,
which is also considered as a reference in the design of the
reward function in Eq. 6. Nevertheless, the noise terms de-
signed for actions and states may significantly reduce the
time to approach the stable state (i.e., the time to enter phase
II). Therefore, we eliminate the noise during the meta-train
process. Although this change may reduce the exploration
performance to a certain extent, it is experimentally verified
that the overall learning rate is better than the MQL method
with noise due to the existence of safety constraints that can
effectively reduce meaningless exploration and improve the
efficiency of the training process.

Overall, the complete algorithm of the proposed Adap-
Safe is presented in Algorithm 1.

Experiments and Analysis
This section aims to verify the proposed AdapSafe based
on a GB 2030 power system. The details regarding the sys-
tem description and characteristics can be found in (Badesa,
Teng, and Strbac 2019). At the same time, our safety con-
straints also adopt the standard frequency limits set by the
National Grid: ∆fbound = 0.8 Hz, ∆fstable = 0.5 Hz and
∆ḟbound = 0.01 Hz/s. To simulate the non-stationary envi-
ronment and consider the uncertainty brought by RES, we
set ∆Pe, H , Rg as variables and generate random samples
from a uniform distribution during the training and evalua-
tion phases. The specific settings are provided in Appendix
A.

Baselines
We compare AdapSafe with the following baselines:

VSM controller. A traditional control method (Markovic
et al. 2018) is implemented as the baseline, which employs
an adaptive Virtual Synchronous Machine (VSM) to main-
tain the effectiveness of frequency regulation and dynami-
cally optimize the control parameters in a variational envi-
ronment.

Natural TD3. An off-policy DRL algorithm TD3 (Fuji-
moto, Hoof, and Meger 2018) is considered as the baseline,
which avoids unsafe actions via the development of a reward
function rather than using a CBF-based compensator.



Algorithm 1: AdapSafe: Adaptive and Safe-Certified DRL-
based Frequency Control
Input: Train tasks Ttrain and meta train buffer Dk

meta; eval-
uation tasks Teval and buffer Deval; GP update buffer Dgp;
an off-policy DRL algorithm, e.g. TD3.
Parameter: Policy parameters θ; nominal dynamics f̂ , ĝ;
safety hyperparameter α(or β3), e1, e2, e3; total training
steps N ; policy train steps n
Output: Policy parameters θ

1: // Burn Up
2: Burning up some episodes using πθ and CBF-based

compensation u with α(or β3) adapted by Eq. 14, save
row trajectories to Dgp

3: Post-processing for each transition and save burning tra-
jectories to Dk

meta for each train task k in Ttrain
4: Update f̂ , ĝ using buffer Dgp and current GP model
5: while i < N do
6: // Safe Meta Training
7: Gather safe trajectories using θ, u and self-tuning

α(or β3) for Ttrain, save post-processing transitions
to Dmeta and add corresponding steps to i

8: Sample batch trajectories τ from Dk
meta while feed-

ing transitions through context and get cθ(τ)
9: Do meta training using Eq. 16

10: update θ ← θmeta

11: // Safe Meta Adaption
12: Gather one episode safe trajectories using θ, u and

self-tuning α(or β3) for Teval, save post-processing
transitions to Deval and add corresponding steps to i

13: Sample mini-batch trajectories τ from Deval and cal-
culate optimization ℓeval(θ) by Eq 15

14: Train logistic regression for estimating the propensity
score β (s, cθ(τ), Deval ,Dmeta ) and calculate nor-
malized ESS to get the coefficient λ

15: for j < n do
16: Sample mini-batch from Dmeta

17: Calculate β for sampled mini-batch
18: Do meta adaption using Eq. 17
19: end for
20: end while

CBF-TD3. The CBF-based TD3 only uses our CBF-
based compensator to guarantee safe constraints without
meta-training in non-stationary environments.

MQL. We also implement the MQL method that only
conducts meta-training and meta-adaptation. Its treatment of
ensuring safety is the same as natural TD3.

Since the natural TD3 and CBF-TD3 methods do not sup-
port multi-task training, we refer to the framework of multi-
task training in MQL, sample and train each task in turn and
modify the same models through parameters sharing.

Training Performance Analysis
Since the VSM controller does not require a training
phase, we first compare four DRL-based frequency con-
trol schemes in terms of the training performance under the
multi-tasks training setting, as shown in Figure 3.
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Figure 3: The performance of each algorithm in the train-
ing phase, where (a) represents the episodes’ rewards of the
training phase, (b) represents the frequency nadir of each
episode, and the dotted line represents the standard safety
constraint ∆fbound.

Cost. From the perspective of episodes’ reward, it is ev-
ident that the proposed AdapSafe exhibits the best perfor-
mance among the four tested approaches. In particular, since
the natural TD3 method and CBF-TD3 method do not have
any special treatment for multi-task learning, their training
episodes’ rewards in the training phase are always kept at a
low level; while MQL and AdapSafe both introduce con-
textual variables and update model parameters via meta-
learning, thus show higher rewards under non-stationary
environments. Nevertheless, AdapSafe still obtain approx-
imately 50% improvement than the MQL.

Safety. From the perspective of safety, the result indicates
that both of the CBF-based methods (i.e., the CBF-TD3 and
the AdapSafe) can satisfy that ∆f is 100% guaranteed above
the safety constraint (lower bound) ∆fbound in phase I while
for TD3 algorithm without action compensation u, approx-
imately 96.5% of the training episodes exist unsafe states.
On the other hand, only about 67.7% training episodes can
meet the safety constraints for the MQL.

Test Performance Analysis
In the test phase, we randomly select 50 tasks from the
parameter distribution set in Appendix A and set six cor-
responding evaluation metrics to measure control perfor-
mance. In particular, the metrics for measuring cost include
the average episodes’ reward R and the average episodes’
control action A under all test tasks; the metrics for safety
are designed based on the change of control task require-
ments and divided into phase I and phase II. In phase I, we
define the worst frequency nadir metric N and the total times
T of ∆f below ∆fbound (i.e., unsafe) in all test tasks. In ad-
dition, given that phase II is established when the frequency
has been stabilized, T stab and T safe are defined to repre-
sent the average convergence speed and the average number
of ∆f above fstable in the stabilization phase. The test re-
sults of all the methods are shown in Table 1. Furthermore,
∆f and RES power adjustment ∆Pv under two test envi-
ronments with the boundary of parameter ∆Pe are shown in
Figure 4 to visually inspect the changes in states and actions



Methods Cost Safety
R A N T T stab T safe

VSM - -0.71 -0.947 54 107.84 105.66
TD3 -7738 -0.05 -0.833 57 60.47 16.90
MQL -6302 -0.03 -0.844 22 50.91 21.47

CBF-TD3 -8584 -0.63 -0.825 12 81.86 81.73
AdapSafe -3345 -0.27 -0.797 0 137.46 137.42

Table 1: The performance of each algorithm in 50 test tasks.
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Figure 4: The curves of ∆f and ∆Pv across different con-
trol methods under a variational environment, where the up-
per and lower bound of the environmental parameter ∆Pe

distribution are selected.

of different control methods under varying environments.

Cost. As can be seen, the AdapSafe obtains the high-
est average reward R, indicated by the approximately 56%
higher value than that of the TD3. On the other hand, al-
though the TD3 and MQL methods learned the strategies
to use smaller power adjustment A to achieve acceptable
performance in some simple scenarios (e.g., ∆Pe = 1.8 in
Figure 4), they cannot achieve phase II safe target: ∆f >
∆fstable under more difficult scenarios (e.g., ∆Pe = 2.7
in Figure 4). Meanwhile, although the VSM and the CBF-
TD3 can dynamically adjust ∆Pv for ensuring the safe con-
straints, the cost of the control action is 163% and 133%
higher than ours, respectively, which leads to the worst av-
erage episodes’ rewards.

Safety. From the perspective of safety, it is imperative to
highlight that the proposed AdaptSafe is the only method
that can realize the safety guarantee (i.e., T = 0, N > −0.8)
for both I and II under varying environmental parameters.
Meanwhile, the advantage of AdapSafe in II is more promi-
nent compared with other methods. In particular, the met-
ric value of T stab is approximately 27%, 128%, 169%,
and 71% higher than those of the VSM, TD3, MQL and
CBF-TD3, respectively. Furthermore, during the stabiliza-
tion phase, AdapSafe also exhibits the best performance in
ensuring safety. Almost all the states that enter the stable
phase are safe, while only about 28% and 42% stable states
of the TD3 and MQL methods can satisfy phase II safety
constraint.
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Figure 5: Ablation study of Z(R)CBF-based Adapsafe with
fixed α(β3) and the red line is our self-adapt strategy.

Ablation Study
For the proposed AdapSafe, the hyperparameters α and β3,
which control the compensation intensity, are of great im-
portance in the experimental effect. To this end, as shown in
Figure 5, we conducted the ablation experiments to compare
the proposed self-tuning approach with five fixed values of α
and β3. First, it can be observed that the CBF compensation
becomes less conservative and subsequently triggers unsafe
∆f with the increasing value of α or β3. The results indi-
cate that the fixed hyperparameter does not accommodate
the variational safety constraints of both phase I and phase
II. Meanwhile, the proposed self-tuning method performs a
relatively conservative (i.e., slightly smaller α or β3) to meet
the ∆fbound constraint in phase I. In phase II, α or β3 of
the proposed self-tuning method can be actively increased
to meet the ∆fstable constraint and reduce the control cost
for achieving the target of economic scheduling.

Conclusion
This paper proposes a novel DRL-based frequency con-
trol framework, AdapSafe, to simultaneously address the
two crucial challenges of safety guarantee and adaptiveness
enhancement in a non-stationary environment to facilitate
its real-world implementation. In particular, a self-tuning
CBF-based compensator is designed to realize the optimal
safety compensation under different risk conditions, which
greatly reduces the control cost. Furthermore, to minimize
the control cost without sacrificing safety, the CBF-based
safe control method is integrated with meta reinforcement
learning algorithm with the innovations of transition post-
procession and noise elimination scheme to achieve safety
assurance during the meta-training phase for multi-task sce-
narios. Through a comparative study with the state-of-the-
art frequency control methods based on a GB 2030 power
system, the results demonstrate that AdapSafe can achieve
the target of safety guarantee under a variational environ-
ment with superior control performance for both the training
and testing phases. In the future, the proposed AdapSafe will
be further developed to the multi-machine frequency control
problem based on large-scale power systems.
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Appendix A: Case Study Setting
In this section, we describe the detailed system dynamics, as
well as give the specific procedure for calculating compensa-
tion u. Moreover, we explain the parameter settings involved
in the GB 2030 power system.

System Frequency Dynamics

Figure 6: Simplified system frequency dynamics model.

A simplified model of system frequency dynamics is
shown in Figure 6, and the low-order model proposed
in (Chu et al. 2020) is used for modeling the governor
dynamics. For the VSM-based control scheme proposed
in (Markovic et al. 2018), Tc is the converter time con-
stant, while Mc and Dc represent the virtual inertia and
damping constant of the converter. Meanwhile, for the
DRL-based control scheme, the frequency adjustment ∆Pv

brought by RES will be determined by its policy network
π(∆f,∆Pg; θ).

From Fig 6, we can get the specific algebraic expression
of the dynamics for DRL-based methods as shown in Eq 19:

∆ḟ =
1

2H
(−D∆f −∆Pg −∆Pe +∆Pv)

∆Ṗg =
1

RgTg
(∆f −Rg∆Pg)

∆Pv = π(∆f,∆Pg; θ)

(19)

Based on the above dynamics, the control objective of
our LFC problem can be divided into two phases in Figure
7, where phase I needs to satisfy the deadband frequency
∆fnadir above ∆fbound, and phase II needs to achieve sta-
ble frequency ∆fstable with less control cost.

Figure 7: Two-phase control objective for the LFC problem.

CBF-based Compensator
The action compensation u based on the CBF method is real-
ized by solving quadratic programming (QP) problems with

inequality constraints. In view of our LFC problem, the spe-
cific QP equation is set as follows:

min
x

1

2
xTPx

s.t. : Gx ≤ h

Ax = b

(20)

where P =

[
1 0
0 1024

]
x =

[
u
ϵ

]
H =

[
1 0
1 0

]
F =

[
−∆fbound
−∆fstable

] (21)

G1 =


−H1g − 1

−H2g − 1

1 0

−1 0

G2 =



−H1g − 1

−H2g − 1

1 0

−1 0

g[0] 0

−g[0] 0


(22)

h1
ZCBF =


αF1 +H1f +H1g arl−
(1− α)H1x− kδ|H1|σ
αF1 +H2f +H2g arl−
(1− α)H1x− kδ|H2|σ
−arl +∆fbound
arl −∆fbound



h2
ZCBF =



αF2 +H1f +H1g arl−
(1− α)H1x− kδ|H1|σ
αF2 +H2f +H2g arl−
(1− α)H1x− kδ|H2|σ
−arl +∆fbound
arl −∆fbound

−f [0]− g[0]arl +∆ḟbound
f [0] + g[0]arl −∆ḟbound



(23)

h1
RCBF =


β3(H1x+F2+1)(H1x+F1)

ln( 1+H1x+F1
H1x+F1

)+(H1f+H1g arl−kδ|H|Tσ)

β3(H2x+F2+1)(H2x+F1)

ln( 1+H2x+F1
H2x+F1

)+(H2f+H2g arl−kδ|H|Tσ)

−arl +∆fbound
arl −∆fbound



h2
RCBF =



β3(H1x+F2+1)(H1x+F2)

ln( 1+H1x+F2
H1x+F2

)+(H1f+H1g arl−kδ|H|Tσ)

β3(H2x+F2+1)(H2x+F2)

ln( 1+H2x+F2
H2x+F2

)+(H2f+H2g arl−kδ|H|Tσ)

−arl +∆fbound
arl −∆fbound

−f [0]− g[0]arl +∆ḟbound
f [0] + g[0]arl −∆ḟbound



(24)

where G1 matches h1
ZCBF or h1

RCBF and G2 matches h2
ZCBF or

h2
RCBF.
Since the safety constraints C vary at different phases, we

use G1x ≤ h1as the QP constraint in phase I and G2x ≤ h2

in phase II. Furthermore, two forms of CBF-based compen-
sation are designed for the LFC problem by setting different
hZCBF and hRCBF.



Parameters Setting
Table 2 shows our settings for the variable parameters dur-
ing the generation of the training and testing environments.
It should be noted that the time scale for the change of en-
vironment dynamics is greater than the time for simulating
a DRL episode (we set it to 100s). Moreover, for genera-
tion loss ∆Pe and system inertia H , we have a preference
for sampling tasks. For ∆Pe , 1/3 of the training tasks are
sampled from the uniform distribution U(1.8, 2.2) , while
the remaining 2/3 of the training tasks are sampled from
U(2.2, 2.7).

Parameters Value distribution Preference

∆Pe U(1.8, 2.2) + U(2.2, 2.7) 1:2
H U(1.5, 2.0) + U(2.0, 2.5) 2:1
Rg U(0.2, 0.3) N

Table 2: Parameters value distribution and preference ratio
setting, U(a, b) denotes a uniform distribution of parameters
a and b, and preference ‘N’ indicates this parameter has no
preference setting.

Besides, the following Table 3 shows the hyperparameter
configuration of four comparison algorithms in the same set
of interaction environment.

TD-3 MQL CBF-TD3 AdapSafe

Burning up 1e4
Total steps 1e7

[m1,m2,m3] (Eq. 6) [50, 10, 50, 0.5]
Exploration noise 0.3 0.3 0.3 0
Context dimension 0 30 0 20

History length 0 30 0 30
Meta-adaptation freq - 3e4 - 3e4
Adam learning rate 8e-4 8e-4 3e-4 3e-4

e1 (Eq. 18) - - 5 5
[e2, e3] (Eq. 14) - - [1,2] [1,2]

GP kernel - - kRBF kRBF

Table 3: Hyperparameter for four DRL-based LFC schemes
in the same non-stationary environment.

Appendix B: Training and Testing Results
In this section, we first fix a set of environmental parame-
ters and compare the TD-3 and CBF-TD3 algorithms as a
way to show that our CBF-based compensator can achieve
safety guarantees in a static environment. After that, we ran-
domly select a combination of parameter distributions from
Table 2 as test environments to demonstrate the superiority
of our AdapSafe method by comparing it with the other four
algorithms. Finally, we also test more difficult unknown en-
vironments beyond the parameter distributions in Table 2,
and present the comparison results in Table 3.

Results in Stationary Environment
As can be seen from Figure 8, the CBF-based compensator
can guarantee all training episodes satisfy the safety con-
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Figure 8: Comparison of the ∆fnadir for the TD3 method
and the CBF-TD3 method with environmental parameters
of ∆Pe = 1.8 (or 2.7), H = 2 and Rg = 0.3.

straint of ∆fnadir > ∆fbound in static environments. In
contrast, even in a simple task, such as ∆Pe = 1.8, the TD3
algorithm can hardly guarantee the safety of the frequency
all the time.

Results in Non-Stationary Environment
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Figure 9: Variation of ∆f under environmental parameters
H and Rg changes.

Figure 9 illustrates the ∆f variation of the five control
methods for variable environmental parameters H and Rg .
It can be seen that our AdapSafe method can significantly
improve the adaptivity in non-stationary environment setting
without sacrificing any safety cost.

Results in Out-of-Distribution Environments
Although we have set the range of environmental parame-
ters within the parameter bounds that the actual frequency
control system may reach, we also test more extreme cases,
such as too small or too large parameters, and show the test
performance in Tables 4 and Tabel 5.

From Tables 4 and 5, we can see that for the case of ex-
tremely small environmental parameters, our method still
has the best control performance from both cost and safety
perspectives; while for the case of extremely large environ-
mental parameters, all algorithms cannot guarantee that ∆f



Methods Cost Safety
R A N T T stab T safe

VSM - -0.33 -0.776 0 103.72 103.72
TD3 466 -0.04 -0.726 0 136.04 135.84
MQL -1789 -0.06 -0.840 6 97.28 97.16

CBF-TD3 -6454 -0.66 -0.477 0 145.72 145.64
AdapSafe 925 -0.05 -0.788 0 170.60 170.44

Table 4: The performance and safety of each algorithm in
100 test tasks where parameters are extremely small: ∆Pe ∼
U(1.7, 1.8), Rg ∼ U(0.15, 0.2), H ∼ U(1, 1.5).

Methods Cost Safety
R A N T T stab T safe

VSM - -0.80 -1.119 652 45.04 25
TD3 -23335 -0.18 -1.106 1666 100 0
MQL -22800 -0.17 -1.153 3668 36.84 0

CBF-TD3 -20809 -1.25 -1.110 638 175.84 78.12
AdapSafe -21731 -1.29 -1.146 664 177.24 76.08

Table 5: The performance and safety of each algorithm in
100 test tasks where parameters are extremely large: ∆Pe ∼
U(2.7, 2.8), Rg ∼ U(0.3, 0.35), H ∼ U(2.5, 3).

will recover to safety by one step action adjustment, but the
overall effect of the CBF-TD3 and AdapSafe is better than
that of MQL and TD3 algorithms.


