
Multi-Objective Genetic Improvement:
A Case Study with EvoSuite

James Callan and Justyna Petke

University College London, United Kingdom
{james.callan.19,j.petke}@ucl.ac.uk

Abstract. Automated multi-objective software optimisation offers an
attractive solution to software developers wanting to balance often con-
flicting objectives, such as memory consumption and execution time.
Work on using multi-objective search-based approaches to optimise for
such non-functional software behaviour has so far been scarce, with tool-
ing unavailable for use. To fill this gap we extended an existing general-
ist, open source, genetic improvement tool, Gin, with a multi-objective
search strategy, NSGA-II. We ran our implementation on a mature, large
software to show its use. In particular, we chose EvoSuite — a tool for
automatic test case generation for Java. We use our multi-objective ex-
tension of Gin to improve both the execution time and memory usage
of EvoSuite. We find improvements to execution time of up to 77.8%
and improvements to memory of up to 9.2% on our test set. We also
release our code, providing the first open source multi-objective genetic
improvement tooling for improvement of memory and runtime for Java.

Keywords: Genetic Improvement · Multi-Objective Optimisation. · Search-
Based Software Engineering

1 Introduction
Performance is one of the key properties of software. Programs that are laggy,
consume a lot of resources, are not only a source of user complaints, but can
render such software unsustainable and unusable. Even though there have been
extensive studies on software performance issues, e.g., [9], and tools have been
proposed to automatically improve software’s performance, whether through
compiler optimisation, parameter tuning, genetic improvement, or other, few
consider the interplay between the different non-functional properties [8]. Such
automated tooling is needed, given that changes that improve one non-functional
property might negatively influence another.

Improving the speed of a program may have unintended consequences. A
popular strategy would be caching of intermediate computation results, e.g., in
array structures. This, however, leads to increased memory use. Furthermore,
if arrays are large enough, the time cost of array operations might outweigh
the computational time savings. It is thus important that we consider memory
usage when optimising the execution time of an application. In fact finding more
memory efficient versions of software can be beneficial to it’s speed by saving



2 J. Callan et al.

expensive garbage collection and page swapping operations. Although multi-
objective search algorithms seem best fit for this problem domain, to the best of
our knowledge, there is no tool available that provides this facility, despite such
work being proposed in the past [13].

With this in mind, we extended an existing Genetic Improvement (GI) [11]
framework, Gin [4], with a multi-objective search strategy1, namely NSGA-II [6].
We chose GI as it is an approach which can be applied to any source code without
the need for tuning or domain expertise. GI utilises search algorithms to find
patches which can improve the program with respect to a given objective. GI has
already been successfully used to fix bugs, optimise program’s runtime, memory,
energy consumption, and other [11]. GI has the advantage of being ambivalent
to the particular search algorithm used to explore the landscape of patches, thus
we can very easily plug in multi-objective algorithms to improve both memory
and execution simultaneously or find good trade-offs between them.

To show usefulness of our implementation we target a large, popular, mature
piece of software — EvoSuite [7], a tool which utilises Genetic Programming in
an attempt to automatically generate test suites for Java programs. EvoSuite
then generates and minimises a set of assertions for each test. This allows the
tests to detect regressions in future versions of software. EvoSuite is often run
with a time limit for test generation for each target class. Once time limit is
reached, EvoSuite stops, regardless of whether a particular coverage objective
was achieved. It is thus important that EvoSuite can efficiently explore the search
landscape, and evaluate generated tests. By improving the speed of EvoSuite we
can increase the amount of test cases it can generate and evaluate in the given
time limit. At the same time we don’t want such improvements to happen at the
cost of unnecessary memory use.

Our results are encouraging. We report improvements of up to 78% in runtime
and 9% in memory use for 10 methods in EvoSuite software. The best patches
removed redundant yet expensive checks, and change the scope of try catch
statements. We hope that researchers and practitioners alike find these results
encouraging, to apply multi-objective GI to other software, and continue research
in this direction. There is more to be explored: which multi-objective algorithms
are best fit for search-based software improvement? which other properties could
we target? and other. We release our code [1] to facilitate future work.

2 Background
Genetic Improvement uses automated search to improve existing software [11].
GI takes a section of source code and the tests which cover it and searches
through a landscape of potential patches in order to find those which improve
a given software property. Standard GI operators delete, replace, or copy code
fragments, such as statements or lines. Testing is also used as standard as a proxy
for capturing software’s functional correctness, and to measure the software im-
provement property of interest. For instance, for runtime improvement, fitness
measure of a given program variant will be the time taken by the given test suite.

1 A pull request can be found at https://github.com/gintool/gin/pull/89.



Multi-Objective Genetic Improvement: A Case Study with EvoSuite 3

The most popular search algorithm for GI has been genetic programming,
however, local search has been recently shown to be as effective [3]. Although
White et al. [12] were the first to propose multi-objective (MO) search to improve
software’s non-functional behaviour, they evolved full programs rather then
patches making their approach only applicable to toy software. Basios et al. [2]’s
work is closest to what we want to achieve. They used MO to improve memory
consumption and runtime of Java applications. However, they used specialised
mutations, targeting data structures only. Furthermore, they have not made their
code available. This leaves the question of how effective standard GI operators
are at MO optimisation unanswered.

3 Approach
We pose that multi-objective (MO) Genetic Improvement (GI) provides
a useful generalist approach for automated software optimisation.

In order to prove this statement we incorporate multi-objective search into
an existing GI framework. We target improvement of non-functional software be-
haviour, as it’s been shown that changes that improve such properties are often
non-obvious and their impact on other software properties is hard to predict [5].
We also aim to improve a large, mature piece of code, that comes with an exten-
sive (99% line coverage) test suite. Given the effort put into development of such
a piece of software, we expect it will be challenging to find improvements. Thus, if
any are found, it will provide strong evidence for usefulness of multi-objective GI.

4 Methodology
In our empirical study we use an existing GI tool, and extend it with a multi-
objective algorithm, namely, NSGA-II [6], as it’s one of the most popular MO
algorithms and proved successful in previous related work [2]. Otherwise, we
use the most common GI settings. In particular, we mutate statements, and
use 4 standard GI mutation operators, as the building blocks for our generated
patches. Each can either delete a statement, copy one statement from one lo-
cation to another, replace a statement with another, or swap locations of two
statements. Moreover, we set each run of GI to consists of 40 individuals and 10
generations, for a total of 400 evaluations as shown to be effective in previous GI
work [10]. We repeat each GI run 10 times, to account for the non-deterministic
nature of NSGA-II. We also separately evaluate each patch found 20 times, to
account for noise in fitness measure, as it’s often encountered when measuring
non-functional properties of software.

GI tool Recent survey of GI tooling, revealed that [13] few GI tools can be
easily applied to unseen software. After closer investigation we chose Gin [4], as
it is the only one to implement fitness functions for at least two non-functional
software properties, namely runtime and memory consumption. Moreover, it
provides profilers for both properties, thus helps automatically identify the most
time and memory consuming parts of code. Runtime fitness measure takes the
elapsed time on a set of tests. Memory fitness measure simply calculates memory
use before and after a test is run.



4 J. Callan et al.

Target Software As our target software we chose EvoSuite — a tool for auto-
matic test generation. It has 1.1 million lines of code, it’s been developed for 11
years, and comes with an extensive test suite. We ran Gin’s memory and runtime
profilers on the evosuite-client module, which contains the code for actual test
generation. The profilers’ output provides us with a list of methods with the
largest impact on memory and execution time, along with the tests that cover
those methods. Unfortunately, at this point we discovered a bug in Gin’s test
runners. EvoSuite uses an example project in a different package for many of
it’s tests and these tests are not compatible with Gin, we chose to discard the
methods covered by these tests and focus on those which had all passing tests.
This resulted in 27 methods from the execution time profiler and one method
from the memory profiler. We further filtered out methods with less than 5 lines
of code as they would be too small for improvements to be found. From here we
selected the method found by the memory profiler and the top 9 slowest methods
with more than 5 lines of code, giving us 10 methods to attempt to improve.
The line coverage of the tests on each method can be found in Table 1.

5 Results and Discussion
In this section we present the improvements which we found to EvoSuite using
our multi-objective genetic improvement approach.

Table 1. Table showing execution time improvements found by GI. Numbers in brack-
ets indicate the effect the patch had on the other property, i.e., memory use.

Execution Time Imp.

Method Median Max Line Coverage

MersenneTwister.nextGaussian 55.84% 67.12% (-1.1%) 100%
TestFactory.addConstructor 34.9% 37.98% (-2.13%) 73%
RegexDistanceUtils.cacheRegex 12.83% 30.29% (-0.53%) 100%
DistanceCalculator.visit 27.88% 60.62% (-0.81%) 84%
FileIOUtils.recursiveCopy 0.39% 0.42% (-2.33%) 100%
TestCodeVisitor.visitPrimitiveStatement 42.42% 44.44% (-1.02%) 80%
DistanceEstimator.getDistance 48.62% 49.86% (-6.28%) 87%
TestCodeVisitor.getClassName 67.54% 78.77% (-7.05%) 85%
DistanceCalculator.getStringDistance 22.46% 25.63% (-0.67%) 70%
StringHelper.StringRegionMatches 51.91% 58.28% (-2.9%) 80%

Over our 10 runs we find improvements for every single method which we tried
to improve, with improvements to runtime of up to 78.8% and improvements to
memory of up to 9.2% (see Table 1, and our repository for all Pareto Fronts [1]).
Interestingly, the method highlighted by Gin’s memory profiler was the only
method in which we could not find any improvements to memory. The method
in question copies files from one place to another, in doing so it loads the contents
of the files being copied into memory 2048 bytes at a time. Perhaps reducing
the size of this buffer would reduce the memory usage, at the cost of execution



Multi-Objective Genetic Improvement: A Case Study with EvoSuite 5

Table 2. Table showing memory improvements found by GI. Numbers in brackets
indicate the effect the patch had on the other property, i.e., runtime.

Memory Imp.

Method Median Max

DistanceEstimator.getDistance 2.72% 5.81% (20.49%)
DistanceCalculator.visit 2.73% 4.43% (9.96%)
TestFactory.addConstructor 2.51% 4.12% (18.83%)
StringHelper.StringRegionMatches 2.04% 3.64% (17.49%)
MersenneTwister.nextGaussian 1.64% 4.58% (-4.89%)
TestCodeVisitor.getClassName 3.37% 9.2% (1.89%)
RegexDistanceUtils.cacheRegex 2.49% 8.46% (-7.44%)
FileIOUtils.recursiveCopy 0.00% 0.00% (-0.23%)
DistanceCalculator.getStringDistance 6.52% 6.76% (-12.85%)
TestCodeVisitor.visitPrimitiveStatement 4.3% 5.76% (11.37%)

time, but our mutation operators are not able to make this kind of change. Using
mutation operators which modify constants could lead to further improvements.

We find that, in all cases, the best improvements to execution time lead
to memory usage increasing, mostly by small amounts. However, in one case,
it increased by almost 6%. Improvements to memory lead to improvements to
execution time in 6 cases. This could be due to fewer GC calls. In 4 cases, the best
memory improvements also lead to an increase in execution time. These patches
offer developers a choice over which property is more important to them, and
could also allow multiple versions of EvoSuite to be made available to systems
with different hardware resources.

A patch to the TestCodeVisitor.getClassName method was one which im-
proved execution time the most, finding an improvement of almost 80%, on the
example EvoSuite class called Tutorial Stack. This patch leads to a 4.8% im-
provement on the number of generations evaluated. It is made up of 3 edits, 1
delete, 1 copy, and 1 replace statement edits. The main execution time improve-
ment from the patch comes from removing a conditional which checks whether
or not the current ClassLoader for the system under test has the class and then
gets the class’s Canonical. The area of code which is removed is wrapped in a try
catch which ignores exceptions and is able to fail without consequence on the rest
of the method. The code is also accompanied by a comment which states that the
code is irrelevant in normal use of EvoSuite and only triggered during testing.

We also find a patch to the TestCodeVisitor.getClassName method that pro-
vides the greatest memory consumption reduction. This patch changes the scope
of try statement which changes the way in which Java releases resources, thus
decreasing memory usage by a small amount. Many memory improvements, how-
ever, offer marginally improved speed for slightly improved memory. This may be
preferable to the much faster but more memory intensive patches also produced.

All patches (see Table 1 and 2 ) were subsequently run on the whole EvoSuite
test suite, showing no regression errors.



6 J. Callan et al.

Cost of Genetic Improvement Each run improving all 10 methods took a
median time of 48 minutes, with the slowest run taking 75 minutes and the
quickest taking only 23 minutes. The difference between runs is due to the num-
ber of compiling patches generated. Runs in which a large number of patches fail
to compile will need to run significantly fewer tests and thus complete quicker.
We believe this is a relatively small cost for the improvements we found.

6 Conclusion

We extended an existing GI tool to provide the first open source multi-objective
genetic improvement tool for Java [1], that can improve software’s runtime and
memory consumption out-of-the-box. We applied it to the EvoSuite test gen-
eration tool. We found improvements to both execution time for all methods
improved and memory to all but one of the methods which we improved. We
found that the NSGA-II algorithm was able to effectively explore the search land-
scape of patches, finding good trade-offs between memory and execution. Our
approach was relatively fast and fully automatic, requiring no domain expertise.

Acknowlegements This work was funded by the EPSRC grant EP/P023991/1.

References

1. https://github.com/SOLAR-group/EvoSuiteGI
2. Basios, M., Li, L., Wu, F., Kanthan, L., Barr, E.T.: Darwinian data structure

selection. In: ESEC/SIGSOFT FSE. pp. 118–128. ACM (2018)
3. Blot, A., Petke, J.: Empirical comparison of search heuristics for genetic improve-

ment of software. IEEE TEVC 25(5), 1001–1011 (2021)
4. Brownlee, A.E.I., Petke, J., Alexander, B., Barr, E.T., Wagner, M., White, D.R.:

Gin: genetic improvement research made easy. In: Auger, A., Stützle, T. (eds.)
GECCO. pp. 985–993. ACM (2019)

5. Bruce, B.R., Petke, J., Harman, M., Barr, E.T.: Approximate oracles and synergy
in software energy search spaces. IEEE TSE 45(11), 1150–1169 (2019)

6. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: PPSN.
LNCS, vol. 1917, pp. 849–858. Springer (2000)

7. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented
software. In: SIGSOFT FSE. pp. 416–419. ACM (2011)

8. Hort, M., Kechagia, M., Sarro, F., Harman, M.: A survey of performance optimiza-
tion for mobile applications. IEEE TSE pp. 1–1 (2021)

9. Jin, G., Song, L., Shi, X., Scherpelz, J., Lu, S.: Understanding and detecting real-
world performance bugs. In: PLDI. p. 77–88. PLDI ’12 (2012)

10. Motwani, M., Soto, M., Brun, Y., Just, R., Goues, C.L.: Quality of automated
program repair on real-world defects. IEEE TSE 48(2), 637–661 (2022)

11. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward,
J.R.: Genetic improvement of software: A comprehensive survey. IEEE TEVC
22(3), 415–432 (2018)

12. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE
TEVC 15(4), 515–538 (2011)

13. Zuo, S., Blot, A., Petke, J.: Evaluation of genetic improvement tools for improve-
ment of non-functional properties of software. In: Fieldsend, J.E., Wagner, M.
(eds.) GECCO ’22. pp. 1956–1965. ACM (2022)


