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ABSTRACT
This work addresses the integrated optimisation of production-distribution planning and allo-
cation of transportation resources for industrial gas supply chains. The production-distribution
planning decisions include the production plan, purchasing plan for both a liquefied product
and raw material from external suppliers, distribution plan by railcars and trucks, and demand
allocation. In contrast, the allocating decisions of transportation resources involve the number
of trucks and railcars at each plant, depot, and third-party supplier. First, we propose a mixed-
integer nonlinear programming (MINLP) model, and then the MINLP model is reformulated
as a mixed-integer linear fractional programming (MILFP) model. Furthermore, we present a
multi-objective optimisation (MOO) model as an alternative approach. As solution strategies,
we adopt Dinkelbach’s algorithm and the reformulation-linearisation method for the MILFP
model, whereas the "-constraint method is used for the MOO model. Finally, industry-relevant
case studies illustrate the applicability and performance of the proposed models and solution
methods.

1. Introduction
Industrial gas supply chains involve domestic and/or international transportation between multi-site production

plants, intermediate storage locations and several customers (Chima, 2007). Consequently, a large portion of supply
chain costs come from transportation, and this has raised concerns about improving the transportation efficiency
(Mason and Lalwani, 2006). Transportation efficiency can be improved by optimally allocating its resources.
Furthermore, there is a need to consider not only the transportation efficiency but also the economic performance, such
as total cost or profit, in an integrated manner. The system-wide approach where such multiple entities are coordinated
can result in higher benefits to increase the overall profitability and supply chain performance (Barbosa-Póvoa, 2014;
Pistikopoulos et al., 2021).

There are several studies on industrial gas supply chains, which concernwith optimising the economic performance.
An extensive review of literature focusing on the industrial gas supply chains was conducted by Barbosa-Povoa and
Pinto (2020) and Ramaswamy et al. (2020). They provided an overview of the various components of supply chains in
the industrial gas business and discussed the current contributions and challenges in supply chain scope representations,
modelling and tractability, data management, and implementation.

Regarding production, Ierapetritou et al. (2002) studied a problem which considers the fluctuation of electricity
prices to determine the optimal operation schedule of a production facility. First, they developed a two-stage stochastic
mathematical framework resulting in an MINLP model. Then, they introduced a mixed-integer linear programming
(MILP) approach to address the complexity of the MINLP model. Karwan and Keblis (2007) presented a mixed-
integer programming (MIP) based optimisation framework to minimise the operation cost of an air separation unit that
consumes a significant amount of electricity. The MIP model considers the hourly changed electricity price, which
is known as the real time price (RTP). They identified the operating conditions that can take advantage of the RTP
scheme via simulation studies. In work by Zhu et al. (2011), they focused on the operation of cryogenic air separation
plants with amultiperiod nonlinear programming approach for uncertain power prices and product demands.Moreover,
Mitra et al. (2012) developed a deterministic MILP model for optimal air separation planning under time-dependent
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electricity pricing. Cao et al. (2016) presented a dynamic model that can provide liquid storage, liquefaction, and
vaporisation strategies for air separation units based on variations in electric prices and demand profiles. Caspari et al.
(2019) proposed flexible operations of multiproduct air separation processes using an economic nonlinear model with
a predictive control based strategy. Recently, Basán et al. (2020) studied a scheduling problem of air separation units by
considering uncertainty in time-sensitive electricity prices. In the work, they presented an improvedMILP formulation
based on a mathematical model that was developed in their previous work (Basán et al., 2018). They also developed an
efficient solution strategy combining a rolling horizon technique with an iterative solution method to solve industrial
size instances.

From a distribution perspective, Campbell and Savelsbergh (2004b) maximised the total delivery volume on each
route and developed a linear time algorithm for an optimal delivery schedule with a given order of customer visits.
In Campbell and Savelsbergh (2004a), they addressed an inventory routing problem (IRP) that minimises long-term
transportation costs for industrial gases. To efficiently solve large-scale, real-life instances, they also developed a
solution strategy that relies on a decomposition approach. Dong et al. (2014) developed an MIP model for IRPs that
considers the inventory management and distribution of industrial liquid products simultaneously. They formulated
the model by considering driver-related regulations, time-varying customer consumption rates, and heterogeneous
vehicles to obtain a practical solution. The computational difficulty of industrial-size instances was addressed by Dong
et al. (2017), where the authors developed a two-level based iterative approach. Cóccola et al. (2018) investigated an
IRP for several liquid products that are delivered by multi-compartment vehicles. To deal with the complexity of the
problem, they proposed a decomposition strategy in which decisions on routes and delivery patterns are separately
implemented using a nested column generation algorithm. In Subramanyam et al. (2021), they studied a multi-period
vehicle routing problem (VRP) to minimise the cost of customer visit schedules under order uncertainty. AnMIPmodel
and branch-and-cut solution method were proposed for robust routing plans. A number of instances proved a solution
quality from the developed model and approach.

Focusing on integrated production and distribution planning, Glankwamdee et al. (2008) developed an approx-
imated production and distribution planning model; then, they extended the model into minimax and two-stage
stochastic models to account for uncertainty in customer demand and product availability. Marchetti et al. (2014)
proposed an MILP model to simultaneously determine operational production levels and distribution decisions in
industrial gas supply chains at the minimum total cost. The production decisions are made by considering multi-site
plants that operate at various production modes, while distribution decisions consider the combined vehicle routing
and inventory management. This work was extended by Zamarripa et al. (2016) who proposed a rolling horizon
based solution technique to deal with large-size industrial problems. You et al. (2011) developed an MILP model
to integrate short-term and long-term distribution decisions and inventory planning. The short-term decisions are
related to truck routing, while long-term decisions are related to tank sizing at customer sites. The objective was to
minimise the total cost comprising the capital and operating costs. Zhang et al. (2017) introduced anMILPmodel and an
interactive heuristic approach for a multi-scale routing problem that simultaneously considers production, distribution,
inventory, and routing decisions. In addition, Misra et al. (2018) presented an enterprise-wide optimisation framework
for integrated supply chain planning for the cryogenic air separation industry to minimise the total operating cost.
Their work considered the cost of extra vehicles that can be hired or purchased to satisfy customer demand, but not
vehicle efficiency nor vehicle allocation. In work by Malinowski et al. (2018), they developed a path-based integer
programming model for a liquid helium global supply chain. The model was formulated by integrating supply contracts
for sourcing, production, and routing of helium ISO containers. They also proposed a rolling horizon based solution
strategy to address the complexity of the developed model. More recently, Lee et al. (2021) proposed an MILP model
that simultaneously considers supply contracts, inventory management, production and distribution scheduling. They
also developed a hierarchy based solution strategy to solve large-scale problems.

Despite the several research contributions on the industrial gas supply chains, to the best of our knowledge, no work
has considered the integration of production-distribution decisions with transportation resource allocation decisions to
improve both transportation efficiency and economic performance simultaneously. This work thus aims to incorporate
the decisions on the allocation of transportation resources into our previous work (Lee et al., 2021), wherein the MILP
models were proposed for the optimal production-distribution planning. An MINLP model is proposed, and then the
model is reformulated as an MILFP model. Two different algorithms, Dinkelbach’s algorithm (Dinkelbach, 1967) and
the reformulation-linearisation method (Yue et al., 2013), are applied for the proposed MILFP model. Furthermore,
an MOO model with the "-constraint method (Haimes, 1971) is also presented as an alternative approach.
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Figure 1: Industrial gas supply chain

The rest of this paper is organised as follows: Section 2 describes the problem and Section 3 presents the
mathematical formulation of the MINLP, MILFP, and MOO models. Section 4 introduces the solution approaches for
the proposed models. Section 5 presents and discusses the computational results of the case study. Finally, concluding
remarks are provided in Section 6.

2. Problem statement
In this work, we address an integrated planning problem of industrial gas supply chains that includes decisions

on the production, distribution, and allocation of trucks and railcars. The problem aims to simultaneously optimise
the total operating cost and the number of allocated transportation resources. The industrial gas supply chain network
is constructed with raw material suppliers, production plants, depots, third-party suppliers, and industrial customers,
as illustrated in Fig. 1. The production at each plant involves the transformation, purification, and liquefaction of the
raw material that is bought from an external supplier near the plant. The product can also be sourced from third-party
suppliers, but this is considered only when it is more economical to source the product from such suppliers rather than
producing at its production plants. In this problem, two types of customers, vendor managed inventory (VMI) and
pickup customers, are considered. For VMI customers, the distribution decisions are made based on their inventory
levels that are remotely monitored by instrumentation devices, while the distribution decisions are not considered
for pickup customers. Each pickup customer collects the product at a designated plant or depot. The distribution of
the liquefied product to the VMI customers is achieved by two transportation modes, railcars and trucks. Railcars
undertake inter-plant transfers, that is, between plants or third-party suppliers and depots. In contrast, trucks are used
for transportation between plants, depots, or third-party suppliers and customers.

The optimisation problem is fully described as follows:
Given are:

• locations of plants, depots, third-party suppliers, and customers;
• capacities of plants and limitations on raw material and product supplies;
• initial inventory and inventory limits of plants, depots, and customers;
• customer product consumptions;
• transportation times, quantities, and capacities of railcars and trucks;
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• cost data (i.e. unit and fixed production costs; plant start-up costs; unit transportation cost; raw material and
product prices)

To determine:

• production plans including purchasing plans for the raw material and product from external suppliers;
• distribution plans of railcars and trucks;
• inventory levels;
• demand allocation to plants, depots, and third parties;
• allocation of truck resources;
• allocation of railcar resources
So as to:
minimise both total operating cost and number of allocated transportation resources, including trucks and railcars

3. Mathematical frameworks
In this section, we propose the MINLP, MILFP, and MOO models formulated based on the MILP model in Lee

et al. (2021), for the integrated production-distribution planning with the truck and railcar allocation problem. A key
difference between the proposed models and the previous work (Lee et al., 2021) lies in the capability to determine the
optimal allocation of truck and railcar resources, together with the optimal production and distribution planning. Since
a large number of constraints and variables are involved, only newly developed constraints, which are not included in
the MILP model (Lee et al., 2021), are presented below. The other constraints are described in the Appendix A.
3.1. Notation

Indices

i production plant
j depot
k customer
m third-party supplier
t time period
Sets

KV VMI customer set
Ki VMI customer set initially allocated to plant i
Kj VMI customer set initially allocated to depot j
Km VMI customer set initially allocated to third party m
Parameters

 tuning parameter
Δt length of time period t (day)
�ik round trip time of trucks between plant i and customer k (day)
�jk round trip time of trucks between depot j and customer k (day)
�mk round trip time of trucks between third party m and customer k (day)
ARmax maximum number of available railcar resources
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AT max maximum number of available truck resources
COS unit outsourcing cost ($/ton)
CAP TR truck capacity (ton)
Dkt product consumption of VMI customer k in time period t (ton/day)
I inik initial inventory level at customer k (ton)
lr maximum possible number of allocated railcars
lm maximum possible number of allocated trucks at each plant, depot, and third party
T number of time periods
Integer variables

ARtotal total number of allocated railcar resources
ARt number of railcars allocated to time period t
AT total total number of allocated truck resources to plants, depots, and third parties
ATi number of trucks allocated to plant i
ATj number of trucks allocated to depot j
ATm number of trucks allocated to third party m
Binary variables

ETl 1 if lth binary digit representation of the integer variable, AT total is equal to 1; 0, otherwise
ERl 1 if lth binary digit representation of the integer variable, ARtotal is equal to 1; 0, otherwise
Continuous variables

Ikt inventory level of customer k at time period t (ton)
QOSkt amount of outsourcing product served to customer k in time period t (ton)
QTRikt product amount delivered by trucks from plant i to customer k (ton)
QTRjkt product amount delivered by trucks from depot j to customer k (ton)
QTRmkt product amount delivered by trucks from third party m to customer k (ton)
RUR railcar utilisation (%)
TCos outsourcing product cost ($)
TCprod production cost ($)
TCrail railcar cost ($)
TCraw raw material cost ($)
TCst plant start-up cost ($)
TC tℎird third-party cost ($)
TC total total operating cost ($)
TC truck truck cost ($)
TUR tuck utilisation (%)
URi utilisation of trucks allocated at plant i (%)
URj utilisation of trucks allocated at depot j (%)
URm utilisation of trucks allocated at third party m (%)
URtrans overall utilisation of transportation resources (%)
REl auxiliary variable, REl ≡ RUR ⋅ ERl
TEl auxiliary variable, TEl ≡ TUR ⋅ ETl
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3.2. MINLP model
In this section, the problem is formulated as an MINLP model (denoted as PD-MINLP). The MINLP model

considers a fractional objective, of which the numerator is the total operating cost and of which the denominator
is the transportation utilisation. The aim is to optimise the total operating cost and the number of trucks and railcars
simultaneously:

min TC total

URtrans
(1)

Since both the total operating cost and number of trucks and railcars are to be minimised in this problem, both
can not be the denominator. Here, we introduce the overall utilisation of transportation resources, URtrans, which is
maximised as the total number of trucks and railcars is minimised.

The total operating cost comprises the raw material, production, plant start-up, third party, railcar, truck and
outsourcing product costs:

TC total = TCraw + TCprod + TCst + TC tℎird + TCrail + TC truck + TCos (2)
Here, the last term TCos is the outsourcing cost. The product can also be outsourced at high cost. Such outsourcing

of the product is considered only when the VMI customer demand can not be fulfilled due to restrictions on the
distribution.

The cost of outsourcing product is calculated by:
TCos =

∑

k∈KV

∑

t
COS ⋅QOSkt (3)

where COS is the unit outsourcing cost and QOSkt is the amount of outsourced product that VMI customer k ∈ KV

receives in time period t. For the unit outsourcing cost, a very high cost (1,000 $/ton) is considered to disallow the
product outsourcing when customer demands can be satisfied by either own production plants or third-party suppliers.

The utilisation of transportation resources is defined with the utilisation of trucks and railcars:
URtrans = (TUR + RUR)∕2 (4)

where, TUR and RUR stand for the overall truck and railcar utilisations, respectively.
The truck utilisation is calculated based on the number of trucks at each plant, depot, and third-party supplier,

which divided by the total number of allocated truck resources, and utilisation of trucks at each location:

TUR =
∑

i

ATi
AT total

⋅ URi +
∑

j

ATj
AT total

⋅ URj +
∑

m

ATm
AT total

⋅ URm (5)

where ATi, ATj , and ATm are the integer variables that represent the number of allocated trucks to each location;
AT total is the total number of allocated trucks; URi, URj , and URm are the utilisations of trucks allocated at each
location, and it is defined as follows:

URi = 100 ⋅
∑

t

∑

k∈Ki

(
 ⋅QTRikt

CAP TR ⋅ ATi ⋅ Δt
⋅ �ik)∕T ∀i (6)

URj = 100 ⋅
∑

t

∑

k∈Kj

(
 ⋅QTRjkt

CAP TR ⋅ ATj ⋅ Δt
⋅ �jk)∕T ∀j (7)

URm = 100 ⋅
∑

t

∑

k∈Km

(
 ⋅QTRmkt

CAP TR ⋅ ATm ⋅ Δt
⋅ �mk)∕T ∀m (8)
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where QTRikt , QTRjkt , and QTRmkt are the delivering amounts from each location to the customer in each period; �ik, �jk,
and �mk are the round trip times between each plant, depot or third-party supplier and customer; CAP TR is the truck
capacity; Δt is the length of each time period; and T is the number of time periods. In addition, Ki, Kj , and Km are
the sets of VMI customers that are initially allocated to plant i, depot j, and third party m. The initial allocations are
pre-determined based on the customers’ geographical locations.

In addition, the total number of trucks to plant i, depot j, and third party m is as follows:
AT total =

∑

i
ATi +

∑

j
ATj +

∑

m
ATm (9)

Here, AT total can be defined as either the integer or continuous variable. In both cases, the AT total always return to a
integer number based on its definition in Eq. 9.

The number of allocated trucks is constrained by the maximum number of available truck resources:
AT total ≤ AT max (10)

The total travel time from plant i , depot j, and third-party supplierm to any customers executed by trucks is limited
by the number of allocated trucks at each location and truck capacity:

∑

k∈Ki

 ⋅QTRikt
CAP TR

⋅ �ik ≤ ATi ⋅ Δt ∀i, t (11)

∑

k∈Kj

 ⋅QTRjkt
CAP TR

⋅ �jk ≤ ATj ⋅ Δt ∀j, t (12)

∑

k∈Km

 ⋅QTRmkt
CAP TR

⋅ �mk ≤ ATm ⋅ Δt ∀m, t (13)

where the delivering amount, from the plant, depot, and third party to the customer, divided by the truck capacity
(QTRikt ∕CAP TR, QTRjkt ∕CAP TR, and QTRmkt∕CAP TR), estimates the number of trips each truck performs during each
time period; then, it is multiplied by the transit time to calculate the total travelling time between the locations. Here,
 is the tuning parameter adopted to avoid underestimating the total travel time, which is 2 in this problem. The total
travel time is restricted by the length of each time period and the number of allocated trucks. These constraints also
set the limit on the delivery amount by truck capacity and availability of trucks at each location.

The railcar utilisation is defined based on the number of railcars allocated to time period t, total number of allocated
railcar resources, and the number of time period:

RUR =
∑

t

ARt
ARtotal ⋅ T

(14)

where ARt is the number of railcars allocated to time period t, ARtotal represents the total number of allocated railcars
that are used for transporting the product from plants/third parties to depots during the planning horizon, and T is the
number of time period.

The number of railcars allocated to time period t is equal to the number of railcars that are travelling between the
plant/third party and the depot during time period t:

ARt =
∑

i

∑

j∈Ji

2�ij−1
∑

t′=0
NRijΩ(t−t′) +

∑

m

∑

j∈Jm

2�mj−1
∑

t′=0
NRmjΩ(t−t′) ∀t (15)
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In Eq. 15, a cyclic operator, Ω(⋅), is used, so that railcar deliveries ending after current planning horizon can be
viewed as wrapping around to the beginning of the planning horizon and continuing from there. The cyclic operator
was introduced by Shah et al. (1993), and it is defined as follows:

Ω(t) = t if t ≥ 1,
Ω(t) = Ω(t + T ) if t ≤ 0

The total number of allocated railcars must be greater than or equal to the maximum value of the number of railcars
allocated to time period t:

ARt ≤ ARtotal ∀t (16)
Here, as we minimise the total number of allocated railcar resources to maximise its utilisation, the value of ARtotal
returns to the maximum value of ARt.The number of allocated railcars is limited by the availability of railcar resources:

ARtotal ≤ ARmax (17)
Similar to AT total, ARt and ARtotal can also be defined as either the integer or continuous variable.

Finally, Eq. 18 calculates the inventory level for customer k at time period t. The inventory level at the end of time
period t is equal to the inventory at the previous time period; incoming product transported by trucks from any plants,
depots, and third-party suppliers; outsourced product, minus the customer’s product consumption in each period:

Ikt = Ik,t−1 ∣t>1 +I inik ∣t=1 +
∑

i∶k∈Ki

QTRikt +
∑

j∶k∈Kj

QTRjkt +
∑

m∶k∈Km

QTRmkt +Q
OS
kt −DktΔt ∀k ∈ KV , t (18)

In summary, the proposed MINLP model includes the objective function in Eq. 1, and the constraints in Eqs. 2-18,
and A.1-A.34.

As presented, the developed model incorporates the production-distribution decisions by minimising the related
operating costs given in 2 into the decisions regarding the allocation of transportation resources. Note that the allocating
decisions for trucks and railcars are related to the utilisation rates as given in Eqs. 5-8 and Eq. 14.
3.3. MILFP model

In the constraints of the proposed MINLP model, all nonlinearities come from the bilinear terms, which are formed
as continuous variablesmultiplied or divided by discrete variables; thus, these can be linearised by introducing auxiliary
variables, bigM parameters, and additional constraints. Since only the objective function has the linear fractional form,
it can be regarded as an MILFP model. In this section, the MINLP model is reformulated as an MILFP model by
linearising the bilinear terms involved.

The constraints including the bilinear terms are Eqs. 5-8 and 14, which calculate the overall truck utilisation rate,
the utilisation of trucks allocated to each plant, depot, and third-party suppliers, and the railcar utilisation, respectively.
When Eqs. 6-8 are inserted to Eq. 5, Eq. 5 becomes:

TUR = TQ
AT total

(19)

TQ =
∑

i

∑

k∈Ki

∑

t

 ⋅QTRikt ⋅ �ik
CAP TR ⋅ Δt ⋅ T

+
∑

j

∑

k∈Kj

∑

t

 ⋅QTRijt ⋅ �jk
CAP TR ⋅ Δt ⋅ T

+
∑

m

∑

k∈Km

∑

t

 ⋅QTRmkt ⋅ �mk
CAP TR ⋅ Δt ⋅ T

(20)

To linearise the bilinear term, TQ divided by AT total in Eq. 19, the integer variable, AT total is required to be
expressed by a set of auxiliary binary variables at first:

AT total =
lm
∑

l=1
2l−1 ⋅ ETl (21)

Y Lee et al.: Preprint submitted to Elsevier Page 8 of 31



Optimisation Frameworks for Integrated Planning with Allocation of Transportation Resources

where ETl is the binary variable and it is coded 1 when the lth binary digit representation is equal to 1. Here, lm is
related to the maximum possible value of allocated trucks AT total, i.e., lm = log2(AT max).Based on Eq. 21, Eq. 19 becomes:

TQ =
lm
∑

l=1
2l−1 ⋅ TUR ⋅ ETl (22)

Then, Eq. 22 can be rewritten by introducing an auxiliary variable, TEl ≡ TUR ⋅ ETl, a big-M parameter, and
additional constraints:

TQ =
lm
∑

l=1
2l−1 ⋅ TEl (23)

TEl ≤MTUR ⋅ ETl ∀l = 1, ..., lm (24)
TEl ≤ TUR ∀l = 1, ..., lm (25)
TEl ≥ TUR −MTUR ⋅ (1 − ETl) ∀l = 1, ..., lm (26)

where MTUR is a big number and an upper bound of variable TUR. Note that the symbol M with a superscript
represents the big M value throughout the paper.

Similarly, Eq. 14, which is related to the railcar utilisation, is linearised with a set binary variables, an auxiliary
variable, and additional constraints as follows:

ARtotal =
lr
∑

l=1
2l−1 ⋅ ERl (27)

∑

t
ARt = T ⋅

lr
∑

l=1
2l−1 ⋅ REl (28)

REl ≤MRUR ⋅ ERl ∀l = 1, ..., lr (29)
REl ≤ RUR ∀l = 1, ..., lr (30)
REl ≥ RUR −MRUR ⋅ (1 − ERl) ∀l = 1, ..., lr (31)

whereREl is the auxiliary variable which is defined asREl ≡ RUR ⋅ERl. ERl is the binary variable and it is 1 whenthe lth binary digit representation is equal to 1. Here, lr is related to the maximum possible value of allocated railcars
ARtotal, i.e., lr = log2(ARmax).As a result, the reformulated MILFP model consists of Eq. 1 for the objective function as well as Eqs. 2-4, 9-13,
15-18, 20-21, 23-31, and A.1-A.34.
3.4. MOO model

As an alternative approach to solve the problem, we develop an MOO model that provides a set of Pareto-optimal
solutions quantifying the trade-off between the total operating cost and utilisation of transportation resources. The
MOO model includes the same constraints of the MILFP model except for the objective function. The MOO model is
defined as follows:

min TC total (32)
max URtrans (33)
s.t. Eqs. 2-4, 9-13, 15-18, 20-21, 23-31, and A.1-A.34.
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4. Solution approaches
4.1. Dinkelbach’s algorithm

For the proposed MILFP model, we first adopt Dinkelbach’s algorithm. Dinkelbach’s algorithm (Dinkelbach,
1967) was developed to solve convex fractional programming by solving a sequence of nonlinear programming (NLP)
subproblems. Dinkelbach’s algorithm has been extended and applied by recent works (Bradley and Arntzen, 1999;
Pochet and Warichet, 2008; Billionnet, 2010; Espinoza et al., 2010; Yue and You, 2013; Liu et al., 2014) for MILFP
problems. The main idea of the algorithm is to transform the original MILFP problem into an MILP subproblem and
then solve the MILP subproblem iteratively until a stopping criteria is met.

Given that, the proposed MILFP model presented above can be converted into the following model (denoted as
PD-D):

min TC total − f ⋅ URtrans (34)
s.t. Eqs. 2-4, 9-13, 15-18, 20-21, 23-31, and A.1-A.34.

Moreover, the main procedure of the algorithm is illustrated in Fig 2 and summarised as follows:

Step 1. Initialisef ;
Step 2. Solve the PD-D model, and denote the optimal solution as TC total∗ and URtrans∗;
Step 3. If |f − TC total∗

URtrans∗
|∕|f | ≤ � (stopping criteria),

the optimal solution of the original MILFP model is TC total∗∕URtrans∗; otherwise,
updatef = TC total∗∕URtrans∗, and go to Step 2.

Initialise 𝑓

Solve the MILP model (PD-D)

and denote the optimal solution as 

𝑇𝐶𝑡𝑜𝑡𝑎𝑙∗ and 𝑈𝑅𝑡𝑟𝑎𝑛𝑠∗

If 𝑓 −
𝑇𝐶𝑡𝑜𝑡𝑎𝑙∗

𝑈𝑅𝑡𝑟𝑎𝑛𝑠∗
/ 𝑓 ≤ 𝛿 ? 𝑓 =

𝑇𝐶𝑡𝑜𝑡𝑎𝑙∗

𝑈𝑅𝑡𝑟𝑎𝑛𝑠∗

Stop

No

Yes

Figure 2: Flowchart of the Dinkelbach's algorithm
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4.2. Reformulation-linearisation method
Another method to solve theMILFPmodel is the reformulation-linearisationmethod (Yue et al., 2013). Themethod

was developed by combining the Charnes-Cooper transformation method (Charnes and Cooper, 1959) and Glover’s
linearisation scheme (Glover, 1975) to address the limitation in the application of the Charnes-Cooper transformation.
The Charnes-Cooper transformation method can be applied for only linear fractional programming (LFP) problems,
wherein all variables in the constraints are continuous. However, incorporating the Glover’s linearisation scheme allows
us to solve MILFP problems involving discrete variables. Recently, use of the reformulation-linearisation strategy for
solving MILFP problems has garnered attention. (Tong et al., 2014; Zhong and You, 2014; Yue et al., 2014; Chung
et al., 2016)

In this section, we introduce the reformulation-linearisation method through the generalised model of the proposed
MILFP model which is expressed as M0. The detailed model (denoted as PD-RL) for the problem considered in this
work can be found in the Appendix B.

M0: min A0 +
∑

i∈I A1ixi +
∑

j∈J A2jyj
B0 +

∑

i∈I B1ixi +
∑

j∈J B2jyj
(35)

s.t. C0k +
∑

i∈I
C1ikxi +

∑

j∈J
C2jkyj = 0 ∀k ∈ K (36)

xi ≥ 0 ∀i ∈ I and yj ∈ {0, 1} ∀j ∈ J

First, nonnegative auxiliary variables G and GXi, such that G = 1
B0 +

∑

i∈I B1ixi +
∑

j∈J B2jyj
, GXi = G ⋅ xi,

andGYj = G ⋅yj are introduced. With the introduction of these variables, the objective function and a set of constraints
in M0 can be reformulated into Eqs. 37 and 38, respectively. Additionally, the nonlinear term in GYj = G ⋅ yj can be
linearised with additional constraints (Eqs. 40-42) based on the Glover’s linearisation scheme. Therefore, the MILFP
model (M0) can be transformed into the following MILP model (M1):

M1: min A0 ⋅ G +∑

i∈I
A1i ⋅ GXi +

∑

j∈J
A2j ⋅ GYj (37)

s.t. C0k ⋅ G +
∑

i∈I
C1ik ⋅ GXi +

∑

j∈J
C2jk ⋅ GYj = 0 ∀k ∈ K (38)

B0 ⋅ G +
∑

i∈I
B1i ⋅ GXi +

∑

j∈J
B2j ⋅ GYj = 1 (39)

GYj ≤ G ∀j ∈ J (40)
GYj ≤M ⋅ yj ∀j ∈ J (41)
GYj ≥ G −M ⋅ (1 − yj) ∀j ∈ J (42)
G ≥ 0, GXi ≥ 0 ∀i ∈ I and GYj ≥ 0, yj ∈ {0, 1} ∀j ∈ J

Then, the solution of the original MILFP model (M0) is x∗i = GX∗
i ∕G

∗ and y∗j = GY ∗j ∕G∗, if the solution of the
reformulated MILP model (M1) is GX∗

i , y∗j , GY ∗j , and G∗.The main advantage of this method compared with Dinkelbach’s algorithm is that the model needs to solve the
problem only once. The inclusion of new variables and constraints, however, increases the size of the problem. These
properties are analysed when compared with the performance of Dinkelbach’s algorithm in the case study.
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4.3. "-constrained method
To solve the developedMOOmodel, we apply the "-constraint method, wherein one objective function is optimised,

while the other objective function is converted into a constraint with a lower bound. The total operating cost (TC total)
is kept as an objective function, and the utilisation of transportation resources (URtrans) is transformed into a constraint
by setting a lower bound, ". The resulting single-objective optimisation model (denoted as PD-MOO) is as follows:

min TC total (43)
s.t. " ≤ URtrans (44)

Eqs. 2-4, 9-13, 15-18, 20-21, 23-31, and A.1-A.34

5. Case study
In this section, we apply the developed models and solution approaches to an industrial case study, which was

considered in our previous work (Lee et al., 2021), to demonstrate the applicability. In the problem, there are more
than 25 plants, depots, and third-party suppliers; over 750 customers; hundreds of railcars; and more than 100 truck
resources. The planning horizon is one month, which is divided into 30 days. The developed models are implemented
in GAMS 34.3.0 on a desktop with an Intel 3.60 GHz CPU and 32.0 of RAM. Note that most of the input data used in
this case study are not available due to confidentiality issues.

First, the problem is solved with the developed MINLP model, and then the computational performance of the
MILFP model is investigated. For the MINLP model, five MINLP solvers, DICOPT, ALPHAECP, BARON, SBB and
SCIP, are used. By contrast, three different solvers, Gurobi, Cplex, and SCIP are used for the MILP models (PD-D and
PD-RL), which are transformed for Dinkelbach’s algorithm and reformulation-linearisation method. The CPU time for
each model is limited to 3 hr. In addition, the optimality gap is set to 1 % for the MINLP and PD-RL models, while 98
% with 0.01 of the stopping criteria (�) are set for the PD-D model.

The model statistics and computational performance are presented in Table 1 and 2, respectively. As observed, the
MILFP model, which uses Dinkelbach’s algorithm (PD-D), shows the best performance, and it obtains the optimal
solution of 57.26 k$/% within 3,120 s. The reformulation-linearisation method (PD-RL) is terminated after 10,800 s
due to the time limit, and it obtains a 6.56 %worse solution (61.76 k$/%) compared with the solution fromDinkelbach’s
algorithm. It is noticeable that the problem size is increased when the reformulation-linearisation method is employed
due to the introduction of auxiliary variables and constraints. It should also be noted that the number of discrete
variables is almost doubled. This is because the integer variables related to the railcars and the number of trucks at
each plant, depot, and third-party supplier have been expressed by the binary representation to adopt the reformulation-
linearisation method as presented in Appendix B.

Comparing the computational performance of the algorithms for the MINLP solvers with the MILFP model, all are
not satisfactory. The DICOPT solver returns almost the same optimal solution as Dinkelbach’s algorithm but requires
longer CPU time, which is more than three times that of Dinkelbach’s algorithm. The SBB solver cannot find any
feasible solution within the time limit. After the time limit, ALPHAECP, BARON, and SCIP get the optimal solutions
of 62.27 k$/%, 62.48 k$/%, and 93.85 k$/% respectively, but the values are not as good as the optimal solution from
Dinkelbach’s algorithm.

In addition, we also compare the computational performance of the MILP solvers for the MILFP model, and the
results are presented in Table 3. As can be seen, Gurobi is the most efficient solver for both Dinkelbach’s algorithm and
the reformulation-linearisation method. In Dinkelbach’s algorithm, Gurobi takes 3,120 s to get the optimal solution
of 57.26 k$/%, whereas Cplex gets a 0.78 % higher solution after the time limit. Concerning the reformulation-
linearisation method, the solution of Cplex obtained after 3 hr is far from the solution gained by Dinkelbach’s algorithm
with Gurobi. The SCIP solver shows the worst performance for both Dinkelbach’s algorithm and the reformulation-
linearisation method. For Dinkelbach’s algorithm, SCIP cannot reach the solution obtained by Gurobi within the time
limitation, whereas no solution is returned for the reformulation-linearisation method.
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Table 1

Model statistics of the MINLP and MILFP models

Model Equations
Continuous
variables

Discrete
variables

PD-MINLP 140,907 160,143 5,455
PD-Da 149,957 160,159 5,471
PD-RLb 237,916 169,786 9,487

a Dinkelbach's algorithm
b Reformulation and linearisation method

Table 2

Computational performance of the MINLP and MILFP models

Model Algorithm
Unit
cost
(k$/%)

Total
operating
cost ($)

Truck
utilisation
(%)

Railcar
utilisation
(%)

Total no.
of
trucks

Total no.
of
railcars

CPU time
(s)

PD-MINLP DICOPT 57.31 5,302 k 85.10 99.72 60 65 10,800c

ALPHAECP 62.27 5,366 k 84.69 87.66 60 74 10,800c

BARON 62.48 5,273 k 72.27 94.49 68 69 10,800c

SBB N/Ad N/Ad N/Ad N/Ad N/Ad N/Ad 10,800c

SCIP 93.85 8,570 k 83.70 98.94 58 69 10,800c

PD-Da Gurobi 57.26 5,317 k 85.92 99.79 59 65 3,120
PD-RLb Gurobi 61.76 5,520 k 80.52 98.23 63 64 10,800c

a Dinkelbach's algorithm
b Reformulation and linearisation method
c Computation was terminated due to the time limit (3 hr)
d A feasible solution has not been found within the time limit (3 hr)

Table 3

Computational performance of MILP solvers for the MILFP model

Model Algorithm
Unit cost
(k$/%)

Total
operating
cost ($)

Truck
utilisation
(%)

Railcar
utilisation
(%)

Total no.
of trucks

Total no.
of railcars

CPU time
(s)

PD-Da Gurobi 57.26 5,317 k 85.92 99.79 59 65 3,120
Cplex 57.71 5,362 k 85.97 99.85 59 63 10,800c

SCIP 62.86 5,634 k 80.09 99.17 80 63 10,800c

PD-RLb Gurobi 61.76 5,520 k 80.52 98.23 63 64 10,800c

Cplex 82.03 5,693 k 39.23 99.58 128 63 10,800c

SCIP N/Ad N/Ad N/Ad N/Ad N/Ad N/Ad 10,800c

a Dinkelbach's algorithm
b Reformulation and linearisation method
c Computation was terminated due to the time limit (3 hr)
d A feasible solution has not been found within the time limit (3 hr)

.
.
.
.
.
.
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.
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Figure 3: (A) The number of allocated trucks and (B) optimal demand allocation from the MILFP model

capacity of a railcar = 80 ton
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Figure 4: Optimal railcar schedule from the MILFP model

Next, we investigate the solution gained from the MILFP model. Since Dinkelbach’s algorithm was identified as
the most efficient approach, only the result from that approach is presented in the remainder of the paper. Fig. 3 presents
the number of allocated trucks and percentage of allocated demand to each plant, depot, and third-party supplier. As
observed, the number of allocated trucks varies between 0 to 7 and it is determined by considering the optimal demand
allocation to each location. At location L17, which has the largest demand allocation, 7 trucks are allocated. On the
contrary, at locations, L20 and L27, which have no demand allocation, no trucks are allocated. This result shows
that the proposed MILFP model is capable of allocating truck resources by taking into account the optimal demand
allocation that is determined by considering production and distribution costs. Fig. 4 illustrates the optimal schedule
of railcars that depart from two different plants. In the figure, the grey and orange bars represent one-way and returing
trips, respectively. The values in the each grey bar show the delivering amount and number of railcars used for the
delivery. As depicted, the MILFP model can also provide the railcar schedule by optimally allocating railcar resources.
Fig. 5 shows the total cost breakdown. The truck cost constitutes the highest percentage (41 %), while approximately
one-fourth and one-fifth of the total operating cost are allocated to the raw material and production costs, respectively.
The remaining portion is allocated to railcar cost (7 %), third party cost (3 %), outsourcing product cost (1 %) and plant
start-up cost (1 %).
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Figure 5: Cost breakdown of total operating cost obtained from the MILFP model

Table 4

Comparison of optimal solutions from the MR and MILFP models

Model MR PD-Da Improvement

Total operating cost ($), TCtotal 5,274 k 5,317 k -0.82 %
Truck utilisation, TUR 37.64b % 85.92 % 56.19 %
Railcar utilisation, RUR 84.95b % 99.79 % 14.87 %
Transportation utilisation, URtrans 61.30b % 92.86 % 33.99 %
Total no. of trucks, ATtotal 135 59 -
Total no. of railcars, ARtotal 74c 65 -

a MILFP model with Dinkelbach's algorithm
b Post-processing utilisation calculated based on the optimal solution
gained from the model MR (Lee et al., 2021) and Eqs.4-8, 14-16

c Post-processing total number of railcars calculated based on the optimal solution
gained from the model MR (Lee et al., 2021) and Eqs.15-16

Furthermore, we investigate the impact of the proposedMILFPmodel, which simultaneously considers the optimal
allocation of the transportation resources and economic aspect (i.e. total operating cost). To evaluate the impact, we
compare the solution of the MILFP model with the solution from the model (denoted as MR) provided by Lee et al.
(2021). The difference of the model MR from the proposed MILFP is that it optimises the total operating cost without
considering the optimal transportation resource allocation and utilisation. The comparison is presented in Table 4. Note
that the values regarding the number of railcars, truck utilisation and railcar utilisation for the model MR are calculated
based on Eqs.15-16, 4-8, and 14-16, respectively, using the optimal values obtained by themodel. As reported, there are
significant differences in utilisation rates of trucks and railcars. When the model considers only the economic aspect,
it results in low transportation efficiency. The model MR obtains a solution with 37.64 % of truck utilisation and
84.95 % of railcar utilisation. On contrary, the MILFP model can improve the transportation efficiency dramatically by
considering optimal cost and transportation resource allocation in an integrated manner. The truck, railcar, and overall
transportation resource utilisations show 56.19 %, 14.87 %, and 33.99 % of improvements, respectively, by showing
only 0.82 % of the increase in the total operating cost. In addition, the number of transportation resources can be
improved by solving the MILFP model. We can satisfy customer demands by using much fewer truck resources (135
vs. 59) and railcars (74 vs. 65).
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Figure 6: Comparison of (A) truck allocation and (B) truck utilisation from the MR (Lee et al., 2021) and MILFP models
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Figure 7: Comparison of (A) railcar allocation and (B) railcar utilisation from the MR (Lee et al., 2021) and MILFP models

Figs. 6-7 depict more detailed comparison of truck and railcar utilisations gained from the models. In Fig. 6, the
radar graphs compare the truck allocation and its utilisation at each location. As observed, the MILFP model can
improve not only the truck utilisation but also the number of trucks at each location. In Fig. 7, the left line graph shows
the number of railcars that perform the product delivery from plants to depots during a time period. The number of
railcars used in each time period is the optimal value of ARt, which is in Eq. 15. On the other hand, the right radar
graph in Fig. 7 shows the railcar utilisation in each time period. Before optimally allocating the railcar resources, the
number of railcars in transit is fluctuated over the planning horizon (see the solution from MR). On the other hand, the
number of railcars used is almost evenly distributed (see the solution from the MILFP model, i.e., PD-D), and it results
in a high railcar utilisation.
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Figure 8: Pareto pro�le with the total operating cost and utilisation of transportation resources

Finally, we examine the solutions from the multi-objective optimisation model (PD-MOO). The lower bound for
the transportation resource utilisation (") is fixed to 11 values from 65 to 95 %. The optimality gap and time limit are set
to 1 % and 10,800 s, respectively. The resulting model includes 149,957 equations, 160,158 continuous variables, and
the same number of discrete variables as that of the PD-D model (5,417). The entire process to get the Pareto-optimal
solutions with different values of " takes 31,885 s of CPU time.

Fig. 8 shows the trade-offs between the two objectives. The bar chart represents the total number of allocated trucks
and railcars, while the green line indicates the Pareto frontier that is approximated by the Pareto-optimal solutions.With
65.1 % of the utilisation of transportation resources, the total operating cost is 5,253 k$. The cost slightly increases
to 5,276 k$ when we aim at 70 % of the utilisation and maintains the almost same level until the utilisation reaches
90.0 %. After that point, significant trade-offs are observed. As the utilisation increases from 91.5 to 95.0 %, the total
cost increases from 5,282 to 6,129 k$. Moreover, the total number of trucks and railcars is decreased gradually as the
utilisation increments, and a considerable increase in total cost is observed when the number goes below 122. Looking
at the solution from the MILFP model (see the red point in Fig. 8), that is on the Pareto curve and yields a good balance
between the two objectives. From the results, we can see that the MILFP approach could directly lead to the solution
that a reasonable trade-off is achievable between the total cost and utilisation, while the multi-objective optimisation
method produces multiple solutions that support the decision-making.
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Table 5

Model statistics of �ve additional instances

Instance

No. of
plants/
third
parties

No. of
depots

No. of
customers

ATmax ARmax Model Equations
Continuous
variables

Discrete
variables

P1 1 1 48 30 30 PD-MINLP 4,938 6,177 193
PD-Da 4,970 6,187 203
PD-RLb 9,779 6,521 328

P2 3 1 92 30 30 PD-MINLP 9,232 11,567 428
PD-Da 9,264 11,577 438
PD-RLb 17,975 12,278 688

P3 6 2 197 50 50 PD-MINLP 24,311 29,481 977
PD-Da 24,349 29,493 989
PD-RLb 41,997 31,004 1,486

P4 12 2 468 70 70 PD-MINLP 53,491 66,084 1,964
PD-Da 53,535 66,108 1,968
PD-RLb 91,931 68,992 2,840

P5 18 3 653 100 100 PD-MINLP 106,693 124,091 3,934
PD-Da 106,737 124,105 3,948
PD-RLb 166,251 130,174 5,977

a Dinkelbach's algorithm
b Reformulation and linearisation method

5.1. Additional computational studies
For more reliable and conclusive insights into the general performance in particular of the MINLP and MILFP

models, additional computational tests are conducted. Five problems with different numbers of plants, depots, third
parties, customers, and transportation resources are considered. The problem sizes and results are given in Table 5 and
6, respectively.

As can be seen, the CPU times vary from one approach to the other in each instance, and it is increased significantly
as the problem size increases. Specifically, Dinkelbach’s algorithm requires up to 2,681 s, and it is faster than using
the MINLP solvers and reformulation-linearisation method. For small instances, P1 and P2, Dinkelbach’s algorithm
obtains the solutions within 201 s, whereas DICOPT and the reformulation-linearisation method require slightly longer
CPU times. For medium-size instance P3, the CPU times of DICOPT and reformulation-linearisation method have
been increased dramatically (6,589 s and 4902 s, respectively), while Dinkelbach’s algorithm can still get the solution
within 441 s. For P4 and P5 having thousands of discrete variables, the performance of the reformulation-linearisation
is not satisfactory. In both instances, it cannot reach 1 % of optimality gap within the time limit, while Dinkelbach’s
approach and DICOPT take up to 9,973 s and 2,681 s, respectively. This is due to the binary representation for the
integer variables, as well as the introduction of additional constraints and variables regarding the Glover’s linearisation
scheme. These two facts result in a much larger model size when using the reformulation-linearisation method. As for
the comparison between the MINLP solvers, DICOPT is much faster than ALPHAECP, BARON, SBB, and SCIP,
especially for large-size instances. In case of P4 and P5, DICOPT can get the solutions within 3 hr of the time limit,
but other MINLP solvers are terminated before reaching the optimality tolerance. Overall, for this planning problem,
of which the objective is the minimisation of the total cost divided by the utilisation of transportation resources,
Dinkelbach’s algorithm is shown to be much more efficient than the MINLP solvers and reformulation-linearisation
method.
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Table 6

Computational performance of the MINLP and MILFP models for �ve additional instances

Instance Model Algorithm
Unit
cost

(k$/%)

Total
operating
cost (k$)

Truck
utilisation

(%)

Railcar
utilisation

(%)

Total
no. of
trucks

Total
no. of
railcars

CPU
time
(s)

P1 PD-MINLP DICOPT 2.90 226 57.64 98.52 3 9 33
ALPHAECP 2.90 226 57.64 98.52 3 9 65
BARON 2.90 226 57.64 98.52 3 9 139
SBB 2.90 226 57.64 98.52 3 9 205
SCIP 2.90 226 57.64 98.52 3 9 267

PD-Da Gurobi 2.90 226 57.64 98.52 3 9 21
PD-RLb Gurobi 2.90 226 57.64 98.52 3 9 51

P2 PD-MINLP DICOPT 8.47 778 83.69 100.00 9 7 337
ALPHAECP 8.47 778 83.69 100.00 9 7 963
BARON 8.47 778 83.69 100.00 9 7 2,498
SBB 8.47 778 83.69 100.00 9 7 2,009
SCIP 8.47 778 83.69 100.00 9 7 3,142

PD-Da Gurobi 8.47 778 83.69 100.00 9 7 201
PD-RLb Gurobi 8.47 778 83.69 100.00 9 7 736

P3 PD-MINLP DICOPT 17.28 1,627 88.33 100.00 14 14 6,589
ALPHAECP 17.28 1,623 87.85 100.00 15 18 6,834
BARON 17.46 1,606 83.97 100.00 15 17 10,800c

SBB 17.70 1,608 81.68 100.00 15 17 10,800c

SCIP 17.28 1,623 87.85 100.00 15 18 10,077
PD-Da Gurobi 17.28 1,623 87.85 100.00 15 18 441
PD-RLb Gurobi 17.28 1,623 87.85 100.00 15 18 4,902

P4 PD-MINLP DICOPT 41.68 4,007 92.29 100.00 52 19 2,036
ALPHAECP 42.14 4,008 91.72 98.52 52 18 10,800c

BARON 42.58 4,019 90.55 98.24 52 19 10,800c

SBB N/Ad N/Ad N/Ad N/Ad N/Ad N/Ad 10,800c

SCIP 44.46 4,232 92.47 97.90 52 19 10,800a

PD-Da Gurobi 41.61 4,000 92.28 100.00 52 19 1,289
PD-RLb Gurobi 41.95 4,043 93.07 99.67 52 20 10,800a

P5 PD-MINLP DICOPT 64.49 6,159 91.11 99.91 79 74 9,973
ALPHAECP 65.15 6,164 91.08 98.17 79 75 10,800a

BARON 68.27 6,567 92.93 99.47 76 76 10,800a

SBB N/Ad N/Ad N/Ad N/Ad N/Ad N/Ad 10,800c

SCIP 73.14 6,953 91.49 98.65 75 75 10,800a

PD-Da Gurobi 64.06 6,158 92.35 99.92 78 76 2,681
PD-RLb Gurobi 64.59 6,165 91.08 99.82 79 74 10,800a

a Dinkelbach's algorithm
b Reformulation and linearisation method
c Computation was terminated due to the time limit (3 hr)
d A feasible solution has not been found within the time limit (3 hr)

.
.
.
.
.
.
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6. Concluding remarks
This work addressed an integrated planning problem for industrial gas supply chains extended from our previous

work (Lee et al., 2021). The problem considered both transportation efficiency, which is related to an optimal allocation
of trucks and railcars, and the economic aspect (i.e. total operating cost) simultaneously. First, we formulated the
problem as an MINLP model that accounts for the total operating cost divided by the utilisation as an objective.
Then, the developed MINLP model was reformulated as an MILFP model. Two algorithms, Dinkelbach’s algorithm
and reformulation-linearisation method, were embedded for the MILFP model. Real-world industrial case studies
investigated the computational performance of the proposed models. The computational results revealed that the
MILFP model with the Dinkelbach’s algorithm was the most efficient compared with the reformulation-linearisation
method and commercial MINLP solvers. The case studies also proved the applicability of the proposed models and
approaches to determine an optimal allocation of transportation resources, together with production and distribution
plans. As an alternative approach, we also proposed a multi-objective optimisation model. The model treated the total
operating cost and the utilisation of transportation resources as two separate objective functions. To solve the model,
we adopted the "-constraint method where one of the objective functions is introduced as a constraint. We tested
the developed model with the same case study considered for the MILFP model. The obtained set of Pareto-optimal
solutions illustrated the relationship between the two objectives. Based on the Pareto-optimal solutions, a reasonable
trade-off between the objectives was identified. Further work could be directed at addressing the uncertainty of input
parameters such as customer demand and transportation time and treating the robustness of the models

Abbreviations
IRP inventory routing problem
LFP linear fractional programming
MILP mixed-integer linear programming
MINLP mixed-integer nonlinear programming
MILFP mixed-integer linear fractional programming
MOO multi-objective optimisation
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RTP real time electricity price
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A. Appendix A. Integrated planning of industrial gas supply chains model
The MILP model proposed by (Lee et al., 2021) is presented as follows:

A.1. Costs
The purchasing cost of raw material from external suppliers is calculated based on the discount type of supply

contract:
TCraw =

∑

i

∑

n
Crawin ⋅ Fin (A.1)

∑

n
Fin =

∑

t
Rit ∀i (A.2)

(�in − �i,n−1 ∣n>1) ⋅ Yi,n+1 ≤ Fin ≤ (�in − �i,n−1 ∣n>1) ⋅ Yin ∀i, n < N (A.3)
Yin ≥ Yi,n+1 ∀i, n < N (A.4)
Fin ≤MF ⋅ Yin ∀i, n = N (A.5)

The production cost is determined by the operating mode and the production amount:
TCprod =

∑

i

∑

t
�i ⋅ P

max
i ⋅Wit +

∑

i

∑

t
�i ⋅ Pit (A.6)

The plant start-up cost occurs when each plant start to produce the product:
TCst =

∑

i

∑

t
Csti ⋅ Uit (A.7)

The purchasing product cost from third-party suppliers is given by:
TC tℎird =

∑

m

∑

n
C tℎirdmn ⋅ Smn (A.8)

∑

n
Smn =

∑

t
Omt ∀m (A.9)

(�mn − �m,n−1 ∣n>1) ⋅Zm,n+1 ≤ Smn ≤ (�mn − �m,n−1 ∣n>1) ⋅Zmn ∀i, n < N (A.10)
Zmn ≥ Zm,n+1 ∀i, n < N (A.11)
Smn ≤MS ⋅Zmn ∀m, n = N (A.12)

Total railcar cost is calculated based on the number of railcars used for delivery:
TCrail =

∑

i

∑

j∈Ji

∑

t
CRCij ⋅NRijt +

∑

m

∑

j∈Jm

∑

t
CRCmj ⋅NRmjt (A.13)

and truck cost is given as follows:

TC truck =
∑

i

∑

k∈Ki

∑

t

QTRikt
CAP TR

⋅ Lik ⋅ C
TR

+
∑

j

∑

k∈Kj

∑

t

QTRjkt
CAP TR

⋅ Ljk ⋅ C
TR

+
∑

m

∑

k∈Km

∑

t

QTRmkt
CAP TR

⋅ Lmk ⋅ C
TR (A.14)
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A.2. Production constraints
The production amount at each plant is constrained by the minimum and maximum production capacities:
Pmini ⋅Wit ≤ Pit ≤ Pmaxi ⋅Wit ∀i, t (A.15)

and the following constraint determined whether the each plant changes its operating model from off- to on-mode.
Wit −Wi,t−1 ∣t>1≤ Uit ∀i, t (A.16)

The amount of raw material that can be purchased at each plant in each period is restricted:
Rit ≤ Rmaxi ∀i, t (A.17)

The relationship between the amount of the raw material and production amount is given as:
Rit = �iPit ∀i, t (A.18)

A.3. Third-party supplier constraints
The amount of purchasing product from each third-party supplier in each period is also limited:
Omt ≤ Omaxm ∀m, t (A.19)

and the product flow coming out from third parties is calculated by:
Omt =

∑

j∈Jm

QRCmjt +
∑

k∈Km

QTRmkt ∀m, t (A.20)

A.4. Transportation constraints
The delivery amount by railcars is bounded based on the capacity and the number of used railcars:
QRCijt ≤ CAPRC ⋅NRijt ∀i, j ∈ Ji, t (A.21)
QRCmjt ≤ CAPRC ⋅NRmjt ∀m, j ∈ Jm, t (A.22)

A.5. Inventory mass balance

Iit =Ii,t−1 ∣t>1 +I inii ∣t=1 +Pit −
∑

j∈Ji

QRCijt −
∑

k∈Ki

QTRikt −
∑

k∈KP
i

DPiktΔt ∀i, t (A.23)

Ijt =Ij,t−1 ∣t>1 +I inij ∣t=1 +
∑

i∶j∈Ji

QRCij,Ω(t−�ij ) +
∑

m∶j∈Jm

QRCmj,Ω(t−�mj ) −
∑

k∈Kj

QTRjkt −
∑

k∈KP
j

DPjktΔt ∀j, t (A.24)

Note that the mass balance for VMI customer k ∈ KV is give in Eq. 18.
The following inventory constraints set maximum and minimum levels, and the inventory level at the end of the

time horizon:
Imini ≤ Iit ≤ Imaxi ∀i, t (A.25)
Iminj ≤ Ijt ≤ Imaxj ∀j, t (A.26)
Imink ≤ Ikt ≤ Imaxk ∀k ∈ KV , t (A.27)
Iit = I inii ∀i, t = T (A.28)
Ijt = I inij ∀j, t = T (A.29)
Ikt = I inik ∀k ∈ KV , t = T (A.30)
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A.6. Multiple sourcing constraints
The multiple sourcing constraints limit the number of plants, depots, and third parties that each customer can be

served the product:

∑

i∶k∈Ki

Xik +
∑

j∶k∈Kj

Xjk +
∑

m∶k∈Km

Xmk ≤ NS ∀k ∈ KV (A.31)

QTRikt ≤MQ ⋅Xik ∀i, k ∈ Ki, t (A.32)
QTRjkt ≤MQ ⋅Xjk ∀j, k ∈ Kj , t (A.33)
QTRmkt ≤MQ ⋅Xmk ∀m, k ∈ Km, t (A.34)

Notation
Indices

n cost region
Sets

Ji set of depots allocated to plant i
Jm set of depots allocated to third parties m
KP
i set of pickup customers designated to plant i

KP
j set of pickup customers designated to depot j

Parameters

�i coefficient relates amount of raw material and product produced by plant i
�in amount of raw material corresponding to plant i and cost region n (ton)
�i unit fixed production cost of plant i, ($/ton)
�i unit production cost of plant i ($/ton)
�mn amount of product corresponding to third party m and cost region n (ton)
�ij transportation time of railcars between plant i and depot j based on one-way trip (day)
�ij transportation time of railcars between third party m and depot j based on one-way trip (day)
CTR unit transportation cost for trucks, ($/mile)
CRCij transportation cost for each railcar between plant i and depot j ($)
Crawin unit cost for raw material purchased by plant i corresponding to cost region n ($/ton)
Csti plant start-up cost of plant i ($)
CRCmj transportation cost for each railcar between third party m and depot j ($)
C tℎirdmn unit cost for product purchased from third party m corresponding to cost region n ($/ton)
CAPRC loading capacity for each railcar (ton)
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DPikt product consumption at plant i of pickup customer k in time period t(ton/day)
DPjkt product consumption at depot j of pickup customer k in time period t(ton/day)
I inii initial inventory level at plant i (ton)
I inij initial inventory level at depot j (ton)
Imaxi , Imini maximum and minimum inventory levels at plant i (ton)
Imaxj , Iminj maximum and minimum inventory levels at depot j (ton)
Imaxk , Imink maximum and minimum inventory levels at customer k (ton)
Lik round-trip distance between plant i and customer k (mile)
Ljk round-trip distance between depot j and customer k (mile)
Lmk round-trip distance between third-party m and customer k (mile)
NS maximum number of sources each customer can be served over a time horizon
Omaxm maximum availability of product at third party m in each time period (ton)
Pmaxi , Pmini maximum and minimum production capacities of plant i in each time period (ton)
Rmaxi maximum availability of raw material for plant i in each time period (ton)
Integer Variables

NRijt number of railcars departing plant i to depot j in time period t
NRmjt number of railcars departing third-party m to depot j in time period t
Binary Variables

Uit 1 if production mode of plant i is switched from the off-mode to the on-mode at time period t; 0, otherwise
Wit 1 if production mode of plant i is the on-mode in time period t; 0, otherwise
Xik 1 if customer k is served the product from plant i; 0, otherwise
Xjk 1 if customer k is served the product from depot j; 0, otherwise
Xmk 1 if customer k is served the product from third party m; 0, otherwise
Yin 1 if total amount of raw material purchased by plant i is in cost region n; 0, otherwise
Zmn 1 if total amount of product purchased from third party m is in cost region n; 0, otherwise
Continuous Variables

Fin amount of raw material purchased by plant i corresponding to cost region n (ton)
Iit inventory level of plant i at time period t (ton)
Ijt inventory level of depot j at time period t (ton)
Omt product amount purchased from third party m during time period t (ton)
Pit production amount at plant i during time period t (ton)
QRCijt product amount delivered from plant i to depot j by railcars during time period t (ton)
QRCmjt product amount delivered from third party m to depot j by railcars during time period t (ton)
Rit amount of raw material purchased by plant i during time period t (ton)
Smn amount of product purchased from third party m corresponding to cost region n (ton)
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B. Appendix B. Reformulated MILFP model
Reformulation-linearisation is a method to reformulate an MILFP model into an equivalent MILP form, by

introducing additional continuous variables and constraints. The first step of the reformulation is to introduce a new
variable G, such that G = 1∕URtrans. In the following formulation, variables which have a capital G in front of the
original variables the non-negative continuous variables, and it is assumed that the variables are multiply by G.

The corresponding MILP model (PD-RL) is given below:
B.1. Transformation for integer variables

To reformulate the proposedMILFPmodel to an equivalentMILPmodel using reformulation-linearisationmethod,
integer variables should be expressed by a number of binary variables at first. The integer variables involved in the
MILFP model are the number of allocated trucks at plants/depots/third-party suppliers (ATi, ATj , and ATm) and the
number of railcars used for the product delivery between plants/third-party suppliers and depots in time period t (NRijtandNRmjt). These integer variables are replaced by its binary representation:

ATi =
qm
∑

q=1
2q−1 ⋅XIiq (B.1)

ATj =
qm
∑

q=1
2q−1 ⋅XJjq (B.2)

ATm =
qm
∑

q=1
2q−1 ⋅XMmq (B.3)

whereXIiq ,XJjq andXMmq are binary variables which indicate whether the qth digit of the binary representation ofthe variables are equal to 1 or not. Here, qm = log2AT max

NRijt =
ℎm
∑

ℎ=1
2ℎ−1 ⋅ Bijtℎ (B.4)

NRmjt =
ℎm
∑

ℎ=1
2ℎ−1 ⋅ Bmjtℎ (B.5)

where Bijtℎ and Bmjtℎ are binary variables which are 1 when the ℎth digit of the binary representation of the variablesare equal to 1 and ℎm = log2ARmax

B.2. Objective function

min GTC total (B.6)
B.3. Costs

GTC total = GTCraw + GTCprod + GTCst + GTC tℎird + GTCrail + GTC truck + GTCos (B.7)
GTCos =

∑

k∈KV

∑

t
COS ⋅ GQOSkt (B.8)

GTCraw =
∑

i

∑

n
Crawin GFin (B.9)

∑

n
GFin =

∑

t
GRit ∀i (B.10)

(�in − �i,n−1 ∣n>1) ⋅ GYi,n+1 ≤ GFin ≤ (�in − �i,n−1 ∣n>1) ⋅ GYin ∀i, n < N (B.11)
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GYin ≥ GYi,n+1 ∀i, n < N (B.12)
GFin ≤MGF ⋅ GYin ∀i, n = N (B.13)
GTCprod =

∑

i

∑

t
�iP

max
i ⋅ GWit +

∑

i

∑

t
�i ⋅ GPit (B.14)

GTCst =
∑

i

∑

t
Csti ⋅ GUit (B.15)

GTC tℎird =
∑

m

∑

n
C tℎirdmn ⋅ GSmn (B.16)

∑

n
GSmn =

∑

t
GOmt ∀m (B.17)

(�mn − �m,n−1 ∣n>1) ⋅ GZm,n+1 ≤ GSmn ≤ (�mn − �m,n−1 ∣n>1) ⋅ GZmn ∀i, n < N (B.18)
GSmn ≤MGS ⋅ GZmn ∀m, n = N

(B.19)
GZmn ≥ GZm,n+1 ∀i, n < N (B.20)

GTCrail =
∑

i

∑

j∈Ji

∑

t
CRCij ⋅ (

ℎm
∑

ℎ=1
2ℎ−1 ⋅ GBijtℎ) +

∑

m

∑

j∈Jm

∑

t
CRCmj (

ℎm
∑

ℎ=1
2ℎ−1 ⋅ GNRmjtℎ) (B.21)

GTC truck =
∑

i

∑

k∈Ki

∑

t

GQTRikt
CAP TR

⋅ Lik ⋅ C
TR +

∑

j

∑

k∈Kj

∑

t

GQTRjkt
CAP TR

⋅ Ljk ⋅ C
TR

+
∑

m

∑

k∈Km

∑

t

GQTRmkt
CAP TR

⋅ Lmk ⋅ C
TR (B.22)

B.4. Production constraints

Pmini ⋅ GWit ≤ GPit ≤ Pmaxi ⋅ GWit ∀i, t (B.23)
GWit − GWi,t−1 ∣t>1≤ GUit ∀i, t (B.24)
GRit ≤ G ⋅ Rmaxi ∀i, t (B.25)
GRit = �i ⋅ GPit ∀i, t (B.26)

B.5. Third-party supplier constraints

GOmt ≤ G ⋅ Omaxm ∀m, t (B.27)
GOmt =

∑

j∈Jm

GQRCmjt +
∑

k∈Km

GQTRmkt ∀m, t (B.28)

(B.29)
B.6. Transportation capacity constraints

∑

k∈Ki

GQTRikt
CAP TR

⋅ �ik ≤
qm
∑

q=1
2q−1 ⋅ GXIiq ⋅ Δt ∀i, t (B.30)

∑

k∈Kj

GQTRjkt
CAP TR

⋅ �jk ≤
qm
∑

q=1
2q−1 ⋅ GXJjq ⋅ Δt ∀j, t (B.31)

∑

k∈Km

GQTRmkt
CAP TR

⋅ �mk ≤
qm
∑

q=1
2q−1 ⋅ GXMmq ⋅ Δt ∀m, t (B.32)
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GQRCijt ≤ CAPRC ⋅
ℎm
∑

ℎ=1
2ℎ−1 ⋅ GBijtℎ ∀i, j ∈ Ji, t (B.33)

GQRCmjt ≤ CAPRC ⋅
ℎm
∑

ℎ=1
2ℎ−1 ⋅ GBmjtℎ ∀m, j ∈ Jm, t (B.34)

B.7. Inventory mass balance

GIit =GIi,t−1 ∣t>1 +G ⋅ I inii ∣t=1 +GPit −
∑

j∈Ji

GQRCijt −
∑

k∈Ki

GQTRikt −
∑

k∈KP
i

G ⋅DPik ∀i, t (B.35)

GIjt =GIj,t−1 ∣t>1 +G ⋅ I inij ∣t=1 +
∑

i∶j∈Ji

GQRCij,Ω(t−�ij ) +
∑

m∶j∈Jm

GQRCmj,Ω(t−�mj )

−
∑

k∈Kj

GQTRjkt −
∑

k∈KP
j

G ⋅DPjk ∀j, t (B.36)

GIkt =GIk,t−1 ∣t>1 +G ⋅ I inik ∣t=1 +
∑

i∶k∈Ki

GQTRikt +
∑

j∶k∈Kj

GQTRjkt

+
∑

m∶k∈Km

GQTRmkt + GQ
OS
kt − G ⋅Dk ∀k ∈ KV , t (B.37)

G ⋅ Imini ≤ GIit ≤ G ⋅ Imaxi ∀i, t (B.38)
G ⋅ Iminj ≤ GIjt ≤ G ⋅ Imaxj ∀j, t (B.39)
G ⋅ Imink ≤ GIkt ≤ G ⋅ Imaxk ∀k ∈ KV , t (B.40)
GIit = G ⋅ I inii ∀i, t = T (B.41)
GIjt = G ⋅ I inij ∀j, t = T (B.42)
GIkt = G ⋅ I inik ∀k ∈ KV , t = T (B.43)

B.8. Multiple sourcing constraints

∑

i∶k∈Ki

GXik +
∑

j∶k∈Kj

GXjk +
∑

m∶k∈Km

GXmk ≤ G ⋅NS ∀k ∈ KV (B.44)

GQTRikt ≤MGQ ⋅ GXik ∀i, k ∈ Ki, t (B.45)
GQTRjkt ≤MGQ ⋅ GXjk ∀j, k ∈ Kj , t (B.46)
GQTRmkt ≤MGQ ⋅ GXmk ∀m, k ∈ Km, t (B.47)

B.9. Truck utilisation constraints

GTQ =
∑

i

∑

k∈Ki

∑

t

 ⋅ GQTRikt ⋅ �ik
CAP TR ⋅ Δt ⋅ T

+
∑

j

∑

k∈Kj

∑

t

 ⋅ GQTRijt ⋅ �jk
CAP TR ⋅ Δt ⋅ T

+
∑

m

∑

k∈Km

∑

t

 ⋅ GQTRmkt ⋅ �mk
CAP TR ⋅ Δt ⋅ T

(B.48)

GAT total =
lm
∑

l=1
2l−1 ⋅ GTEl (B.49)

GTEl ≤MGTUR ⋅ GETl ∀l = 1, ..., lm (B.50)
GTEl ≤ GTUR ∀l = 1, ..., lm (B.51)
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GTEl ≥ GTUR −MGTUR ⋅ (G − GETl) ∀l = 1, ..., lm (B.52)

GAT total =
∑

i

qm
∑

q=1
2q−1 ⋅ GXIiq +

∑

j

qm
∑

q=1
2q−1 ⋅ GXJjq +

∑

m

qm
∑

q=1
2q−1 ⋅ GXMmq (B.53)

GAT total ≤ G ⋅ AT max (B.54)
B.10. Railcar utilisation constraints

GARtotal =
lr
∑

l=1
2l−1 ⋅ GERl (B.55)

∑

t
GARt = T ⋅

lr
∑

l=1
2l−1 ⋅ GREl (B.56)

GREl ≤MGRUR ⋅ GERl ∀l = 1, ..., lr
(B.57)

GREl ≤ GRUR ∀l = 1, ..., lr
(B.58)

GREl ≥ GRUR −MGRUR ⋅ (G − GERl) ∀l = 1, ..., lr
(B.59)

GARt =
∑

i

∑

j∈Ji

2�ij−1
∑

t′=0
(
ℎm
∑

ℎ=1
2ℎ−1 ⋅ GBijΩ(t−t′),ℎ) +

∑

m

∑

j∈Jm

2�mj−1
∑

t′=0
(
ℎm
∑

ℎ=1
2ℎ−1 ⋅ GBmjΩ(t−t′),ℎ) ∀t (B.60)

GARtotal ≥ GARt ∀t (B.61)
GARtotal ≤ G ⋅ ARmax (B.62)

B.11. Transportation utilisation

GURtrans = (GTUR + GRUR)∕2 (B.63)
B.12. Glover’s linearisation scheme

GUit ≤ G ∀i, t (B.64)
GUit ≤MG ⋅ Uit ∀i, t (B.65)
GUit ≥ G −MG ⋅ (1 − Uit) ∀i, t (B.66)
GWit ≤ G ∀i, t (B.67)
GWit ≤MG ⋅Wit ∀i, t (B.68)
GWit ≥ G −MG ⋅ (1 −Wit) ∀i, t (B.69)
GXik ≤ G ∀i, k (B.70)
GXik ≤MG ⋅Xik ∀i, k (B.71)
GXik ≥ G −MG ⋅ (1 −Xik) ∀i, k (B.72)
GXjk ≤ G ∀j, k (B.73)
GXjk ≤MG ⋅Xjk ∀j, k (B.74)
GXjk ≥ G −Mv ⋅ (1 −Xjk) ∀j, k (B.75)
GXmk ≤ G ∀m, k (B.76)
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GXmk ≤MG ⋅Xmk ∀m, k (B.77)
GXmk ≥ G −MG ⋅ (1 −Xmk) ∀m, k (B.78)
GYin ≤ G ∀i, n (B.79)
GYin ≤MG ⋅ Yin ∀i, n (B.80)
GYin ≥ G −MG ⋅ (1 − Yni) ∀i, n (B.81)
GZmn ≤ G ∀m, n (B.82)
GZmn ≤MG ⋅Zmn ∀m, n (B.83)
GZmn ≥ G −MG ⋅ (1 −Zmn) ∀m, n (B.84)
GETl ≤ G ∀l (B.85)
GETl ≤MG ⋅ ETl ∀l (B.86)
GETl ≥ G −MG ⋅ (1 − ETl) ∀l (B.87)
GERl ≤ G ∀l (B.88)
GERl ≤MG ⋅ ERl ∀l (B.89)
GERl ≥ G −MG ⋅ (1 − ERl) ∀l (B.90)
GXIiq ≤ G ∀i, q (B.91)
GXIiq ≤MG ⋅XIiq ∀i, q (B.92)
GXIiq ≥ G −MG ⋅ (1 −XIiq) ∀i, q (B.93)
GXJjq ≤ G ∀j, q (B.94)
GXJjq ≤MG ⋅XJjq ∀j, q (B.95)
GXJjq ≥ G −MG ⋅ (1 −XJjq) ∀j, q (B.96)
GXMmq ≤ G ∀m, q (B.97)
GXMmq ≤MG ⋅XMmq ∀m, q (B.98)
GXMmq ≥ G −MG ⋅ (1 −XMmq) ∀m, q (B.99)
GBijtℎ ≤ G ∀i, j, t, ℎ (B.100)
GBijtℎ ≤MG ⋅ Bijtℎ ∀i, j, t, ℎ (B.101)
GBijtℎ ≥ G −MG ⋅ (1 − Bijtℎ) ∀i, j, t, ℎ (B.102)
GBmjtℎ ≤ G ∀m, j, t, ℎ (B.103)
GBmjtℎ ≤MG ⋅ B ∀m, j, t, ℎ (B.104)
GBmjtℎ ≥ G −MG ⋅ (1 − Bmjtℎ) ∀m, j, t, ℎ (B.105)

Finally,
GURtrans = 1 (B.106)
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