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Abstract. Human anatomy, morphology, and associated diseases can be
studied using medical imaging data. However, access to medical imag-
ing data is restricted by governance and privacy concerns, data owner-
ship, and the cost of acquisition, thus limiting our ability to understand
the human body. A possible solution to this issue is the creation of a
model able to learn and then generate synthetic images of the human
body conditioned on specific characteristics of relevance (e.g., age, sex,
and disease status). Deep generative models, in the form of neural net-
works, have been recently used to create synthetic 2D images of natural
scenes. Still, the ability to produce high-resolution 3D volumetric imag-
ing data with correct anatomical morphology has been hampered by
data scarcity and algorithmic and computational limitations. This work
proposes a generative model that can be scaled to produce anatomically
correct, high-resolution, and realistic images of the human brain, with
the necessary quality to allow further downstream analyses. The abil-
ity to generate a potentially unlimited amount of data not only enables
large-scale studies of human anatomy and pathology without jeopar-
dizing patient privacy, but also significantly advances research in the
field of anomaly detection, modality synthesis, learning under limited
data, and fair and ethical AI. Code and trained models are available at:
https://github.com/AmigoLab/SynthAnatomy.

Keywords: Transformers · VQ-VAE · Generative Modelling · Neuroimaging ·
Neuromorphology.
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1 Introduction

Current advances in the application of deep learning (DL) in medical imag-
ing were driven by substantial initiatives and challenges such as UK Biobank
(UKB)[1], Alzheimer’s Disease Neuroimaging Initiative (ADNI)[2], and the Med-
ical Segmentation Decathlon[3]. However, these are relatively small compared to
computer vision datasets. Owing to the lack of access to sufficient data due to
privacy concerns, medical imaging data is not fully leveraging DL’s full potential
and this hinders its translation from research to the clinical environment. State-
of-the-art (SOTA) algorithms rely on a handful of highly curated datasets which
could lead to biases due to imbalanced demographics or acquisition parameters,
that may negatively affect their performance for certain populations. A solution
to this problem could come from the generative modelling of the underlying
available data to balance the prevalence of confounding variables in the training
dataset.

While semi-supervised 3D generative modelling of the brain has been steadily
explored and improved [4, 5, 6], progress in unsupervised generative modelling
has been more limited. Generative Adversarial Network (GAN) based approaches,
which suffer from memory constraints and stability issues, have mostly been
trained on low-resolution 3D images [7, 8, 9], having only recently been able to
synthesise full resolution images via learning partial sub-volumes [10]. Whereas
previous methods quantify sample diversity using classic metrics such as Multi-
Scale Structural Similarity Index (MS-SSIM) [11], distribution alignment via
Fréchet Inception Distance (FID) [12] and Maximum Mean Discrepancy (MMD)
[13], none have quantified if the generated data preserves the morphological char-
acteristics of the data – crucial if we are to use such methods.

Recently, autoregressive models have achieved SOTA results synthesising
high resolution natural images [14, 15, 16]. This was accomplished by employ-
ing a compression model, namely a Vector Quantised-Variational Autoencoder
(VQ-VAE) [17, 14], to project the images into a discrete latent representation
where the images’ likelihood becomes tractable. An attention-based Transformer
network [18, 19] is then used to model the product of conditional distributions
by maximising the expected log-likelihood of the training data.

Following [20] as part of the Synthetic Data Desiderata, a good synthetic
dataset should share many if not all statistical properties of the real dataset.
One such property, if not the most important, of synthetic structural medical
images is their morphological correctness. Covariates of interest such as demo-
graphic and pathological ones determine the phenotype of each subject which
in turn contributes to the population-level morphological statistics. Without it,
any development done on the synthetic data as part of the Train on Synthetic,
Test on Real [21] paradigm could suffer from higher domain distribution shifts
slowing down the development. Furthermore, without morphological assessment,
any hypothesis tested on the synthetic data would be rendered highly uncertain.

In this study, we scale and optimise VQ-VAE and Transformer models for
high-resolution volumetric data, aiming to learn the data distribution of both
radiologically healthy and pathological brains. A thorough morphological evalu-
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ation is employed by using Voxel-Based Morphometry (VBM) [22] and volumet-
ric analysis using Geodesic Information Flows (GIF) [23], demonstrating that
synthetic data generated by the proposed model preserves the morphological
characteristics and phenotype of the data.

2 Background

Our model is based on the two-stage architecture introduced by [17, 14] and
extended by [15], where a VQ-VAE model is used to project a high-resolution
image into a compressed latent representation and a transformer is trained to
maximize the likelihood of the flattened representations.

2.1 VQ-VAE

The VQ-VAE [17, 14] is comprised of an encoder E that projects the input
image x ∈ RH×W×D to a latent representation space ẑ ∈ Rh×w×d×nz where
nz is the latent embedding vector’s dimensionality. Afterwards, an element-wise
quantization is done for each spatial code ẑijk ∈ Rnz onto its nearest vector
ek ∈ Rnz , k ∈ 1, ...,K from a codebook, where K denotes the vocabulary size of
the codebook, obtaining ẑq. The codebook’s elements are learned in an online
manner, together with the other model’s parameters. Based on the quantized
latent space, a decoder G tries to reconstruct the observations x̂ ∈ RH×W×D.
By replacing each of the codebook elements vector ẑq ∈ Rh×w×d×nz with their
associated index k, the latent discrete representation is obtained.

2.2 Transformer

Transformers models and their associated self-attention mechanisms can cap-
ture the interactions between inputs regardless of their relative positioning. Due
to this, the attention mechanism scales quadratically with the size of the input
sequence. Since the VQ-VAE’s latent discrete representation when applied to vol-
umetric medical data is 3D and thus large in scale, standard transformers do not
scale to the necessary sequence length. Recently, multiple advances have made
Transformers more efficient [24]; models such as the Performer, with its FAVOR+
linear scaling attention approximation [19] offers a good compromise between ac-
curately modelling long-sequences while preserving a reasonable computational
complexity [24]. Thus the Performer is used to model the latent sequences; by
minimizing the conditional distribution of codebook indices p(si) = p(si|s<i) on
the flattened 1D sequences of the 3D latent discrete representations, the data
log-likelihood is maximized in an autoregressive fashion.

3 Methods

3.1 Descriptive Quantization for Transformer Usage

To create a Transformer-based generative model of the brain, the image volume
needs to be transformed into a 1D sequence of tokens. To achieve this, a VQ-VAE
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model that reduces the overall spatial size by a factor of 4096, allowing an input
image of size X to be represented by a sequence of 1400 tokens. This 1400-long
token sequence is learnt in an online fashion together with the VQ-VAE model
by using the Exponential Moving Average (EMA) algorithm [17, 14] as per Eq.
1.

LV Q−V AE(x, G(ẑq)) = LRec + LAdv + ‖sg[E(x)]− ẑq‖22 + β‖sg[ẑq]− E(x)‖22 (1)
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where sg stands for the stop-gradient operation. As per [17, 14], the third loss
component in Eq. 1 is replaced by Eq. 2, where n(t)i stands for the number of
vectors in E(x) that will be quantized to codebook element ẑqi. The hyper-
parameters γ and β control the decay of the EMA and the commitment of the
encoder output to a certain quantized element respectively.

For the codebook to be perceptually rich, a loss similar to [15, 25] which is
formed by the first and second elements of Eq. 1 as defined bellow:

LRec = ‖x− x̂‖1 + ‖|FFT (x)| − |FFT (x̂)|‖2 + LPIPS0.5(x, x̂) (3)

Where the first term is a pixel-space L1 norm, the second term is the L2 norm
of the image’s Fourier representations based on [26] which aims at facilitating
high-frequency feature preservation, the third term is the LPIPS [27] loss using
AlexNet applied on 50% of slices on each axis. Lastly, the LAdv is based on a
Patch-GAN discriminator-based adversarial loss [28, 15], replacing the original
loss by the LS-GAN [29] one (see Eq 4):

minD LLSGAN (D) = 1
2Ex∼pdata(x)

[
(D(x)− 1)2

]
+ 1

2Ex∼pdata(x)

[
(D(G(x̂)))2

]
minG LLSGAN (G) = 1

2Ex∼px(z)

[
(D(G(x̂))− 1)2

] (4)

Each of these losses independently contributes to model training stability
and reconstruction quality.

3.2 Autoregressive Modelling of the Brain

The VQ-VAE model was first trained on T1w MRI images of neurologically
healthy subjects from UKB [1] until convergence, and then their zq representa-
tions were extracted. Afterwards, further fine-tuning on the pathological dataset
formed from the baseline T1w MRI scans of ADNI [2] subjects was done until
over-fitting was noticed, at which point the ADNI subjects’ zq representation
was also extracted. This paradigm was chosen since in [30] it was shown to ei-
ther be on par or better compared to training a VQ-VAE model only on the
pathological dataset. Furthermore, we aim also to highlight that the pre-trained
model can be fine-tuned and learn new morphology, in this case, a pathological
one, thus increasing the usefulness of the UKB trained VQ-VAE as a pretrained
model for the community.
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In order to ensure a higher quality of the Transformer’s samples, the top 1%
generated samples, based on the score obtained by averaging the Patch-GAN
discriminator output, were used in this work.

As the VQ-VAE representations cover all phenotypes, a separate Transformer
model has been trained on the latent representations of different sub-populations
to model individual morphological subgroups. More specifically, to demonstrate
the morphological phenotype preservation, the UKB [1] dataset was partitioned
into young vs. old sub-populations, and small vs. big ventricles sub-populations.
We defined all of these groups based on the first and last of five quantiles based
on "age when attended assessment centre" (21003-2.0) and "volume of the ven-
tricular cerebrospinal fluid" (25004-2.0) UKB variables, respectively. To test the
preservation of disease morphology, we split the ADNI dataset into cognitively
normal (CN) and Alzheimer’s disease (AD) subgroups based on the "diagno-
sis/scan category assignment field".

4 Experiments and Results

The performance of the proposed model is assessed in two ways: first, the quality
of generated samples is measured according to image fidelity metrics commonly
used in generative models; second, we verify if the morphological characteris-
tics of a population and the differences between sub-populations are preserved
when comparing real and synthetic data. We compared our model to a baseline
volumetric VAE model. The models by [8, 9, 31, 29] underwent extensive hyper-
parameter exploration at the original resolutions but failed to converge on our
data. Only the VAE results are thus presented as a baseline.

4.1 Quantitative Image Fidelity Evaluation

Similarly to [8, 9], we use the FID [12] to assess the visual quality of the generated
images. Since originally the metric is based on a pretrained Inception V3 network
on 2D natural images, it cannot be applied on 3D volumes directly, so here it is
applied on the middle slice of each axis and reported individually. To measure
the quality of the 3D samples, batch-wise MMD with a dot product as the
kernel is being used as suggested in [8, 9]. Briefly, MMD quantifies the distance
between the distributions with finite sample estimates in kernel functions in

Fig. 1. Synthetic samples. On the left UKB small ventricles and on the right UKB big
ventricles.
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the reproducing kernel Hilbert space [13]. Lastly, to estimate the diversity of
the generated images, MS-SSIM is being used in a pair-wise fashion between
the generated synthetic samples as in [8, 9]. For easy comparison, all metrics
have also been calculated between each sub-population’s real images such that
a ground truth baseline is also offered.

Across the board, as is described in Table 1, both in regards to the sub-
populations and axial, coronal and sagittal slices, the FID of the VQ-VAE model
outperforms the VAE baseline by a high margin, showcasing the realistic appear-
ance of the sampled synthetic brains as seen in Fig. 3. The same can be said for
the bMMD2, where the VQ-VAE is one order of magnitude smaller for UKB
sub-populations and substantially better for the ADNI sub-populations. The
difference in bMMD2 performance between VQ-VAE’s UKB and ADNI sub-
populations might be because the ADNI dataset is considerably smaller than
the UKB one, and to circumvent that, the VQ-VAE compression model was
firstly trained on the UKB dataset and then fine-tuned on the ADNI one. Thus,
the zq representation fed into the Transformer, which is the generative model
per se, is not specialised for ADNI, but instead, it tries to encompass it. Finally,
MS-SSIM shows that the VQ-VAE achieves a life-like high diversity of samples
across all sub-populations, significantly surpassing the VAE. The peculiar case
of the ADNI AD sub-population might be attributed to the same cause as the
bMMD2.

4.2 Morphological Evaluation

To evaluate the morphological correctness of the synthetic samples, Voxel-Based
Morphometry (VBM) [22] was used to investigate the focal differences in the

Model Dataset Population FID (Ax|Cor|Sag) bMMD2 MS-SSIM
Real UKB Young 0.35 | 0.85 | 0.42 0.00208±0.00026 0.65±0.08

VQ-VAE (ours) UKB Young 31.04 | 57.19 | 57.19 0.00903±0.00090 0.68±0.03

VAE UKB Young 193.56 | 302.74 | 251.34 0.02757±0.00091 0.15±0.001

Real UKB Old 1.16 | 1.42 | 0.37 0.00217±0.00045 0.65±0.07

VQ-VAE (ours) UKB Old 33.68 | 60.60 | 78.82 0.00887±0.00104 0.67±0.03

VAE UKB Old 234.86 | 289.21 | 242.18 0.02622±0.00044 0.15±0.001

Real UKB Small Ventricles 1.74 | 1.99 | 0.87 0.00220±0.00044 0.67±0.07

VQ-VAE (ours) UKB Small Ventricles 28.33 | 58.23 | 76.68 0.00892±0.00106 0.70±0.04

VAE UKB Small Ventricles 206.92 | 318.37 | 258.17 0.02836±0.00078 0.14±0.001

Real UKB Big Ventricles 1.15 | 1.44 | 0.53 0.00231±0.00041 0.64±0.05

VQ-VAE (ours) UKB Big Ventricles 36.02 | 57.76 | 76.51 0.00937±0.00069 0.68±0.04

VAE UKB Big Ventricles 215.37 | 293.97 | 244.84 0.02738±0.00058 0.16±0.001

Real ADNI Cognitively Normal 21.49 | 17.31 | 9.34 0.00123±0.00021 0.56±0.05

VQ-VAE (ours) ADNI Cognitively Normal 53.88 | 93.62 | 112.32 0.01558±0.00348 0.71±0.08

VAE ADNI Cognitively Normal 233.59 | 397.52 | 421.04 0.02562±0.00119 0.14±0.05

Real ADNI Alzheimer’s Diseased 9.08 | 16.85 | 13.49 0.00167±0.00034 0.55±0.13

VQ-VAE (ours) ADNI Alzheimer’s Diseased 87.75 | 51.74 | 90.95 0.01562±0.00304 0.61±0.11

VAE ADNI Alzheimer’s Diseased 235.33 | 332.70 | 340.78 0.02804±0.00177 0.12±0.06

Table 1. The bMMD2 and MS-SSIM were calculated on 3D generated images while
FID was done middle-slices-wise of generated volumes.



Morphology-preserving 3D Generative Modelling of the Brain 7

brain anatomy of the sub-populations. At the core of VBM stands the application
of a generalised linear model and associated statistical tests across all voxels of
a group-aligned population, to identify morphological differences in modulated
tissue compartment between the selected groups.

The VBM analysis did not factor out any covariates available in the real
datasets since the generative process was unconditioned. All t-statistics maps
have been corrected to minimise the effects of low variance areas following [32].
As shown in Fig. 2 the t-statistics maps between synthetic images generated by
the VQ-VAE strongly agree with the VBM maps of real data, primarily when
compared with the VAE baseline. In the UKB small ventricles vs. big ventri-
cles experiment, VQ-VAE again successfully models the ventricular differences
correctly compared to the real-data VBM maps, while the VAE model strongly
emphasizes them or exacerbates the subarachnoid CSF. Lastly, the morphologi-
cal differences between cognitively normal vs. AD subjects on the ADNI dataset
on the VQVAE generated data strongly preserve the known temporal lobe and
hippocampal atrophy patterns associated with AD, producing a VBM t-map
that strongly resembles the one from real data. Conversely, the VAE fails to
show coherent structural differences in the GM.

Furthermore, we compared the volumes of key brain regions between popu-
lations of real and synthetic data. All images were segmented using GIF [23], a
robust multi-atlas based probabilistic segmentation model of the human brain
which segments the brain into non-overlapping hierarchical 155 regions. Based
on probabilistic segmentations, the total volume of each tissue was calculated,
and then we ran a two-sided t-test to assess if there was a statistically significant

Fig. 2. Thresholded uncorrected VBM t-statistics maps processed as per [32] show-
casing the morphological differences between two populations based on real samples,
VQ-VAE synthetic samples, and VAE synthetic samples. For UKB small vs. big ven-
tricles modulated CSF tissue segments were used, while for ADNI, cognitively normal
vs. AD modulated GM tissue segments were used.
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difference between the tissue volumes of the real vs. synthetic populations. The
Bonferroni-corrected target p-value was 2.083e-05.

Model Dataset Population Gray Matter White Matter CSF Deep Gray Matter
Real UKB Young 595±32 460±29 280±21 40±3

VQ-VAE (ours) UKB Young 587±24 472±20 283±11 40±2

VAE UKB Young 576±1 444±1 234±1 34±0

Real UKB Old 587±31 457±29 283±22 40±3

VQ-VAE (ours) UKB Old 576±22 465±20 310±14 39±2

VAE UKB Old 560±1 434±1 250±1 33±0

Real UKB Small Ventricles 596±30 462±27 270±17 41±3

VQ-VAE (ours) UKB Small Ventricles 594±19 477±18 280±12 41±2

VAE UKB Small Ventricles 572±1 444±1 235±1 35±0

Real UKB Big Ventricles 589±34 459±30 283±19 41±3

VQ-VAE (ours) UKB Big Ventricles 574±20 467±17 307±15 39±2

VAE UKB Big Ventricles 570±1 442±1 246±1 34±0

Real ADNI Cognitively Normal 530±51 430±40 309±32 40±5

VQ-VAE (ours) ADNI Cognitively Normal 554±19 458±18 299±12 39±2

VAE ADNI Cognitively Normal 518±5 440±4 258±3 34±1

Real ADNI Alzheimer’s Diseased 526±47 443±36 330±28 38±3

VQ-VAE (ours) ADNI Alzheimer’s Diseased 532±38 446±20 298±27 37±3

VAE ADNI Alzheimer’s Diseased 510±5 443±4 269±4 34±1

Table 2. Tissue volumes based on GIF’s probabilistic tissue segmentations. Mean and
standard deviations were rounded to the nearest 103. The bold values indicate the
two-sided t-tests did not pass the statistical significance threshold compared to the
real data.

Overall, no significant volume differences were found between real and VQ-
VAE samples for most subgroups and tissue types, while significant differences
were found for most VAE statistics, demonstrating that the proposed method
strongly preserves tissue volumes. The CSF volumes of the VQ-VAE UKB small
and big ventricle populations were found to be statistically significantly different
from their real counterparts as shown in Table 2, following the VBM results from
Fig. 2, and which could explain the increase in the t-statistic observed in the
ventricular regions of the synthetic samples. On the other hand, the GM volumes
were not statistically significantly different, corroborating the idea that the syn-
thetic t-statistics are closer in magnitude to the real ones. Note that the VAE
samples were also found not to be statistically significant in the ADNI AD/CT
subset, but this is primarily due to the larger variance and the conservative
Bonferroni correction.

5 Conclusion

In this work, we propose a scalable and high-resolution volumetric generative
model of the brain that preserves morphology. VBM [22] and GIF [23] were used
to assess the morphological preservation, while FID [12] and bMMD2 [13] to
measure distribution alignment between synthetic and real samples. We have
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shown that the synthetic samples preserve healthy and pathological morphology
and that they are realistic images that closely align with the distribution of the
real samples. Future work should address the lack of conditioning and the top
1% pruning to increase diversity and provide sampling control. Furthermore, the
generative model could be extended for disease progression modelling, disentan-
glement of style and content, have its privacy preserving capabilities examined,
and scaled to include multiple pathologies. To the best of our knowledge, this is
the first morphologically preserving generative model of the brain, which paves
the way for an unlimited amount of clinically viable data without jeopardizing
patient privacy.
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6 Appendix

6.1 VQ-VAEs

The VQ-VAE model has a similar architecture with [33] but in 3D. The encoder
uses strided convolutions with stride 2 and kernel size 4. There are four down-
samplings in this VQ-VAE, giving the downsampling factor f = 24. After the
downsampling layers, there are three residuals blocks (3 × 3 × 3 Conv, ReLU,
1x1x1 Conv, ReLU). The decoder mirrors the encoder and uses transposed con-
volutions with stride 2 and kernel size 4. All convolution layers have 256 kernels.
The β in Eq. 1 is 0.25 and the γ in Eq. 2 is 0.5. The codebook size was 2048
while each element’s size was 32.

6.2 Transformers

Performer’s6 [19] has L = 24 layers, d = 256 embedding size, 16 multi-head
attention modules (8 are local attention heads with window size of 420), and
ReZero gating [34]. Before the raster style ordering input was RAS+ canonical
voxel representation oriented.

6 Implementation used: https://github.com/lucidrains/performer-pytorch
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6.3 Losses

VQ-VAE’s pixel-space loss weight is 1.0, perceptual loss’ weight is 0.001, fre-
quency loss’ weight is 1.0. The LPIPS uses AlexNet. Adam has been used as
optimizer with an exponential decay of 0.99999. VQ-VAE’s learning rate was
0.000165, discriminator’s learning rate was 0.00005 and Performer’s CrossEn-
tropy learning rate was 0.001.

6.4 Datasets

All datasets have been split into training and testing sub-sets. The VQ-VAE
UKB sub-sets had 31740 and 3970 subjects respectively, while VQ-VAE ADNI
had 648 and 82. All datasets have been first processed with a rigid body registra-
tion such that they roughly fit the same field of view. Afterwards, all samples are
passed through the following transformations before being fed into the VQ-VAE
during training: first, they are being normalized to [0,1], then tightly spatially
cropped resulting in an image of size (160,224,160), random affine (rotation range
0.04, translation range 2, scale range 0.05), random contrast adjustment (gamma
[0.99, 1.01]), random intensity shift (offsets [0.0,0.05]), random Gaussian noise
(mean 0.0, standard deviation 0.02), and finally, the images were thresholded to
be in the range [0, 1.0]. For the Transformer, the UKB and ADNI datasets were
split into sub-populations. UKB was split into small ventricles (6388 and 108),
big ventricles (6321 and 156), young (6633 and 113), old (5137 and 106), while
ADNI was split into cognitively normal (118 and 29) and Alzheimer’s disease
(151 and 36). For the Transformer training, each ADNI sample has been aug-
mented 100 times and each augmentation’s index-based representation was used
for training it.

6.5 VBM analysis

For the Voxel-Based Morphometry (VBM), Statistical Parametric Mapping(SPM)
[35] package version 12.7486 was used with MATLAB R2019a. Before running
the statistical tests, the images must first undergo unified segmentation where
they were spatially normalized to a common template and simultaneously seg-
mented into the Gray Matter (GM), White Matter (WM), and Cerebrospinal
fluid (CSF) tissue segments based on prior probability maps and voxel inten-
sities. The unified segmentation was done with the default parameters: Bias
Regularisation (light regularisation 0.001), Bias FWHM (60mm cutoff), MRF
Parameter (1), Clean Up (Light Clean), Warping Regularisation ([0, 0.001, 0.5,
0.05, 0.2]), Affine Regularisation (ICBM space template - European brains),
Smoothness (0), Sampling Distance (3). As per standard practice when using
VBM, the group-aligned segmentations were modulated to preserve tissue vol-
ume, and a smoothing kernel was applied to the modulated tissue compartments
to make the data conform to the Gaussian field model that underlines VBM and
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to increase the sensitivity to detect structural changes. The smoothing was also
done with the default parameters with FWHM ([8, 8, 8]). For the VBM analysis,
a Two-sample t-test Design was used, with the following parameters: Indepen-
dence (Yes), Variance (Unequal), Grand mean scaling (No) and ANCOVA (No).
No covariates, masking or global normalisation have been used.

Appendix F - Additional Samples

Fig. 3. Synthetic samples
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