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Abstract
Internet of Things (IoT) based voice interaction system, as a new artificial intelligence application, provides a new human–

computer interaction mode. The more intelligent and efficient communication approach poses greater challenges to the

semantic understanding module in the system. Facing with the complex and diverse interactive scenarios in practical

applications, the academia and the industry urgently need more powerful Natural Language Understanding (NLU) methods

as support. Intent Detection and Slot Filling joint task, as one of the core sub-tasks in NLU, has been widely used in

different human–computer interaction scenarios. In the current era of deep learning, the joint task of Intent Detection and

Slot Filling has also changed from previous rule-based methods to deep learning-based methods. It is an important problem

to explore how to realize the models of these tasks to be refined and targeted designed, and to make the Intent Detection

task better serve the improvement of precision of Slot Filling task by connecting the before and after tasks. It has great

significance for building a more humanized IoT voice interaction system. In this study, we designed two joint models to

realize Intent Detection and Slot Filling joint task. For the Intent Detection type task, one is based on BiGRU-Att-

CapsuleNet (hybrid-based model) and the other is based on the RCNN model. Both methods use the BiGRU-CRF model

for the Slot Filling type task. The hybrid-based model can enhance the semantic capture capability of a single model. And

by combining specialized models built independently for each task to achieve a complete joint task, it can be better to

achieve optimal performance on each task. This study also carried out detailed comparative experiments of tasks and joint

tasks on multiple datasets. Experiments show that the joint models have achieved competitive results in 7 typical datasets

included in multiple scenarios in English and Chinese compared with other models.

Keywords Internet of Things � Artificial intelligence � Natural language understanding � Voice interaction �
Intent detection and slot filling � Capsule network

1 Introduction

The way of voice interaction has become a new idea for the

communication method of IoT devices. This kind of

interaction will greatly reduce the current heavy reliance

on Graphical User Interface (GUI) or control methods

based on physical buttons. At the same time, it also pro-

vides an important direction for the Internet of Things

(IoT) to create interconnections: interaction between

human and the Internet of Things through a more natural

way [21], which includes the type of centralized interface

to realize the interaction between multiple objects in the

Internet of Things, etc. These interaction methods allow

users to communicate directly to individual or multiple

connected objects in the Internet of Things in a natural
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improve the overall effect. Therefore, it is necessary to

refine the design and integration of the models of these two

tasks to realize the recognition of key information in the

semantics (Slot Filling/Entity Recognition) after Intent

Understanding (Intent Detection/Clinical Domain Detec-

tion), to achieve a more accurate Natural Language

Understanding.

In a large number of previous studies [6, 11–13, 17–19,

60, 65, 67], it ismore common to useRNN (Recurrent Neural

Network) or CNN (Convolutional Neural Network) and

corresponding variants to capture context information.

However, these two types of methods have their character-

istics and therefore have their shortcomings. RCNN (Re-

current Convolutional Neural Network) [22] as a

combination and improvement of RNN and CNN. Unlike

RNN-type methods, RCNN has no bias on word position in

context, it can use the feature of each word in context more

uniformly, and it is not necessary to determine the dependent

length of the context by setting the window size like CNN.

Therefore, the RCNN used in the Intent Detection task can

effectively improve the common defects of the existing types

of RNN and CNN methods. Additionally, the BiGRU (Bi-

directional GRU) improved based on the RNN and the

CapsuleNetwork [48] created to improveCNNare two of the

most advanced neural network models. Their effective fea-

ture modeling ability [36] also lacks attempts on the joint

task of ID and SF.

Therefore, in this study, we explore the joint task of

Clinical Domain Detection and Entity Recognition (CDD

and ER), as well as the joint task of intent detection and

slot filling. They are mainly based on related key issues

such as how to achieve precise classified the multi-class

intents or clinical domains to better service for the subse-

quent slot filling task or Entity Recognition task, and how

the model performs on data with different sample sizes on

Intent Detection task, etc. In this work, 1. RCNN model is

the first time used on the Intent Detection task and also

applied in the application of clinical scenarios. 2. A hybrid

model with strong contextual modeling capability, BiGRU-

Att-CapsuleNetwork is also specially designed for the

Intent Detection task. 3. And combine the BiGRU-CRF

model for slot filling task and Entity Recognition task,

respectively. Among them, RCNN abandoned some origi-

nal defects of RNN and CNN, while BiGRU-Att-Cap-

suleNet combines more advanced RNN variants (BiGRU)

and replacement method (Capsule Network) of CNN to

achieve better feature modeling and capture ability. Hence,

the study employed the RCNN model to Clinical Domain

Detection task to enhance the identification accuracy of IoT

devices for clinical speech diagnosis in the initial condition

of the patient and also used these two models respectively

to improve the performance of Intent Detection for voice

assistants.
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way, while the current IoT interaction methods are limited 
to programmatic information transfer between devices 
[31]. Human can give instructions to smart devices around 
them in a simpler and more natural voice form, and the 
devices can feedback more simply and understandably. Just 
as human can communicate with virtual assistants by using 
natural language, virtual assistants can understand users’ 
intentions and respond accordingly through the semantic 
understanding module (Fig. 1). How to accurately identify 
important mentions and corresponding relationships in 
speech through semantic understanding model, and connect 
to the accurate entity to call and perform correct operation 
puts forward higher requirements for the voice control 
interface. Therefore, the primary goal of build up a smarter 
voice control interface is to solve the core challenges in 
natural language understanding and the way of human-

computer interaction communication [51].
As the core module of Natural Language Understanding, 

Intent Detection (ID) aims to classify queries in sentences 
or question-and-answer tasks into corresponding intent 
categories using classification. It plays a vital role not only 
in the voice interaction of the IoT but also in search 
engines and smart question and answering systems, etc. In 
simple terms, when the user speaks or inputs a sentence or 
a text, the Intent Detection can accurately identify which 
problem it is and then assign it to the corresponding 
domain system for subsequent activities. This approach 
can improve the accuracy of a problem matching in the 
case of excessive problem categories. At the same time, 
Intent Detection as a type of pre-classification can signifi-
cantly reduce retrieval time of target slot template match-

ing. Especially in the context of vertical search, it is 
necessary to divide the query into a variety of specific 
domains to narrow down the target range for refined 
retrieval to improve the accuracy and efficiency of the 
retrieval. And Slot Filling (SF) task is a process that allows 
the user’s intention to be converted into an explicit 
instruction to complete the information collection. It is 
equivalent to the precondition of identifying the specific 
action of the intent. After the conditions are met, new 
scripts can be triggered, and the voice assistant can con-
tinue to perform subsequent actions. With the increasing 
number of human-computer interaction scenarios in IoT, 
the scope of intent and entity type coverage has also 
increased dramatically. How to gradually increase the 
number of intent and entity types while ensuring the 
accuracy of them also poses greater challenges to the 
model aspect. Therefore, on this joint task, the Intent 
Detection (specific domain) task can improve the perfor-
mance by having a classification model that performs better 
in more categories. And a more accurate named entity 
recognizer in the performance of Slot Filling task and 
Named Entity Recognition task in a specific domain to help



Finally, combined with BiGRU-CRF, a state-of-the-art

method for Named Entity Recognition task, the entities are

more accurately extracted and slot filled. The experimental

results prove that RCNN-BiGRU-CRF and BiGRU-Att-

CapsuleNet-BiGRU-CRF are achieved ideal results on the

joint task of clinical domain detection and entity recogni-

tion in the medical scenario. And on SNIPS, MIT Res-

taurant corpus and Movie corpus, and three other English

and Chinese Intent Detection datasets, which are collected

by voice assistant and other devices, achieve the compet-

itive effects in single ID task and ID and SF joint task.

These are provided valuable support for the construction of

voice clinical diagnosis assistant based on medical sce-

narios and the move toward a more intelligent voice control

system for IoT.

Our contributions are as follows:

• We propose two structures: RCNN-BiGRU-CRF and

BiGRU-Att-CapsuleNet-BiGRU-CRF, used for Intent

Detection and Slot Filling joint task for IoT Speech

Understanding system, and the massive experiments

prove our hybrid model structures have high compet-

itiveness, the details can be found in Sects. 3–6.

• Based on the idea of the joint task of intent detection

and slot filling, we transferred to the medical field to

solve the Natural Language Understanding issues in the

construction of clinical voice assistants and proposed

the joint task of clinical domain detection and entity

recognition. and applied the proposed hybrid model

structures and carried out a large number of the

corresponding comparative experiments to achieve the

joint task, which can be found in Sect. 5.

• The hybrid model structures we propose can well help

the semantic understanding module in IoT to realize

key functions of Natural Language Understanding in

multiple scenarios. As far as we know, there is quite

little and limited research work in this field. Specific

evaluations can be found in Sects. 5 and 6.

Additionally, as a study involving hybrid-based task

models and focusing on joint task methods, the hybrid

neural network-based task model can improve the short-

comings of a single model on semantic capture. And the

joint task methods also have advantages that other con-

ventional jointly modeling models [25, 32, 33] do not have

while avoiding some of the shortcomings of previous

approaches. Compared with the conventional jointly

modeling methods: it is more difficult to achieve optimal

performance on both tasks at the same time. By con-

structing a dedicated deep learning model for each task

independently and using a specific domain knowledge pre-

trained language model as a word embedding according to

each task, the actual effect of each task can be greatly

improved. Furthermore, since the performance of task like

slot filling is dependent on the effect of predecessor task

(the accuracy of Intent Detection will affect the recognition

of slot filling), independent professional models for a

specific task will more effectively reduce the impact of

misjudgment by pre-order task (e.g. Intent Detection). If

perform the joint task of Intent Detection and slot filling in

a large-scale simultaneous scenario, which will reduce

the negative perception of users due to system detection

errors.

2 Related work

The current IoT technology [1, 37, 50, 54] has tended to be

applied on a large scale. With the great improvement of

communication capabilities brought by the development of

5G, the interaction of the Internet of Things has become

more frequent and intensive. Such a huge interactive scale

cannot be separated from the support of artificial intelli-

gence. As one of the cores of artificial intelligence, speech

recognition-based semantic understanding technology has

emerged on IoT devices including smart voice assistants.

At present, there are many explorations in the field of

construction of intelligent voice assistants. Some studies

focus on expanding the application of intelligent voice

assistants in different scenarios, such as the field of medical

and health care [35, 44], intelligent home applications [28],

autonomous driving [24], or personal and collective

knowledge management [45, 47], etc. Another part of the

study focuses on the design and optimization of intelligent

voice assistants, such as analyzing from the language

expression level of speech recognition [29], or improving

the existing development methods and logical framework

[57], etc.

As an earlier attempt, Matsuda et al. [30] proposed a

method of generating the user interface of an AV controller

by using NLU. It can analyze the instructions issued by the

user using natural language, and ask the user the questions

about corresponding necessary conditions for specific

instructions to complete the execution of specific actions.

But the study as a rule-based NLU method requires users to

know correct answers i.e., the details about the AV system.

Park et al. [38] developed a natural language-based

mobile device user interface for mobile devices with lim-

ited resources. Its purpose is to translate voice requests into

commands that can be understood by mobile devices.

Santos et al. [49] surveyed the latest Intelligent Personal

Assistants (IPAs) in general, related IoT protocols, and

IPAs based on IoTs. While reviewing recent related tech-

nologies, it also described in detail how IoT networks can

be improved IPAs functionalities.

The vast majority of IoT-related speech recognition

researches mainly focuses on the design of hardware,

Neural Computing and Applications (2020) 32:16149–16166 16151



slot filling subtask of the benchmark Airline Travel Infor-

mation System (ATIS) task.

Yu et al. [65] used a Bi-directional model-based RNN

semantic frame parsing network structures to consider the

interaction effect between the two tasks of Intent Detection

and slot filling, and jointly execute these two joint tasks.

Experiments show that their method is better than other

previous methods on the ATIS dataset [16].

Chen et al. [5] proposed a Bi-directional LSTM

(BiLSTM) model based on the Attention mechanism to

jointly identify the Intent and Semantic slot filling of

Hohhot’s public transit queries. The experimental results

show that the methods based on character tags are better

than those based on word tags, and the proposed model is

also better than other original LSTM methods in F1-Score

performance.

2.2 CNN-based

Kim [20] used CNN to explore sentence classification

tasks, and his research reported several improvements on

the CNN-based models on four tasks including sentiment

analysis and problem classification.

Xu and Sarikaya [61] described a CNN-based joint

Intent Detection and slot filling model. This model can be

considered as a neural network version of triangular CRF

(TriCRF). Both tasks extract features through the CNN

layer. This method is the first attempt of joint training
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Fig. 1 Speech Understanding for IoT

architecture and security [8, 40, 43, 46, 49], and generally 
ignores the exploration of natural language understanding 
based on artificial intelligence. Hence, the latest relevant 
works for semantic understanding of IoT device design are 
also extremely rare. However, this is the key part to making 
IoT speech recognition systems truly work. Therefore, it is 
urgent to design reasonable and effective methods for the 
IoT semantic understanding module for different scenarios. 
In the era of artificial intelligence, deep learning, as the 
best performing solution at present, provides new ideas for 
this field.

Several previous studies have explored both Intent 
Detection and slot filling tasks. Among them, most of these 
studies [23, 32, 39, 62, 63] have proved that deep learning 
methods including RNN, CNN, and hybrid methods are 
suitable for the joint task scenario, and replace conven-
tional methods based on rule-based have become the cur-
rent state-of-the-art paradigm. Among them, these studies 
can be divided into the following types of methods:

2.1 RNN-based

Liu and Land [25] provided more contextual information 
for Intent Detection and slot filling by introducing the 
Attention mechanism to alignment-based RNN models. 
Compared with the independent task model, the joint 
model achieved a 0.56% absolute error reduction on the 
Intent Detection subtask and 0.23% absolute gain on the



neural networks on the Intent Classification and slot filling

joint task.

Vu [58] provided a CNN architecture for sequence

labeling tasks, this structure retains the context words of

the sequential information and pays special attention to the

context of the current position, introducing them to the

model for better perform the classification task. The

method does not require prior language knowledge, and it

performs better than previous integrated RNN-based

models.

2.3 Hybrid-based

Wang et al. [59] proposed a neural network based on

Attention-CNN-BiLSTM. The network is used to encode

sentences and decoded by the LSTM network with the

Attention mechanism, so it comes with contextual semantic

information. The method achieved ideal overall perfor-

mance on the ATIS dataset for Intent Detection and slot

filling.

Niu et al. [10] proposed a novel bidirectional association

model, which introduced the SF-ID network to establish

direct connections for the joint task of Intent Detection and

Slot Filling so that they can promote each other. At the

same time, a new iterative mechanism is also designed

inside the SF-ID network to enhance bidirectional related

connections. The method is based on the ATIS [16] and

Snips [7] datasets. The accuracy of the model at the sen-

tence level semantic frame is improved by 3.79% and

5.42% respectively compared with other models.

Liu et al. [27] introduced a zero-shot adaptation method

called attention-informed mixed-language Training (MLT)

to realize cross-language semantic learning on a small

number of corpus resources, which is designed for cross-

language task-oriented dialogue systems. Compared with

other existing state-of-the-art approaches, its method is

used in Natural Language Understanding tasks (including

Intent Detection and slot filling), and it does not need to use

a large amount of bilingual corpus data. It also does not

need to use a large amount of bilingual corpus data. A

significant zero-shot adaptation performance improvement

can be achieved with a small number of word pairs. Since

most of the previous work focused on using semantic level

information to calculate attention weights, Chen and Yu [4]

introduced word-granularity information and created a

fusion gate to integrate with semantic level information to

jointly train Intent Detection and slot filling tasks. Gupta

et al. [15] designed a framework for modularizing Intent

Classification and slot filling joint tasks to enhance the

transparency of the overall structure. The research also

explored multiple self-attention mechanisms and RNN,

CNN-type models, and contributed to the modeling

paradigm of Intent Detection and Slot Filling joint task

across datasets.

In summary, the hybrid-based method, as a type that

improves the defects of the original single neural network

model, has better semantic modeling performance for the

context and the ability to handle more complex contexts. In

contrast, the hybrid-based method is more worth

considering.

3 Methodology

3.1 Method structure

On the joint task of the Intent Detection and Slot Filling

model, the Intent Detection model can be used as a multi-

class or multi-label classification task. By predefining the

category to which the content belongs, it will be placed in

the correct slot recognizer to improve the accuracy of slot

filling. Compared with other integrated models, this type

of specialized processing approach has a greater advantage

in the processing of various tasks. Therefore, in the method

section, we will explain in detail the modules of our joint

models with Intent Detection and Slot Filling through two

sub-sections, which includes the two models we designed

based on BiGRU-Att-CapsuleNet and RCNN respectively

for Intent Detection. And a BiGRU-CRF model for Slot

Filling task (Fig. 2).

3.2 Intent Detection models

3.2.1 BiGRU-Att-CapsuleNetwork

The model is mainly divided into three parts including the

BiGRU layer, the Attention layer, and the Capsule Net-

work layer. Its overall structure is shown in Fig. 2.

In the first layer (Bidirectional GRU layer), as a variant

of LSTM, GRU (Gated Recurrent Unit) has the charac-

teristics of a simpler structure, fewer parameters, and better

convergence (The neuron structure of GRU can be found in

Fig. 3). It mainly consists of two parts: update gate and

reset gate. The update gate z is used to control the degree of

influence of the output at the previous time t � 1 on the

current hidden layer. The reset gate r is used to control the

degree to which the information from the hidden layer is

ignored at the previous moment. Here, a larger value of the

update gate indicates that the current hidden layer is more

affected by the output of the hidden layer at the previous

moment, and a smaller reset gate indicates that more

information from hidden layer at the previous moment is

ignored. With the help of the hidden layer state h, the

update gate z can be determined by the new information

received by the current state and the historical information

Neural Computing and Applications (2020) 32:16149–16166 16153



that needs to be forgotten; the reset gate r is determined by

the information from the candidate state obtained from the

historical information. Therefore, the update method of the

GRU model can be expressed by the following formula:

ð1Þ

ð2Þ

ð3Þ

ð4Þ

By establishing a forward and reverse GRU network for

the context, respectively, the modeling from the two

directions of the text (from the beginning to the end and

from the end to the beginning) can be realized. The two

unidirectional GRUs with opposite directions jointly

determine the output. At each moment, input information is

provided by two GRUs in opposite directions, and the two

unidirectional GRUs will jointly determine the output. The

current hidden state is jointly determined by the current

input xt, the forward hidden layer state at time t � 1, i.e.

ht�1
��!

, and the output of the hidden layer state in the reverse

direction ht�1
��

. Because the bidirectional GRU can be

regarded as consisting of two unidirectional GRUs, the

hidden state of the BiGRU at time t is obtained by weighted

summing the output of the forward hidden state ht�1
��!

and

the reverse hidden layer state ht�1
��

:

ht
!¼ GRUðxi; ht�1

��!Þ ð5Þ

ht ¼ GRUðxi; ht�1
��Þ ð6Þ

hi ¼ wt ht
!þ vt ht þ bt ð7Þ

The GRU() function represents a non-linear transfor-

mation of the input word vector, encoding the word vector

into the corresponding GRU hidden layer state. wt and vt

Fig. 2 Overall of the proposed model structures

Fig. 3 Neuron Structure of Gated Recurrent Unit (GRU)
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rt ¼ r Wr � ht�1; xt½ �ð Þ

zt ¼ r Wi � ht�1; xt½ �ð Þ

h~t ¼ tanh Wc � rt � ht�1; xt½ �ð Þ  

ht ¼ 1 � ztð Þ ct� �1 þ zt � h~t

2



respectively represent the weights of the forward hidden

layer state ht and the reverse hidden state ht corresponding

to the bidirectional GRU at time t, and t in bt represents the

bias corresponding to the hidden layer state at time t.

Finally, the information of the forward and backward

GRUs is merged to output a vector hi for each word

i. Among them, each Recurrent Unit can capture the

dependencies on different time scales.

Therefore, through this layer, the modeling of infor-

mation of sequential sentence can be realized.

As for Attention (Fig. 4), as a mechanism to capture

important features in the context, it calculates the proba-

bility weights of word vectors at different moments using

probability weight allocation, so that important features in

the sentence can get more attention to improve the effect of

feature extraction by hidden layer. The vector s from the

initial hidden layer state to the updated hidden layer state

represents the weighted coefficient a1 of each hidden state

in the new hidden layer state, and the sum of the product of

each hidden layer state hi at the initial input. vi and wi

represent the weight coefficient matrix at the ith time, bi
represents the corresponding offset at the i-th time, and ei
represents the value determined by the hidden layer state

vector hi at the i-th time. The formula that converts the

input initial state to the new attention state is as follows:

s ¼
X

l

i¼1
aihi ð8Þ

ai ¼
exp eið Þ
Pn

j¼1 ej
� � ð9Þ

ei ¼ vi tanh wihi þ bið Þ ð10Þ

The Attention mechanism is used to enhance the

semantic vector representation of the target word in the

context and input to the next layer to improve the overall

semantic representation effect of the model.

The Capsule Network is one of the currently best

alternatives to CNN models, where the prediction vector

uijj represents the output of each capsule neuron in the last

layer to the neurons in the next layer with different inten-

sity connections. Through the matrix multiplication cal-

culation of the output vector vi of the BiGRU layer and the

transformation matrix wij, the important spatial feature

relationships between high-dimension and low-dimension

features in the text can be encoded. A dynamic routing

algorithm is used to calculate the coupling coefficient and

weight the sum of the input vectors. With the help of a non-

linear ‘‘compression’’ activation function, the vector is

compressed to a value between 0� 1 as a probability, and

its original direction is maintained.

The most fundamental difference between a capsule

network and a conventional artificial neural network is the

unit structure of the network. For conventional neural

network, the calculation of neurons can be divided into the

following three steps:

Step 1. Scalar-weighted calculation to the input. Step 2.

Sum the weighted input scalars. Step 3. Non-linear trans-

formation of the scalar.

For capsules, it is calculated in four steps (Fig. 5):

Step 1. Multiply the input vectors, where v1 and v2 are

from the output of the previous capsule. Within a

single capsule, multiply v1 and v2 by w1 and w2,

respectively. And new u1 and u2 can be obtained.

Step 2. Scalar weight the input vectors, multiply u1 and

c1, multiply u2 and c2, where c1 and c2 are both

scalars, and c1 þ c2 ¼ 1.

Step 3. Sum the obtained vectors S ¼ c1u1 þ c2u2.

Step 4. Non-linear transformation of vectors, convert the

resulting vectors s, i.e., through the function

SquashðsÞ ¼ ksk2

1þksk2
s
ksk to get the result s as the

output of this capsule, and the result v can be

used as the input of the next capsule.

u1 ¼ W1v1; u2 ¼ W2v2 ð11Þ

s ¼ c1u
1 þ c2u

2 ð12Þ

v ¼ SquashðsÞ ¼ ksk2

1þ ksk2
s

ksk ð13Þ

Through the flattening operation of the capsule network,

the relative spatial relationships and directions of high and

low dimension features are modeled and finally converted

into the vector of the highest weighted feature in the text.

The fully connected dense layer is used to judge the final

output category using Softmax.

Fig. 4 Structure of Attention

Neural Computing and Applications (2020) 32:16149–16166 16155



The embedding method of each word mainly consists of

three parts (using concat): Left Context (lc), Embedding of

the word itself (e), and Right Context (rc) (Fig. 6). Among

them, w represents a word, and eðwiÞ is the embedding of

the word, which is obtained through pre-training by the

Skip-gram method.

xi ¼ cl wið Þ; e wið Þ; cr wið Þ½ � ð14Þ

f represents a non-linear activation function, cl fuses the

information of the word in front of the current word, cr
fuses the information behind the word. Since each xi is

derived from this encoding method, it can be fused the

information of context altogether to make long-range

dependent predictions.

cl wið Þ ¼ f W ðlÞcl wi�1ð Þ þW ðslÞe wi�1ð Þ
� �

ð15Þ

cl wið Þ ¼ f W ðrÞcl wiþ1ð Þ þW ðslÞe wiþ1ð Þ
� �

ð16Þ

Through multi-layer perceptron processing and adding a

tanh activation function, yð2Þ can be obtained, i.e., the score

vector of the word for each category:

y
ð2Þ
i ¼ tanh W ð2Þxi þ bð2Þ

� �

ð17Þ

Use max-pooling to get yð3Þ:

yð3Þ ¼ max
n

i¼1
y
ð2Þ
i ð18Þ

After the processed by yð3Þ, the vector of final score can
be obtained by connecting a multilayer perceptron layer

and a softmax layer:

yð4Þ ¼ W ð4Þy
ð3Þ
i þ bð4Þ ð19Þ

Apply the Softmax function to yð4Þ to convert the output

into a probability:

Fig. 5 The Operation of a

Single Capsule
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3.2.2 RCNN

Since conventional feature expression methods ignore 
context, semantics and word order information, higher-
order N-gram, Tree Kernels, etc. are applied to feature 
expression. But they also have the disadvantage of 
sparseness, which affects accuracy in subsequent tasks. 
Therefore, the methods based on deep learning and word 
embedding have advantages over conventional feature 
representation methods in terms of feature extraction. From 
the point of view of improving convenience and perfor-
mance, they do not need to manually formulate feature 
rules and solving data sparseness, but they still have some 
disadvantages. On the tasks about text classification, 
recurrent neural network (RNN) and convolutional neural 
network (CNN), as two commonly used deep learning 
representatives, have been widely used in various classifi-
cation tasks. Among them, RNN is good at capturing 
context of sequence. But as a biased model, it has a greater 
preference for words in the back of the text sequence and 
usually has a higher weight for the words at such positions, 
but this does not take into account the fact that important 
words (key components) may appear anywhere in the text. 
As an unbiased model, CNN can obtain more important 
features through max-pooling than captured by Recursive 
or Recurrent Neural Network. But at the same time, due to 
it is difficult to determine the window size, the CNN model 
is prone to problems such as information loss or huge 
parameter space. Therefore, to solve the above problems, 
Lai et al. [22] proposed the Recurrent Convolutional 
Neural Network (RCNN) for text classification. The model 
uses a bidirectional loop structure, so it has less noise than 
the conventional window-based neural networks and can 
extract context to the maximum. And it through the max-

pooling layer to automatically determine which feature has 
a more important role.



pi ¼
exp y

ð4Þ
i

� �

Pn
k¼1 exp y

ð4Þ
k

� � : ð20Þ

3.3 Slot Filling model

3.3.1 BiGRU-CRF

BiGRU-CRF, as an Entity Recognition model, is used for

the Slot Filling task after Intent Detection. Here, the Slot

Filling task can be transformed into the Named Entity

Recognition task. The specific method of BiGRU-CRF is to

obtain a vector representation of each word by pre-trained

language model, perform further semantic encoding by

BiGRU, and finally, output to CRF (Conditional Random

Field) layer to predict the maximum probability sequence

label. Among them, the BiGRU in BiGRU-CRF has the

same structure as the BiGRU used in the previous BiGRU-

Att-CapsuleNet and is also used for sequence modeling

tasks (e.g. Slot Filling task), which can capture the long-

term context information. However, the original BiGRU

model does not consider the dependencies between labels.

For example, on some sequence labeling tasks, some labels

cannot appear consecutively. Therefore, the model cannot

use ht to make label decisions independently. The CRF can

obtain the global optimal label sequence by considering the

adjacent relationship between the labels, therefore, using

CRF to model the label sequence. Through the sequence

x ¼ x1 þ x2 þ � � � þ xnð Þ output by the BiGRU layer and its

corresponding label y ¼ y1 þ y2 þ � � � þ ynð Þ, where the

matching scores for a given input and output can be

calculated:

sðx; yÞ ¼
X

n

i¼1
Wyi�1;yi þ Pi;yi
� �

ð21Þ

pði;yiÞ represents the score of the yi � th label of the

character, and Wi;j represents the transition score (W is

transition matrix) of the label.

Pi ¼ Wsh
ðtÞ þ bs ð22Þ

hðtÞ is the hidden state of the input data xðtÞ at time t of

the previous layer, the parameters are weight matrix and

maximum conditional likelihood estimation for CRF,

respectively, which training set is xi; yi, and the likelihood

function formula is as follows:

L ¼
X

n

i¼1
log P yijxið Þð Þ þ k

2
khk2 ð23Þ

where P represents the probability corresponding to the

original sequence to the predicted sequence:

PðyjxÞ ¼ esðx;yÞ
P

y2Yx e
sðx;yÞ ð24Þ

Therefore, after identifying the speech intent, entity

recognition through BiGRU-CRF can be used to fill the

predefined slots (the output of CRF to determine the

identified entity category).

4 Experiments and tasks

4.1 Experiments

Most of the experiments were tested under the environment

of Intel Xeon E5-2678 v3 CPU, Dual 2.50GHz RAM, Dual

Nvidia GeForce GTX 1080 Ti GPU. Among them, the

number of batch size is 32, Sequence length is 256, epoch

setting is 100, which also sets the 10 epochs’ early stop-

ping. At the same time, we also employed BERT [9],

CMed-BERT [36] ELMo [42], GloVe and KazumaChar

[41] respectively as word embedding in several tasks to

achieve more accurate language representation.

Fig. 6 Structure of Recurrent Convolutional Neural Network (RCNN)
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4.2 Description of tasks

In the semantic understanding module, the purpose is to

switch user questions and answers from the open domain

(recognize the user’s intention) into a closed domain dialog

(a dialog that requires clear task details after identifying the

user’s intention, i.e., Slot Filling task). And this logical

judgment is the entry condition, which is composed of

condition groups and conditions, which form a set of

‘‘AND’’, ‘‘OR’’, and ‘‘NOT’’, i.e.:

• Two condition groups are ‘‘OR’’ relationship.

• The condition within the condition group is an ‘‘AND’’

relationship.

• The condition itself can be a ‘‘NOT’’ relationship.

the contents of a slot in the dialog, which should take

precedence over the slot content obtained by the interface

slot); 6. Multiple rounds of memory status (users turn to

other tasks when clarifying the slot, and return to the closed

domain dialog to continue clarifying the slot status after

finishing the task, etc.).

Therefore, the dialogue system process of the entire IoT

semantic understanding module can be divided into:

• Open-domain multi-round dialogues (recognize user’s

intents).

• Entry conditions (switch into the closed domain dialog

according to the set entry conditions).

• Closed domain dialogue (i.e., the process of Slot Filling

task, allowing users to fill in the necessary slots through

clarification so that tasks can be performed concretely).

In summary, its core task can be summarized as a joint task

of the Intent Detection and Slot Filling type. Based on this

idea, we try to translate them into Clinical Domain

Detection and Entity Recognition joint task applied to

clinical voice assistants, and Intent Detection and Slot

Filling joint task based on universal IoT voice control

scenarios.

5 Clinical domain detection and entity
recognition joint task

In the medical scenario, the clinical voice assistant first

needs to make a preliminary diagnosis of the patient’s chief

complaint, and match the candidate disease with the

highest probability as the standard. Based on the prelimi-

nary diagnosis results, a pre-trained entity recognition

model based on the domain knowledge of the corre-

sponding disease type is called, to realize the identification

of key mention or entity in the main complaint of the

patient, and classify the corresponding entity types to

achieve the slot template of specific illness can be filled.

This joint task is based on the idea of Intent Detection and

Slot Filling joint task, to matching the symptoms in the

chief complaint and the corresponding candidate disease.

And according to the judged results, it provides the clari-

fication of the non-null slots for diagnosing related diseases

and make the patient return the specific slot content to

improve the entire chief complaint, to finish the process of

collecting information related to the disease. This will

provide a basic technical solution for the construction of an

IoT clinical voice assistant that can provide valuable

clinical decision-making information such as treatment

recommendations, examination plans, and an initial diag-

nosis for patients, etc.
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Therefore, the semantic understanding module identifies 
the condition group in the user’s narrative content (e.g., the 
patient’s chief complaint is ‘‘Palpitations with fever’’), or 
the user instruction contains the condition group ‘‘booking 
an air ticket’’ through Clinical Domain Detection (Intent 
Detection) and switch into the closed conversation on the 
corresponding topic. The input and output of the closed 
domain are enumerable. For example, the instruction 
‘‘book an air ticket’’ requires three inputs: ‘‘Departure 
Time’’, ‘‘Departure Place’’, and ‘‘Destination’’. Therefore, 
the closed-domain dialogue between machines and humans 
needs to have a clear purpose and process.

Therefore, when the user’s instruction lacks some 
required conditions, the dialogue system needs to ask 
questions actively and collect all the required conditions 
before execution. The process is also called ‘‘Clarifica-
tion’’. The required condition here is a ‘‘Slot’’, and the 
conditions for its extension are also a ‘‘Clarification’’ (e.g., 
Business-class and Economy-class sections). Therefore, if 
the instruction process of ‘‘booking an air ticket’’ is sim-

plified into three ‘‘Slots’’, then the slot filling process can 
be transformed into: ‘‘Departure Place’’, ‘‘Destination’’, 
‘‘Departure Time’’ and other slots, which may also include 
‘‘Seat Selection’’ and additional clarifications.

Furthermore, the attributes or capabilities of the slot also 
include: 1. whether the slot needs to be non-null (e.g., the 
required condition); 2. The order of Clarifications (Priority 
issues in the process of ‘‘Clarification’’ for multiple 
‘‘Slots’’); 3. Same-level Slot or Dependent Slot (whether 
the slots are independent of each other, whether the sub-
sequent slots depend on the previous results, e.g., the three 
slots (same-level) of the ‘‘booking an air ticket’’ instruction 
listed above; country number slot of mobile number 
(Dependent), etc.) 4. Interface Slot (slot content obtained 
from other sources, e.g., via GPS to access the geographic 
location, etc.) and Keyword Slot (obtain slot content 
through keywords of user dialogue); 5. Slot Priority (Sort 
the selection order for multiple slots, e.g., the user specifies



5.1 Pre-trained language models

We develop on our previously proposed CMedBERT as a

pre-trained language model layer, which is used to build

the model structures for the joint task of Clinical Domain

Detection and Entity Recognition to evaluate the perfor-

mance of the proposed structures on the actual datasets.

Among them, CMedBERT (Table 1) is used as a pre-

trained language model for the Clinical Domain Detection

task, and C-BERT is used for the Entity Recognition task

in the same way. Different from CMedBERT, Category-

based BERT (C-BERT) is another pre-trained language

model which is determined by the results of the Clinical

Domain Detection, training corpus is specific domain

knowledge related to this category (disease). We have

prepared some Category-based pre-trained language mod-

els with specific domain knowledge, and take one type of

the C-BERT (a C-BERT pre-trained based on EMR data of

the disease ‘‘hepatoma’’ (extracted from SAHSU)) as an

example to evaluate in detail (Fig. 7).

5.2 Evaluations

Our experimental results are evaluated on an integrated

dataset (CCKS-SAHSU), which includes the real-world

electronic medical record dataset (SAHSU) [36] and the

largest academic evaluation dataset in the Chinese Clinical

NLP field (CCKS 2019) [2]. Through the testing of 16

Table 1 Description of CMedBERT pre-training corpora [23]

Corpus

source

Description Size

(Character)

Medical

books

13 Chinese mainstream medical books for training corpus, including Clinical Drug Therapy, Psychiatry, etc. 4,384,503

SAHSU The electronic medical records (EMRs) collected from the Second Affiliated Hospital of Soochow University,

including 5090 electronic medical records.

2,002,202

Online

resources

All the data were collected from 4 professional Chinese health websites: ‘‘39 Health (39.net)’’, ‘‘XunYiWenYao

(XYWY.com)’’, ‘‘Feihua Health (fh21.com.cn)’’, ‘‘NetEase Health (jiankang.163.com)’’, which contents

including medical encyclopedia, Q&A, blog and forum, etc.

29,092,216

Fig. 7 CMedBERT-RCNN and C-BERT-BiGRU-CRF model structures for the joint task of Clinical Domain Detection and Entity Recognition
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model structures on the Clinical Domain Detection task

and 10 model structures on the Entity Recognition task,

respectively, the effectiveness of our proposed model

structures on medical tasks can be confirmed.

On the Clinical Domain Detection task, CMedBERT-

based RCNN, and BiGRU-Att-CapsuleNet. obtained F1-

Scores of 73.89% and 73.72%, respectively. These are also

the two models that get the top 2 F1-Score on this task. It is

also worth noting that CMedBERT-AVCNN also achieved

ideal performance in the accuracy, and the results are

closer to our methods than other models. This may also be

one of the ideal candidate models for this task (Table 2,

Fig. 8). Additionally, compared with the performance of

downstream models based on the BERT language model,

Table 2 The comparison results on the Clinical Domain Detection task

Task Original model Pre-trained model

Model P R F1 Model P R F1

Clinical Domain

Detection

BERT-CNN-LSTM 0.4287 0.3762 0.3823 CMedBERT-CNN-LSTM 0.5731 0.5273 0.5285

BERT-CNN 0.5544 0.5300 0.5103 CMedBERT-CNN 0.5921 0.5562 0.5448

BERT-BiGRU 0.6091 0.5918 0.5741 CMedBERT-BiGRU 0.6044 0.5870 0.5678

BERT-CNN-GRU 0.6296 0.5835 0.5791 CMedBERT-CNN-GRU 0.6465 0.5785 0.5735

BERT-BiLSTM 0.6006 0.5696 0.5657 CMedBERT-BiLSTM 0.6359 0.6259 0.6136

BERT-Dropout-BiGRU 0.6561 0.6506 0.6310 CMedBERT-Dropout-BiGRU 0.6522 0.6195 0.6213

BERT-Dropout-AVRNN 0.6862 0.6585 0.6417 CMedBERT-Dropout-AVRNN 0.6787 0.6569 0.6556

BERT-AVRNN 0.6610 0.6701 0.6487 CMedBERT-AVRNN 0.7040 0.6716 0.6596

BERT-AVCNN 0.6706 0.6605 0.6487 CMedBERT-AVCNN 0.7858 0.7268 0.7170

BERT-RCNN 0.7389 0.7114 0.7028 CMedBERT-RCNN 0.7456 0.7531 0.7372

BERT-BiGRU-Att-

CapsNet.

0.7463 0.7410 0.7295 CMedBERT-BiGRU-Att-
CapsNet.

0.7654 0.7590 0.7389

The numbers in bold represent the largest value in each column; the numbers in bold italics represent the second highest value in each column

Table 3 The comparison results on the Entity Recognition task (Based on ‘‘hepatoma’’ disease data in the CCKS-SAHSU integrated dataset)

Task Original model Pre-trained model

Model P R F1 Model P R F1

Entity

Recognition

BERT-CNN-LSTM 0.6330 0.6910 0.6421 C-BERT-CNN-LSTM 0.6481 0.7248 0.6839

BERT-BiLSTM 0.6852 0.7640 0.7214 C-BERT-BiLSTM 0.7095 0.7536 0.7303

BERT-BiGRU 0.7047 0.7437 0.7221 C-BERT-BiGRU 0.7125 0.7635 0.7367

BERT-BiLSTM-CRF 0.6897 0.7716 0.7282 C-BERT-BiLSTM-CRF 0.7201 0.7874 0.7516

BERT-BiGRU-CRF 0.7214 0.7820 0.7499 C-BERT-BiGRU-CRF 0.7240 0.8072 0.7632

The numbers in bold represent the largest value in each column; the numbers in bold italics represent the second highest value in each column

Fig. 8 The 11 types model structure of Clinical Domain

Detection task

Fig. 9 The 5 types model structure of Entity Recognition task
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CMedBERT has improved the performance of most

downstream models to varying degrees. And on the Entity

Recognition task, the performance of multiple models

based on the C-BERT language model proves that domain

classification will greatly improve the performance of the

Entity Recognition task. Compared with the original BERT

language model, the pre-trained C-BERT based on ’’hep-

atoma’’ EMR data has particular help in the accuracy,

recall rate and F1-Score of the corresponding domain entity

recognition (Table 3, Fig. 9).

6 Intent Detection and Slot Filling joint task

6.1 Intent Detection task

Here, we discuss the performance of our methods in detail

in four Intent Detection datasets. These include two large-

sample datasets: SNIPS (English) [7, 55], SMP2018

(Chinese) [66], and two small-sample English datasets:

AskUbuntu [52], WebApplication [52].

Based on the above results (Tables 4, 5), it is shown that

RCNN and BiGRU-Att-CapsuleNet are greatly improved

in the tests on different datasets, which compared to RNN

and CNN or hybrid type methods in the comparison

experiments. By comparing the test results on the small

datasets, it can be found that when the number of samples

participating in training in each category is greater, the

effect of RCNN is better (the ‘‘support’’ value in AskU-

buntu test set is 120 but the number in WebApplication is

16). At the same time, the results on the large sample

datasets can be found that under the same training condi-

tions (parameters and pre-trained models are equivalents)

(Fig. 10), the overall performance of English Intent

Detection task (SNIPS) is better than that of Chinese task

(SMP2018), this may be related to many factors: semantic

ambiguity caused by Chinese word segmentation; pre-

Table 4 Comparative

experimental results on a large

number sample of Intent

Detection datasets

Model SNIPS SMP2018

Precision Recall F1-Score Precision Recall F1-Score

BiLSTM 0.9247 0.9211 0.9219 0.9235 0.9294 0.9181

BiGRU 0.9335 0.9351 0.9339 0.9273 0.9068 0.9131

AVRNN 0.9440 0.9442 0.9440 0.9003 0.8744 0.8755

CNN-LSTM 0.9326 0.9289 0.9301 0.8633 0.8400 0.8333

DPCNN 0.9247 0.8487 0.8543 0.9002 0.8233 0.8488

CNN-GRU 0.9491 0.9450 0.9461 0.8623 0.8603 0.8553

Dropout-AVRNN 0.9440 0.9440 0.9436 0.8987 0.8807 0.8840

Dropout-BiGRU 0.9450 0.9406 0.9419 0.8925 0.8698 0.8767

RCNN 0.9506 0.9484 0.9489 0.9521 0.9426 0.9439

BiGRU-Att-CapsuleNet. (BAC) 0.9624 0.9612 0.9615 0.9334 0.9402 0.9289

The numbers in bold represent the largest value in each column; the numbers in bold italics represent the

second highest value in each column

Table 5 Comparative

experimental results on a small

number sample of Intent

Detection datasets

Model AskUbuntu WebApplication

Precision Recall F1-Score Precision Recall F1-Score

BiLSTM 0.6706 0.6250 0.6197 0.4896 0.5625 0.4958

BiGRU 0.7285 0.6000 0.6114 0.5469 0.5625 0.5179

AVRNN 0.6698 0.6417 0.6446 0.6750 0.6875 0.6406

CNN-LSTM 0.5763 0.5667 0.5627 0.5500 0.5625 0.5198

DPCNN 0.5422 0.5763 0.5502 0.6000 0.6875 0.6079

CNN-GRU 0.6524 0.6417 0.6374 0.5000 0.6250 0.5312

Dropout-AVRNN 0.6733 0.5917 0.5912 0.6094 0.6250 0.5845

Dropout-BiGRU 0.6367 0.4083 0.3601 0.5437 0.6250 0.5521

RCNN 0.7975 0.8000 0.7859 0.4979 0.6250 0.5406

BiGRU-Att-CapsuleNet. (BAC) 0.7820 0.6750 0.6686 0.7115 0.7500 0.6930

The numbers in bold represent the largest value in each column; the numbers in bold italics represent the

second highest value in each column
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trained corpus of language models in Chinese are generally

less than in English; the test datasets in SMP2018 have

fewer samples than SNIPS datasets, etc. Additionally,

compared with the results on large sample datasets, deep

learning models generally have poor performance on small

sample datasets. This again confirms that deep learning-

based methods often require larger sample sizes to realize

their true potential. At the same time, the deep learning

methods based on RNN and CNN types have a large gap

compared with the effect achieved by the conventional

machine learning methods in [52] in the same datasets.

Therefore, the use of conventional machine learning

methods in the classification of small sample intents may

be more suitable.

6.2 Slot Filling task

In this section, 1. The Slot Filling task is evaluated as an

independent experimental task on two datasets: MIT Res-

taurant corpus and Movie corpus [56]. 2. The Slot Filling

task is also evaluated as part of the joint task with the Intent

Detection task on the SNIPS dataset (The dataset used here

is the version provided by [56]). The specific content is as

follows:

1. The independent evaluation of the Slot Filling task is

mainly based on the two datasets, MIT Restaurant

corpus, and Movie corpus [56]. Our proposed methods

are also compared with various other cutting-edge Slot

Filling methods with the most advanced pre-trained

language models. The BiGRU-CRF model with the

Fig. 10 Visualization of test results on the above four Intent Detection datasets

Table 6 Slot F1-score of MIT

Restaurant corpus and Movie

corpus [34]

Model Restaurant Movie_eng

Movie_trivia10k13

Dom-Gen-Adv [26] 0.7425 0.8303 0.6351

Joint Dom Spec and Gen-Adv [26] 0.7447 0.8533 0.6533

Data Augmentation via Joint Variational Generation [64] 0.7300 0.8290 0.6570

ELMo-BiLSTM 0.7754 0.8537 0.6797

ELMo-BiLSTM-CRF 0.7977 0.8736 0.7183

ELMo -Enc-dec focus [68] 0.7877 0.8668 0.7085

GloVe and KazumaChar-BiLSTM 0.7802 0.8633 0.6855

GloVe and KazumaChar-BiLSTM-CRF 0.7984 0.8761 0.7190

GloVe and KazumaChar-Enc-dec focus 0.7998 0.8682 0.7110

BERT-BiGRU-CRF 0.8147 0.8698 0.7239

The numbers in bold represent the largest value in each column; the numbers in bold italics represent the

second highest value in each column
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BERT language model as word embedding obtained

the highest F1-Score in the Restaurant and

Movie_trivia10k13 datasets, which were 81.47% and

72.39%, respectively (Table 6). Therefore, it can be

proved that RCNN and BiGRU-Att-CapsuleNet have a

strong and competitive ability in context capture on

classification tasks.

2. The two proposed joint models are also fully evaluated

in a full ID and SF joint task on the SNIPS dataset

(Table 7, Fig. 11). Among them, BERT-RBC (BERT-

RCNN-BiGRU-CRF) also achieved an F1-Score of

97.03% on the Slot Filling task, ranking second in all

tested models. At the same time, BERT-BACBC

(BERT-BiGRU-Att-CapsuleNet.-BiGRU-CRF)

achieved the highest accuracy (99.21%) compared to

other methods on the Intent Detection task. On the Slot

Filling task, its F1-Score reached 96.99%, which is

only 0.04% lower than the second place (BERT-RBC).

This proves that based on RCNN and BiGRU-Att-

CapsuleNet, these two outstanding intent detection

models, combined with BiGRU-CRF, a current state-

of-the-art entity recognition method, can be well

adapted for ID and SF joint task and help for improve

the performance of the joint task. At the same time, the

ideal performance of RCNN and BiGRU-Att-Cap-

suleNet on the pre-task (Intent Detection) has also laid

a good foundation for more accurate slot identification

in the further.

7 Conclusion and future work

The vision of direct communication between humans and

devices in the Internet of Things through voice interaction

approaches poses a greater challenge to Natural Language

Understanding. This requires continuous exploration of the

key tasks in the NLU. As one of the core joint tasks in

Natural Language Understanding, Intent Detection and Slot

Filling joint task have been widely used in human-com-

puter interaction scenarios such as Question and Answering

robots, Dialog Management, Search Engines, etc. Its

specific methods can be transformed into two types of sub-

tasks: Classification and Named Entity Recognition.

Firstly, classify the language or text content according to

the intent category, and then identify the entity from the

text and filled into the preset slot through Named Entity

Recognition to complete the capture and understanding of

the content details described by the user. If the models of

the two tasks can be designed more refined and targeted, to

enhance the performance of the Intent Detection task to

better serve the precision of Slot Filling task through for-

ward and backward connection, it will effectively improve

the overall effect of semantic understanding for IoT.

Therefore, this work designed two structures for the

joint task, including two methods respectively based on

RCNN and BiGRU-Att-CapsuleNetwork for Intent Detec-

tion task and Clinical Domain Detection task, and the use

of BiGRU-CRF model to realize the Slot Filling task and

Entity Recognition task. Hence, two structures, RCNN-

BiGRU-CRF (RBC) and BiGRU-Att-CapsuleNet.-BiGRU-

CRF (BACBC), are used for the full Intent Detection and

Slot Filling joint task and Clinical Domain Detection and

Entity Recognition joint task, respectively. Among them,

Table 7 Results of Intent Dectection task and Slot Filling task on the

SNIPS [7, 56]

Model Intent

Detection

(Acc.)

Slot

Filling

(F1)

Slot-Gated [14] 0.9700 0.8880

Joint BERT [3] 0.9860 0.9700

ELMo-BiLSTM [53] 0.9900 0.9692

ELMo-BiLSTM-CRF 0.9914 0.9575

ELMo-Enc-dec focus [68] 0.9871 0.9622

GloVe and KazumaChar-BiLSTM 0.9914 0.9624

GloVe and KazumaChar-BiLSTM-CRF 0.9886 0.9631

GloVe and KazumaChar-Enc-dec focus

[68]

0.9843 0.9606

Joint BERT-CRF [3] 0.9840 0.9670

BERT-BiLSTM 0.9886 0.9692

BERT-BiLSTM-CRF 0.9886 0.9700

BERT-Enc-dec focus [68] 0.9871 0.9717

BERT-RCNN-BiGRU-CRF (BERT-

RBC)

0.9900 0.9703

BERT-BiGRU-Att-CapsuleNet.-

BiGRU-CRF (BERT-BACBC)

0.9921 0.9699

The numbers in bold represent the largest value in each column; the

numbers in bold italics represent the second highest value in each

column

Fig. 11 The performance of the top 4 ranked methods in Intent

Detection task on full ID and SF joint task (SNIPS)

Neural Computing and Applications (2020) 32:16149–16166 16163



on the CDD and ER joint task, the RCNN and BiGRU-Att-

CapsuleNet based on the CMedBERT language model

respectively achieved 73.72% and 73.89% F1-Scores on

the CDD task. And the BiGRU-CRF model based on

C-BERT also obtained 76.32% F1-Score on ER task, these

performances are among the top in the evaluations. This

proves that the preprocessing of Clinical Domain Detec-

tion will help improve the effectiveness of the downstream

Entity Recognition task.

On the ID and SF joint task, the BERT-BACBC model

achieved 99.21% accuracy on the SNIPS dataset, and the

BERT-RBC reached 97.03% F1-Score on the Slot Filling

task, ranking first and second respectively in the compared

models. Additionally, the F1-Score of the BERT-BACBC

model on the Slot Filling task is only 0.04% lower than the

second one, and the BERT-RBC reaches 99.00% accuracy

on the Intent Detection task, both ranking third on the

corresponding task. At the same time, the two models also

achieved ideal performance compared with the compara-

tive models on Chinese and English Intent Detection tasks

with different sample sizes. Experimental results show the

competitiveness of the proposed model on Intent Detection

tasks. It proves that by classifying more accurate intents,

will lay a good foundation for achieving the ideal perfor-

mance of the subsequent slot filling models. As shown in

the results of multiple comparative experiments in the

study, ID and SF based on a large number of samples have

achieved performance that can be applied in practice, but

the performance on small sample data is not ideal, which is

a common problem in reality (low resource problem).

Therefore, subsequent research will focus more on

improving the performance of such limited conditions. This

research provides some valuable method references for

building an ideal IoT-based semantic understanding mod-

ule, which is a useful exploration for the move towards a

more humanized IoT voice interaction system.
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