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Abstract 

Systematic reviews and meta-analysis of time-to-event outcomes can be 

analysed on the hazard ratio (HR) scale but are very often dichotomised and 

analysed as binary using effect measures such as odds ratios (OR). This thesis 

investigates the impact of using these different scales by re-analysing meta-

analyses from the Cochrane Database of Systematic Reviews (CDSR), using 

individual participant data (IPD) and a comprehensive simulation study.  

For the CDSR and IPD, the pooled HR estimates were closer to 1 than the OR 

estimates in most meta-analyses. Important differences in between-study 

heterogeneity between the HR and OR analyses were observed. These caused 

discrepant conclusions between the OR and HR scales in some meta-analyses. 

Situations under which the clog-log link outperformed the logit link and vice versa 

were apparent, indicating that the correct method choice does matter. Differences 

between scales occurred mainly when event probability was high and could occur 

via differences in between-study heterogeneity or via increased within-study 

standard error in OR relative to HR analyses.  

In many simulation scenarios, analysing time-to-event data as binary using the 

logit link did not substantially affect bias and coverage apart from those where 

large percentage random censoring and long follow-up time was present. The 

method though lacks precision particularly for small meta-analyses. Analysing the 

data as binary using the clog-log link consistently produced more bias, low 

coverage and low power.  

If a HR estimate cannot be obtained per trial to perform a meta-analysis of time-

to-event data, a meta-analysis using the OR scale (using the logit link) could be 

conducted but with awareness that this would provide less precise estimates in 

the analysis. Investigators should avoid performing meta-analyses on the OR 

scale in the presence of high event probability, large percentage random 

censoring and therefore longer follow-up times assuming of large event rates of 

the trials included. 
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Impact Statement 
 

Medical research questions are usually investigated multiple times by different 

research groups performing separate studies. The results may be contradictory, 

and may not allow clear conclusions to be drawn, producing difficulties in medical 

decision-making. 

Systematic reviews and meta-analyses of time-to-event outcomes (e.g., time to 

death, recurrence of symptoms, relief of pain etc.) are frequently carried out and 

are very common in areas such as cancer, respiratory and cardiovascular 

diseases. These outcomes are related to “IF” and “WHEN” an event has occurred 

and they are commonly analysed as binary in meta-analysis, rather than 

accounting for their natural properties. The work presented in this thesis focuses 

on time-to-event outcomes and the implications of analysing them as binary in a 

meta-analysis. My aim was to provide guidance to systematic reviewers and 

meta-analysts on the most appropriate methodology that should be used when 

conducting such meta-analyses.  

Using empirical survival meta-analysis data from the Cochrane Database of 

Systematic Reviews (Issue 1, 2008) and individual participant data (IPD), I 

indicated that time-to-event data should ideally be analysed accounting for their 

natural properties and meta-analysts need to be careful about choice of method. 

I identified that dichotomising time-to-event outcomes may be adequate for low 

event probabilities but not for high event probabilities. In the IPD meta-analysis 

performed, I confirmed the results obtained from my empirical study, however, it 

was not possible to explain whether censoring and follow-up time were distinct 

factors affecting the discordance among the meta-analysis estimates. 

My simulation study indicated that a time-to-event meta-analysis should be 

conducted ideally in the presence of IPD with interpretation on a HR scale, 

whereas in absence of IPD, extracting information from trial reports and using a 

log-rank test performs equally well. The logit link performed well in many 

simulation scenarios with some exceptions; the method though lacked precision 

in most scenarios. The complementary log-log link was not suitable to analyse 

the data as binary on a HR scale since substantial bias, low coverage, and low 

power were observed. If HR estimates cannot be obtained, a meta-analysis using 
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the OR scale (using the logit link) could be conducted but with awareness that 

this would provide less precise meta-analytic estimates. Investigators should 

avoid performing meta-analyses on the OR scale in the presence of large 

percentage random censoring and long follow-up times.  

It is advised that systematic reviewers and meta-analysts should think carefully 

about the circumstances before analysing time-to-event data as binary because 

this may produce different conclusions than the correct time-to-event analysis.  

Investigators should avoid performing meta-analyses on the OR scale in the 

presence of high event probability, large percentage random censoring and long 

follow-up times of the trials included in the meta-analysis. Researchers should 

consider also that precision will be lower so the analysis will have lower power 

especially in small meta-analyses and will be less likely to detect a significant 

treatment effect. The complementary log-log link should not be used as an 

alternative to analysing time-to-event outcomes as binary on a HR scale.  
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_____________________________ 

1. Introduction 

 

 

 

1.1 Chapter Overview 

This chapter introduces the main definitions and characteristics of Time-to-Event 

(TTE) data along with Systematic Reviews and Meta-analyses (MA). It provides 

preliminary background information on how these data are used in a systematic 

review and MA, including also important justifications for the necessity of this 

research.  

1.2 What is Time to an Event? 

In many clinical and non-clinical studies, an important outcome of interest is 

measured by the time-to-event (TTE). These types of outcomes are unique in the 

sense that they are dependent on two essential characteristics; the first is related 

to “IF” and the second “WHEN” an event has occurred. Examples of such events 

may involve time from diagnosis of cancer to death, time to weaning of breast-

fed infants, or time from start of in vitro fertilisation treatment to pregnancy.  

A key feature of TTE data is that the event will not necessarily occur for all 

participants in the study by the end of the follow-up period, meaning that we will 

never know whether and when some participants experience the event1. Such 

observations are known as “censored”, indicating that the follow-up period ended 

before the event occurred. Other examples of censored observations include 

participants being lost to follow-up during the study (for example, because study 

participants may have moved to another country) or dying from a cause not 

related to the outcome of interest. There are three forms of censoring: right 

(where the observed survival time is less than the actual unknown survival time), 
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left (where the actual survival time is less than that observed) and interval (where 

the participant experiences the event within a known time interval)2.  

Finally, TTE are not symmetrically distributed, they are positively skewed, 

producing a longer “tail” to the right of the distribution; this is indicative that it is 

not reasonable to assume that these data follow a normal distribution2. Traditional 

linear or logistic regression methods are not suitable to model these data as they 

are not able to account for their natural properties. 

1.3 Analysing Time-to-Event data 

An important step prior to modelling TTE data is to present a numerical (e.g., life-

tables) or graphical representation of the survival times (e.g., Kaplan-Meier 

curves) for the participants of a group in a study. TTE data can be summarised 

via a survival or a hazard function; details on the estimation of these functions 

has been described elsewhere2-4. Once a survival function has been defined 

adequately, different percentiles of the distribution of survival times can be 

estimated and displayed graphically. Kaplan-Meier curves are a useful 

representation of TTE data when we want to obtain an estimate of the proportion 

of participants alive at certain time points5. 

In the presence of two or more groups in a study, there are non-parametric, 

parametric and semi-parametric procedures available to compare formally the 

survival times of the groups. Non-parametric procedures include tests such as 

the log-rank test6, the Wilcoxon test2, and stratified versions of these tests. 

However, when additional information are recorded for each participant in the 

study such as demographic or disease related characteristics, parametric models 

(i.e. Exponential or Weibull) and semi-parametric (i.e. Cox) models are able to 

account for these covariates, providing more reliable results for the analyses3, 7. 

The exponential model assumes a constant hazard function over time, the 

Weibull model has a more flexible form of the hazard function, and the Cox model 

is most commonly used and does not make any assumption on the form of the 

underlying baseline hazard function. 

A key assumption for the application of these models is that censoring is non-

informative with respect to the distribution of survival time. This means that 

participants’ censoring time is independent of their failure time, whereas 

censoring is informative if patients’ censoring time depends on the failure time8, 



20 
 

9. For example, censoring that occurs where study participants drop out of a trial 

comparing two treatments for cancer due to an ineffective control arm is 

considered as informative. In this case, the aforementioned models may produce 

biased results. Other methodology such as multiple imputation techniques for 

missing data, the use of drop-out event as a study end-point, and joint modelling 

of longitudinal and TTE data has been developed to examine data under these 

circumstances10.   

1.4 Systematic Reviews and Meta-analyses 

Many medical research questions are investigated multiple times by different 

research groups performing separate medical studies. The results of the studies 

may be contradictory, and may not allow clear conclusions to be drawn, 

producing difficulties in medical decision-making11. 

A systematic review aims to combine empirical evidence based on pre-specified 

eligibility criteria, answering specific research questions that are not able to be 

answered by the individual studies themselves12, 13. Characteristics of a well-

conducted systematic review include a protocol stating clearly the objectives, 

research questions, and methods prior to conduct of the review, a comprehensive 

search strategy including various bibliographical databases, explicitly stated 

inclusion and exclusion criteria, and development of quality criteria to evaluate 

research validity14. Different types of Cochrane reviews exist and these include 

intervention, diagnostic test accuracy, methodology, qualitative and prognosis 

reviews13.  

A MA is a statistical analysis performed within a systematic review and is able to 

identify whether strong evidence exists on the effectiveness of treatment for a 

particular disease12. The main aim is to mathematically summarise the results 

across studies, if appropriate, using suitable methodology, even if studies have 

used different effect measures to assess their outcomes. These summary results 

can provide greater statistical power on treatment effects, assess between-study 

heterogeneity, and identify characteristics of studies that are importantly 

associated with effective treatments11. In comparison to running a clinical trial, it 

is a relatively quick way to assess the effectiveness of healthcare interventions, 

facilitates medical decision-making, introduces new guidelines for treatments on 

different diseases and initiates new medical studies. 
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Once relevant studies from the literature have been identified and data are either 

extracted from published reports or collected from study authors, appropriate 

methodology should be applied. Two models are usually considered; one uses a 

common-effect approach (known also as “fixed-effect”) and the other a random-

effects approach for combining study estimates14, 15. When treatment estimates 

are combined under a common-effect (or fixed-effect) model, we assume a single 

underlying treatment effect and no variability between the study results. This 

assumption frequently seems unrealistic as studies involved in a MA may differ 

in terms of study design, participant demographics, follow-up time and other 

characteristics14. When random-effects models are used, the true underlying 

treatment effects are assumed to vary at random across studies, and a normal 

distribution is usually assumed for these effects. Therefore, two sources of 

variation are observed: the within and between-study variability14.  

1.4.1 The Cochrane Collaboration 

Cochrane is an international collaboration that has performed high-quality 

research over the last 29 years and includes independent researchers, heath 

care professionals, patients, carers and other stakeholders interested in 

improving health outcomes13. Their aim is to produce high-quality and accessible 

systematic reviews to promote evidence-based health decision-making. Official 

guidance including detailed useful information on the process of conducting a 

systematic review and MA is provided in the Cochrane Handbook of Systematic 

Reviews16. Authors are advised to follow the guidance provided by the book both 

on standard methods and more advanced topics13. The Cochrane Database of 

Systematic Reviews (CDSR) is a database including systematic reviews, 

protocols, editorials and supplements in health care and to date includes over 

7,500 systematic reviews17. 

1.5 Systematic Reviews and Meta-analysis of Time-to-Event 

Outcomes 

Special methods are required to combine studies including TTE data in a MA; 

censoring cannot be accommodated by analyses such as linear or logistic 

regression. If we treat TTE data as continuous we are assuming uncensored 

observations instead of allowing for censoring, we are underestimating average 

survival and therefore we are inadequately addressing the unique properties of 

these data. On the other hand, treating TTE data as binary may be sensible in 
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specific circumstances (discussed in 1.6); however, to account properly for the 

number of participants experiencing an event and the amount of time taken for 

the event to occur needs a more sensitive approach.  

Guidelines are provided by the Cochrane Handbook of Systematic Reviews16, 

providing support to researchers who are wishing to perform such MA. The 

easiest way to perform a MA of TTE data is to obtain a summary estimate from 

each study along with its standard error (SE) and combine them under a 

common-effect (also known as fixed-effect) or random-effects model. 

Specifically, if log HRs and SEs  from Cox proportional hazards analyses can be 

obtained, study results can be combined to provide a pooled effect estimate along 

with its confidence interval (CI)18. The pooled HR obtained represents a 

comparison of the instantaneous risk of event in the treatment against the control 

group over the follow-up time14. If data are collected from published reports (i.e. 

aggregate data), we can obtain the log-rank observed minus expected events 

(“O-E”) and variance (“V”) statistics and by using appropriate statistical software 

we can perform a MA18.  

In more detail, the log-rank test6 performs a comparison across the whole length 

of the survival curve. Time is split into intervals, observed and expected events 

are calculated, the “O-E” and “V” values are summarised across the studies for 

each time interval and finally “O-E” values are divided by the “V” values; a 

comparison against the standardised normal distribution is constructed to obtain 

a test statistic for the survival difference among the study groups. This method 

will give a rise to a Hazard Ratio (HR)14.  

“O-E” and “V” statistics can also be obtained by using Peto’s method on 

dichotomous data. Peto’s method was firstly proposed by Yusuf et al.19 and gives 

a rise to an Odds Ratio (OR) also called a “Peto OR”. In order to obtain a “Peto 

OR”, we need the number of exposed and non-exposed participants on each 

study’s group and the number of events and non-events that occurred; this can 

be easily summarised by a contingency table. “O-E” and “V” values are calculated 

for each study and “O-E” values are divided by the “V” values to obtain an OR. It 

is important to state that in the presence of substantial difference in the group 

sizes, serious bias can occur20. Failure times and censoring are also ignored 

under this method. In the presence of long medical studies examining mortality, 

for example, no difference between treatments may be observed since all 
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participants may experience the event, regardless of whether the treatment 

delayed the event or not21.   

To avoid some of these limitations, a modified version of the Peto method was 

specifically proposed for TTE data by Simmonds et al.21 and provides an OR 

estimate. By dividing the trial into pre-defined time intervals (e.g., by year or by 

month), multiple contingency (two by two) tables for each study can be obtained. 

“O-E” and “V” statistics can be obtained for each time interval, and the log OR 

over all time intervals can be estimated by dividing the sum of “O-E” values by 

the sum of “V” values. Using this approach, a hypergeometric distribution is 

assumed for the observed events, misclassification bias is minimised since 

censored observations are excluded from the analyses for time intervals after 

their censoring time, and failures in the two treatment groups occurring at different 

times are considered21.  

It is worth mentioning though that published studies seldom report all the statistics 

needed to obtain a modified Peto OR or a HR and variance estimates. Both 

Parmar et al.22 and Williamson et al.23 have considered various ways to account 

for information from published reports and extract HR and variance estimates to 

facilitate MA implementation. A more detailed description of this methodology is 

presented in Chapter 2. The ideal scenario and the only reliable way to perform 

a MA according to some researchers24 is to obtain the individual participant data 

(IPD) since we can then adjust for differences in case-mix by using covariates in 

our analyses, allowing also for variation among studies25.   

Various different software packages can be used to carry out a MA. Software 

such as STATA26, SAS27, R28, Python29, WinBUGS30 are able to handle TTE data 

and perform MA; functions are continuously developing to accommodate new 

methodological developments. RevMan31 has been specifically developed to 

facilitate preparation of systematic reviews and MA; however, the choice of 

models is restrictive when “O-E” and “V” statistics are available since only 

common-effect (or fixed-effect) MA is allowed18.  

1.6 Effect Measures for Time-to-Event Outcomes  

For TTE outcomes, several effect measures have been used previously; the most 

commonly reported effect measures are the OR, HR and relative risk or risk ratio 

(RR). Below, I provide brief definitions of these outcome measures and then in 
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1.6.1 I carry out a chronological overview of important research conducted on the 

differences between effect measures observed in a single study.   

When TTE outcome data are dichotomised and are therefore in a binary form, 

they can be conveniently arranged into a contingency table, and several different 

measures of treatment effect may be used. An OR can be calculated, providing 

a relative measure of the probability of an event: the odds of having the event in 

the treatment group relative to the odds of having the event in the control group32. 

For beneficial events, if an OR yields an estimate greater than one, a new 

treatment is more effective when the treatment and control groups are compared, 

whereas an OR of less than one indicates that a new treatment is less effective 

than the control group. For adverse events, interpretation is conducted the other 

way around. As an alternative to an OR, a RR can be calculated and is defined 

as the ratio of the probability of event occurring in the treatment group compared 

to the probability of event occurrence in the control group32. Risk difference, which 

is the difference between the probabilities of event occurring between groups, 

and number needed to treat, which is the reciprocal of the risk difference, are 

additional measures of comparative effects for binary outcomes32. 

Once the full nature and properties of TTE data are considered, the most sensible 

summary statistic usually employed when comparing a TTE outcome between 

two groups is the HR. A HR measures the instantaneous reduction in the risk of 

an event over a particular time frame in the treatment group relative to that of the 

control group14. If a HR is independent of time (i.e. constant), then proportional 

hazards are assumed among the two groups; this is the most important 

assumption underpinning covariates inclusion in a Cox regression model11. 

1.6.1 Past Comparisons Among Different Effect Measures for Time-to-

Event Outcomes 

A number of authors have previously discussed the comparison between logistic 

regression and Cox proportional hazards models. One of the first papers 

comparing the two models was written by Green and Symons33 in 1983. Green 

and Symons33 explained the mathematical relationship between logistic and Cox 

regression models; via an example they indicated that proportional hazards 

models provide relatively stable coefficients and decreased SE with increasing 

follow-up time, which is not the case for logistic models where SEs of the 
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estimates generally increase. These authors also mentioned that the two models 

produce similar estimates in the presence of rare incidence of a disease and short 

follow-up time.  

Peduzzi et al.34 evaluated the logistic and the Cox proportional hazards model 

when the event occurs in all participants after a fixed period of time. OR, RR and 

HR are discussed in the paper which shows that in the presence of rare events 

logistic and proportional hazard models’ estimates are very similar to log RR 

model estimates. As the event probability increases, estimates become more 

discordant, however the likelihood ratio statistics are asymptotically equivalent 

under the null hypothesis that the regression coefficients are equal to zero. 

Finally, the authors indicated that these findings extend also to the multivariate 

case (i.e. when adjustment for baseline covariates is considered)34. 

In 1989, two research papers were published, one using a real-world example 

and the other using a simulation dataset, both comparing logistic regression and 

proportional hazards models. Annesi et al.35 extended work conducted by J. 

Cuzick36, by examining whether the asymptotic relative efficiency, which is 

defined as “ratio of the numbers of subjects necessary for the two models, to gain 

the same asymptotic statistical power”, is close to one in the presence of high 

survival rate, when several risk factors are adjusted for and censoring time is 

identical for all subjects. The authors showed via analysis of a longitudinal dataset 

that the logistic model is less efficient than the Cox model; inclusion of several 

risk factors showed that these models are asymptotically equivalent in identifying 

predictors of events with low event probability35. However, they mentioned that 

logistic models may be appealing when survival times are recorded by intervals, 

where in the presence of many failures the model assumes no tied 

observations35.  

Ingram and Kleinman37 in the same year, using simulation datasets mainly, 

compared estimates among a newly introduced person-time model (i.e. a 

modified version of logistic model), cumulative logistic and Cox models. The 

person-time model divides the study period into intervals, counts the numbers of 

risks and events in each interval, and sums these counts overall. The authors 

demonstrated that person-time, logistic and Cox models are identical for similar 

censoring rates as long as the event probability and follow-up time increase, 

however discordant estimates are observed in the cumulative logistic model37. 
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Furthermore, when the distribution of survival time was close to exponential and 

in the presence of mild violations of the proportional hazards assumption, person-

time and Cox models yielded little effect on parameter estimates37. 

Docksum and Gasko38, in 1990, using a theoretical framework, discussed the fact 

that survival analysis models can be considered as modelling a specified 

transformation of the dependent variable, a linear combination of the independent 

variables accounting also for errors; they acknowledged similarities of the two 

models described by Green and Symons33. The authors discussed the 

development of Berkson’s logit model three decades before the development of 

proportional odds model in the 1970’s; they justified this since the key ingredients 

for model development were not in place before the 70s and 80s, such as 

computing tools and repurposing a model for a new application area requires a 

large amount of time.   

In 1998, Callas et al.39, using occupational cohort data, compared Poisson, 

logistic and Cox proportional hazards models. Their analyses indicated that 

Poisson and Cox PH models yielded nearly identical results in the presence of 

small sample size and rare events, in terms of coefficients and CIs, apart from a 

case where an age confounder included into the model in four wide intervals 

produced residual confounding and affected the estimates. A finding the authors 

found which was consistent with other studies was that logistic regression models 

provided discordant estimates for common outcome and strong RR; however, 

length of follow-up had little impact on the estimates, a finding not necessarily 

consistent with other studies. Authors discussed the generalisability of the results 

due to use only on real data conditions. 

In the beginning of the new millennium, Symons and Moore40 discussed the 

reporting of HR in prospective epidemiological studies. They indicated that in 

cases where the HR is greater than one, it consistently exceeds RR and is 

exceeded by OR. The authors provided evidence that similarities or differences 

of the three estimates is based upon the following three factors: the first is related 

to the length of follow-up, the second to the average rate of event occurrence, 

and the third to the risk of the exposed relative to the control group. Furthermore, 

they state that lack of preciseness in the terminology usage exist probably 

because these measures are often similar.  
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Finally, in a more recent research work conducted by Stare and Maucort-

Boulch41, using simple examples, the authors tried to challenge the misbelief that 

OR is a RR, and HR is a RR. They indicated that there are circumstances in which 

reporting these measures to be something they are not can produce misleading 

results. Therefore, they examined the relation between OR/RR and HR/RR by 

giving appropriate definitions for each one of them and describing the 

circumstances under which each measure approaches each other.  

1.7 Real Problems Cochrane Review Groups Face with Meta-

analyses of Time-to-Event Outcomes 

A project42 was conducted in 2008 at the Medical Research Council, Clinical 

Trials Unit with the main aim of improving the quality of analysing TTE outcomes 

in Cochrane Reviews based on methodology described by Parmar et al.43 and 

Williamson et al.44. A survey was distributed to 49 different Cochrane Review 

groups and the  response rate was 55%42. The responders spanned a range of 

health care areas including cancer, infectious diseases, genetic disorders, 

cardiovascular health and oral health. Among the responders most of the groups 

(78%) included dichotomous outcomes based on TTE data, 67% included 

continuous time-related outcomes and 59% included TTE outcomes, in their 

reviews42. Additionally, 69% extracted dichotomous data on the outcomes and 

analysed them as odds ratios, relative risks or (rarely) risk differences. However, 

only 37% of the groups used the methods of Parmar et al43. and Williamson et 

al.44 despite their awareness of these methods in the literature.  

The main output of the project was that although HR is considered the most 

appropriate scale for analysis of TTE data, in practice OR and RR are frequently 

used instead due to the following reasons42:  

▪ unavailability of individual participant data (IPD) 

▪ limitations on how these outcomes are reported in individual trial reports 

▪ lack of familiarity in handling TTE outcomes for meta-analysis 

▪ difficulties in understanding the methods of analysing such data without a 

statistician  

▪ limited available training for the majority of systematic reviewers and meta-

analysts who perform such analyses. 
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1.8 Thesis Objectives 

In this thesis, I am interested to explore how TTE data are analysed within a MA 

and investigate the implications of analysing TTE outcomes using various meta-

analytic models resulting in the different effect measures of OR and HR. To my 

knowledge there is no previous research on analysing TTE outcomes as binary 

within MA. More specifically, I am interested in answering the following questions: 

▪ What are the implications of analysing TTE outcomes as binary in MA and 

how do the implications vary according to MA characteristics? 

▪ How are TTE outcomes analysed within the biggest database publishing 

systematic reviews and MA, the CDSR? Are they analysed as binary or 

are they analysed as HR, taking into account the full properties of the 

data? 

▪ Which medical areas within the database analyse the data under which 

scale? 

▪ What are the assumptions made when different meta-analytic models are 

applied and what are the advantages and disadvantages of each one of 

them? 

▪ Is there any other method that could allow us to mitigate the undesirable 

properties from treating the data as binary? 

To answer these questions, I used real life data sets extracted from the CDSR, 

IPD MA data sets, and simulation studies. This thesis has seven chapters. In 

Chapter 2, I present a methodology review on guidance for MA of TTE 

outcomes. In Chapter 3, using data from the CDSR analysed originally as 

binary for TTE outcomes, I compare the methods of analysing these data as 

binary on the OR scale to an alternative option where interpretation can be 

performed on the HR scale. In Chapter 4, using a subset from the same 

database, I perform comparisons to explore differences in the results on MAs 

originally analysed on the HR scale using the “O-E and V” statistics, to treating 

the data as binary using a methodological alternative interpreting the results 

on a HR scale and by analysing the data as binary on the OR scale. In chapter 

5, I present the results obtained under the different scales when analysing an 

IPD dataset obtained from the MRC Clinical Trials Unit; this chapter 

additionally includes the gold-standard approach of a Cox proportional 

hazards model. In chapter 6, I perform a simulation-based study comparing 
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different methods for meta-analysis in TTE outcomes allowing me to identify 

separately the factors affecting the potential discordance among the scales. 

Finally in Chapter 7, I provide a summary and discussion of the key findings 

obtained from the previous chapters. In the same chapter a final conclusion 

on the research question is drawn.    

Overall, the objective of this research is to provide guidance to systematic 

reviewers about the implications of analysing TTE outcomes as binary, how 

the implications vary according to MA characteristics and in which 

circumstances analysing the outcome as binary may be adequate.   
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_____________________________ 

2. A Methodology Review for Meta-analysis of Time-

to-Event Outcomes 

 

 

 

 

2.1 Chapter Overview 

This chapter outlines the guidance that exists in the literature for MA of TTE 

outcomes and any discussions raised for analysing these data as binary. A 

specific search strategy was followed, and research papers were extracted from 

the following databases: Medline (Ovid Version), Scopus and Web of Science. 

Literature was assessed for eligibility, was assigned to specific categories and 

was reviewed.   

2.2 Introduction  

Previous research has documented the effect measures needed for a survival 

analysis and provided appropriate methodology on how TTE data should be 

ideally handled in a single study, and under which circumstances it could be 

acceptable to treat these data as binary33-35, 37, 39. Recent reviews indicate that 

Kaplan-Meier methods, Cox regression models, logistic regression are the most 

commonly used methods in analysing TTE outcomes, while techniques avoiding 

making the proportional hazards assumption such as accelerated failure time 

models or time dependent Cox regression techniques are less frequently used45, 

46. Additional methods for the analysis of TTE data exist including the non-

parametric log-rank test and parametric proportional hazard models assuming a 

specific distribution for the hazard such as Weibull, Exponential, Gompertz.    

TTE data MA should be ideally analysed using IPD and interpretation is 

performed on the HR scale assuming constant hazards over time (i.e. 
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proportional hazards assumption). However, access to IPD is rarely available and 

different techniques have been employed to obtain study level data from research 

publications43, 44, 47. The current methodology review was performed to ascertain 

the guidance for MA of survival outcomes and any discussions raised on MA of 

TTE data as binary, with the objective of informing the subsequent research 

reported in later chapters. 

2.3 Searching the Literature 

I performed a methodology review to identify all methodological publications 

providing guidelines for MA of TTE data. Medline (Ovid version, 1946-December 

2021), Scopus (2004-December 2021) and Web of Science (1900-December 

2021) were searched using keywords such as “meta-analysis”, “time-to-event”, 

“survival”, “methodology” via the “Advanced search” function in the electronic 

databases. Details on the search strategy are provided in 2.3.1.  

2.3.1 Search Strategy  

The following search strategy was applied in order to extract all the relevant 

papers from the databases.  

➢ Search strategy for MEDLINE (Ovid version) 

1. “meta-analys#s”.ti,ab.    

2. (“time-to-event” or “time to event”).ti,ab. 

3. (“survival outcome” or “survival endpoint” or “survival data” or “survival 

study” or “survival analys$”).ti,ab. 

4. (“failure time” or “failure time data”).ti,ab. 

5. (“guid*” or “method*” or “framework”).ti,ab. 

6. 2 or 3 or 4 

7. 1 and 5 and 6 

 

➢ Search strategy for Scopus  

TITLE-ABS-KEY (“meta-analys*”) AND TITLE-ABS-KEY (“time to event” OR 

“survival outcome” OR “survival endpoint” OR “survival data” OR “survival 

study” OR “survival analys*” OR “failure time” OR “failure time data”) AND 

TITLE-ABS-KEY (“method” OR “guid*” OR “framework”) AND NOT INDEX 

(medline) AND (LIMIT-TO (LANGUAGE, “English”)) AND (LIMIT-TO 
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(SUBJAREA, “MEDI”)) OR (LIMIT-TO (SUBJAREA, “MATH”)) OR (LIMIT-TO 

(SUBJAREA, “DECI”)) 

 

➢ Search strategy for Web of Science (WoS)  

1. TS=(“meta-analys?s” or “meta*analys?s”) AND LANGUAGE: (English) 

2. TS =(“time-to-event” or “time*to*event”) AND LANGUAGE: (English) 

3. TS =(“survival outcome” or “survival endpoint” or “survival data” or 

“survival study” or “survival analys$”) AND LANGUAGE: (English) 

4. TS =(“failure time” or “failure time data”) AND LANGUAGE: (English) 

5. TS =(“guid*” or “method” or “framework”) AND LANGUAGE: (English) 

6. #4 OR #3 OR #2 

7. #6 AND #5 AND #1  

 

The inclusion and exclusion criteria of the methodology review were broad (Table 

2.1). I did not aim to make any comparisons or judgements on the proposed 

methodologies but to provide descriptions of methods. 

 

In the review, I identified 2,523 publications based on the search terms used. 

Among those, I removed 2,352 after title screening, 41 after abstract reading, 46 

after duplicates removed, and 27 after full-text reading. I additionally included 17 

publications via hand searching which were missed from the basic search terms. 

Criteria Inclusion Exclusion 

Journal No restriction No restriction 

Publication Type Full publications 
Abstracts, conferences 

abstracts, notes 

Country No restriction No restriction 

Language English publications Non-English publications 

Year of 

publication 
No restriction No restriction 

Outcomes Time-to-event 
Binary, continuous, 

mixed, surrogate 

Methods 
Methodology, extensions, and 

comparisons 

Applied methodology 

only, 

prognostic/diagnostic 

accuracy studies 

Table 2.1: Inclusion and exclusion criteria of the methodology review used in 

MEDLINE (Ovid Version), Scopus, and Web of Science. 
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Hence, I included 75 methodological publications according to the search 

methods described above. A full list of references is available in Appendix A. A 

flowchart of the identified publication is provided below in Figure 2.1. 

 

Figure 2.1: Flowchart of Methodology Review. 

Literature discussing methods for performing MA of TTE data was published from 

1988 onwards. Very few publications were found before 2000, whereas from the 

beginning of the new millennium numbers of publications increased and most 

research has been published during the last decade. The distribution of research 

publications across the years is presented in Figure 2.2. 
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Figure 2.2: Distribution of research publications identified in methodology review 
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2.4 Methodology Review Results 

The research papers are divided into seven main categories. These are related 

to models for aggregate data (11 publications), methods for reconstruction of 

survival data (5 publications), models for IPD (16 publications), methods for NMA 

(12 publications), multivariate MA (7 publications), method comparison via real 

life conditions and/or simulations (16 publications) and finally papers including 

discussions, critiques and other suggestions for MA of TTE outcomes (6 

publications). I present below summaries of the methodological papers I found in 

the review in chronological order within each chosen theme. 

 

2.4.1 Models for aggregate data 

In 1991, Whitehead and Whitehead48 was one of the first papers presenting 

comprehensive methodology on how survival (and other) data should be treated 

in a MA context. Particularly, they presented a general parametric approach for 

estimation of treatments effects based on hypothesis testing, identifying and 

dealing also with the issue of treatment heterogeneity in the trials. They presented 

both fixed and random effects models and indicated that their methodology is 

appropriate when large number of patients are considered; for smaller samples 

biased estimation should be taken into account as mentioned by Greenland and 

Salvan20.  

Hunink and Wong25, in 1994, recommended a new technique combining 

aggregate TTE data from different sources adjusting for case-mix (i.e. different 

frequencies) of covariates. The authors stated that without adjusting for case-mix 

covariates results were misleading, providing narrow confidence intervals without 

accounting for the variability among subgroups. Limitations of the method such 

as the difficulties arising from the insufficient details from the published reports 

were also discussed.   

One of the most important and key papers to perform MA of TTE outcomes was 

written by Parmar et al.43 in 1998. The authors used a series of simple methods 

to extract data from publications, to facilitate the performance of MA and improve 

the reliability and quality of literature-based MA. More specifically, they stated 

that in presence of a HR and its variance from each trial these values should be 

used to perform a MA. If these statistics were not available other statistics could 

be used such as the confidence interval given for the log HR, p-values from the 
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log-rank5 or Mantel-Haenszel test49, and p-value from the Cox proportional 

hazard model3 after adjustment for covariates. If limited information was available 

to extract from the literature for either direct or indirect estimation of the necessary 

statistics, published survival curves could be used to reconstruct the log HR, 

accounting also for censoring by adjusting for the number at risk and number of 

events. Full derivation of the methods was conducted by illustrative examples 

and the authors discuss various difficulties raised during this process such as 

selecting the most appropriate interval so that the event rate within each time 

interval is appropriate. One of the first applications of one of these methods which 

adjusted for censoring was conducted by Vale et al.50 during 2002 in MAs of 

cancer studies, indicating that accounting for censoring  answered more reliably 

the questions posed by systematic reviewers and meta-analysts in the presence 

of aggregate data. 

Moodie et al.51, in 2004, presented methodology in which the log (−log) survival 

function difference for the examination of treatment effects in the MA of TTE data 

was used. The authors indicated the non-parametric nature of the procedure 

which could be used as an alternative when HRs were unavailable in the 

literature. The proposed methodology provided estimation of the treatment effect 

and was not as affected by the length of follow-up as were other effect measures 

such as ORs, RRs and risk difference.  

In 2007, Tierney et al.47 significantly contributed to the literature by “translating” 

the methods proposed by Parmar et al.43 and Williamson et al.44 to extract data 

from published reports and facilitate aggregate data MA of TTE outcomes, in a 

more practical way that was accessible to systematic reviewers and meta-

analysts. Authors created a macro-enabled Excel spreadsheet facilitating the use 

of indirect methods for the calculation of HRs and their corresponding variances. 

This piece of research has been very widely cited (4,239 times, until 14/02/2022) 

and has improved the quality and interpretation of systematic reviews and MAs.  

Yuan et al.52, in 2010, discussed the fact that when different studies adjust for 

different covariates bias was caused when combination of the potential effect 

sizes is performed via MA. More specifically, authors introduced a method which 

combined via meta-regression incomparable Cox proportional hazards models 

obtained by omitting important information in an aggregate data MA.     
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Combescure et al.53, in 2011 in 2011, recommended another method of meta-

analysis for binary outcomes (using the relative logarithm of survival). This 

method was similar to Moodie’s method51 and was originally proposed by T. V. 

Perneger54, when results were available in a two-by-two table, the proportionality 

assumption holds and information on the HR were absent. The method reduced 

the heterogeneity due to differential follow-up across the studies, provided a 

direct estimate for a HR, and can be constructed under tabulated data. In 2012, 

Combescure et al.55, as an extension to Moodie’s method51, proposed a flexible 

method to perform meta-analysis of two-arm studies using survival probabilities 

collected at various time points instead of the reported measures of intervention 

effect, allowing detection of variation of the intervention effect over time. The 

authors stated that the specification of the baseline survival function was not 

necessary, and study level factors affecting survival were ignored. On the other 

hand, the method had disadvantages in the presence of non-proportional 

hazards, and when the assumption of a stable treatment effect over time could 

not be evaluated.   

Bonofiglio et al.56, in 2016, present methodology for MA of aggregate TTE data 

with competing risks in a frequentist framework. The authors used the cumulative 

incidence function to obtain cumulative incidence function ratios measuring 

treatment effect and developed methods to pool these ratios across studies.   

 

B. Holzhauer57, in 2016, discussed a Bayesian hierarchical model using 

aggregate data to perform TTE MA allowing differences in the follow-up period 

between two groups. The author performed a simulation study comparing the 

method to other commonly methods used for aggregate data MA, illustrating the 

usefulness of the exchangeability assumption that his model required, using prior 

information about expected control groups outcomes and increasing the power 

of the meta-analysis. In 2020, the same author via a simulation study compared 

methods for incorporating historical control data into MA. Specifically, a number 

of existing proposals making posterior inference more robust against prior-data 

conflicts were examined such as the meta-analytic combined, meta-analytic 

predictive in the meta-analysis setting, robust meta-analytic predictive and using 

a Bayesian model averaging via shrinkage priors. The simulation indicated that 

the last model with well-chosen hyperpriors performed best in terms of credible 

interval coverage and mean-squared error across scenarios.   
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Finally, Irvine et al58 in 2020, developed a non-linear optimisation method for 

aggregate MAs that requires only the Kaplan-Meier plot and a published p-value 

to calculate a logHR and its variance without a requirement on the published 

number at risk. The method allowed for better estimation of the underlying 

censoring pattern and was compared to the Parmar method43 which also did not 

require any published number at risk. The authors indicated that the proposed 

method outperformed the Parmar method, enhanced the accuracy of meta-

analyses of survival outcomes and they provided the necessary R scripts for the 

method implementation.   

 

2.4.2 Methods for reconstruction of survival data 

Messori et al59, in 2000, suggested an intermediate approach facilitating the 

reconstruction of IPD from survival curve graphs particularly in cases where the 

actual IPD data were not available and could not be retrieved. Via an illustrative 

example, the authors showed good correlation between the estimated and true 

IPD indicating that their approach was attractive in the absence of resources to 

conduct IPD MA; however, it must be noted that this approximate procedure could 

be less reliable than the actual IPD MA since individual survival times are 

approximately estimated and are not directly measured from the participants59. 

Williamson et al.44, in 2002, extended and improved a method proposed by 

Parmar et al.43, on estimating log HR from survival curves. Specifically, the 

extension assumed a constant censoring rate within trial intervals and varying 

censoring rate among time intervals. The authors examined also differences in 

proportionality of hazards across trials within a MA as a potential source of 

heterogeneity.    

D. B. Rubin60, in 2011, proposed an unbiased non-parametric approach to 

synthesize survival curves across studies. A counterfactual model for TTE MA 

was applied, avoiding confounding in non-randomised trials, a method similar to 

the one proposed by Xie and Liu61 on Kaplan-Meier adjustment. Even though this 

method was immune to biases, the authors suggested that their method still 

required trials with similar characteristics and assessing similar interventions.  

In 2012, Guyot et al.62 created an algorithm which attempted to reconstruct 

Kaplan-Meier data obtained from survival curves, using Digitizelt software to read 
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the coordinates of the Kaplan-Meier curves.  A high degree of accuracy and 

reproducibility was observed especially for median survival times and 

probabilities of survival; however, reconstruction of HRs was less adequate 

without complete information on censoring patterns and finally the algorithm 

could not be used in the absence of numbers at risk and events.  

Ghanbari et al.63 proposed a new method in 2018 for combining survival curves 

in MA of TTE endpoints in the absence of IPD, bypassing limitations of other 

approaches. Specifically, the authors combined survival curves using functional 

data analysis which was corrected by single exponential smoothing and then a 

test similar to log-rank test was performed. Via a simulation study and an example 

using clinical data, the authors indicated the method was useful in groups with 

small or moderate hazard rates, moderate or high sample sizes across all studies. 

 

2.4.3 Models for individual participant data (IPD) 

Royston and Parmar64, in 2002, suggested extensions to the Weibull and log-

logistic models aiming for the estimation of hazard, density and survival functions 

by smoothing the cumulative odds or hazard functions. This was implemented by 

modelling as a natural cubic spline function of log time the logarithm of the 

baseline cumulative odds or hazard failure functions. Extensions of the models 

were suggested, facilitating allowance of non-proportional effects of the 

covariates.  

In 2005, Michiels et al.65 extended the use of Cox proportional hazards model by 

suggesting Cox random (frailty) effects models to assess the heterogeneity 

obtained from the variation in treatment effects from the difference in baseline 

hazard rates. The methods applied (under frequentist and Bayesian frameworks) 

used treatment-study interaction terms to adjust for study specific covariates. An 

assumption of a common baseline hazard function shape across trials was 

necessary.  

 

In the same year, Tudur-Smith et al.66 introduced and compared five hierarchical 

Cox regression models aiming to explore potential heterogeneity by including 

patient level covariates in IPD MA. Trial effects were included either by fixed trial 

effects using indicator variables or using stratification or via inclusion of random 

trial effects. Authors indicated that stratified models with random treatment effects 
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were more appropriate since they maintained the likelihood construction and 

allowed for different baseline hazard functions for the studies. Hazards could also 

be proportional within each study, and important assumptions could be relaxed 

when synthesising studies conducted under different settings.  

 

During 2008, Massonnet et al.67 presented an alternative way to fit frailty models 

as an equivalent linear mixed-effects model assuming a clustered data structure 

with random cluster and random treatment effects. The authors suggested that 

the method was useful for large number of clusters in the datasets and relatively 

large sample sizes within covariate-level subgroups in the clusters. They also 

highlighted the fact that standard statistical software was limited to fitting 

conditional random-effects survival models. 

In the same year, Rondeau et al.68 proposed a one-stage additive random-effects 

Cox model, similar to those proposed by Vaida and Xu69, modelling 

simultaneously a random treatment-study interaction and a random trial effect. 

Their approach jointly accounted for different sources of heterogeneity such as 

a) heterogeneity in MA of treatment effects and b) heterogeneity obtained from 

baseline risk. The authors indicated that in the presence of MA with a large 

number of trials or large sample sizes with a non-zero correlation (ρ) between the 

two random-effects, the results obtained were more accurate.  

In 2010, Thompson et al.70 extended statistical methods for IPD MA of TTE 

outcomes from multiple epidemiological studies accounting for a) the shape of 

exposure-risk association, b) inclusion of interaction terms dividing the within and 

between-study information, c) the regression dilution bias that could occur from 

measurement error and within-person variation in confounders.  

Siannis et al.71 proposed methodology for IPD MA of TTE data using percentile 

ratios which are a function of survival percentile, allowing reduction to the median 

ratio (i.e. 50th survival percentile) estimated through an accelerated failure time 

model. This was an alternative methodology to the restrictive semi-parametric 

proportional hazard model which allowed shape parameters to vary among the 

trials, offering greater flexibility in the parametric representation of treatment 

effects. Barrett et al.72, in 2012, extended this methodology71 into a two-stage 

method for meta-analysis of percentile ratios using only Kaplan-Meier estimates. 

Specifically, by using these estimates for the survival function to calculate the 
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percentile ratios in a first stage and combining them in a second stage by 

univariate or multivariate random-effects meta-analysis, the authors avoided the 

need to make any distributional assumptions at the study level.  

Crowther et al.73, in 2012, introduced a Poisson regression model to perform one-

stage and two-stage IPD MA of TTE outcomes, accounting also for random-

effects, non-proportional hazards and treatment-effect modifiers. Their approach 

provided identical estimates to the Cox model both under frequentist and 

Bayesian frameworks. Heterogeneity estimates were slightly underestimated 

under the frequentist approach; the performance of the model under a Bayesian 

framework was improved.   

In 2013, Simmonds et al.74 recommended a new approach using the expectation-

minimisation (EM) algorithm to fit a random-effects proportional hazards model 

treating random effects as missing data. The authors suggested that that their 

method provided suitable estimates for random effects without any biases or loss 

of precision. 

In 2014, Crowther et al.75 extended the methodology of parametric frailty models, 

incorporating multiple normally distributed random effects (including exponential, 

Weibull, Gompertz proportional hazards models, log logistic, log normal and 

generalised gamma accelerated failure time models) and using adaptive or non-

adaptive Gauss-Hermite quadrature. The authors extended also the Royston and 

Parmar flexible parametric survival model64 to include random effects and time-

dependent effects (i.e. non-proportional hazards). They indicated that results 

were in agreement with previous findings; small bias and good coverage was 

observed on the baseline hazard parameters of the Weibull distributions.   

Rondeau et al.76, in 2015, proposed a joint frailty model for clustered TTE 

outcomes and a dependent terminal event (e.g. time-to-progression and death). 

Using a semi-parametric penalized likelihood approach, the authors showed that 

they could calculate the joint model parameters simultaneously, accounting for 

data clusters and the relationship between the outcomes.  

In 2016, Wang et al.77 introduced a method examining the patterns of 

heterogeneity in treatment effect across covariate values in TTE MA of IPD with 

a continuous covariate of interest. The Meta-STEPP (subpopulation treatment 

effect pattern plot for meta-analysis) method estimated treatment effects using a 



 

42 

continuous variable by “forming overlapping subpopulations” and estimating 

treatment effects for a particular subpopulation via the use of fixed-effects meta-

analysis. The method yielded a weighted average of specific study treatment 

effects for different subpopulations. In 2018, the same authors extended their 

work by assessing treatment effect variation across a continuous covariate for 

TTE outcomes in the presence of IPD78. Authors indicated that Meta-STEPP tool 

with random effects was more conservative in assessing treatment effect 

variability than the fixed-effect approach, due to the larger variances produced. 

 

De Jong et al79 in 2019, performed a narrative review of the methods related to 

IPD MA of TTE data. Specifically, the authors focused on modelling frailty of trial 

participants across trials, heterogeneity in treatment effects, interactions, dealing 

with censoring and follow-up times using parametric and semi-parametric 

methods both in a one- and two-stage IPD MA framework. They recommended 

exploring heterogeneity via interactions and non-linear terms and highlighted the 

importance of random-effects models which account for residual heterogeneity.   

 

In 2021, Tamasi et al., presented a one-stage IPD MA model for TTE outcomes 

that incorporates general normally distributed random effects into linear 

transformation models. The authors stated that the model could handle arbitrary 

random censoring patterns, could model between-study heterogeneity in 

baseline risks and the assumption of proportional hazards could be relaxed via 

the use of time-varying prognostic factor effects. 

 

2.4.4 Methods for Network meta-analysis  

Welton et al.80, in 2010, initially developed a framework under which the synthesis 

of outcomes reported in clinical trials would be feasible using summary statistics 

such as mean or median TTE to perform NMA on the log HR scale, taking into 

account important assumptions for each of the models. Woods et al81, in the same 

year, provided a tutorial which allowed HRs and cumulative count survival 

statistics to be combined in an evidence network, accounting for multi-arm trials 

and allowing results to be interpreted on the HR scale. They noted that median 

survival times could be incorporated in the models; however, they required strong 

assumptions of a constant hazard in each arm.  
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Ouwens et al.82, suggested a NMA framework of analysing TTE data with 

treatment effects based on shape and scale parameters of survival curves. The 

authors extended the use of the Weibull model by proposing the use of two-

dimensional treatment effects; shape and scale parameters were reformulated to 

understand better the relative treatment effects rather than assuming constant 

hazards. Building on the Weibull model presented initially by Arends et al.83, the 

authors diversified it by using hazard over time instead of log(-log) survival 

proportions, evaluated random treatment-log(time) interactions, and considered 

evidence networks of more than two treatments.  

In the absence of proportional hazards, J. P. Jansen84 introduced a NMA 

technique which used fractional polynomials to model treatment effect via several 

parameters. The author showed that less bias occurred when IPD and aggregate 

data were incorporated in NMA rather than aggregate data alone especially when 

indications of heterogeneity, inconsistency and confounding bias were observed.  

Jansen and Cope85, in 2012, extended the models originally proposed by 

Ouwens et al.82 and J.P. Jansen84; they presented multidimensional NMA models 

for TTE outcomes, accounting for treatment-covariate interactions and adjusting 

for bias caused by the differences in treatment effect modifiers. Their models did 

not rely on a proportional hazards’ assumption and adjustments for any 

imbalances could be made. Jansen and Cope criticized their work, indicating that 

covariate adjustment was based on aggregate level data, and recommended that 

their models can only be used with study level data in the presence of limited 

variation in effect modifiers within studies.   

Saramago et al.86 introduced a Bayesian framework, combining jointly aggregate 

data (for specific follow-up) and IPD of censored TTE outcomes in NMA by 

extending work conducted by Woods et al.81, and Soares et al.87. In their 

framework, IPD directly informed the distribution (likelihood), and aggregate data 

informed a probability estimate using a binomial likelihood for a specific subset of 

evidence. A common distribution for TTE data was assumed accounting for 

duration of follow-up in each study provided by the aggregate data. The authors 

discussed strengths such as the flexibility in modelling the IPD and aggregate 

data using treatment-covariate interactions and exploring within and across study 

interactions. 
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Freeman and Carpenter88, in 2017, described a flexible and computationally 

practical approach to apply a Bayesian one-step IPD NMA of TTE data using 

Royston-Parmar models. The authors showed that the model presented allowed 

for inclusion of patient level covariates and examination of non-proportional 

hazards a) via inclusion of treatment-log(time) interaction and b) by allowing 

interaction to vary by trial in order to understand which trial is driving non-

proportionality. 

Watkins et al.89 proposed a method for HR and variance derivation from reported 

binomial data based on a Taylor series expansion for the approximation of 

variance. Proportional hazards and minimal non-informative right censoring at the 

binomial data measurement time were necessary requirements that need to hold 

for the application of the method. Other methods such as digitised Kaplan-Meier 

curves and Bayesian analysis methods could provide more accurate estimates; 

however, according to the authors these could be time consuming and most of 

the time curve data were not always published.  

Cope et al90 in 2020, proposed a two-step approach for NMA of TTE data with a 

multidimensional treatment effect to overcome limitations (e.g. approximate 

likelihood on discrete hazards instead of a likelihood for individual event times) 

introduced by Ouwens et al82 and Jansen84 models. On the first step, for each 

trial arm reconstructed patient data were fit to alternative survival distributions 

(i.e., exponential, Weibull, Gompertz, log-normal, log-logistic); on the second step 

the scale and shape parameter estimates were synthesized and using a 

multivariate NMA model were indirectly compared across trials providing time-

varying treatment effects for the competing interventions. 

In the same year Wiksten et al91 reformulated fractional polynomial and piecewise 

constant NMA models as generalised linear models with time-varying covariates 

initially introduced by Jansen84. The authors indicated that the proposed method 

allowed for rapid exploration of different frequentist NMA models allowing for the 

best one to be refitted in a Bayesian framework.  

In 2021, Ollier et al92 extended work conducted by Crowther et al73 in a NMA 

framework. Specifically, the authors introduced a Poisson regression model for 

IPD NMA of TTE data allowing implementation of one-stage MA while accounting 

for heterogeneity and non-proportionality. The authors indicated that the 
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quantification of model’s heterogeneity and model selection were performed 

simultaneously by a penalised fixed effect model, overcoming the optimization 

problem met when random-effects models were applied.  

Tang and Trinquart93 introduced a Bayesian multivariate NMA model for the 

difference in restricted mean survival times (RMST). The model synthesized 

simultaneously all the necessary evidence from multiple time points; via the 

between and within-study covariance for the difference in RMST it borrowed 

information across different time points. A simulation study indicated lower mean 

squared error and increased precision compared to a single time point model. 

Comparisons to previous methodology focusing on the synthesis of survival 

functions (e.g. Ouwens et al82, Cope et al.90, Jansen84, Wiksten et al91, Freeman 

et al88) rather than reporting differences in RMST in NMA showed improved 

interpretation of the findings. Their work could be described as an extension of 

the Weir et al94 research (described in 2.4.5) which introduced a meta-analysis 

model for the difference in RMST by borrowing strength from multiple time points 

for conventional meta-analysis of pairwise treatment comparisons.   

Finally, Daly et al95 extended the RMST approach of Wei et al96 (discussed in 

2.4.6) in a NMA framework. Their approach jointly synthesised relative treatment 

effects from progression-free and overall survival Kaplan-Meier curves in a NMA 

without any parametric and proportionality assumptions; it also respected the 

constraints related to the overall survival that should be equal or greater than 

progression-free survival.  

 

2.4.5 Methods for Multivariate meta-analysis  

K.B. Dear97, in 1994, presented a generalised least-squares algorithm for the 

analysis of survival proportions reported at multiple times, accounting for single 

arm trials and including also between and within trial covariates. Multiple 

outcomes were considered as repeated measures. Multi-arm studies and non-

randomised historical controls did not require additional considerations. K.B. 

Dear claimed particularly that they could not incorporate a random-effects 

baseline term.  

Arends et al.83, in 2008,  suggested a multivariate, random, mixed-effects model 

for simultaneous analysis of survival proportions at different time points, which 
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was an extension of the proposed fixed-effect model97. At a fixed time point the 

model reduced to the DerSimonian-Laird random-effects model and therefore 

could be seen as a generalisation of it. The authors indicated that their model 

allowed for investigation of non-proportional hazards and inclusion of trial and 

treatment interactions.  

In 2009, Fiocco et al.98 proposed a new correlated gamma frailty Poisson model 

using a newly constructed multivariate gamma distribution allowing for between-

subjects correlation within a study. Composite likelihood was approximated using 

two factors, one related to parameter estimation and the other related to 

correlation parameter estimation98. The method was less sensitive to rounding 

errors due to the absence of quite large terms in a simulation. Bootstrap standard 

errors and CIs could be obtained for the parameters via simulation of the 

multivariate gamma distribution.  This work was extended to MA of pairs of 

survival curves under heterogeneity, using aggregate TTE data, and suggested 

a simultaneous analysis of survival proportions reported at multiple time-points 

using a multivariate random-effects model99. The authors stated that their method 

did not require an assumption on the shape of individual survival curves, as K.B. 

Dear97 and Arends et al.83 proposed in the past; it could also deal with missing 

data and allowed for heterogeneity in baseline risk. Restrictions related to the 

estimation of lower dimension models and incomplete follow-up were discussed.   

 

Jackson et al.100 developed a random-effects multivariate aggregate MA model 

for TTE outcomes. The authors suggested modelling event probabilities using 

multiple time-points instead of the hazard function, avoiding any proportional 

hazards assumptions. Their method could be preferable in situations where crude 

overall survival was desired or when inferences on specific time-points’ survival 

probabilities were needed.  

Riley et al.101 described the methodology needed for a multivariate MA, using IPD 

to estimate within-study correlations using also non-parametric bootstrapping 

methods, particularly for survival outcomes. Methodology for other outcomes has 

been described including continuous, binary and mixed outcomes. The method 

produced more appropriate standard errors particularly in the presence of 

longitudinal data and allowed for adjusted estimates and treatment-covariate 
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interactions. The authors indicated that their method could be used both under 

two- and one-stage model approaches.   

Finally, Weir et al94 in 2019, introduced a multivariate random-effects model for 

meta-analysis of the difference in RMST with IPD. The model borrowed strength 

from all available data at different follow-up times across trials and incorporated 

between-time point covariances. Unlike previous methods such as Wei et al96 it 

did not rely on predictions from fitted models but incorporated all observed data 

at all time points of interest. In a simulation study their approach yielded in smaller 

mean standard error at all time points when compared to other univariate 

methods.  

 

2.4.6 Method comparison and application to real life conditions and/or 

simulations 

In 2000, Earle et al.102 assessed five methods combining published survival 

curves in medical research; the iterative generalized least squares, MA of TTE 

data adjusting for covariates, non-linear regression, the log relative risk, and the 

weighted log relative risk. The authors suggested that all methods maintained 

reproducibility of summary survival curves from published literature, however, the 

best method was dependent on the data characteristics and the aim of the 

analysis. 

Duchateau et al.103, during 2001, compared the results from TTE outcomes from 

IPD MAs to those obtained from aggregate data MAs. The authors indicated that 

the differences mainly occurred since IPD MAs were based on duration of survival 

whereas aggregate data MAs were based on the cumulative mortality at specific 

time points.  

Tudur et al.104, in 2001, compared three indirect methods proposed by Parmar et 

al.43 and an extension of the survival curve approach proposed by Williamson (via 

internal communication during that time). The authors indicated that estimating 

the variance of the log HR from a CI and estimating log HR and variance using 

the p-value from the log-rank test performed better compared to estimating log 

HR and variance from survival curves where variability in the estimates was 

present. In the presence of low event probability, the indirect method using 
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survival curves was not reliable. Finally, they suggested situations under which 

an aggregate data approach was adequate. 

In 2005, Michiels et al.65 compared results obtained from MAs when median 

survival times were used as an alternative to HRs, or ORs of survival rates. 

Authors found that both median survival times and OR methods could result in 

an important loss of statistical power and under- or overestimation of treatment 

effects. In the presence of lower event rates, median survival time method 

provided more biased results. They highlighted the necessity of collecting 

important information on measures such as the degrees of freedom, HR with 95% 

CIs or the exact p-value allowing for replication of the HRs directly from the 

summary statistics of the trial report.  

Tudur-Smith et al.105 compared methodology investigating heterogeneity in TTE 

MA for aggregate data and IPD in 2005. Aggregate data meta-regression was 

accurate in the presence of within-study treatment-covariate interaction in 

addition to the between-trial variations for the aggregate value of the covariate. 

Additionally to previous evidence from Lambert et al106, the authors indicated that 

IPD should be used to study patient characteristics reliably and assess 

heterogeneity since adequate summary data are usually limited.  

Tudur-Smith and Williamson107, in 2007, compared three methods for fixed-effect 

IPD MA using TTE outcomes: the stratified log-rank analysis, stratified Cox 

regression and inverse variance weighted average of estimates. The authors 

indicated circumstances under which the models could produce similar estimates 

of the pooled log HR and its variance (when the underlying treatment effect was 

close to zero and the degree of heterogeneity across trials was minimal). The 

stratified log-rank analysis biased the results for larger treatment effects; all 

methods were approximately equivalent for modest treatment effects and low 

heterogeneity.  

 

In 2008, Katsahian et al.108 compared four approaches for IPD MA of TTE 

endpoints via simulation: the fixed-effect, random-effects (frailty), stratified and 

marginal models. The conditional model results differed substantially from 

marginal models since they were trying to address different questions. Frailty and 

random-effects models behaved fairly well even if few trials (i.e., not less than 

three) per study were present. Stratified models performed similarly to frailty 
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models; heterogeneity though could not be measured. Smaller type I errors and 

greater power were obtained from the random-effects compared to fixed-effect 

models when heterogeneity was explored. Finally, frailty models appeared to be 

the best suited models as they could handle trial-treatment interactions.  

 

Hirooka et al.109, during 2009, reported the performance of the estimation 

methods for literature based MA suggested by Parmar et al.43 via a simulation 

study comparing Cox regression analysis to direct method (i.e. log HR and 

variance were calculated from the log-rank score and its variance calculated from 

data), indirect method (log HR was approximately calculated as the “(total 

observed events)/4”), survival curve method and the survival curve method 

involving Mantel-Haenzel method (i.e. modified survival curve method). The 

authors indicated that the direct method performed similarly to Cox regression; 

the indirect method was highly accurate but underestimated the effect size in 

presence of a large effect with large sample size and high event probability. 

Finally, the survival curve and modified survival curve methods underestimated 

the effect size for large effect size with small sample size and low event rate.  

 

In 2011, Fisher et al.110, evaluated four methods (the pooling of within-trial 

covariate interactions (PWT), one-stage model with a treatment-covariate 

interaction term (OSM), testing for difference between covariate subgroups in 

their pooled treatment effects (TDCS) and combining PWT with meta-regression 

(CWA)) assessing patient-level interactions in IPD MA and provided guidance on 

method selection. They indicated that method selection should be based upon 

whether across-trial information is accounted for in the analysis. PWT and CWA 

methods were considered important initial steps of any analysis; OSM could be 

a more attractive approach since it allowed for multiple parameters to be 

simultaneously estimated, however, methodology and software issues exist for 

the application of this method. TDSC could identify treatment-covariate 

interaction, however, it could increase the risk of ecological bias since estimates 

could contain both within and between-trial information.    

In 2011, Bowden et al.111 compared the performance of two-stage log-rank and 

Cox model methods to the one-stage methods using Cox proportional hazards 

model and made use of the restricted maximum likelihood (REML). Negligible 

bias was present in the two-stage and one-stage Cox model estimates whereas 



 

50 

a small amount of bias was observed with the log-rank method; the estimates 

were though quite similar. The coverage of the model reduced when the sample 

size increased in all methods, and more conservative effect estimates were 

obtained because of the increased variance of the HR under the random-effects 

model used.  

Simmonds et al.112 compared three two-stage common methods for analysis of 

TTE data via simulation in 2011: a hypergeometric proportional odds model (Peto 

method), a Cox proportional hazards and an interval-censored logistic model. 

The Cox proportional hazards model and interval-censored logistic regression 

provided generally unbiased results, with the log-rank method yielding bias for 

large HRs. The authors discussed the relevant implications on a meta-analysis 

level and suggested that maximum-likelihood methods such as Cox and interval 

censored logistic models should be preferred over log-rank test for MA of TTE 

endpoints since they are able to test if the proportionality assumption holds.  

Fiocco et al.113 evaluated in 2012 three models for MA of survival curves. The 

authors compared the results from the model proposed by K.B. Dear97 using 

iterative least squares, a multivariate random effects model which was suggested 

by Arends et al83 as an extension of the previous model and a model proposed 

by Fiocco et al.98 using a Poisson correlated gamma frailty model. The same 

trend was observed in the estimated overall survival in the presence of 

heterogeneity. The Poisson correlated gamma frailty model could deal with the 

proportionality assumption as indicated in a simulation study; potential sources 

of heterogeneity between the studies were explained via inclusion of covariates 

at the study-level. 

 

Bennett et al.114, in 2013, assessed three Cox proportional hazard models for 

TTE data MA, two from a frequentist and one from a Bayesian perspective, 

considering also how these methods perform in the presence of low event rates. 

Based on simulation studies the Heinze and Schemper method115 with firth 

correction was consistently better in predicting log HR when the event rate was 

low, however, all methods performed equally well when the event count was large 

enough.  

In 2015, Wei et al.96 evaluated one flexible parametric and two non-parametric 

estimation methods using restricted mean survival time (RSMT) for MA of survival 
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outcomes as an alternative way to the calculation of HR in the two-stage IPD MA. 

RMST did not require the proportional hazard assumption, allowed the treatment 

effect evaluation to rely on the difference in TTE, facilitated interpretation of the 

results and allowed trial data inclusion in a MA in the presence of trials with 

shorter follow-up. The authors compared the three methods via simulation, 

concluding that methods perform similarly well in terms of the coverage, and 

flexible parametric method produced smaller mean square errors under specific 

scenarios.  

Lueza et al.116 ,in 2016, compared methodology used to estimate the difference 

in the RMST from IPD MA of TTE outcomes, as Wei et al96 did, looking at a 

different range of scenarios. Specifically, the authors compared the “Naïve 

Kaplan-Meier”, the “Peto-quintile”, the “Pooled Kaplan-Meier” method, and the 

“Pooled exponential” method. Simulation studies indicated that the Pooled 

Kaplan-Meier with DerSimonian-Laird random effects performed better in terms 

of bias and variance. Pooled exponential method showed bias in presence on 

non-proportional hazards; Peto-quintile underestimated the RMST apart from the 

case where non-proportional hazards considered; fixed effects underestimated 

the standard error of the RMST in most cases apart from the Pooled Kaplan-

Meier and Pooled Exponential with DerSimonian-Laird random effects. 

Finally in 2018, van Beekhuizen et al.117 compared three methods for NMA of 

TTE outcomes: the HR NMA, the parametric survival NMAs (PNMA) and finally 

fractional polynomial NMAs (FPNMA). Using datasets where the proportionality 

assumption was either valid or violated and making outcome comparisons based 

on RMST, the authors indicated that all methods predicted equally well mean 

survival in the presence of proportional hazards, however in the absence of them, 

HR NMA performed worse than PNMA and FPNMA. PNMA was not very good in 

selecting the best fit due to option limitations and having fewer opportunities to 

predict survival plateaus.  

 

2.4.7 General Discussions, Suggestions and/or Critiques on meta-

analysis of Time-to-Event Outcomes 

In 1988, Abel and Edler118 were among the first researchers identifying issues 

with the conventional approaches of measuring relative risk in MA. Using a simple 
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example, the authors indicated that in the presence of time-dependent treatment 

effect, when the number of individuals at risk changes markedly, the true relative 

risk was likely to be underestimated. They claimed that estimation of relative risk 

should account for the time-dependence of observed and expected events at 

each time point. 

 

O.N. Keene119 described in 2002 classic approaches to the analysis of TTE data 

when the proportionality assumption seemed questionable and explored 

alternative estimates of efficacy including the HR. The author suggested that 

using median times to event could result in a robust measure of efficacy within a 

non-parametric framework, using a bootstrap method for the calculation of 

confidence intervals. A calculation of bootstrap standard errors for the difference 

in medians was also performed. In 2003, D.A. Bennett120  provided an outline of 

methods necessary for the analysis of observational TTE outcomes. The authors 

discussed the implications for MA and the relevant areas of concern involved in 

MA such as publication bias, heterogeneity, misclassification and measurement 

error.  

 

In 2005, Simmonds et al.121 performed a methods review used for IPD MA. The 

authors indicated that MA of TTE outcomes were more apparent when IPD MA 

was performed; the majority of them used the Peto method, the log-rank and Cox 

proportional hazard models. Review authors discussed the need of developing 

methods incorporating heterogeneity via random-effects models; they also 

suggested that more clear strategies were needed in the absence of IPD. 

 

Cope and Jansen122, using a fractional polynomial Bayesian NMA of parametric 

survival curves, discussed different approaches to present rank probabilities.  

They looked into effect measures such as: median survival, expected survival, 

mean survival, mean survival of the trial with the shortest follow up time point, 

hazard or hazard ratio over time, cumulative survival or survival proportions over 

time and finally mean survival at subsequent time points. The authors indicated 

that the first half of the rank probabilities were easier to understand, 

communicated and did not vary over time whereas the other three improved the 

information related to the relative treatment effects over time, facilitating decision 

making by providing a more transparent approach.  
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Finally, Batson et al.46, in 2016, published a review of the methodology reported 

in oncology clinical trials and its suitability for informing their inclusion in a MA. 

The authors indicated that serious limitations were observed in the reporting of 

clinical trials; they were most influenced by traditional approaches such as Cox, 

stratified Cox, log-rank test without justifying important assumptions of the models 

posed such as the proportional hazard assumption. The authors suggested that 

statistical methodology should be assessed by goodness of model fit and 

alternative approaches for MA of TTE outcomes where the proportional hazards 

assumption does not hold such as accelerated failure time models should be 

considered for valid decision making.  

  

2.5 Discussion 

This chapter aimed to identify and describe methodological research papers 

describing the methods for MA of TTE outcomes, without providing direct 

comparison or judgements among proposed methodologies. The review of the 

articles included was based on searches conducted in Medline (Ovid version), 

Scopus and Web of Science from the earliest date up to December 2021. I 

reviewed a total of 75 articles. The purpose of carrying out the review was to 

obtain an in-depth summary of relevant published literature, to inform the 

subsequent research presented in later chapters. 

I categorised the publications into seven main categories: Models for aggregate 

data (11 publications), methods for reconstruction of TTE data (5 publications), 

models for IPD (16 publications), methods for NMA (12 publications), multivariate 

MA (7 publications), method comparison via real life conditions and/or 

simulations (16 publications) and finally papers including discussions, critiques 

and other suggestions for MA of TTE outcomes (6 publications). I described 

various methodologies including proportional hazards, non-proportional hazards, 

RMST, data extraction from survival curves to conduct MA, methodology for IPD 

and aggregate data MA, and frailty models for the examination of heterogeneity. 

The review identified limited publications focusing on the issue of analysing TTE 

outcomes as binary such Michiels et al65. I was able also to extract information 

from some research publications on the significance of the use of different effect 

measures.  
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For example, Abel and Edler118 discussed that the estimation of the effect 

measure in TTE outcomes has to account for the time-dependence of observed 

and expected events at each time point. Via an example they indicated that 

calculation of the cumulative observed and expected events could lead to 

underestimation of the true risk. Duchateau et al.103 claimed that in an IPD MA 

interpretation is conducted in terms of a HR, therefore taking into account 

patient’s time to death, whereas aggregate data MA is often interpreted using 

ORs, leading to non-representative conclusions on the overall treatment effect 

size123.  

Additionally, Combescure et al.53 indicated that MA of binary outcomes when 

censoring is present could affect the reliability of MA on TTE data, highlighting 

the necessity of further research in assessing the implications of censored data 

being present in aggregate data MA. Cope and Jansen122, from a NMA 

perspective, discussed the potential advantages and disadvantages of different 

effect measures related to treatment rankings. Specifically, the authors claimed 

that ranking based upon one-dimensional measures did not yield the necessary 

information needed by rank probabilities whereas those based upon the HR could 

provide important information over time on the treatment effect at each time 

point122. Finally, a recent review conducted by Otwombe et al.45 stressed the fact 

that the research using logistic regression on TTE outcomes is classified as 

“suboptimal” due to their failure in accounting for follow-up. 

The methodology review identified the research that exists in the literature to 

support systematic reviewers and meta-analysts to perform MA of TTE outcomes. 

It has also described more complex methodologies with regards to different 

modelling techniques that are not necessarily aimed to be applied by systematic 

reviewers and meta-analysts. The review identified that most publications in the 

past were focusing mainly on models for aggregate data, whereas recently 

publications are focusing mainly on meta-analysis of IPD or NMA. The use of 

Bayesian techniques in recent years has been explored.  

This review did not aim to collect all empirical evidence from a certain topic, but 

to evaluate a broad pre-specified methodological question124. Therefore, I did not 

intend to consider it as a systematic review, even though I took a systematic 

approach to searching and screening to identify the necessary evidence. 
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Furthermore, I excluded any methodological studies that were reported in 

languages other than English and this may have introduced language bias. 

Even though the use of the complementary log-log link was not directly explored 

here due to the limited publications identified in the literature I focus on this for 

the rest of this PhD since it provides a direct interpretation on a HR scale, it is 

closely related to continuous-time models, has a built-in proportional hazards 

assumption, and therefore has important application in survival analysis.125 The 

use of RR has not been explored further since according to the literature34, 35, 39, 

41, is placed in between the OR and HR measures and therefore, it is expect to 

capture any biases within these extremes. 

To my knowledge there is one previous PhD report by Sarah Nevitt (published in 

2017) identifying methodology that exists on MA of TTE data or application of the 

existing methods; this included more than a hundred publications126. However, 

this review had different inclusion and exclusion criteria and different databases 

were searched. It is important to note that the core of methodological papers (up 

to January 2017) that were described here were similar to those identified in the 

previous report, while additional methodological publications were identified in 

more recent years. Additionally, important contribution to the literature on 

analysing TTE outcomes as binary in meta-analysis was conducted by research 

produced by Tudur-Smith et al127. 

In conclusion, I explored and described methodological papers for MA of TTE 

outcomes, including discussions on the significance of the correct choice of the 

effect measure, including quite limited discussions on the element of analysing 

TTE outcomes as binary. My review indicated that many different methodologies 

have been proposed specifically for MA of TTE outcomes, however past reviews 

have indicated that their application to date is still quite limited45, 46. Further 

research is needed in order to understand how these methodologies perform 

comparatively when applied to different MA datasets having various 

characteristics, using effect measures such as the HR and OR.  
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_____________________________ 

3. Analysing Time-to-Event Endpoints Originally 

Treated as Binary on a HR scale Using Empirical 

Data from the CDSR 

 

 

 

 

3.1 Chapter Overview 

This chapter provides an empirical comparison between TTE MA analysed 

originally as binary in the CDSR and interpreted on the OR scale with MA results 

from analyses performed using the complementary log-log link (clog-log) and 

interpreted on the HR scale. I describe the reasons for performing these 

analyses, the statistical models and comparisons conducted, and present the 

results, together with a discussion of the findings.  

3.2 Introduction 

Systematic reviews and MA of TTE outcomes (e.g. time to death, recurrence of 

symptoms, time to conception, relief of pain etc.) are frequently carried out and 

are very common in areas such as cancer, respiratory and cardiovascular, since 

event timings are crucial to assessing the impact of an intervention47.  

The decision on how TTE outcomes are handled in a particular meta-analysis 

largely depends on how eligible studies are reported and is often out of the control 

of the meta-analyst except if individual participant data (IPD) are available. The 

information extracted by systematic reviewers may include the total number of 

participants and events per arm, and/or the HR alongside its CI, and/or the log-

rank observed minus expected statistic (“O-E”) and its variance (“V”) (which are 

useful alternative statistics if a hazard ratio is not directly reported47).  
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Time-to-event data can be analysed using the effect measure of hazard ratio 

(HR), or can be dichotomised and analysed as binary using effect measures such 

as the odds ratio (OR) or risk ratio (RR)16. Although HR is considered the most 

appropriate scale for analysis of TTE data, in practice OR and RR are frequently 

used instead due to the following reasons: unavailability of individual participant 

data (IPD); limitations on how these outcomes are reported in individual trial 

reports; lack of familiarity in handling TTE outcomes for meta-analysis; difficulties 

in understanding the methods of analysing such data without a statistician; limited 

available training for the majority of systematic reviewers and meta-analysts who 

perform such analyses42.  

Discussions have been raised in the past and are still ongoing over how TTE 

outcomes should be analysed in a MA. Since TTE data take into account the 

timing and censoring of the events, strong assumptions are made if these data 

are dichotomised, ignoring their natural properties and treating them as any other 

binary outcome. This could have a serious impact on the final pooled effect 

estimates, potentially producing misleading decisions on the appropriateness of 

healthcare interventions, which in turn could adversely affect patient heath and 

healthcare services, or lead to initiation of new trials which may not be cost-

effective.  

In the past, research was conducted comparing the differences between the OR 

using logistic regression models and the HR using proportional hazard (PH) 

models within individual studies. Green and Symons33 showed that logistic and 

Cox proportional hazard models produce similar results when the event is rare 

and for shorter follow-up times under a constant hazard rate. Ingram and 

Kleinman37 added that important differences among the methods occur in the 

presence of varying censoring rates and length of follow-up. However, it has not 

been established yet how such results transfer to the context of an aggregate 

data meta-analysis for which summary data is extracted from trial reports.  

Further, in this context it is of interest to examine potential alternatives such as 

the use of the complementary log-log (clog-log) link, which may reduce the 

difference in the results between the two effect measures used. The overall meta-

analytic estimate can be affected due to changes to the weighting allocated to 

each study, and therefore changes to the results of a meta-analysis can be 

unpredictable.  
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In this chapter I aimed to carry out an empirical “meta-epidemiological” study 

using survival meta-analysis data from the Cochrane Database of Systematic 

Reviews (CDSR) (Issue 1, 2008) to explore the implications of analysing TTE 

outcomes as binary in meta-analysis. Since only binary data were available I 

examined the impact of using alternative methodology such as the 

complementary log-log link (clog-log), proven to facilitate interpretation of the 

results on a HR scale.125, 128  I assess only the differences between the OR and 

the HR, as the RR, according to the literature34, 35, 39, 41, is placed in between these 

measures and therefore, I expect to capture any bias within these extremes. I 

perform these analyses under both two- and one-stage models.  

The rest of this chapter is set out as follows. In Section 3.3, I describe the dataset 

I used and the statistical models that I applied. In Section 3.4, I present 

descriptive statistics of the database and then I describe the results obtained from 

re-analysing the data originally analysed as binary on an HR scale in two 

subsections: one for the two-stage and one for the one-stage models. These 

results are followed by a discussion exploring the strengths and limitations of my 

findings in Section 3.5, together with conclusions and plans for further work. 

 

3.3 Methods 

3.3.1 Data 

The Nordic Cochrane Centre provided the content of the first issue from 2008 of 

the CDSR and includes meta-analyses within reviews which have been classified 

previously by outcome type, medical specialty and types of interventions included 

in the pairwise comparisons129. The database did not record whether data type 

was TTE; however, based on the outcome classification I was able to identify 

(using words such as “survival”, “death”, “fatality”) meta-analyses with outcome 

classification “all-cause mortality” where the information recorded was based only 

on the number of events and participants per arm. Therefore, a first subset of 

TTE MA was identified; those recorded as binary summaries. 

3.3.2 Eligibility Criteria 

Rebecca M. Turner previously extracted these binary data and conducted initial 

cleaning including examination of the outcome classification; I repeated the data 

extraction to confirm the information obtained were accurate. The dataset could 

contribute more than one meta-analysis per Cochrane review. 
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RMT identified 30 misclassifications due to disagreement with the original 

outcome classification as listed in the datasets, conflicting information in the 

database or unavailability of the correct version of the Cochrane review, leaving 

1,102 MA in the dataset. I excluded 1,252 studies including double zero events, 

since they do not contribute to the meta-analysis results48, 129.  I removed another 

352 meta-analyses including fewer than 3 studies because some of the models 

applied below (i.e. generalised linear mixed models) will be affected by estimation 

issues and inevitable failures using small numbers of studies130; hence I wanted 

to make fair comparisons between the models applied. Derivation of the analysis 

sample is provided in Figure 3.1. 

 

Figure 3.1: Analysis sample of binary dataset from the CDSR (2008, Issue 1). 

 

3.3.2 Descriptive Statistics  

Prior to analysis, I obtained descriptive statistics on the number of studies per 

meta-analysis, number of events and study size by the median and interquartile 

range (IQR). I identified also the number of medical specialities, and median 

number of events (and IQR) per medical specialty. 
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3.3.3 Model description  

I used the following meta-analysis models to analyse the data on the OR or HR 

scale. The model was initially presented by Jackson et al.130 on meta-analysis 

level and by T.V Perneger54 on a single study level; I applied it on the HR scale. 

The first was a model proposed for binary data (assuming a binomial likelihood 

with a logit link) which is based only on the number of patients and number of 

events which occurred. Interpretation for the treatment effect is conducted in 

terms of the logarithm of an OR. 

In the second approach, I modelled the binary data using a normal approximation 

to binomial likelihood with a complementary log-log link (clog-log), where 

treatment effect interpretation was based on the logarithm of a HR. This method 

is also based only on the number of patients and events which occurred, and 

ignores censoring and the time element; however it is closely related to 

continuous-time models, has a built-in proportional hazards assumption, and 

therefore has important application in survival analysis125. More details on this 

approach are presented in Appendix B.3 (part A). 

3.3.3.1 Fitting two-stage random-effects models for binary data 

Prior to fitting the two-stage random-effects models, study arms with zero events 

were identified for the binary data. For 771 studies, a “treatment arm” continuity 

correction was applied as proposed by Sweeting et al.131 and was constrained to 

sum to one as this ensures that the same amount of information is added to each 

study. Specifically, the reciprocal of the size of the opposite treatment arm was 

added to both cells (m/n where m is a constant of a chosen size and n represents 

the total amount of patients randomised in the opposite arm). 

Let i = 1,2, … , n denote the study. The estimated log odds and log hazard ratios 

were given by: 

yi = {
log (

Ai
Bi
) − log (

Ci
Di
) for ORs                                          (3.1)

log[− log(1 − PTi)] − log[− log(1 − PCi)] for HRs  (3.2) 

 

where Ai, Ci represented number of events, Bi, Di represented number of non-

events in the treatment and control groups respectively, PTi =
Ai

Ai+Bi
 was the 

proportion of events  on the treatment arm of the 𝑖𝑡ℎ study, and PCi =
Ci

Ci+Di
 was 

the proportion of events on the control arm of the 𝑖𝑡ℎ study. 
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The corresponding variances were given by:  

si
2

=

{
 
 

 
 
1

Ai
+
1

Bi
+
1

Ci
+
1

Di
                                                                                                                            for ORs (3.3)

(
1

log(1 − PTi) ∗ (PTi − 1)
)
2

∗ (
PTi ∗ (1 − PTi)

Ai + Bi
) + (

1

log(1 − PCi) ∗ (PCi − 1)
)
2

∗ (
PCi ∗ (1 − PCi)

Ci + Di
) for HRs (3.4)

 

 

Equations (3.2) and (3.4) provided a HR estimate via the use of the clog-log link 

considered as a useful link function for the discrete-time hazards models as 

recommended by Hedeker et al.128 and Singer et al.125. More information on the 

derivation of the HR estimate using the clog-log link is provided in Appendix B.3 

(part B). I estimated the study-specific log odds ratios or log hazard ratios, 𝑦𝑖 and 

their within-study variances 𝑠𝑖
2 as shown above and fitted a standard two-stage 

random-effects model to these. Additionally, I obtained the  𝐼2 statistic from the 

fitted models as follows:  

                                                          I2 =
τ̂2

τ̂2+σ̂2
                                                           (3.5) 

where 𝜏2 denotes the variance of the underlying true effects across studies and 

𝜎2 the typical within-study variance. 

To avoid downward bias in the variance components estimates, I used the 

restricted maximum likelihood (REML) estimator for model implementation132. 

The models were implemented via the “rma.uni” command from “metafor” 

package in R (Appendix B.2). 

3.3.3.2 Fitting one-stage random-effects models for binary data  

The following model is a generalised linear mixed model which enables us to 

perform the analysis in one-stage with the possibility to provide us with more 

accurate inferences. Let 𝑖 = 1,2, … , 𝑛 denote the study and 𝑘 = 0, 1 denote the 

treatment group (𝑘 = 0 indicates control and 𝑘 = 1 indicates active treatment 

group). Assuming that 𝜋𝑖𝑘 is the event probability in the 𝑖𝑡ℎ  study for the 𝑘𝑡ℎ  

treatment group. 

A generalised linear mixed model was fitted first from Jackson et al.130 for the 

binary data and I extended it to the HR scale. This model uses the exact binomial 
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likelihood allowing us to provide more accurate results, especially with sparse 

data130. According to the Simmonds and Higgins model133 I assumed that: 

                                                 g(πik) = γi + k ∙ θi, θi~Ν(θ, τ
2)                            (3.7) 

where 𝑔(𝜋𝑖𝑘) is a link function with: 

g(πik) = {
logit(πik) for ORs

log [− log(1 − πik)] for HRs
 

𝛾𝑖 was the baseline risk of event in study 𝑖, 𝜃 was the overall treatment effect 

across studies, 𝜏2 was the heterogeneity across studies, 𝜃𝑖 was the true study-

specific treatment effect which varies between studies. Using the “glmer” function 

in R, I obtain the following: 

𝑔(𝜋𝑖𝑘) = 𝛾𝑖 + 𝑘 ∙ 𝜃 + 𝑘 ∙ 𝜀𝑖, where 𝜀𝑖~𝑁(0, 𝜏
2) and all 𝜀𝑖 are independent.  I applied 

to this dataset a modification of the Simmonds and Higgins model with random 

treatment effects and fixed study-specific effects indicating that there is a 

separate baseline risk parameter 𝛾𝑖 for each study as follows: 

g(πik) = γi + k ∙ θ + zikεi (3.8) 

 

I replaced 𝑘 ∙ 𝜃  from the above equation with 𝑧𝑖𝑘𝜃 = (𝑘 − 0.5)𝜃. The model’s form 

does not change and 𝑧𝑖𝑘𝜃 is only a re-parameterisation of the model as described 

in detail by Jackson et al.130. The difficulty related to using common study specific 

effects is that of the number of parameters needing to be estimated since the 

asymptotic theory of maximum likelihood requires the number of parameters to 

remain stable as the sample size increases130.  The original and the modified 

versions of the Simmonds and Higgins model are similar with the same mean 

and variance, however they have different bivariate structures (i.e. the variance 

covariance matrix is defined in a different way). No serious bias in the estimation 

of variance components was found using REML in fitting this model in a small 

scale simulation study using continuous data conducted by Jackson et al.130.  

The “rma.glmm” command from “metafor” package was used to calculate the 

one-stage ORs and the “glmer” command from “lme4” package was used for the 

corresponding HR estimates (Appendix B.2). Estimation of between-study 

heterogeneity (𝐼2) for the one-stage HR models was considered computationally 

intensive134 and was computed outside the model specification (Appendix B.4); 
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to provide justification for the method of calculation, 𝐼2 estimates were obtained 

similarly for the one-stage OR models and were compared to the directly 

modelled ones, indicating almost identical results. 

 

3.3.3 Model Comparison 

The following model comparisons were performed. Initially, I examined whether 

the results from analysing TTE data as binary on an OR scale are similar to 

results from analysing on the HR scale using the clog-log link, both under two-

stage and one-stage models.  

First, I calculated the proportion of significant and non-significant meta-analytic 

pooled effect estimates under the different scales used (OR vs HR scale); I 

identified the number of meta-analyses which were significant under one scale 

and non-significant under the other at a two-sided 5% level of significance.  

Bland-Altman plots with associated 95% limits of agreement were constructed, 

with the aim of facilitating interpretation of results and producing fair comparisons 

between the two scales135. In order to create these plots, results were 

standardised by dividing the logarithm of the estimate by its standard error. Plots 

were produced for the standardised treatment effect estimates and for the I2 

statistics. 𝐼2 represents the percentage of variability that is due to between-study 

heterogeneity rather than chance; 𝐼2  values range from 0% to 100%. This 

measure was chosen for model comparison as it enables us to compare results 

directly between the two scales used. The variance of underlying true effects 

across studies (τ2) was not used as it does not allow direct comparison between 

different outcome measures. Finally, I examined whether the difference between 

standardised estimates on the treatment effects between the OR and HR scales 

is associated with level of baseline risk in individual studies. 

I identified “outliers” as meta-analyses outside the 95% limits of agreement, and 

I examined their characteristics. The meta-analysis characteristics I examined 

were the following: 

▪ between-scale differences in the magnitude of the pooled treatment effect 

estimate and its 95% confidence intervals  

▪ the levels of within-study standard error and between-study heterogeneity 

and study weights in the meta-analysis 
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▪ study-specific event probabilities and baseline risk  

I summarised these differences by meta-analysis and reported those 

characteristics which were mostly associated with substantial differences 

between OR pooled effect estimates and corresponding HR pooled effect 

estimates. 

 

3.4 Results 

For the outcome of “all-cause mortality”, 1,132 meta-analyses within the 

Cochrane database were originally analysed as binary; after applying the 

exclusion criteria 715 meta-analyses were explored further. The median number 

of meta-analyses per review was 1 with IQR (1,2). The median number of studies 

and the median number of events are provided in Table 3.1. 

Outcome All-cause Mortality 

Total Number of MA 715 

Number of studies per MA: Median (IQR) 5 (3, 8) 

Number of events per MA: Median (IQR) 13 (4, 40) 

Median Study Size (IQR) 124 (60, 312) 

Table 3.1: Descriptive statistics for binary data from the Cochrane Database of 

Systematic Reviews (Issue 1, 2008). 

 

The distribution of medical specialities of the meta-analyses is presented in Table 

3.2. For these data, “Cardiovascular” (23%) is the most frequently occurring 

category, followed by “Cancer” (13%), “Gynaecology, pregnancy and birth” (12%) 

and “respiratory diseases” (12%). The median number of events in cancer 

substantially exceeded the median number of events in other medical areas.  

 

Medical Specialty 
ACM⁺ Number 

(%) of MAs 

Events per MA: 

Median (IQR) 

Cancer  95 (13%) 49 (17, 120) 

Cardiovascular 168 (23%) 14 (4, 43) 

Central nervous 

system/musculoskeletal 

44 (6%) 12 (5, 33) 

Digestive/endocrine, nutritional 

and metabolic 

71 (10%) 7 (3, 18) 

Gynaecology, pregnancy and birth 87 (12%) 7 (2, 20) 
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Infectious diseases 46 (6%) 18 (8, 47) 

Mental health and behavioural 

conditions 

21 (3%) 2 (1, 5) 

Pathological conditions, symptoms 

and signs 

5 (1%) 9 (2, 15) 

Respiratory diseases 87 (12%) 11 (5, 36) 

Urogenital 30 (4%) 4 (2, 12) 

Other* 61 (9%) 9 (3, 27) 

*Other: Blood and immune system, General heath, Injuries, Mouth and dental, and 

Cystic fibrosis.  

⁺ACM: All-cause mortality 

Table 3.2: Distribution of medical specialties for the binary data meta-analyses in the 

CDSR. 

 

Once the models were applied, we compared results between OR and HR 

analyses.  Table 3.3 provides the percentages of significant and non-significant 

meta-analyses at a two-sided 5% level of significance indicating that there are 

few discrepancies present under two- or one-stage models. 

Outcome 
 Two-stage One-stage 

 OR OR 

  Significant 
Non-

Significant 
Significant 

Non-

Significant 

      

HR  

(clog-log) 

All-cause 

Mortality 

Significant 106 (15%) 2 (0.1%) 123 (17%) 2 (0.3%) 

Non-

Significant 
4 (0.6%) 603 (84%) 4 (0.6%) 589 (82%) 

Table 3.3: Number (%) of (non-)significant meta-analyses under different scales for 

two- and one-stage models. 

 

3.4.1 Results for Two-stage models 

According to the Bland-Altman plot (Figure 3.2), the average difference between 

the two methods for the standardised pooled effect estimates was -0.004 units (-

0.222 units, 0.214 units) and -0.1% (-10.6%, 10.3%) for the estimation of I2 for 

two-stage models; this indicates a relatively small percentage difference between 

the two methods in the estimation of the measure of impact of heterogeneity I2. 

The width of the 95% limits of agreement is small, indicating acceptable 
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agreement between the two methods except in specific circumstances mentioned 

below. 

 

Figure 3.2: Bland-Altman plots comparing standardised pooled effect and 𝐼2 estimates 

for two-stage models. 

Based on Bland-Altman plots, 6% (n=47) of the meta-analyses were considered 

as outliers both under two- and one-stage models. In 21% of the outlying meta-

analyses (e.g., MA 327; outlier obtained from 𝐼2  estimates) a high event 

probability (defined here as probability greater than 0.7 for the majority of the 

individual studies) was observed. For example, meta-analysis 327 consists of 7 

studies for which the event probability was greater than 0.7 for 5 out of 7 studies; 

consequently, high event probability affected substantially the difference in the 

individual study estimates between the OR and HR analyses, leading to different 

allocated relative weights for the studies, and discrepancies in the pooled effect 

estimates as shown in Figure 3.3. Other examples of meta-analyses under the 

same category include MA 246, 322, 331, 394,448, 559, 711 (Appendix B.5).  
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Figure 3.3: Forest plot (MA 327) indicating discrepancies in the presence of high event 

probability. 

The pooled HR estimates were closer to 1 than the OR estimates in the majority 

of meta-analyses with some exceptions such as MA 574 (outlier obtained from 

standardised and 𝐼2 estimates) for binary data where, even though most of the 

individual study HR estimates are closer to 1 than the individual OR estimates, 

the pooled HR estimate is further from 1 than the pooled OR estimate. Other MA 

under the same category include MA 417, 621, and 647 (Appendix B.5). 

 

Figure 3.4: Forest plot (MA 574) in which pooled OR estimate is closer to one than pooled 

HR estimate. 

Increased within-study variability on the OR scale relative to the HR scale may 

affect the weighting more than the actual estimates in the studies, for example 

within binary data meta-analysis 7 (outlier obtained from standardised estimates), 
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producing some differences in the pooled effect estimates between the two 

scales. Other outlier MAs lying under the same category are 156, 201, 214, 373, 

431. 

 

 

Figure 3.5: Forest plot (MA 7) showing increased within-study variability on the OR scale 

relative to the HR scale. 

Important differences in between-study heterogeneity between the HR and OR 

analyses were also observed (MA: 330, 434, 506). For example, meta-analysis 

330 (outlier obtained from 𝐼2  estimates) consists of 8 studies of which 6 are 

smaller studies which received increased weight in the HR analysis compared to 

the OR analysis while the two larger studies received smaller weights; this 

affected both the individual HR estimates that have moved closer to each other 

and the relevant weights of the studies as presented in Figure 3.6.  
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Figure 3.6: Forest plot (MA 330) indicating discrepancies arising from differences in 

between-study heterogeneity. 

In 34% of the outlying meta-analyses (e.g., MAs 158, 177, 296, 507, 525, 558, 

560), the individual study estimates and the corresponding weights were affected 

by a combination of differing event probability across study arms, differences in 

between-study heterogeneity or increased within-study variability on the OR 

relative to the HR scale (Figure 3.7). In the presence of a limited amount of 

studies in the meta-analyses this was even more evident. Additional examples of 

forest plots indicating the discrepancies among the results are shown in the 

Appendix B.5, including tables presenting the treatment effect, 𝐼2 and 𝜏2 

estimates. 

 

Figure 3.7: Forest plot in which a combination of reasons affect differences between the 

OR scale and the HR scale. 
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Finally, examination of the effect of baseline risk on the differences between OR 

and HR estimates shows somewhat greater differences for central values of 

control risk (Figure Appendix B.1, values between 0.3 and 0.7).  

 

3.4.2 Results for One-stage models 

In a similar way to the two-stage models, Bland-Altman plots were obtained to 

identify any potential discrepancies in the results once one-stage models were 

applied. According to the Bland-Altman plot (Figure 3.8), the average difference 

between the two methods for the standardised pooled effect estimates was -

0.008 units (-0.340 units, 0.324 units) and -0.1% (-6.5%, 6.4%) for the estimation 

of 𝐼2 for one-stage models; this indicates an even smaller percentage difference 

between the two methods in the estimation of the measure of impact of 

heterogeneity 𝐼2 . The width of the 95% limits of agreement is small, indicating 

acceptable agreement between the two methods.  

 

Figure 3.8: Bland-Altman plots comparing standardised pooled effect and 𝐼2 estimates 

for one-stage models. 

Since there were no available forest plots for one-stage models, only a table was 

produced for the differences in the treatment effect, 𝐼2  and τ2 estimates between 

the OR and HR analyses (Table 3.4). Similarly to two-stage models, high event 

probability was defined here as probability greater than 0.7 for the majority of the 

individual studies) was observed for some of the outlying meta-analyses (e.g. MA 

245, 246, 327).  
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The pooled HR estimates were closer to 1 than the OR estimates for the majority 

of the MA with the exception of MA 201 and 574 where, even though most of the 

individual study HR estimates are closer to 1 than the individual OR estimates, 

the pooled HR estimate is further from 1 than the pooled OR estimate.  

Increased within-study variability on the OR scale relative to the HR scale may 

have affected the weighting more than the actual estimates in the studies, for 

example within meta-analysis 628. Important differences in between-study 

heterogeneity between the HR and OR analyses were also observed for a lot of 

meta-analyses such as MA 157, 178, 179, 294, 295, 330, 356, 415, 431, 557, 

690.  

In 43% of the outlying meta-analyses, (MA 118, 139, 156, 158, 177, 485, 493, 

506, 512, 523, 535, 559, 560) the individual study estimates and the 

corresponding weights were affected by a combination of differing event 

probability across study arms, differences in between-study heterogeneity or 

increased within-study variability on the OR relative to the HR scale. 

 

One-Stage Random-Effects Model 

MA 
Identifier 

OR (95% CI)  
vs. HR (95% CI) 

τ2 OR  

vs. τ2 HR 

𝐼2  OR  

vs.  𝐼2  HR 

118 
0.531 (0.326, 0.864)  

vs. 0.565 (0.399, 0.798) 
0.089 vs. 

0.000 
21% vs. 0% 

139 
1.165 (0.876, 1.550) 

 vs. 1.027 (0.935, 1.128) 
0.065 vs. 

0.000 
17% vs. 0% 

156 
0.601 (0.457, 0.790)  

vs. 0.653 (0.494, 0.863) 
0.000 vs. 

0.021 
0% vs. 15% 

157 
0.757 (0.521, 1.099)  

vs. 0.815 (0.582, 1.140) 
0.018 vs. 

0.025 
9% vs. 17% 

158 
0.730 (0.538, 0.990)  

vs. 0.795 (0.615, 1.029) 
0.001 vs. 

0.011 
1% vs. 20% 

177 
0.657 (0.506, 0.854)  

vs. 0.701 (0.546, 0.899) 
0.009 vs. 

0.019 
8% vs. 19% 

178 
0.711 (0.545, 0.927)  

vs. 0.753 (0.592, 0.958) 
0.024 vs. 

0.026 
22% vs. 30% 

179 
0.729 (0.568, 0.935) 

vs. 0.773 (0.620, 0.964) 
0.009 vs. 

0.011 
13% vs. 22% 

201 
0.235 (0.133, 0.416)  

vs. 0.210 (0.017, 2.645) 
0.000 vs. 

0.278 
0% vs. 19% 

245 
0.577 (0.348, 0.957)  

vs. 0.738 (0.548, 0.993) 
0.262 vs. 

0.096 
51% vs. 58% 

246 
0.717 (0.482, 1.066)  

vs. 0.902 (0.723, 1.124) 
0.000 vs. 

0.028 
0% vs. 28% 



 

72 

294 
0.700 (0.390, 1.256)  

vs. 0.760 (0.463, 1.247) 
0.101 vs. 

0.012 
16% vs. 3% 

295 
0.701 (0.385, 1.278)  

vs. 0.793 (0.470, 1.337) 
0.166 vs. 

0.055 
26% vs. 16% 

327 
0.446 (0.232, 0.855)  

vs. 0.676 (0.478, 0.956) 
0.070 vs. 

0.049 
8% vs. 22% 

330 
0.768 (0.532, 1.110)  

vs. 0.873 (0.725, 1.051) 
0.046 vs. 

0.000 
20% vs. 0% 

356 
0.818 (0.657, 1.018) 

 vs. 0.846 (0.689, 1.039) 
0.005 vs. 

0.007 
7% vs. 14% 

415 
0.880 (0.407, 1.900)  

vs. 0.924 (0.473, 1.804) 
0.224 vs. 

0.097 
32% vs. 24% 

431 
0.500 (0.414, 0.605)  

vs. 0.569 (0.495, 0.654) 
0.106 vs. 

0.048 
68% vs. 58% 

485 
1.179 (0.910, 1.529)  

vs. 1.102 (0.949, 1.279) 
0.104 vs. 

0.029 
53% vs. 47% 

493 
0.792 (0.584, 1.074)  

vs. 0.857 (0.726, 1.011) 
0.008 vs. 

0.000 
8% vs. 0% 

506 
0.664 (0.383, 1.151)  

vs. 0.771 (0.512, 1.162) 
0.144 vs. 

0.160 
21% vs. 38% 

512 
0.503 (0.217, 1.165)  

vs. 0.576 (0.311, 1.066) 
0.675 vs. 

0.329 
61% vs. 54% 

523 
0.733 (0.585, 0.918) 

 vs. 0.805 (0.619, 1.045) 
0.000 vs. 

0.018 
0% vs. 21% 

535 
0.390 (0.023, 6.565)  

vs. 0.550 (0.081, 3.729) 
3.889 vs. 

1.759 
70% vs. 63% 

557 
1.293 (0.469, 3.566)  

vs. 1.269 (0.523, 3.082) 
0.660 vs. 

0.469 
67% vs. 75% 

559 
1.246 (0.462, 3.359)  

vs. 1.008 (0.631, 1.611) 
0.040 vs. 

0.056 
6% vs. 39% 

560 
1.437 (0.830, 2.487)  

vs. 1.231 (0.809, 1.872) 
0.000 vs. 

0.000 
0% vs. 0% 

574 
0.870 (0.534, 1.418)  

vs. 0.788 (0.485, 1.280) 
0.035 vs. 

0.066 
19% vs. 37% 

628 
0.730 (0.168, 3.165)  

vs. 0.821 (0.449, 1.502) 
0.125 vs. 

0.000 
10% vs. 0% 

690 
0.434 (0.264, 0.712)  

vs. 0.479 (0.276, 0.832) 
0.000 vs. 

0.129 
0% vs. 27% 

Table 3.4: Results from meta-analyses outside the 95% limits of agreement 

based on difference of standardised estimates and difference in 𝐼2. 

MA coloured in blue represent results from studies outside the 95% limits of 
agreement based on difference of standardised estimates. MA coloured in 
red represent results from studies outside the 95% limits of agreement based 

on difference in  𝐼2. MA coloured in black represent results from studies 
outside the 95% limits of agreement based on both difference of standardised 

estimates and difference in  𝐼2. 
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3.5 Discussion 

Using meta-analysis data from the CDSR of 2008, I investigated how TTE 

outcomes are sometimes treated within meta-analysis; I explored the differences 

that occur when data are analysed as binary as opposed to analysing the data 

using the complementary log-log link where interpretation is conducted on a HR 

scale. For this dataset, I identified important reasons associated with discordance 

among the results, indicating that the correct choice of the method does matter 

and may affect the interpretation and conclusions drawn from the results.  

My analyses highlighted that high event probability was an important factor 

associated with discordant effect estimates; changes to between and within-study 

variation were important mechanisms producing differences in the results as well. 

However, there were occasions where there was no clear single factor driving the 

differences, since there was a combination of reasons affecting the individual 

study estimates and corresponding weights.  

 

While most of the meta-analyses within the database were analysed originally as 

binary, with an outcome classification of all-cause mortality it is worth mentioning 

that these meta-analyses could include the outcome of short-term mortality (e.g. 

30 days) or longer-term mortality (e.g. 5 years); therefore some of these meta-

analyses with short follow-up may have been appropriately analysed as binary. 

The outcome classification of all-cause mortality was considered a representative 

sample of survival meta-analysis up to 2008, however results might be different 

for other outcomes and results might have changed in later reviews where more 

information on methodology was available.   

I did not assess other reasons for differences between the results due to lack of 

information on censoring and follow-up times. Interpretation of the results was 

conducted with caution as I was interpreting the results based on known factors, 

without excluding other unknown factors that may have affected the results. I was 

not able to examine whether current practice of analysing TTE data has changed 

and whether methodological choices have improved since 2008. Further work 

examining the differences observed between analyses on the OR and HR scales 

in the presence of IPD is necessary.  

The model used to analyse TTE data as binary is the conventional approach 

widely used by many systematic reviewers and meta-analysts133. It is quick, 
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inexpensive and study results are obtained from appropriately synthesized study 

publications or by contacting study authors136. This approach to analysis ignores 

censored observations137 and treats them as missing and has also been criticised 

for the within-study normality assumptions required136. 

The use of a clog-log link function, facilitating the results’ interpretation in a HR 

scale for the binary data, was the best alternative approach enabling us to make 

comparisons between the scales used if only binary summaries are available. In 

the past, the clog-log link has been proven to provide a close approximation to 

Cox regression invoking a proportional hazards assumption, rather than a 

proportional odds assumption125. However, for these data, I was not able to 

assess whether the HR obtained from the clog-log link is a close approximation 

to the HR estimate that would be obtained under a proportional hazards model; 

therefore, this magnifies the importance of extracting appropriate information 

when conducting TTE MA. Similarly, I was not able to identify a clear pattern 

under which the complementary log-log link could be employed since we were 

not able to compare the clog-log approach to an approach including for example 

information on “O-E” and “V” statistics or HR summaries. This will be explored in 

later chapters. 

A limitation observed by T.V Perneger54 who conducted research on an individual 

level basis indicated that  the use of the clog-log function is useful when the 

duration of follow-up is the same for all individuals and whenever the traditional 

two-by-two table is a fair summary of results. However, when duration varies from 

observation-to-observation Kaplan-Meier curves or incidence rates could be 

obtained. This could be another justification on the mixed results observed in 

some of the meta-analyses performed.  

For these data, I also used a one-stage random-effects model with fixed study-

specific effects describing the baseline risk probability of the event in each study.  

These models use exact binomial likelihoods and may therefore be more 

accurate, especially with sparse data130. The fixed study-specific effects cause 

difficulties in estimation since the number of parameters increases with the 

number of studies, but maximum likelihood theory requires the number of 

parameters to remain stable as the sample size increases. A random-effects 

model with random study-specific effects could be applied, however based on 
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simulation studies this model performed better than others without any serious 

biases present130.  

To my knowledge, no research has been conducted using such a large database 

assessing the differences between a) analysing the data as binary and 

interpreting the results in an OR scale and b) analysing the data either using the 

clog-log link facilitating interpretation on the HR scale.  

I have demonstrated the impact of re-analysing binary TTE meta-analyses within 

the Cochrane Database on a different scale, identifying the main drivers 

influencing discrepancies between the meta-analytic results. My findings 

provided useful insights into changes to meta-analytical results; however, 

additional research is needed in order to proceed with more extensive 

comparisons within meta-analyses where data such as “O-E” and “V” statistics or 

individual participant data are available. 
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4. Comparing Methodology of Analysing Time-to-

Event Outcomes as Binary in Meta-analysis using 

Empirical Data from the CDSR  

 

 

 

 

4.1 Chapter Overview 

As an extension to the previous chapter, here I compare MA results for a subset 

of TTE data initially analysed using “O-E” and “V” statistics in the CDSR and 

interpreted on the HR scale to results from analysing these data as binary on the 

OR (via the logit link) or HR (via the clog-log link) scale. A detailed comparison 

using various statistical methods for TTE MA is conducted. At the end of the 

chapter, I conclude with a discussion of the findings. 

4.2 Introduction  

As discussed in previous chapters, TTE data is a unique category of data 

recording “IF” and “WHEN” the event occurred. Various techniques have been 

developed for analysing TTE data enabling us to utilize multiple time points, 

account for censoring across study subjects and provide unbiased survival 

estimates3.  

The Cochrane handbook138 (version 5.1.0)  suggests two approaches for MA of 

TTE outcomes. Depending on whether data are extracted from the literature or 

IPD are obtained, either “O-E” and “V” statistics (which are useful alternative 

statistics if a hazard ratio is not directly reported47) can be used or estimates of 

the log HR and its corresponding standard error can be obtained for these 

analyses. In the presence of “O-E” and “V”  statistics, Peto’s method can provide 
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us with an OR estimate, the log-rank approach139 with a HR estimate and a 

variation of Peto's method with something in between21. Simpler than the 

previous statistics, if log HR and its standard error is provided, the exponential of 

the logHR will give rise to a HR estimate.  

According to Davey et al140, in January 2008, the Cochrane database contained 

22,453 MAs containing 112,600 studies, and the authors performed 

classifications of MAs by outcome type, medical specialty and types of 

interventions compared7. Systematic reviews and MA of TTE data are published 

frequently within that database. Among these classified MAs, 1,693 MAs 

containing 10,959 studies involved TTE outcomes such as “all-cause mortality”, 

“composite mortality/morbidity only”, and “cause-specific mortality”. Surprisingly, 

more than 90% of them dichotomised their TTE outcomes and only a small 

proportion of them accounted for the natural properties of the data. 

Having previously analysed TTE data from the CDSR which had been originally 

analysed as binary, it was important for me to perform comparisons and 

understand the differences I would obtain in the results if MAs analysed using “O-

E” and “V” statistics giving rise to a HR estimate were contrasted to the meta-

analytic estimates of OR (via the logit link) or HRs (via the clog-log link) when 

data were analysed as binary accounting only for the total number of participants 

and events per arm.  

A substantial amount of research was conducted in the past examining the 

differences between logistic and proportional hazards models in presence of TTE 

outcomes. In Chapters 1 and 3, I provided detailed comparisons on the 

differences between the two models using individual studies, while in Chapter 3, 

I presented “meta-epidemiological” results exploring differences between the 

models in meta-analyses of outcomes originally analysed as binary. In this 

chapter, I aimed to extend my previous “meta-epidemiological” study by re-

analysing meta-analyses originally analysed using “O-E” and “V” statistics; using 

additional data from the CDSR, I am able to provide a more accurate conclusion 

for the analyses performed within the database. 

The rest of this chapter is set out as follows. In Section 4.3, I present descriptive 

statistics of the database and describe the two-stage model I applied. Section 4.4 

describes the results obtained from re-analysing the data originally analysed 
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using “O-E” and “V” data on an OR (via the logit link) and HR (via the clog-log 

link) scale. In Section 4.5, I perform discussion of the results, present the 

advantages and disadvantages of the findings and I finish with some conclusions 

and plans for further work. 

 

4.3 Methods  

4.3.1 Data 

As described in detail in Chapter 3, the Nordic Cochrane Centre permitted access 

to the data of the CDSR 2008. Details related to outcomes, outcome 

classifications, range of sample sizes in the MAs and medical areas are described 

by Davey et al.140. From the database, I was interested in study MAs analysed as 

HRs with outcome classifications of overall survival and progression/disease free 

survival. Based on the database using the outcome classification I was able to 

identify (using words such as “survival”, “death”, “fatality”) another two sets of 

TTE meta-analyses:  

▪ “OEV” meta-analyses: Those with outcome classifications “overall 

survival” and “progression/disease free survival” where the information 

recorded was based on “binary” data (as in Chapter 3) in addition to log-

rank “O-E” and “V” statistics”; these were originally analysed as HRs in the 

RevMan software;  

▪ Meta-analyses with estimated log HR and its standard error. These were 

removed from further analyses since there was no available information 

on the number of events and participants per arm and therefore no binary 

data meta-analysis could be conducted. 

Therefore, I identified another subset of TTE MAs: those with binary summaries 

in addition to “OEV” data. I analysed the outcome types of overall survival and 

progression/disease free survival separately to assess whether differences exist 

due to different characteristics of the outcomes. I also examined whether the 

information available as “OEV” data was based on aggregate data or IPD by 

examining the individual Cochrane reviews. 
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4.3.2 Eligibility Criteria 

I initially extracted the “OEV” data and conducted cleaning including examination 

of the outcome classification; Rebecca M. Turner confirmed the choice of 

included meta-analyses obtained from “OEV” data extraction. I identified 16 

misclassifications due to disagreement with the original outcome classification as 

listed in the datasets, conflicting information in the database or unavailability of 

the correct version of the Cochrane review. Another 158 studies were excluded 

due to the fact that even though an estimate of the log HR and its variance were 

available, the number of events and total number of patients in the studies were 

not available. Finally, 32 studies were excluded because they had double zero 

events, therefore not contributing to any analyses, and another 7 MAs were 

excluded because they contained fewer than three studies, for which we know 

that a synthesis is usually questionable130. Figure 4.1 shows the sample 

derivation.  

 

Figure 4.1: Analysis sample of “OEV” dataset from the CDSR (2008, issue 1). 
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4.3.3 Descriptive Statistics 

For both outcome classifications, as in the binary data analysed in Chapter 3, I 

obtained descriptive statistics such the number of studies per meta-analysis, 

number of events and study size by the median and interquartile range. I also 

identify the number of medical specialities, and median number of events (and 

IQR) per medical specialty. 

4.3.4 Model description for “OEV” data 

For these data, the “O-E” and “V” statistics were available in the Cochrane 

database alongside the number of patients and events. They came either from 

published reports or from IPD; I examined the individual reviews from the 

Cochrane database and assessed the data origin. Since there was more 

available information for these data than for the binary data (Chapter 3), the 

following three models were applied, using only two-stage meta-analysis models. 

  

I initially analysed the “OEV” data as binary data and modelled them as described 

in detail in Chapter 3. I also used the log-rank Observed - Expected events (O-E) 

and the log-rank Variance (V) statistics calculated previously from the number of 

events and the individual times to event on each research arm of the trial; I used 

the log-rank approach139 in order to obtain another type of HR estimate. I used 

random-effects models to analyse the data throughout, including between-study 

heterogeneity to account for variation across studies.  

4.3.5 Fitting two-stage random-effects models for “OEV” data 

Similarly to Chapter 3, the estimated log odds and log hazard ratios were given 

by equations (3.1) and (3.2) for the binary summaries while the “O-E” and “V” 

statistics were used as follows: 

yi =
logrank Observed − Expected events (O − E)

logrank Variance (V)
 for HRs (4.1) 

The corresponding variances were given by equations (3.3) and (3.4) as shown 

in Chapter 3 for binary summaries while for “O-E” and “V” statistics as follows:  

si
2 =

1

logrank Variance (V)
 for HRs (4.2) 

where V denotes the variance of the logrank statistic.  
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To avoid biases such as downward bias on the unknown variance components 

estimates, I used the REML estimator as the most suitable approach for the 

model implementation132. Between the treatment and control arms, a hypothesis 

test is performed assuming identical proportions of patients for whom the event 

occurs versus the alternative hypothesis of higher or lower proportion of patients 

experiencing the event. Test accuracy is based on the following assumptions: a) 

drop out times are identically distributed across treatment and control groups and 

b) drop out times are independent of the occurring event time137. The model was 

implemented via the “rma.uni” command from “metafor” package in R as shown 

in Appendix C.2.  

4.4.6 Model comparison for “OEV” data 

For the “OEV” data set, comparisons on overall and progression/disease free 

survival outcomes were conducted separately; this was because differences 

between these outcomes might be observed in the presence of different disease 

severities, and therefore this would be associated with different length of follow-

up and risk of the outcome.  

For both outcomes, I performed comparisons by examining the differences 

between analysing the data as binary on an OR scale, analysing the data as 

binary using the clog-log link on a HR scale, or analysing the data using the “O-

E” and “V” statistics on a HR scale. I assessed whether the differences observed 

from analysing the data as binary on an OR scale could be reduced by the use 

of the clog-log link. I present only comparisons of the results under two-stage 

models since there were no available IPD to perform comparisons under one-

stage models.  

Similarly to Chapter 3, I examined the proportion of significant and non-significant 

meta-analytic pooled effect estimates under the different scales used and 

identified the number of meta-analyses which were significant under one scale 

and non-significant under the other. I created Bland-Altman plots for the 

standardised treatment effect estimates and for the 𝐼2  statistics to explore the 

agreement among the methods producing fair comparisons between the two 

scales135. Meta-analyses outside the 95% limits of agreement were examined for 

their characteristics. 
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4.4 Results 

In the Cochrane database, 157 meta-analyses were originally analysed using the 

“O-E” and “V” statistics on a HR scale. After applying the exclusion criteria, 100 

MAs remained for further analysis. The median number of meta-analyses per 

review was 2 with IQR (2, 3). The median number of studies and the median 

number of events are provided in Table 4.1. The overall survival category 

contains 38 (55%) IPD and 31 (45%) non-IPD MAs whereas progression/disease 

free survival contains 17 (55%) IPD and 14 (45%) non-IPD MAs. The median 

number of events for IPD MAs was 122 with an IQR (57, 278) while non-IPD MAs 

had a median of 93 with an IQR of (41, 202).  

After applying the same exclusion criteria to the excluded MAs from this chapter, 

which presented estimated log HR and its standard error only (32 MAs including 

158 studies, see Figure 4.1), overall survival was represented in the sample with 

13 MAs and 84 studies whereas progression/disease free survival was 

represented with 8 MAs and 40 studies. The median number of studies in the 

former outcome was 7 IQR (6,12) and for the latter outcome 6 IQR (4,8), slightly 

less but still in the same range as the included MAs providing the “O-E” and “V” 

statistics. The median number of events and median study size could not be 

obtained and therefore we could not assess further how similar the excluded MAs 

are to those included in the sample analysed. 

 “OEV” 

Outcome Overall Survival Progression/Disease 

Free Survival 

Total Number of MA 69 31 

Number of studies per MA: 

Median (IQR) 
10 (6, 14) 10 (7, 14) 

Number of events per MA: 

Median (IQR) 
108 (58, 254) 104 (70, 192) 

Median Study Size (IQR) 182 (93, 369) 185 (90, 317) 

Table 4.1: Descriptive statistics for “OEV” data from the CDSR. 
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The distribution of medical specialities of the meta-analyses is presented in Table 

4.2. I observed that analysing TTE outcomes as HRs is restricted to very few 

medical specialties; “Cancer” was still the most frequent medical specialty for 

both outcome types as observed in Chapter 3. 

 “OEV” 

Medical Specialty 

OS⁺⁺: 

Number 

(%) of MAs 

Events per 

MA: Median 

(IQR) 

PDFS⁺⁺: 

Number 

(%) of 

MAs 

Events per 

MA: Median 

(IQR) 

Cancer  60 (87%) 104 (45, 221) 31(100%) 116 (56,243) 

Digestive/endocrine, 

nutritional and 

metabolic 

1 (1%) 52 (35, 64) - - 

Infectious diseases 
8 (12%) 

482 

(160,1109) 
- - 

⁺⁺OS: Overall Survival, PDFS: Progression/Disease free survival 

Table 4.2: Distribution of medical specialties for the “OEV” data meta-analyses in the 

CDSR. 

 

Table 4.3 provides the percentages of significant and non-significant meta-

analyses for each outcome for two-stage models at a two-sided 5% level, 

indicating that discrepancies are more prevalent in the “OEV” data compared to 

the “binary” data (in Chapter 3); additionally the amount of discrepancies 

observed in statistical significance from the comparison of OR and HR obtained 

from the clog-log link was smaller than the amount of discrepancies observed 

between the OR and HR analyses. With regards to dichotomisation of MAs into 

IPD and non-IPD, IPD MAs had 9 (16%) MAs having a non-significant OR and 

significant HR and another 1 (2%) MA with a significant OR and non-significant 

HR; the corresponding numbers for non-IPD MAs were 6 (13%) and 3 (7%) 

respectively. 

   OR HR (O-E & V) 

“OEV”   Sig* Non-Sig* Sig* Non-Sig* 

HR 

(clog-

log) 

Overall 

Survival 

Sig* 20 (29%) 1 (0.2%) 18 (26%) 10 (14%) 

Non-Sig* 1 (0.2%) 47 (68%) 3 (4%) 38 (55%) 

Progressio

n/Disease 

free 

Survival 

Sig* 9 (29%) 0 (0%) 8 (26%) 6 (19%) 

Non-Sig* 1 (3%) 21 (68%) 1 (3%) 16 (52%) 
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HR 

(O-E 

&V) 

Overall 

Survival 

Sig* 18 (26%) 10 (14%)   

Non-Sig* 3 (4%) 38 (55%)   

Progressio

n/Disease 

free 

Survival 

Sig* 9 (29%) 5 (16%)   

Non-Sig* 1 (3%) 16 (52%)   

*Sig/Non-Sig: Significant; Non-Significant 

Table 4.3: Number (%) of (non-)significant meta-analyses under different scales for two-

stage models (“OEV” data). 

 

Bland-Altman plots produced for this subset indicated that the average difference 

between each pair of methods is larger than those obtained from the “binary” data 

(Figures 4.2 – 4.4). For overall survival, the average difference between the two 

methods for the standardised pooled effect estimates was 0.2 units (-1.8 units, 

2.1 units) for OR versus HR and 0.2 units (-2.2 units, 2.5 units) for HR using clog-

log versus HR; however, for OR vs HR clog-log differences the average bias was 

0 units (-2.6 units, 2.7 units) indicating that clog-log is a closer approximation to 

OR rather than HR analyses (Figure 4.2). For the estimation of 𝐼2, the average 

difference between the methods is -6% (-41%, 29%) for OR versus HR, -6% (-

42%, 31%) for HR using clog-log versus HR, and 0% (-21%, 21%) for OR vs HR 

clog-log differences; similarly the clog-log seems a closer approximation to OR 

analyses rather than HR analyses (Figure 4.3). For progression/disease free 

survival, the average difference between the two methods for the standardised 

pooled effect estimates was 0.4 units (-1.5 units, 2.2 units) for OR versus HR, 0 

units (-2.9 units, 2.9 units) for HR using clog-log versus HR, and 0.4 units (-2.7 

units, 3.5 units) for OR vs HR clog-log differences (Figure 4.4). For the estimation 

of 𝐼2, the average difference between the methods is -16% (-86%, 53%) for OR 

versus HR, -16% (-89%, 57%) for HR using clog-log versus HR, and 0% (-13%, 

13%) for OR vs HR (Figure 4.5). Bland-Altman plots produced for the average 

difference between each pair of methods for IPD and non IPD datasets are 

presented in Appendix C.1.  
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Figure 4.2: Overall Survival - Bland-Altman Plot comparing standardised OR vs. HR 

estimates for two-stage models in “OEV” data. 

 

Figure 4.3: Overall Survival - Bland-Altman Plot comparing 𝐼2 estimates (OR vs. HR) for 

two-stage models in “OEV” data. 
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Figure 4.4: Progression/Disease Free Survival - Bland-Altman Plot comparing 

standardised OR vs. HR estimates for two-stage models in “OEV” data 

 

 

Figure 4.5: Progression/Disease Free Survival - Bland-Altman Plot comparing 𝐼2 

estimates (OR vs. HR) for two-stage models in “OEV” data. 

 

Outliers were considered 28% of the “OEV” meta-analyses. Of these, 57% were 

from IPD rather than non-IPD and 54% of them were for the outcome of overall 
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survival. In 50% of the outliers a high event probability (defined here as probability 

greater than 0.7) was observed, suggesting that this may be an important factor 

associated with differences among the scales used. For example, meta-analysis 

45 (outlier obtained from standardised estimates) consists of 7 studies for which 

the event probability was greater than 0.7 for all the studies; consequently, high 

event probability affected substantially the differences in the individual study 

estimates between the OR and HR analyses, leading to different allocated 

relative weights for the studies, and discrepancies in the pooled effect estimates 

as shown in Figure 4.6. Even though the individual HR clog-log estimates were 

closer to the individual OR estimates, the final pooled effect estimate was closer 

to the pooled HR estimate; this was not though the case for all meta-analyses. 

 

Figure 4.6: Forest plot (MA 45) indicating discrepancies in the presence of high event 

probability. 

Increased within-study variability on the OR scale relative to the HR scale may 

affect the weighting more than the actual estimates in the studies, for example 

for meta-analysis 17 (outlier obtained from standardised estimates), producing 

differences in the pooled effect estimates between the two scales (Figure 4.7).  
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Figure 4.7: Forest plot (MA 17) indicating increased within-study variability on the OR 

scale relative to the HR scale. 

Similarly, even though the individual study estimates and weights of OR and HR 

clog-log were closer to each other, the HR clog-log pooled effect estimate was 

closer to the pooled HR estimate; however, this was not the case for all meta-

analyses (e.g., MA 83, 85). Important differences in between-study heterogeneity 

between the HR and OR analyses were observed in meta-analyses such as 42, 

90. For example, meta-analysis 90 (outlier obtained from 𝐼2  estimates) consists 

of 11 studies out of which 8 are smaller studies and 3 are larger studies. Smaller 

studies received increased weight in the HR analysis compared to the OR 

analysis, while larger studies received smaller weights in the HR scale compared 

to OR scale. However, this was not the case on the HR clog-log scale as 

presented in Figure 4.8.  
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Figure 4.8 Forest plot (MA 90) indicating discrepancies arising from differences in 

between-study heterogeneity. 

In 46% of the outlying meta-analyses, the individual study estimates, and the 

corresponding weights were affected by a combination of differing event 

probability across study arms, differences in between-study heterogeneity or 

increased within-study variability on the OR relative to the HR scale (e.g., MA 3, 

35, 56, 68, 71-74, 79, 87). In the presence of a limited amount of studies in the 

meta-analyses this was even more evident. Additional examples of forest plots 

and the exact tables indicating the discrepancies among the results are shown in 

Appendix C.3. 

Overall, using the “OEV” data, a mixed pattern was observed. In 39% (n=11) of 

outlying meta-analyses the OR pooled effect estimate was closer to HR pooled 

effect estimate; however, in 4 out of 11 outlying meta-analyses the individual 

study estimates obtained from the HR clog-log link were a closer approximation 

to the individual study HR estimates. Similarly, even though in 61% (n=17) of the 

outlying meta-analyses the HR clog-log pooled effect estimate was closer to the 

pooled HR estimate, 3 of outlying meta-analyses provided individual study OR 

estimates closer to individual study HR estimates, and another 3 individual study 

HR clog-log estimates were closer to individual study OR estimates. Finally, 

observing Figures 4.13 - 4.14 from Appendix C.1, I was not able to identify 

whether the differences between the OR and HR scales are associated with the 

level of baseline risk in individual studies. 
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4.5 Discussion 

Using an additional subset of meta-analysis data from the CDSR of 2008 (“OEV” 

data), I compared different methods for handling TTE outcomes within meta-

analysis. I identified the differences that occur when these data are analysed as 

binary as opposed to analysing the data using the clog-log link additionally to 

using the “O-E” and “V” statistics where interpretation is conducted on a HR scale. 

As in Chapter 3, the analysis confirmed that there are important reasons 

associated with discordance among the results, indicating that the correct choice 

of the method does matter affecting also the interpretation and conclusions drawn 

from the results.  

High event probability, changes to between and within-study variation were 

confirmed to be important factors producing differences in the results in this 

subset of meta-analyses as well. However, in this dataset there were more 

occasions under which there was no clear indication of one single factor driving 

these differences and a combination of reasons affected the individual study 

estimates and corresponding weights. Therefore, regarding method selection, 

based on the “OEV” data I identified that a mixed pattern was observed and there 

was no clear indication of the exact conditions under which the clog-log link 

outperforms logit link on an OR scale or vice versa. 

The data used for the comparison of OR/HR scale in the “OEV” data were slightly 

different; I used the number of events and non-events for the OR and HR clog-

log calculation (as in Chapter 3 using binary data) and calculated a HR based on 

“O-E” and “V” statistics. Therefore, there is a possibility that for some cases the 

two data sets entered by Cochrane reviewers may not completely correspond to 

each other. Lack of information on censoring pattern and follow-up times was 

present in this subset as well and therefore interpretation was conducted carefully 

since I interpreted the results based on known factors and cannot exclude other 

unknown factors affecting the results.  

Two out of the three models applied were the same as those applied in Chapter 

3 (i.e. the conventional two-stage approach and the use of the clog-log link 

function). The third approach used for the “OEV” data was the log-rank approach; 

“O-E and V” data provide the best method to analyse aggregate data and facilitate 

interpretation of results on the HR scale, but in the absence of IPD important 

biases may occur when large treatment effects and unbalanced data are 
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present20. I was not able to identify a clear pattern under which the clog-log link 

could be employed since there were circumstances under which it performed 

better or worse than an OR analysis; therefore, I was not able to identify whether 

the clog-log approach is useful when a MA includes binary summaries alongside 

“OEV” or HR summaries. IPD and simulation studies are required to assess in 

more detail the conditions determining where this method would be acceptable. 

Finally, I was not able to make comparisons using one-stage models in the “OEV” 

data. I would be able to apply one-stage models when the data were analysed as 

binary, but I did not have the IPD required to fit one-stage models on the HR 

scale.  

To my knowledge, no previous research has been conducted using a large 

database subset such as this to assess the differences between a) analysing the 

data as binary and interpreting the results in an OR scale and b) analysing the 

data either using the clog-log link or log-rank “O-E” and V statistics facilitating 

interpretation on the HR scale.  

In conclusion, summarising the findings from Chapter 3 and 4, the results 

obtained indicate that TTE data should be ideally analysed accounting for their 

natural properties, as it is possible for important discrepancies to be observed 

and conclusions from the meta-analysis to be altered. I identified that 

dichotomising TTE outcomes may be adequate for low event probabilities but not 

for high event probabilities. In meta-analyses where only binary data are 

available, the clog-log link may be a useful alternative when analysing TTE 

outcomes as binary, however the exact conditions need further exploration. 

These findings provide guidance on the appropriate methodology that should be 

used when conducting such meta-analyses. 

_____________________________________________________________________ 

Parts of this Chapter were presented as an oral presentation at the 42nd 

conference of International Society of Clinical Biostatistics and at the 2021 

annual meeting of the Society for Research Synthesis Methodology.  The 

results of the chapter were published in BMC Medical Research 

methodology, doi:10.1186/s12874-022-01541-9. 
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_____________________________________________________________________ 

5. Analysing Time-to-Event Outcomes as Binary in 

Meta-analysis using Individual Participant Data 

 

 

 

 

5.1 Chapter Overview 

Using IPD with TTE outcomes, providing sufficient information on censoring and 

follow-up time, this chapter makes a comparison between “gold-standard” 

approaches such as Cox proportional hazards model and log-rank test and less 

appropriate methods analysing the data as binary on the HR (via the clog-log link) 

or the OR (via the logit link) scale. In this chapter, I am learning about the 

magnitudes of discordances in practice while assessing also whether censoring 

and follow-up time are additional factors affecting any discordances among the 

results; this is something that I was not able to assess in previous chapters using 

the CDSR. I am aiming also to confirm previous evidence that method choice 

does matter and to inform a subsequent simulation study which will provide more 

definitive evidence on the most appropriate method for handling this data type. 

5.2 Introduction 

In previous chapters I mentioned that an individual participant data (IPD) meta-

analysis directly obtains evidence from researchers responsible for individual 

studies, aiming to re-analyse them simultaneously using appropriate 

methodology141. This approach can be more costly than conventional systematic 

reviews extracting aggregate data and is regularly characterised as a “gold-

standard” since the time element between randomisation and the event is of 

interest and allows us to re-analyse individual trial data. Cardiovascular diseases 

and cancer are medical areas in which an IPD meta-analysis is considerably 
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important since most interventions used in these areas aim for prolongation of 

survival141.  

Even though IPD meta-analysis is the ideal approach for TTE outcomes , it can 

be time consuming to collect and analyse the data16. Therefore, systematic 

reviewers and meta-analysts may instead decide to obtain:  

▪ a HR alongside its confidence interval via the log-rank test using the “O-

E” and “V” statistics by extracting aggregate data from trial reports, or 

▪ a HR alongside its confidence interval from trial reports and include them 

directly in a two-stage meta-analysis model, or 

▪ the number of events and participants per arm and analyse the data as 

binary giving rise to an OR or a RR 

Other approaches, less familiar to systematic reviewers and meta-analysts, can 

be adopted if only aggregate data are available, such as a normal approximation 

to binomial likelihood with a clog-log link. However, analysing the CDSR 

(Chapters 3, 4) did not reveal any circumstances under which undesirable 

properties of analysing TTE outcomes as binary on an OR scale can be mitigated 

by using a clog-log link. In the presence of IPD, a Cox proportional hazards model 

can also be applied with interpretation on a HR scale. One-stage meta-analysis 

models have also been developed allowing for more accurate inferences on the 

results142. 

Using IPD of TTE outcomes, I compare the results from the “gold-standard” 

approaches (Cox PH and log-rank test) on a HR scale to less appropriate 

methods treating data as binary on a HR (via the clog-log link) and OR (via the 

logit link) scale. In such a way, I can assess the roles of length of follow-up and 

censoring in a MA of TTE outcomes that I could not investigate via exploratory 

work performed using the CDSR143. I try to confirm previous evidence indicating 

that differences between scales arise mainly when event probability is high and 

may occur via differences in between-study heterogeneity or via increased within-

study standard error in the OR relative to the HR analyses. The analyses 

performed use both two- and one-stage models.  

The rest of this chapter is set out as follows: In section 5.3, I describe the IPD 

and the statistical models I used. In sections 5.4, I present descriptive statistics 

and in sections 5.5-5.6, I present the results obtained from the models performed.  
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These results are followed by a discussion exploring the strengths and limitations 

of my findings, together with conclusions and further work (sections 5.7, 5.8). 

5.3 Methods 

5.3.1 Data 

The Meta-analysis group from the MRC CTU provided data from the IPD on 

“Neoadjuvant chemotherapy in invasive bladder cancer: a systematic review and 

meta-analysis”144. The IPD MA consists of 11 trials. For 2 trials, investigators did 

not allow for data analyses related to methodological purposes; therefore data 

from 9 trials were accessed (Martinez-Piniero145, Raghavan146, Malmstrom147, 

Wallace146, Cortesi (unpublished), MRC/EORTC148, Sherif147, Sengelov149, 

Grossman150). A priori, I was interested in exploring different TTE outcomes 

within IPD since they provide diversity in the lengths of follow-up time and 

percentage censoring per individual trial. All trials were examining the use of 

platinum-based combination chemotherapy prior to local treatment in comparison 

to local therapy only.  

 

5.3.2 Descriptive Statistics 

I obtained descriptive statistics such as the number of patients allocated per arm, 

sex, age group and T category (i.e. size and extent of the main tumour) per trial. 

I also calculated the median TTE and 95% confidence interval for the outcomes 

of interest, and median follow-up time and IQR per individual trial (based on the 

Kaplan-Meier method applied to the censored times reversing the roles of event 

status and censored). Kaplan-Meier plots were also produced per outcome per 

trial to examine whether the proportional hazards assumption holds. Finally, I 

tried to obtain descriptive statistics on the percentage of random and fixed 

censoring. Random censoring is referring to those observations who were lost to 

follow-up before the end of the study whereas fixed censoring is referring to those 

observations that were censored at the end of the follow-up time (i.e., no 

information obtained on whether participants experienced the event or not). 

 

5.3.3 Methods for Individual Participant Data Meta-Analysis 

Initially, a log-rank test and a Cox proportional hazards model were applied to 

each trial, as described in 5.3.3.1, in order to obtain “O-E” and “V” statistics and 
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a HR and its standard error; these were entered in a two-stage meta-analysis 

model as described in 5.3.3.2. 

5.3.3.1 Testing Survival Curve Differences & Cox Proportional Hazards Model 

for Individual Trial Data  

I calculated the HR with its associated standard error and “O-E” and “V” statistics 

per outcome per trial assessing whether the proportionality assumption holds; 

this would allow me to apply suitable MA models. Calculations were implemented 

via the “coxph” and “survdiff” command from “survival” package in R. Below I 

provide the formulas used to calculate these statistics. 

A Cox proportional hazards regression model stratified by trial was given by the 

following equation 

𝜆𝑖𝑗(𝑡) = 𝜆𝑖0(𝑡)𝑒𝑥𝑝 (𝛽𝑖𝑥𝑖𝑗)   (5.1) 

for the jth patient in the ith study with treatment indicator variable xij, 𝜆𝑖0 the 

baseline hazard function in the ith study and βi the linear predictor. A Cox 

proportional hazards model does not make any assumptions on the baseline 

hazard function but verification of the proportional hazards assumption is 

necessary (i.e. the effect should be independent of time). No patient-level 

characteristics were entered into the linear predictor of the model.  

 

Survival curve differences stratified by trial were calculated as follows:  For each 

individual failure time 𝑡 a 2𝑥2 table was constructed and the number of 

participants at risk in each treatment arm (𝑛𝑘𝑡) was recorded alongside the 

associated number of deaths in each group (𝑑𝑘𝑡) where  𝑘 = 0, 1 denote the 

treatment group (𝑘 = 0 indicates the control and 𝑘 = 1 indicates the treatment 

group). Additionally, nt is defined as nt = n0t + n1t and 𝑑𝑡 = 𝑑0𝑡 + 𝑑1𝑡.  Under the 

assumption of no association between the groups and the event, the expected 

number of deaths in group 1 is  

𝑒1𝑡 = 𝑛1𝑡 ∗
𝑑𝑡
𝑛𝑡

   (5.2) 

with variance 

v0t =
n0t ∗ n1t ∗ dt(nt − dt)

nt
2 ∗ (nt − 1)

   (5.3) 

The log-rank test compares the total number of deaths in one of the treatment 

groups 
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𝑂1 = ∑ 𝑑1𝑡𝑡   and variance 𝑉1 = ∑ 𝑣1𝑡𝑡  

with the expected number of deaths in that group under the null hypothesis  

𝐸1 =∑𝑒1𝑡
𝑡

 

Under the null hypothesis of no difference between the groups I can obtain a X2 

test as follows:  

(𝑂1 − 𝐸1)
2

𝑉1
~𝑋1

2 (5.4) 

The test provides a p-value, does not give an estimate of the size of the 

difference, and does not allow for inclusion of additional covariates in the 

analysis. It is worth mentioning at this point that often systematic reviewers and 

meta-analysts do not use the appropriate referencing (i.e. Yusuf et al.19) for the 

use of the log-rank test and they are probably influenced by incorrect citations in 

previous research publications. The appropriate referencing for the use of the 

log-rank test is given by Harrington et al.151 and this is the reference used in the 

main R documentation. 

5.3.3.2 Model Description  

Two-stage IPD MA models 

First, a Cox proportional hazards model was applied and a HR alongside its 

standard error was obtained for each outcome in each trial accounting for 

censoring and the time element. The HR and standard error data were entered 

in a two-stage meta-analysis model. Second, information on the “O-E” and “V” 

statistics were obtained when I performed testing of the survival curve 

differences. The “O-E” and “V” statistics were entered in a two-stage MA model. 

In the third approach, I modelled the “binary” data obtained from IPD using a 

normal approximation to binomial likelihood with a clog-log link on a HR scale 

ignoring censoring and follow-up times. Fourth, I applied a model for the same 

data, assuming a binomial likelihood and a logit link133, on an OR scale ignoring 

the same information as in the aforementioned model.   

One-stage IPD MA models 
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I also applied one-stage IPD MA models as these models use the exact binomial 

likelihood and may therefore be more accurate, especially with sparse data130. 

The three models described below were applied. 

Initially, a one-stage random-effects Cox proportional hazards model was applied 

with a lognormal frailty term for the intervention effect estimated via penalized 

partial likelihood. This accounts for censoring, follow-up time, and the within- and 

between-trial intervention effects are estimated simultaneously aiming to provide 

a more complete understanding of the data79, 111.  The median hazard ratio (MHR) 

is used to evaluate the meaning of the frailty and is defined as “the median relative 

difference in the hazard of the occurrence of the outcome when comparing 

identical participants from two randomly selected studies ordered by hazard”79. 

The MHR is referred to as HR for the rest of this chapter to avoid potential 

confusion between MHR and HR in the results, as they will be treated in the same 

way for the comparison to the OR scale.  

Second, a generalised linear mixed model using a normal approximation to 

binomial likelihood with a clog-log link was used based on aggregate data; 

interpretation was on a HR scale. Finally, a generalised linear mixed model using 

a binomial likelihood with a logit link was used based on binary summaries; 

interpretation was conducted on an OR scale. More details describing the latter 

two models were presented in Chapter 3.  

 

5.3.3.3 Fitting Random-Effects Models 

The estimated log HRs and log ORs for some of these models apart from the Cox 

proportional hazards model were presented in detail in Chapters 3 and 4, so are 

not repeated here. I indicate the equations to refer to below. 

Fitting two-stage random-effects models 

The estimated log HRs and log ORs for individual studies were given by: 

yi = {

logHR   for HRs obtained from Equation (5.1) 
Equation (4.1) for HRs using "O − E" and "V" statistics (Chapter 4)

Equation (3.2) for HRs using the clog − log link (Chapter 3)
Equation (3.1) for ORs using the logit link (Chapter 3)

 

The corresponding sampling variances for these estimates were given by:  
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si
2 = {

Square of standard error obtained from Equation (5.1)
Equation (4.2)  for HRs using "O − E" and "V" statistics (Chapter 4)

Equation (3.4) for HRs using the clog − log link (Chapter 3)
Equation (3.3) for ORs using the logit link  (Chapter 3)

 

For the Cox proportional hazards model the standard error of the log HR was 

obtained instead of the variance. Using these estimates and sampling variances 

I fitted two-stage random-effects models incorporating between-study 

heterogeneity variance. I also obtained the  I2 statistic from the fitted models as 

shown in Equation (3.5) from Chapter 3. The models were implemented via the 

“rma.uni” command from “metafor” package in R (Appendix D.2).  

Fitting one-stage random-effects models 

A one-stage Cox proportional hazards model was initially fitted by modelling the 

distribution of the baseline hazard via frailty terms (i.e. random intercept) and 

accounting for clustering as follows: 

                                       𝜆𝑖𝑗(𝑡) = 𝜆0(𝑡)𝜂𝑖𝑗𝑒𝑥𝑝(𝛽𝑖𝑥𝑖𝑗)                                       (5.5) 

for the jth patient in the ith study with treatment indicator variable xij where 

𝑙𝑜𝑔(𝜂𝑖𝑗)~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜏
2) represents the log-frailty. The frailty term follows a 

specific distribution allowing for differences in baseline rate between participants 

in the groups. This model accounts for these differences between studies on 

unmeasured covariates, assuming that the baseline hazard within each trial has 

different magnitude but the same shape79. 

Additionally, two generalised linear mixed models were applied in one stage using 

binary summaries: one allowing interpretation on a HR scale and the second on 

an OR scale. These models have been described in detail in Section 3.3.3.2 in 

Chapter 3. The models applied used: a) the “coxme” command from “coxme” 

package for one-stage HRs obtained from Cox model, b) the “rma.glmm” 

command from “metafor” package to calculate the one-stage ORs and c) the 

“glmer” command from “lme4” package was used for the HR estimates obtained 

from the clog-log link. Estimation of between-study heterogeneity (𝐼2) for the one-

stage HR models using binary data was performed as described in Section 

3.3.3.2 and Appendix B.4. Estimation of between-study heterogeneity (𝐼2) for the 

one-stage Cox proportional hazards model was conducted using the detailed 

description provided by the paper by De Jong et al79. Model implementation was 

conducted in R (version 4.1.1) and is presented in the Appendix D.2.  
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5.3.3.4 Model Comparison 

For each outcome I prepared forest plots and identified any discrepancies 

observed from the application of the two-stage models. For one-stage models I 

tried to confirm whether the discrepancies observed from two-stage models are 

still observed using this methodology which is considered more accurate 

especially with sparse data136.  

 

5.4 Descriptive Statistics & Preliminary Calculations 

The IPD include 9 trials and 7 clinical outcomes; I focused on 4 outcomes with 

different lengths of follow-up time and percentage censoring, because these were 

considered potential important factors that might impact our results. These 4 

outcomes were also used in the main IPD meta-analysis publication published in 

2003144.  The median TTE per outcome per trial (and IQR) and follow-up time per 

trial (and IQR) is presented in Table 5.1. All trials have long follow-up times and 

the median TTE ranges across trials per outcome from short (e.g., Australia) to 

long (e.g., SWOG). 

Additional descriptive characteristics per individual trial were obtained such as 

the number of patients included in each arm of the trial together with summaries 

of sex, age group, and cancer stage (T category) (Table 5.1). As shown in Table 

5.1, UK146, GUONE and SWOG150 trials did not provide information on local 

recurrence free survival and metastasis-free survival; additionally to this, UK trial 

did not provide information on event free survival. The largest trial was the 

BA06148 followed by Nordic2147 and SWOG150; the majority of the patients 

included in this dataset were males, aged over 60 years and were at the third 

stage of cancer. For GUONE trial, I could not distinguish between stages T3 and 

T4 of tumours and they were merged. 

For percentage random and fixed censoring, I did not have data to distinguish 

between them (e.g. dates were not provided to me to avoid identifiability issues) 

and therefore I had to look at the original trial publications. Across trials I was able 

to identify minimum follow-up time only for 4 out of 9 trials (i.e. Spain, Australia, 

UK and DAVECA); among those 1 trial (i.e. Spain) had provided additional data 

and longer follow-up to the IPD meta-analysis, after the original trial publication. 

Therefore, I would wrongly calculate random censoring if I based it on the initial 
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follow-up time reported in the trial publication. Nordic 1 and Nordic 2 trials had no 

patients lost to follow-up and therefore they provided only fixed censored 

observations. One trial was unpublished (i.e. GUONE) and I could not identify 

minimum follow-up time, and two trials (BA06 and SWOG) provided median 

follow-up time and interquartile range per treatment group without any indication 

on the minimum follow-up time. For the rest of this chapter censoring is discussed 

as total censoring (i.e. including fixed and random censoring). 
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Spain 

Martinez-

Piniero145 

Australia 

Raghavan 

146 

Nordic1 

Malmstrom147 

UK 

Wallace146 

GUONE 

Cortesi 

BA06 

MRC/EORTC148 

Nordic2 

Sherif147 

DAVECA 

Sengelov149 

SWOG 

Grossman150 

Median TTE (95% CIs) 

Event free 

survival 

3.2 

(1.2,4.4) 

0.8  

(0.7,1.2) 

5.9  

(3.9, 8.1) 
- 

1.6 

 (1.10,2.5) 

1.5  

(1.3,1.8) 

3.2 

(2.3,4.9) 

0.9  

(0.8, 1.1) 

2.5 

(1.9,4.9) 

Local 

recurrence 

free survival 

3.3 

(1.3,4.6) 

0.9  

(0.8,1.3) 

6.8  

(4.5, 9.1) 
- - 

1.8  

(1.6,2.2) 

3.7 

(2.6,5.1) 

1.0  

(0.8, 1.2) 
- 

Metastasis-

free survival 

3.2 

(1.5,4.8) 

1.5  

(1.2,3.6) 

6.8  

(4.5, 9.0) 
- - 

2.8  

(2.1,3.7) 

4.1 

(2.7,5.7) 

1.1  

(0.9, 1.6) 
- 

Overall 

Survival 

3.4 

(1.7,5.0) 

1.8  

(1.3,3.6) 

6.9 

 (4.7, 9.2) 

2.0 

(1.6,2.4) 

2.6  

(2.0,4.0) 

3.7  

(2.9,4.6) 

4.9 

(3.3,6.6) 

1.6  

(1.3, 2.0) 

5.0 

(3.8,6.6) 

Median 

Follow-up 

Time in years 

(IQR) 

8.8 

(6.3,11.2) 

7.0  

(6.0, 7.7) 

6.4  

(5.8, 7.0) 

4.9  

(3.6, 5.6) 

10.3  

(0.0, 11.8) 

7.8  

(6.2, 9.7) 

5.5  

(5.0, 7.5) 

7.8  

(6.2, 8.6) 

10.8 

(8.8,12.8) 

Age 

<55 21 (17%) 7 (7%) 36 (12%) 13 (8%) 25 (16%) 167 (17%) 49 (16%) 19 (12%) 60 (19%) 

55-64 60 (50%) 32 (33%) 119 (38%) 54 (34%) 65 (43%) 366 (38%) 80 (25%) 69 (45%) 117 (37%) 

≥65 40 (33%) 57(59%) 156 (50%) 92 (58%) 63 (41%) 443 (45%) 188 (59%) 65 (43%) 140 (44%) 
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Treatment Arm 

Neoadjuvant 

Chemotherapy 
62 (51%) 41 (43%) 151 (49%) 83 (52%) 82 (54%) 491 (50%) 158 (50%) 78 (51%) 158 (50%) 

No 

Chemotherapy 
59 (49%) 55 (57%) 160 (51%) 76 (48%) 71 (46%) 485 (50%) 159 (50%) 75 (49%) 159 (50%) 

Sex                       

Male 

105 

(87%) 
77 (80%) 246 (79%) 125 (79%) 140 (92%) 863 (88%) 254 (80%) 124 (81%) 258 (81%) 

Female 16 (13%) 19 (20%) 65 (21%) 34 (21%) 13 (8%) 113 (12%) 63 (20%) 29 (19%) 59 (19%) 

Stage 

T0-T1 0 (0%) 0 (0%) 53 (17%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (1%) 0 (0%) 

T2 33 (27%) 16 (17%) 116 (37%) 50 (31%) 57 (37%) 334 (34%) 130 (41%) 24 (16%) 124 (39%) 

T3 78 (64%) 34 (35%) 124 (40%) 85 (53%) 79 (52%) 567 (58%) 157 (50%) 85 (56%) 193 (61%)* 

T4 10 (8%) 12 (13%) 13 (4%) 24 (15%) 16 (10%) 75 (8%) 23 (7%) 41 (27%) - 

Unknown  0 (0%) 34 (35%) 5 (2%) 0 (0%) 1 (1%) 0 (0%) 7 (25) 1 (1%) 0 (0%) 

*T3 and T4 categories are merged for SWOG trial. 

Table 5.1: Descriptive characteristics per individual trial. 
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I calculated the “O-E” and “V” statistics and log HR and its standard error for each 

outcome in each individual trial as described in 5.3.3. Kaplan-Meier plots were 

used to assess the proportionality hazards assumption for each outcome. In 

Figure 5.1, I present an example of Kaplan-Meier plots for the outcome of overall 

survival indicating that most trials provide no evidence of non-proportional 

hazards. Situations under which the curve declined more rapidly than other trials 

were observed (e.g., UK versus SWOG trial).  Kaplan-Meier plots for other IPD 

outcomes are presented in the Appendix D.1 and provide similar interpretation 

with regards to the proportionality assumption.   

 

Figure 5.1: Kaplan-Meier plot for overall survival outcome. 

 

5.5 Results from two-stage IPD meta-analysis 

In Table 5.3 and Figure 5.2, I present the pooled effect estimates obtained from 

the use of two-stage IPD MA models for all outcomes analysed, alongside the 

estimates of between-study heterogeneity (τ) and  𝐼2  estimates.
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Model 
Log-estimates  

(95% CIs) 
SE 𝛕 𝑰𝟐  

Median %  

Total Censoring 

(IQR) 

Median Event 

Probability (IQR) 

Event Free Survival       

OR REML (2-stage) -0.250 (-0.423, -0.077) 0.088 0.000 0 

32% (26%,42%) 0.64 (0.56, 0.76) 
HR O-E & V (2-stage) -0.175 (-0.327, -0.022) 0.078 0.022 49 

HR Cox PH (2-stage) -0.173 (-0.324, -0.023) 0.077 0.021 49 

HR clog-log (2-stage) -0.085 (-0.262, 0.092) 0.090 0.034 57 

Local Recurrence Free Survival      

OR REML (2-stage) -0.173 (-0.364, 0.018) 0.097 0.000 0 

32% (18%,41%) 0.68 (0.55, 0.85) 
HR O-E & V (2-stage) -0.122 (-0.232, -0.012) 0.056 0.000 0 

HR Cox PH (2-stage) -0.121 (-0.231, -0.011) 0.056 0.000 0 

HR clog-log (2-stage) -0.020 (-0.232, 0.192) 0.108 0.038 59 

Metastasis-Free Survival      

OR REML (2-stage) -0.027 (-0.409, 0.355) 0.195 0.133 66 

35% (27%,43%) 0.65 (0.52, 0.80) 
HR O-E & V (2-stage) -0.125 (-0.281, 0.030) 0.079 0.013 35 

HR Cox PH (2-stage) -0.122 (-0.280, 0.035) 0.080 0.014 36 

HR clog-log (2-stage) -0.012 (-0.250, 0.227) 0.122 0.056 68 

Overall Survival       

OR REML (2-stage) -0.147 (-0.308, 0.013) 0.082 0.000 0 35% (31%,45%) 0.62 (0.52, 0.71) 
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HR O-E & V (2-stage) -0.114 (-0.214, -0.015) 0.051 0.000 0 

HR Cox PH (2-stage) -0.114 (-0.213, -0.015) 0.051 0.000 0 

HR clog-log (2-stage) -0.037 (-0.179, 0.105) 0.072 0.016 37 

Table 5.2: Pooled effect estimates across different two-stage IPD meta-analysis models. 
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Figure 5.2: Overall meta-analytic estimates across different IPD two-stage meta-

analysis models. 

  

5.5.1 Event Free Survival 

Event Free Survival  was defined as “the time of randomisation until the first 

recurrence or progression or death, whichever happened first”144. There were 

2444 participants within 8 trials contributing to meta-analysis of this outcome and 

1617 events. The median event probability was 0.64 IQR (0.56, 0.64) (Table 5.3); 

DAVECA149 study provided the highest event probability (0.92), Australia study 

provided the highest baseline risk (0.84), and Nordic1152 the lowest event 

probability and baseline risk (0.47 and 0.54 respectively) (Figure 5.3). DAVECA 

trial reported the smallest percentage total censoring (13%) while Nordic1 

reported the highest (49%). 

The individual study estimates were almost identical for HR log-rank and HR Cox 

regression models. In larger trials (BA06, Nordic2153 , Nordic1147, and SWOG154), 

the OR estimates give better approximations to the gold-standard approaches. 

However, when the number of participants included in the studies decreases (e.g. 
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Spain145, Australia, DAVECA) and the event probability increases, larger 

discrepancies can be observed, resulting also in reversal in the direction of the 

individual study estimates in the Spain and DAVECA trials, although all intervals 

are overlapping (Figure 5.3).  

Weighting allocation for individual studies in the OR analysis is different to that in 

the HR analyses, with the HR clog-log approach providing a more similar 

allocation of study weights to the HR log-rank and HR Cox approaches (e.g. for 

Spain, Australia, BA06, DAVECA) than the OR analysis. The OR analysis did not 

detect heterogeneity as shown in Figure 5.3. The 95% confidence intervals for 

individual studies are wider in the OR analysis indicating that the intervals have 

much more overlap (even though the point estimates are just as heterogeneous 

or more heterogeneous than under the other scales), making the study results 

more in agreement with a heterogeneity estimate of 0 (Figure 5.3).  

Even though small percent random censoring and short follow-up time are factors 

theoretically associated with smaller differences between the OR and HR scales 

in a TTE meta-analysis35, 37, 39, I was not able to capture a specific pattern for this 

in this data set. The overall meta-analytic estimate of treatment effect was in the 

same direction across all MA models and similar between outcome scales, 

however the clog-log analysis failed to demonstrate statistical significance for the 

comparison of neoadjuvant chemotherapy versus no chemotherapy prior to local 

therapy (Table 5.3, Figure 5.3).
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Figure 5.3: Forest plot of two-stage IPD meta-analysis for Event Free Survival. 
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5.5.2 Local Recurrence Free Survival 

Local Recurrence Free Survival was defined as “the time from randomisation to 

first local recurrence or progression (after randomisation) or death”144. There 

were 6 trials contributing to meta-analysis of this outcome including 1974 

participants and 1284 events. The median event probability was 0.68 IQR (0.55, 

0.85); similarly, DAVECA study provided the highest event probability (0.92) and 

baseline risk (0.81) and Nordic1 the lowest event probabilities (0.46 and 0.54 

respectively) (Figure 5.4). Furthermore, DAVECA and Nordic1 studies also 

reported the lowest and highest percentage total censoring (i.e. 13% and 50% 

respectively) (Figure 5.4). 

The individual study estimates under HR log-rank and HR Cox models were 

almost identical. In larger trials, the OR and HR clog-log approaches provided 

better approximations to the individual trial estimates across all MA models (e.g. 

BA06). However, for smaller studies when the participants’ number decreases 

and the probability of event increases larger discrepancies in the individual trial 

estimates may appear (e.g. Australia, DAVECA), resulting also in particular 

circumstances in complete reversal of the results (i.e. Spain), although all 

intervals are overlapping (Figure 5.4). 

The log-rank and Cox models have produced similar study weights in the meta-

analysis compared to the OR and HR clog-log models. However, OR study 

weights for this outcome seem closer to trial weights from the gold standard 

approaches than do those from the HR clog-log model. This is because the 

between-study heterogeneity estimate (τ = 0.038) obtained from the model in the 

HR clog-log analysis is not in agreement with the estimates obtained from the 

gold-standard approaches, even though it is still quite low and close to the 

estimates from other models (Table 5.2). As a consequence, this has affected 

both the individual study weights and the 𝐼2  estimate (𝐼2=59%); however, the 

individual study estimates in the HR clog-log analysis are closer than estimates 

from the OR analysis to the corresponding estimates from the gold-standard 

approaches (Figure 5.4).  

The 95% confidence intervals in the OR model were systematically wider than 

those obtained from the HR analyses, indicating that the standard error in the OR 

analyses relative to the HR analyses is substantially larger. Small percent random 

censoring and short follow-up time are usually associated with smaller 
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differences between the OR and HR scales in a TTE meta-analysis. However, in 

this dataset I was not able to detect such a pattern. The overall meta-analytic 

estimate is in the same direction across all MA models; however, the OR and HR 

clog-log analysis fail to capture statistical significance with regards to the 

effectiveness of platinum-based combination chemotherapy versus no 

chemotherapy (Table 5.3, Figure 5.4). 
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Figure 5.4: Forest plot of two-stage IPD meta-analysis for Local Recurrence Free Survival. 
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5.5.3 Metastasis-Free Survival 

Metastasis-Free Survival was defined as “the time from randomisation to first 

metastasis (after randomisation) or death”144; meta-analysis of this outcome 

included 1974 participants from 6 trials and 1221 events. The median event 

probability was 0.65 IQR (0.52, 0.80) (Table 5.2). Similarly to other outcomes, 

DAVECA and Nordic1 studies had the highest and lowest event probability, and 

lowest baseline risk (i.e. 0.90 and 0.80 vs 0.46 and 0.53); Those studies reported 

also the lowest and highest percentage total censoring (i.e. 15% & 50% 

respectively) (Figure 5.5). 

Similar to previous outcomes, the individual study estimates from HR log-rank 

and HR Cox models were almost identical. Larger studies (e.g. BA06) provide 

more stable individual trial estimates across all models. On the other hand, when 

the sample size reduces and the event probability increases in the trials, larger 

discordances with regards to the calculation of the individual study estimates 

across models are observed (e.g. Australia, Spain, DAVECA, Figure 5.5). 

Furthermore, with respect to allocation of study weights, log-rank and Cox models 

have similar study weights compared to OR and HR clog-log models. The 

between-study heterogeneity estimates in the OR and HR clog-log analyses were 

larger than those from the gold-standard approaches and were τ = 0.133 and τ =

0.056 respectively (Table 5.2). As a consequence, this has affected both the 

individual study weights and the 𝐼2  estimates (𝐼2 = 66%, 𝐼2 = 68%); the individual 

study estimates though in the HR clog-log analysis are closer than those in the 

OR analysis to the corresponding estimates from the gold-standard approaches 

(Figure 5.5). 

The standard error and therefore the 95% confidence intervals in the OR model 

are systematically wider than the corresponding intervals from HR analyses. 

Similarly, censoring and follow-up times are characteristics for which I could not 

observe a particular pattern in their impact on the pooled effect estimates in this 

dataset. Finally, the overall meta-analytic estimate was in the same direction 

across all MA models favouring the same treatment arm (Figure 5.5). 



 

113 

 

 

 

 

 

Figure 5.5: Forest plot of two-stage IPD meta-analysis for metastasis-free survival. 
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5.5.4 Overall Survival 

Finally, overall survival, was defined as “the time from randomisation until 

death”144. Nine trials contributed to meta-analysis of this outcome with 2603 

patients and 1617 events. The median event probability was 0.62 IQR (0.52, 

0.71) (Table 5.3). DAVECA and Nordic1 studies had the 1) highest and lowest 

event probability (0.90 vs. 0.45), 2) highest and lowest baseline risk (0.80 vs. 

0.53) and 3) lowest and highest percentage censoring respectively (15% vs. 51%) 

(Figure 5.6).  

The individual study estimates of HR log-rank and HR Cox models were almost 

identical. In larger trials such as BA06, Nordic2153 and SWOG154, the HR clog-log 

and OR approaches provide better approximations to the gold-standard 

approaches for the individual trial estimates across all MA models. In contrast, 

when the sample size reduces and the event probability increases, larger 

discordances were observed with regards to the calculation of the individual study 

estimates between OR and HR “gold standard” MA models (e.g. Australia, Spain, 

DAVECA, Figure 5.6).  

Log-rank and Cox models have identical individual study weights compared to 

OR and HR clog-log models. OR study weights seemed closer to the trial weights 

from the gold standard approaches than those from the HR clog-log model. The 

between-study heterogeneity estimate (τ = 0.016) obtained from the model in the 

HR clog-log analysis is not in agreement with the estimates obtained from the 

gold-standard approaches, although it is still quite low and close to the estimates 

from other models (Table 5.3). This has affected both the individual study weights 

and the 𝐼2  estimate (𝐼2 =37%); however, the individual study estimates in the HR 

clog-log analysis were closer than those from the OR analysis to the 

corresponding estimates from the gold-standard approaches. 

The standard errors (and 95% CIs) in the OR analysis were systematically wider 

than the corresponding standard errors (and CIs) from HR analyses. For % total 

censoring and follow-up time I could not observe a particular pattern in their effect 

on the final pooled effect estimates across the models applied in the dataset. 

Finally, the overall meta-analytic estimate is in the same direction across all MA 

models, however the OR and clog-log analysis fail to capture statistical 

significance for the comparison of platinum-based combination chemotherapy 

versus no chemotherapy prior to local therapy (Table 5.3, Figure 5.6).
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Figure 5.6: Forest plots comparing two-stage models in IPD meta-analysis for overall survival outcome. 
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5.6 Results from one-stage IPD meta-analysis 

Similarly to two-stage models, Figure 5.7 and Table 5.3 present the pooled effect 

estimates obtained from the use of one-stage IPD meta-analysis models 

alongside the estimates of between-study heterogeneity (τ) and  𝐼2  estimates. 

Assuming that one-stage Cox proportional hazard model is the “gold standard” 

approach, one-stage OR and one-stage clog-log models were compared to 

identify whether patterns in the results are similar to those observed for two-stage 

models.  

 

 

Figure 5.7: Overall meta-analytic estimates across different IPD one-stage meta-

analysis models. 

Across all models and outcomes, the overall pooled treatment effect estimate 

remained stable, favouring the same treatment arm. For all models, statistical 

significance for the treatment effect was only demonstrated in one-stage OR and 

HR Cox models for the event free survival outcome. The magnitude of the 

treatment effects was larger in the OR compared to the HR analyses with the 

exception of metastasis-free survival. In relation to two-stage models, the results 
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present a similar pattern for comparisons between different modelling 

approaches, however in one-stage models’ statistical significance was not 

present in the “gold-standard” approaches for local recurrence free survival and 

overall survival outcomes.   

An increased standard error was observed in the OR relative to the HR analyses 

for all outcomes apart from local recurrence free survival; I assumed that the 

individual study standard errors were wider in the OR analyses affecting also the 

overall standard error, even though I was not able to observe them individually 

as I did with two-stage models. With regards to two-stage models, a similar 

pattern was apparent. 

The between-study heterogeneity estimates (τ) were similar across models 

except for metastasis-free survival where the estimate is much lower for the one-

stage Cox model. The 𝐼2 estimates were identical (i.e. 0%) between OR and HR 

clog-log analyses for all outcomes apart from metastasis-free survival and differ 

from those in one-stage HR Cox meta-analysis. Due to the fact that there was no 

straightforward way of calculating the 𝐼2 estimates for the one-stage Cox model, 

the method I used might be overestimating the true extent of between-study 

heterogeneity.  

 

 

 

 

 

 

 

 

 

 

 

 



 

118 

 

 

5.7 Discussion 

Using IPD, I investigated whether important properties of TTE data such as 

percentage total censoring and follow-up times could additionally affect the 

results obtained from a MA when data are analysed using “gold-standard” 

approaches (such as Cox proportional hazards model and the log-rank test) as 

opposed to analysing the data as binary using the clog-log or the logit link where 

interpretation is conducted on a HR or an OR scale respectively.  

I confirmed previous findings obtained from the CDSR that the method choice 

does matter143. Cox proportional hazards model (if the proportionality assumption 

holds) and the log-tank test (if “O-E” and “V” statistics can be obtained) are known 

to be suitable models for an IPD meta-analysis of TTE outcomes. However, 

Model 
Log-estimates  

(95% CIs) 
SE τ 𝐼2 

Event Free Survival 

OR (1-stage) -0.245 (-0.417, -0.074) 0.088 0.000 0 

HR Cox ME (1-stage) -0.176 (-0.312, -0.040) 0.069 0.018 48 

HR clog-log (1-stage) -0.094 (-0.265, 0.077) 0.087 0.023 0 

Local Recurrence Free Survival 

OR (1-stage) -0.166 (-0.356, 0.023) 0.097 0.000 0 

HR Cox ME (1-stage) -0.105 (-0.250, 0.040) 0.074 0.014 43 

HR clog-log (1-stage) -0.034 (-0.234, 0.166) 0.102 0.022 0 

Metastasis-Free Survival 

OR (1-stage) -0.069 (-0.489, 0.351) 0.214 0.074 52 

HR Cox ME (1-stage) -0.236 (-0.287, 0.015) 0.077 0.015 44 

HR clog-log (1-stage) -0.025 (-0.251, 0.202) 0.115 0.038 74 

Overall Survival 

OR (1-stage) -0.143 (-0.303, 0.017) 0.082 0.000 0 

HR Cox ME (1-stage) -0.072 (-0.204, 0.059) 0.067 0.017 44 

HR clog-log (1-stage) -0.052 (-0.206, 0.103) 0.079 0.008 0 

Table 5.3: Pooled effect estimates across different one-stage IPD meta-analysis 

models. 
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analysing these data as binary on an OR scale could be inappropriate especially 

when event probability is high. My analyses indicated discordancy both in the 

individual and pooled effect estimates. Smaller trials provided consistently 

different individual trial effect estimates in the OR relative to the HR analyses, 

with consequent impact on the pooled effect estimates. The confidence intervals 

for individual study results were systematically wider in the OR compared to HR 

analyses since they provided an increased within-study standard error, and 

consequently confidence intervals for pooled effect estimates were also wider. 

Compared to “gold-standard” approaches, a mixed pattern was observed for 

between-study heterogeneity and  𝐼2 estimates in the OR and HR clog-log 

analyses. I observed TTE outcomes where the intervals have much more overlap 

making the study results more in agreement or τ estimates that were quite low 

and close to the estimates from “gold-standard” methods affecting though 

substantially the study weights and 𝐼2 estimates. 

The Cox proportional hazards model I used is considered the “gold-standard” 

approach for analysing IPD of TTE outcomes. It does not make any assumptions 

on the baseline hazard rate but requires the proportional hazards assumption 

meaning that the effect should be independent of time155. If this assumption is 

violated other suitable methods can be used such as Poisson regression 

models156, restricted mean survival times (RMST)157, and percentile ratios158. The 

use of the log-rank approach via the “O-E” and “V” statistics is the most popular 

approach for most IPD meta-analyses, perhaps due to the fact there is a lack of 

expertise and readily available software to fit the Cox proportional hazards model. 

Previous research indicated that the log-rank approach may give biased 

estimates for both treatment effect and heterogeneity estimates, however it is the 

easiest method to implement159.  

I was not able to identify situations where a model using the complementary log-

log link is a more suitable approach than a model treating TTE as binary in a 

meta-analysis. For most outcomes, the individual study estimates in the HR clog-

log analysis were closer to the corresponding estimates of the gold-standard 

approaches; however, this was not the case for the estimates of between-study 

heterogeneity and I2. Real world evidence cannot facilitate providing a definitive 

answer because the true underlying model parameters are unknown. To 

overcome this limitation and to provide details on the preferable method a 
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satisfactory answer could not be purely based on empirical investigations and 

therefore a comprehensive simulation study will be carried out as further work.   

It was not possible to explain whether censoring and follow-up time were distinct 

factors affecting the discordance among the MA estimates for this dataset since 

a) high event probability was a strong factor affecting the results as observed in 

previous chapters and b) I could not distinguish between random and fixed 

censoring given the data I had. Small % random censoring and short follow-up 

times are theoretically associated with smaller differences between the OR and 

HR scales in a TTE meta-analysis and therefore a combination of the factors 

obtained from Chapters 3-5 will be examined separately in a simulation study. 

I did not implement the RMST method64 in addition to the gold-standard 

approaches. A previous study conducted by Wei et al.157 performing MA using 

RMST using the same IPD, indicated that degrees of departure from non-

proportional hazards do not seem to be large in this dataset when a Grambsch 

and Therneau’s (G-T) test160 was performed. The results were dominated by trials 

in which the proportional hazards assumption was not violated and the results 

between RMST and a log-rank approach were similar. Therefore, I did not 

proceed with further application of RMST since the scope of this thesis was to 

examine differences between methods which account and do not account for the 

important properties of TTE data with interpretation on the HR and OR scale and 

not to compare which one of the methodologies using a HR approach was the 

best.  

To my knowledge, there is very limited research performed (for example by 

Michiels et al.161) using IPD to assess the differences between analysing the data 

using the “gold standard” approaches (Cox PH model, log-rank test) on a HR 

scale compared to analysing the data the logit link on the OR scale as binary and 

no research specifically into using the clog-log link on a HR scale. I was able to 

demonstrate the impact of re-analysing IPD via various meta-analytic models 

interpreting the results on a different scale, confirming previous evidence and 

identifying a combination of characteristics that could influence the final pooled 

meta-analytic estimates. Careful consideration on the most appropriate approach 

depending on data availability is necessary.   
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5.8. Conclusion 

In conclusion, my findings indicated that choice of method does matter and that 

smaller trials provided consistently different individual trial effect estimates in the 

OR compared to the HR analyses, with consequent impact on the pooled effect 

estimates. The confidence intervals for individual effect estimates and pooled 

effect estimates were wider in the OR analyses. There was no consistent pattern 

across methods for heterogeneity estimates. Findings from this chapter suggest 

that the influence of trial size, event probability and heterogeneity on differences 

between methods should be explored further in the planned simulation study. For 

the clog-log link approach, I observed a mixed pattern regarding whether it falls 

in between the “gold-standard” approaches and the binary model with a logit link. 

A comprehensive simulation study is necessary to examine and compare 

separately the factors affecting the results in a TTE meta-analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

_____________________________________________________________________ 

Parts of this Chapter were presented as an oral presentation at the 42nd 

conference of International Society of Clinical Biostatistics and at the 2021 

annual meeting of the Society for Research Synthesis Methodology.    
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_____________________________________________________________________ 

6. A Simulation Study Comparing Methods for Meta-

Analysis of Time-to-Event Outcomes   

 

 

 

 

6.1 Chapter Overview 

This Chapter is a simulation-based comparison of the methods applied in a time-

to-event meta-analysis. In the previous chapters, I was able to identify that the 

correct choice of method for handling this type of data does matter, however, I 

was not able to distinguish specific patterns among the multiple factors observed 

affecting the magnitudes of discordances in the results between scales. 

Therefore, this chapter provides more definitive evidence on the most appropriate 

method for handling these data and assesses whether undesirable properties 

from treating data as binary can be reduced by the use of alternative methods 

such as the use of the clog-log link facilitating interpretation on a HR scale.  

 

6.2 Introduction 

The previous meta-epidemiological study143, using real-world aggregate data 

from the CDSR of 2008 (Chapters 3, 4) and an IPD meta-analysis performed 

using data from the MRC CTU (Chapter 5), identified that dichotomising time-to-

event outcomes may be adequate for low event probabilities but not for high event 

probabilities. Differences between scales arose mainly when event probability 

was high and could occur via differences in between-study heterogeneity or 

increased within-study standard error in the OR relative to the HR analyses. 

Additionally, the combination of censoring and follow-up times could affect the 

results, however, I was not able to identify to what extent these factors affect 

these differences. Details on the exact conditions under which the various 

methods provide a satisfactory answer could not be based purely on empirical 

studies. Hence, I performed a comprehensive simulation study allowing separate 



 

123 

examination of the factors appearing to affect the results obtained from the 

previous chapters. 

Using simulation-based datasets, I performed a simultaneous comparison of the 

“gold standard” approaches (Cox and log-rank method) to the approximate 

methods (using the clog-log or logit link functions) for using aggregate data to 

conduct a TTE MA. I did not aim to compare directly approaches that provide an 

OR estimate to approaches providing a HR estimate but was interested to assess 

how well the method behaves as an approximation to the HR.  The conditions 

under which I simulated the datasets were informed by the findings from previous 

chapters, in addition to information from the recent literature (Appendix E.2). 

Specifically, using this simulation study I tried to answer the following questions:  

▪ If we analyse time-to-event outcomes as binary how much bias do we 

observe in the pooled 𝜃𝑂𝑅 compared to the pooled 𝜃𝐻𝑅? 

▪ In which situations do we observe most bias focusing particularly on the role 

of event probability and random censoring?  

▪ If bias exists, can we minimise it via the use of the clog-log link as an 

alternative method? Might we be willing to accept the bias observed in 

exchange for other good properties of the method?  

▪ What is the relative precision of 𝜃𝑂𝑅 compared to 𝜃𝐻𝑅 (𝑖. 𝑒. 𝑉𝑎𝑟(𝜃𝑂𝑅 )/

𝑉𝑎𝑟(𝜃𝐻𝑅  ))? 

▪ How does the coverage compare among the methods? 

The rest of the chapter is set out as follows. In the methods section (6.3), I 

describe the data generating mechanisms used in the study and the statistical 

models I applied for both IPD and aggregate data. In the results (Section 6.4), I 

perform a simultaneous comparison of the methods used, presenting important 

characteristics of the performance measures. These results are followed by a 

discussion (Section 6.5) exploring the conclusions and implications of my findings 

(Section 6.6). 

 

6.3 Methods 

The following section describes the data generating mechanisms used to create 

the simulated datasets and the meta-analysis methods I applied.  
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6.3.1 Data generating mechanisms 

An outline of my simulation approach is presented below. In total, I generated 28 

distinct scenarios for TTE meta-analysis covering a wide range of realistic 

scenarios informed by the literature21, 107-109, 111, the empirical work conducted 

using the CDSR (Chapters 3, 4) and results from analysing an IPD obtained from 

the MRC CTU (Chapter 5). The initial 20 scenarios are described in 6.3.1.1 and 

another 8 were created under specific conditions described in 6.3.1.2. 

6.3.1.1 Initial simulation scenarios 

Table 6.1 presents the initial values chosen for the simulation parameters; each 

simulation scenario is a combination of the options in the table selected based on 

what I think may drive the differences in method performance and also for 

generalisability. Twenty scenarios were initially created as follows. The number 

of studies per meta-analysis is set at 2 levels (5 and 20) to represent small and 

large meta-analyses. The number of participants per trial is set at 3 levels (with a 

mean of 100, 400, and 1000 and a standard deviation of 15, 40, and 100) to 

represent small, medium and large study sizes. The log HR is set at 3 values (0, 

-0.3, -0.8) representing zero, medium and large treatment effect. The between-

study variance is set at 4 values (0, 0.001, 0.05, 0.1 respectively) representing 

zero, near-zero, medium and large heterogeneity between the studies. Follow-up 

time and percentage random censoring are set simultaneously at 3 levels (1 year 

with 0% censoring, 3 years with 25% censoring, 5 years with 40% censoring) to 

represent small, medium and large proportions of participants censored and 

follow-up times within trials.  

# Parameters Values  

1 Number of Studies per Meta-analysis (K) 5, 20  

2 Study sample size (N) ~100, ~400, ~1000 

3 Log HR  0, -0.3, -0.8 

4 Between-Study variability (𝜏2) of log HR 0, 0.001, 0.05, 0.1 

5 Follow-up time (St) 
~1 year, ~3 years, ~5 

years 

6 Percentage (%) random censoring (C) 0%, 25%, 40% 

Table 6.1: Initial simulation parameters selected for the study. 
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Event times are constructed to have proportional hazards by simulating from a 

Weibull distribution for the majority of simulation scenarios (𝜆𝑒 = 0.1, 𝜆𝑐 =

0.05, 𝛾𝑒 = 𝛾𝑐 = 2); Weibull distribution is considered as one of the most 

appropriate distributions to create survival times162, 163. Scenarios were examined 

by varying characteristics one by one from a baseline setting (N=400, Log HR=-

0.3, 𝜏2 = 0.05, St=3, C=25%) apart from percentage random censoring and 

follow-up time which changed simultaneously since it is expected that larger 

follow-up times cause larger percentage of random censoring. Scenario under no 

effect size (i.e. Log HR=0) was designed using the baseline setting above, 

whereas scenario 0 was designed as a more extreme scenario as follows 

(N=1000, Log HR=0, 𝜏2 = 0, St=5, C=0%) including 5 or 20 studies. 

6.3.1.2 Additional simulation scenarios 

Since event probability and percentage random censoring are likely to affect 

method performance, I created another four scenarios involving 5 and 20 studies 

with (𝜆𝑒 = 0.05, 𝜆𝑐 = 0.04, 𝛾𝑒 = 𝛾𝑐 = 2); for two of them I only changed the event 

probability from the baseline setting described above and for the other two I 

changed event probability and increased the percentage of random censoring. 

Two scenarios were specifically designed produce 80% power for a random-

effects meta-analysis under the Cox proportional hazards model, including 5 or 

20 studies (𝑁 = 400, 𝐿𝑜𝑔 𝐻𝑅 = −0.3, 𝑆𝑡 = 3, 𝐶 = 25%, 𝜏2 = 0.027 for 5 studies, 

𝜏2 = 0.2 for 20 studies). Finally, another two scenarios including 5 or 20 studies 

were designed aiming to distinguish between the effect of censoring and follow-

up times favouring the use of the clog-log link as follows: (N=400, Log HR=-0.3, 

𝜏2 = 0.05, St=5, C=0%). Table 6.2 presents all the simulation scenarios used in 

this chapter.   
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Simulation Scenarios 
Values of simulation parameters under 5 and 

20 trials per meta-analysis 

Initial Simulation Scenarios  

Scenario 0 N=1000, Log HR=0, 𝜏2 = 0, St=5, C=0% 

Base Case N=400, Log HR=-0.3, 𝜏2 = 0.05, St=3, C=25% 

Short F-up* N=400, Log HR=-0.3, 𝜏2 = 0.05, St=1, C=0% 

Long F-up* N=400, Log HR=-0.3, 𝜏2 = 0.05, St=5, C=40% 

Large heterogeneity N=400, Log HR=-0.3, 𝜏2 = 0.1, St=3, C=25% 

Small heterogeneity N=400, Log HR=-0.3, 𝜏2 = 0.001, St=3, C=25% 

Large effect size N=400, Log HR=-0.8, 𝜏2 = 0.05, St=3, C=25% 

No effect size N=400, Log HR=0, 𝜏2 = 0.05, St=3, C=25% 

Small sample size N=100, Log HR=-0.3, 𝜏2 = 0.05, St=3, C=25% 

Large sample size N=1000, Log HR=-0.3, 𝜏2 = 0.05, St=3, C=25% 

Additional Simulation Scenarios 

Small P(Event) 
N=400, Log HR=-0.3, 𝜏2 = 0.05, St=3, C=25%, 

𝜆𝑒 = 0.05, 𝜆𝑐 = 0.04, 𝛾𝑒 = 𝛾𝑐 = 2 

Large % R_cens+Small 

P(Event)ꝉ 

N=400, Log HR=-0.3, 𝜏2 = 0.05, St=5, C=40%, 

𝜆𝑒 = 0.05, 𝜆𝑐 = 0.04, 𝛾𝑒 = 𝛾𝑐 = 2 

80% Power 

5 trials per MA: N=400, Log HR=-0.3, 𝜏2 =

0.027, St=3, C=25% 

20 trials per MA: N=400, Log HR=-0.3, 𝜏2 = 0.2, 

St=3, C=25% 

Long Follow-up+0% R_cens N=400, Log HR=-0.3, 𝜏2 = 0.05, St=5, C=0% 

*F-up: Follow-up time; ꝉR_cens=Random censoring; P(Event)=Probability of event 

Table 6.2: Exact simulation scenarios applied of the chapter. 

 

I generated 1000 random meta-analyses for each scenario. The exact tables are 

presented in Appendix E.2, together with additional information collected from the 

literature that helped to inform the choice of the parameters.  

6.3.2 R software use for simulations 

Independent simulation datasets were generated for each of the 28 scenarios 

using the R statistical software (Version 4.1.1). I used a starting seed 

(seed=2109990) which remained fixed in order to allow potential future replication 

of the simulation datasets. The simulation datasets were used, and various time-
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to-event meta-analysis models were applied. The reliability of the simulation was 

confirmed as all our simulation scenarios did run without producing any 

convergence problems164. The R code used for this simulation study is presented 

in Appendix E.1. 

6.3.3 Estimands 

The estimand is the log HR 𝛽x for the treatment effect, whose true value is -0.3. 

I evaluated the performance of log OR approach as if the estimand would be the 

log HR, in order to assess how well this method behaves as an approximation to 

the HR. 

6.3.4 Two-stage meta-analysis models for IPD 

6.3.4.1 Model description for Cox proportional hazards model and log-rank 

approach 

In Chapter 5 (sub-sections 5.3.3.1-2), I explained how I obtained a HR and its 

standard error and “O-E” and “V” statistics via the use of a Cox proportional 

hazards model and a log-rank test respectively. For each trial per simulation 

dataset, I applied the same methodology in this chapter, using both methods 

which account for censoring and follow-up times. Then, the HR and standard 

error data were entered in a two-stage meta-analysis model. Additionally, 

information on the “O-E” and “V” statistics were obtained when I performed testing 

of the survival curve differences (see 5.3.3.1). The “O-E” and “V” statistics were 

entered in a two-stage MA model.  

6.3.4.2 Model Fitting for Cox proportional hazards model and log-rank approach 

The estimated log hazard ratios for individual studies were given by: 

𝑦𝑖 = {
logHRobtained from Cox PH model for HRs (Chapter 5)

Equation 4.1 for HRs using "O − E" & "V" statistics (Chapter 4)
 

The corresponding sampling variances for the Cox and log-rank test were given 

as follows. For the Cox proportional hazards model the standard error of the log 

HR was squared to give the variance. For the log-rank test, I obtained the 

variance using the calculations presented in Chapter 4 from Equation 4.2 using 

the “O-E” and “V” statistics. Using these estimates and sampling variances I fitted 

two-stage random-effects models incorporating between-study heterogeneity 

variance. The models were implemented via the “rma.uni” command from 

“metafor” package in R.  
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6.3.5 Two-stage meta-analysis models using aggregate data 

6.3.5.1 Model Description using aggregate data 

From the IPD data, I was able to obtain binary summaries for each trial per 

simulation dataset. I modelled the “binary” data obtained using a normal 

approximation to binomial likelihood with a clog-log link on a HR scale ignoring 

censoring and follow-up times. Then I applied a model for the same data, 

assuming a binomial likelihood and a logit link133, on an OR scale ignoring the 

same information as the aforementioned model.   

6.3.5.2 Model Fitting using aggregate data 

The estimated log hazard ratios and log odds ratios were given by: 

𝑦𝑖 = {
Equation 3.2 for HRs using the clog − log link (Chapter 3)
Equation 3.1 for ORs using the logit link (Chapter 3)

 

The corresponding variances were given by:  

si
2 = {

Equation 3.4 for HRs using the clog − log link (Chapter 3)
Equation 3.3 for ORs using the logit link  (Chapter 3)

 

I estimated the study-specific log odds ratios or log hazard ratios, 𝑦𝑖 and their 

within-study variances 𝑠𝑖
2 as shown above and fitted a standard two-stage 

random-effects model to these. The models were implemented via the “rma.uni” 

command from “metafor” package in R. One-stage meta-analysis models were 

not applied to avoid the additional complexities of including these in a simulation 

study.  

 

6.3.6 Performance Measures 

The performance of the methods was quantified via calculation of bias (also 

known as systematic error), relative precision, root mean squared error, model 

based standard error, coverage and power. Each of these performance 

measures was stored for the 28 simulation scenarios of 1000 iterations. In Table 

6.3, I define the performance metrics I used in this study. 
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Metric Formula Description 

Bias ∑
𝑙𝑜𝑔𝜃̂𝑖 − 𝑙𝑜𝑔𝜃

1000

1000

𝑖=1

 

Average difference between the true simulated HR and its 

estimate across 1000 simulation replicates in a simulation 

scenario. Desirable to be near zero. 

Relative precision 

100((
𝐸𝑚𝑝𝑆𝐸𝑎̂

𝐸𝑚𝑝𝑆𝐸𝑏̂
)
2

− 1),  

where 𝐸𝑚𝑝𝑆𝐸 = √𝑉𝑎𝑟(𝜃𝑖̂)  

The relative increase (or decrease) in precision when using 

one method (b) (i.e. “O-E” &“V” statistics (HR), logit link (OR), 

clog-log link (HR)) relative to another (a) (i.e. Cox PH (HR)).  

Root mean 

squared error 
∑

(𝑙𝑜𝑔𝜃̂𝑖 − 𝑙𝑜𝑔𝜃)
2

1000

1000

1

 

The squared average difference between the true simulated 

HR and its estimate across 1000 simulation replicates in a 

simulation scenario. Desirable to be near zero. 

Model based 

standard error 
√

1

1000
∑ 𝑉𝑎𝑟̂(𝜃𝑖̂)

1000

𝑖=1

 

The square root of the summary of the simulated variance of 

the HR across 1000 simulation replicates in a simulation 

scenario. Desirable to be equal to the empirical SE. 

Coverage 
1

1000
∑ 1(𝜃𝑙𝑜𝑤,𝑖 ≤ 𝜃 ≤ 𝜃𝑢𝑝𝑝,𝑖)

1000

𝑖=1

 

The proportion of times the two-sided 95% CI of the 

estimated summary HR contains the true HR. Desirable to 

be near 95%. 

Power 
1

1000
∑ 1(

(𝜃𝑙𝑜𝑤,𝑖 > 0)

𝑜𝑟 (𝜃𝑢𝑝𝑝,𝑖 < 0)
)

1000

𝑖=1

 
The proportion of times the two-sided 95% confidence 

interval of the estimated summary HR does not contain 0. 

Table 6.3: Description of performance measures used in simulation analysis. 
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6.4 Results 

6.4.1 Bias 

Bias was obtained per simulation scenario for each method applied indicating 

how much the average estimate exceeds the true estimate; the reference method 

was the Cox proportional hazards model. Figure 6.1 indicates the results obtained 

using various meta-analysis methods (i.e. columns) across different simulation 

scenarios (i.e. rows).  

Initially I observed that bias was similar between the scenarios including 5 or 20 

trials. With regards to the Cox proportional hazards model and the log-rank test 

using the “O-E” and “V” statistics, no bias was observed across all simulation 

scenarios (i.e. columns 1-2, Figure 6.1). In those scenarios where the effect size 

was zero, the analysis of the data as binary did not demonstrate bias compared 

to analysing the data accounting for their natural properties (i.e. Scenario 0). Bias 

was low for the majority of scenarios analysing TTE data as binary using the logit 

link (i.e. OR REML), except in those where large % random censoring (~40%) 

and long follow-up time (~5 years) were present. Across most simulation 

scenarios, I identified more bias when the data were analysed as binary under 

the clog-log link (column 4, Figure 6.1) on the HR scale. Even though there was 

a theoretical assumption that the clog-log link function can be used as a useful 

alternative to analysing the data as binary on the HR scale, the bias observed in 

the results was much larger than the bias obtained from the logit link (column 4, 

Figure 6.1). 

Additionally, in the scenario with small % random censoring and short follow-up 

time, the bias across all the methods was similar (row 3, Figure 6.1). In the 

presence of medium follow up time regardless of the amount of heterogeneity 

and the sample size treating the data as binary using the logit link (and not the 

clog-log link) might be acceptable because the bias was very low; therefore, 

heterogeneity and sample size did not seem to affect bias (rows 5-6, 9-10, Figure 

6.1). For larger percentage random censoring and therefore length of follow-up 

time more bias was observed for both link functions that treat the data as binary 

(row 4, Figure 6.1). Finally, for those scenarios designed with large effect size 

large bias was observed when data were treated as binary using the clog-log link 

(row 7, Figure 6.1). The tables including the exact numbers obtained for bias are 

presented in Appendix E.2.
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*Note: 5T/MA, 20T/MA: 5 or 20 trials per meta-analysis; Each row within a panel is a different data generating mechanism (DGM); Upper and lower rows of panels are DGMs with K = 5 
and 20; Columns of panels are different analysis methods; Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium 
effect size, medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event) 

Figure 6.1: Bias observed per simulation scenario across different meta-analysis models. 
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6.4.2 Empirical & Model Based Standard Errors 

The empirical and model based standard errors were obtained per simulation 

scenario for each method. The empirical standard error measures the spread of 

the estimator, and the model based standard error should be equal to the 

empirical one. Figure 6.2 shows only how close the empirical (i.e., filled circle) 

and model based standard errors (i.e., hollow circles) are without aiming to 

compare empirical standard errors between the methods; this is covered in 

section 6.4.3. 

The empirical and model based standard errors were closer to each other in the 

scenarios including 20 trials per meta-analysis than in those including 5 trials per 

meta-analysis due to the amount of information involved in the meta-analysis.  

For those scenarios designed with 20 trials per meta-analysis, I observed similar 

results across different methods for MA of TTE data for the majority of situations. 

In the presence of zero or small heterogeneity or short follow-up times the models 

are overestimating the standard error; the overestimation/underestimation of 

standard error is relatively small (<2%) for most scenarios. For the rest of the 

simulation scenarios the differences between the empirical and model based 

standard errors seem negligible (Figure 6.2).  

On the other hand, for the scenarios designed with 5 trials per meta-analysis a 

slightly different pattern was observed apart from the cases with small or zero 

heterogeneity where the models seem to overestimate the standard error as in 

20 trials per meta-analysis. However, there were a lot of scenarios (e.g., short 

follow-up time, large follow-up, small sample size) under which the standard error 

is overestimated to a similar extent by the use of the complementary log-log link 

or the logit link; the same pattern was also true for the Cox proportional hazards 

model and the log-rank approach in the scenario where short follow-up time was 

present (Figure 6.2).  
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*Note: 5T/MA, 20T/MA: 5 or 20 trials per meta-analysis; Each row within a panel is a different data generating mechanism (DGM); Upper and lower rows of panels are DGMs with K = 5 
and 20; Columns of panels are different analysis methods; Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium 
effect size, medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event) 

Figure 6.2 Empirical and model-based standard errors obtained per simulation scenario across different meta-analysis models. 
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6.4.3 Relative % increase in precision 

The percent increase (or decrease) in precision relative to the Cox proportional 

hazards model per simulation scenario for each method applied was obtained. A 

similar pattern was observed in the simulation results when 5 or 20 trials were 

involved in the meta-analysis. Initially, as expected, I observed that the log-rank 

approach provided quite precise estimates relative to the Cox proportional 

hazards model (Figure 6.3). 

In most scenarios, analysing the data on the HR scale using the clog-log link 

shows an increase in relative precision, while analysing data on an OR scale 

using the logit link shows a reduction in precision. Specifically, analysing the data 

as binary using the logit link was much less precise than the Cox proportional 

hazards model since binary analyses are throwing away data (Figure 6.3). 

On the other hand, the increased precision observed for the clog-log link should 

be cautiously interpreted since according to the literature, a method that has 

increased bias towards the null may have small empirical standard error as a 

result of the bias165. Therefore, analysing the data as binary using the clog-log 

link in the presence of the bias towards the null discussed in 6.4.1 causes the 

meta-analytic estimates to appear more precise (Figure 6.3). The corresponding 

tables including the exact numbers obtained for the relative increase/decrease in 

precision are presented in Appendix E.2. 
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*Note: 5T/MA, 20T/MA: 5 or 20 trials per meta-analysis; Each row within a panel is a different DGM; Upper and lower rows of panels are DGMs with K = 5 and 20; Columns of panels 
are different analysis methods; Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size, medium 
heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event) 

Figure 6.3: Relative percent (%) increase in precision per simulation scenario across different meta-analysis models. 
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6.4.4 Mean squared error 

The mean squared error was also obtained per simulation scenario as shown in 

Figures 6.4 and 6.5. Figure 6.5 was created to facilitate comparison of the 

methods applied and can be considered as another representation of the same 

results. The mean squared error indicated the overall performance of an 

estimator since it integrates both bias and variance; it was desirable for this to be 

close to 0.  

A slightly different pattern was observed in the scenarios involving 20 trials per 

meta-analysis compared to those involving 5 trials per meta-analysis due to the 

amount of information involved. For most simulation scenarios, the mean squared 

error was closer to 0 for trials involving 20 trials per meta-analysis compared to 

those involving 5 trials per meta-analysis. I also observed that the Cox 

proportional hazards model and the log-rank approach provide similar mean 

squared error estimates (Figure 6.4). 

Specifically, for scenarios including 20 trials per meta-analysis, a small mean 

squared error was observed (i.e. MSE<0.02, actual numbers are presented in 

Appendix E.2). In the scenarios with longer follow-up time, large % random 

censoring and/or small event probability, the mean squared error is larger for both 

methods treating the data as binary (i.e. using both the clog-log and logit link).  In 

the presence of large effect size, particularly the clog-log link approach (and not 

the logit approach) is performing badly since it is biased with a large model based 

standard error (Figure 6.4). 

In the scenarios with long follow-up time, large % random censoring and/or small 

event probability, the mean squared error was even larger for both methods 

treating the data as binary (i.e. using both the clog-log and logit link). For the 

scenario created under small sample size, both the clog-log link and the logit link 

provided larger mean squared errors; the former mainly driven from the larger 

bias observed (Figure 6.1) and the latter one mainly driven from decreased 

precision (Figure 6.3). Finally, in the presence of large effect size , particularly the 

clog-log link approach (and not the logit approach) is performing badly, similarly 

to the 20 trials per meta-analysis scenario, since it is biased with a large model 

based standard error (Figure 6.4). 
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*Note: 5T/MA, 20T/MA: 5 or 20 trials per meta-analysis; Each row within a panel is a different data generating mechanism (DGM); Upper and lower rows of panels are DGMs with K = 5 
and 20; Columns of panels are different analysis methods; Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium 
effect size, medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event) 

Figure 6.4: Mean squared error obtained per simulation scenario across different meta-analysis models. 
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*Note: 5T/MA, 20T/MA: 5 or 20 trials per meta-analysis; Each row within a panel is a different meta-analysis method applied to meta-analyses containing either 5 or 20 trials; Panels are 
different DGMs; Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size, medium heterogeneity, medium 
follow up; R_cens=Random censoring; P(E)=P(Event) 

Figure 6.5: Another representation of the mean squared error obtained per simulation scenario across different meta-analysis models. 
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6.4.5 Coverage 

Coverage for each simulation scenario per method was obtained (Figure 6.6) and 

it was desirable to be close to 95%. For those scenarios consisting of 20 trials 

per meta-analysis I initially observed that coverage is close to 95% for the 

majority of scenarios in three out of the four methods applied. Specifically, the 

Cox model, log-rank approach and treating the data as binary using the logit link 

performed equally well in terms of coverage for the majority of simulation 

scenarios. Some exceptions were observed when the logit link was applied in the 

presence of long follow-up times, or large % random censoring in combination 

with small event probability; low coverage in these situations appeared to be 

driven by the bias observed (Figure 6.1). The coverage under the use of the clog-

log link was quite poor for the majority of the simulation scenarios compared to 

the other three methods (column 4, Figure 6.6).   

In the presence of 5 trials per meta-analysis, there were situations where the 

gold-standard approaches provided a lower coverage than the target of 95%. This 

is known to occur when the methods are not allowing for uncertainty in estimating 

heterogeneity127, 132, 166. As a consequence, the scenarios that behaved well in 

terms of coverage for the gold-standard approaches were those where 

heterogeneity was low or close to 0 (Figure 6.6). Other methods could be used 

to calculate alternative confidence intervals such as the Knapp-Hartung method, 

bootstrap confidence intervals, however calculation was conducted using the 

Wald-type confidence intervals since they are more widely used. A detailed 

comparison of these alternative methods was presented by Veroniki et al132.  

Lower coverage than the target of 95% was observed when the data were treated 

as binary using the logit link with 5 trials per meta-analysis especially when long 

follow-up times, large % random censoring and small event probability, large 

heterogeneity was present; however, it was close to the coverage obtained from 

the gold-standard approaches. The clog-log link provided poor coverage 

especially in the presence of long follow-up times and large % random censoring 

however not to the extent of the poor coverage observed with 20 trials per meta-

analysis; the clog-log link performed slightly better in terms of coverage with 5 

trials per meta-analysis, but it was still low (Figure 6.6). On this situation, poor 

coverage appeared to be driven by bias which becomes more important as the 

amount of information increases (i.e. standard error decreases).  
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*Note: 5T/MA, 20T/MA: 5 or 20 trials per meta-analysis; Each row within a panel is a different data generating mechanism (DGM); Upper and lower rows of panels are DGMs with K = 5 
and 20; Columns of panels are different analysis methods; Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium 
effect size, medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event) 

Figure 6.6: Coverage obtained per simulation scenario across different meta-analysis models.
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6.4.6 Power  

Two scenarios were designed to provide 80% power under the Cox proportional 

hazards model as described in 6.3.1. For the scenario involving 5 trials per meta-

analysis providing 80% power, analysing the data as binary using the clog-log 

and the logit link functions caused loss of power (Figure 6.7); the loss of power 

on these methods was due to the fact that the former method (i.e., clog-log link) 

was more biased towards the null as presented in Figure 6.1 and the latter 

method (i.e., logit link) was less precise (Figure 6.3). 

On the other hand, I observed a different pattern for the scenario including 20 

trials per meta-analysis. Specifically, analysing the data as binary under both link 

functions improved the power to be slightly higher than 80%. For the clog-log link 

this was observed since the method provided a much more precise estimate 

compared to the 5 trials scenario and was slightly less biased; hence this caused 

better power. For the logit link, the estimate was unbiased and quite precise 

relative to the Cox model and therefore the power was improved.  Power would 

be meaningless without type I error being controlled, but as observed from Figure 

6.6 that this was not a problem here (i.e. Scenario under no effect size). 

 

*Note: 5T/MA, 20T/MA: 5 or 20 trials per meta-analysis; Rows of panels are different analysis methods; One 

simulation scenario designed specifically with 80% power under the Cox proportional hazards model. 

Figure 6.7: Power obtained designing a scenario with 80% power under Cox proportional 

hazards model. 
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6.5 Discussion 

Using a simulation study and following specific pre-determined data generating 

mechanisms, I performed a simultaneous comparison of the “gold standard” 

approaches (Cox and log-rank method) to the approximate methods (using the 

clog-log or a logit link) using aggregate data to conduct time-to-event meta-

analysis. The data generating mechanisms used were representative of 

situations observed in reality and informed also by previous simulation studies21, 

107-109, 111; some extreme scenarios were also created for clarification purposes 

and to ease some results’ interpretation. The estimands that were used were 

different, but researchers sometimes use the log HR and log OR interchangeably 

to address the same question. The performance of each method was assessed 

in terms of bias, empirical standard error, model based standard error, mean 

squared error, coverage and the power each method provided.  

The simulation indicated that analysing time-to-event outcomes as binary using 

the logit link performed well with respect to bias and coverage in many simulation 

scenarios apart from those where large percentage random censoring (~40%) 

and long follow-up time (~5 years) was present. However, for the majority of the 

simulation scenarios the method lacks precision, particularly for small meta-

analyses.  

On the other hand, analysing the data as binary using the clog-log link 

consistently produced more bias, low coverage and low power. However, the 

method provided much more precise estimates compared to the logit link. 

Therefore, although the clog-log link allowing interpretation on the HR scale was 

considered a possible alternative to analysing the TTE outcomes as binary, and 

we observed precise results in the previous empirical analyses presented in 

Chapters 3-5, based on this simulation I identified that use of this method 

adversely affected the results. It is worth mentioning though that the method 

performed well under situations ideally suited to it, which meta-analysts will 

probably never face in practice (i.e. Scenario 0, Long follow-up time and 0% 

random censoring). Finally, between-study heterogeneity and study sample size 

did not affect the levels of bias. 

In my simulation study, I was able to identify important factors associated with the 

results’ discordance between the different scales. However, a limitation of this 

study was that characteristics were varied one by one from a baseline setting 



 

143 

instead of examining every combination of factors simultaneously, additional 

scenarios might have been missed under which analysing time-to-event data as 

binary appears acceptable.  

To date, there were very limited simulation studies conducted by Tudur-Smith 

and Williamson107 and Simmonds et al.21  examining similar methodologies to 

those used in this chapter. However, the former authors did not include any 

comparisons related to the use of the clog-log link function whereas the latter 

restricted their attention to estimation of the log hazard or log odds ratio and its 

variance for a single trial.  

Tudur-Smith and Williamson107, compared the stratified log-rank analysis, 

stratified Cox regression and inverse variance weighted average of estimates. 

The authors indicated circumstances where the models produced similar 

estimates of the pooled log HR and its variance (when the underlying treatment 

effect was close to zero and the degree of heterogeneity across trials was 

minimal). The stratified log-rank analysis biased the results for larger treatment 

effects.  

Simmonds et al.21 showed that bias is present when the hazards or the odds are 

not proportional; this was not the focus of our simulation which did not compare 

methods in scenarios where the proportionality assumption does not hold.  The 

authors of this paper also stated the potential implications for a meta-analysis 

setting highlighting specifically the extra complications that are introduced in the 

presence of heterogeneity included in a random-effects meta-analysis but they 

did not explicitly explore that. My study added this extra complexity that 

Simmonds et al21 recommended in their paper to assess all the factors affecting 

a time-to-event meta-analysis simultaneously.  
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6.6 Conclusion 

A time-to-event IPD meta-analysis is the gold standard and should be analysed 

on a HR scale. In the absence of IPD, alternative methodology exists allowing 

researchers to perform a TTE meta-analysis on a HR scale by extracting suitable 

information from trial reports and applying a log-rank test. The simulation study 

indicated that small differences were observed between the gold-standard 

approaches and therefore there was no reason to recommend the one over the 

other. The logit link performed well in many simulation scenarios with some 

exceptions where large percentage random censoring (~40%) and long follow-up 

time (~5 years) were present; the method though lacked precision in the majority 

of scenarios. On the other hand, the complementary log-log link was not suitable 

to analyse the data as binary on a HR scale since a lot of bias was observed, the 

coverage was low, and the method provided also low power. If a HR estimate 

cannot be obtained per trial to perform a meta-analysis of TTE data, a meta-

analysis using the OR scale (using the logit link) could be conducted but with 

awareness that this would provide less precise estimates in the analysis. 

Investigators should avoid performing meta-analyses on the OR scale in the 

presence of large percentage random censoring (~ 40%) and long follow-up times 

(~5 years) of the trials included in the meta-analysis.  

 

 

 

 

 

 

 

 

 

_____________________________________________________________________

Parts of this Chapter were presented as an oral presentation at the 43rd 

conference of International Society of Clinical Biostatistics, 2022.  
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_____________________________________________________________________ 

7. Discussion 

 

 

 

 

7.1 Motivation and Thesis Aims 

As outlined in the previous chapters, the overall objective of this thesis was to 

provide guidance to systematic reviewers and meta-analysts about the 

implications of analysing TTE outcomes as binary, how the implications vary 

according to MA characteristics and in which circumstances analysing the 

outcome as binary may be adequate. The research questions I aimed to answer 

were as follows:  

▪ What are the implications of analysing TTE outcomes as binary in MA and 

how do the implications vary according to MA characteristics? 

▪ How are TTE outcomes analysed within the biggest database publishing 

systematic reviews and MA, the CDSR? Are they analysed as binary or 

are they analysed as HR, taking into account the full properties of the 

data? 

▪ Which medical areas within the database analyse the data under which 

scale? 

▪ What are the assumptions made when different meta-analytic models are 

applied and what are the advantages and disadvantages of each one of 

them? 

▪ Is there any other method that could allow us to mitigate the undesirable 

properties from treating the data as binary?  

This chapter summarises the work discussed throughout this thesis. The rest of 

this chapter is set out as follows: In Section 7.2, I provide a summary of the key 

findings of each chapter and in Section 7.3, I indicate the strengths and limitations 

of my research. In Section 7.4, I discuss the generalisability of my results and 

additional research opportunities (Section 7.5) following this piece of work. I 

finally provide a conclusion of my thesis in Section 7.6.  
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7.2 Summary of key findings 

In Chapter 2, I carried out a methodology review outlining all guidance that exists 

for performing a MA of TTE outcomes and also any discussions presented on 

analysing TTE data as binary in a MA. I used Medline (Ovid version), Scopus and 

Web of Science for my search and according to prespecified criteria, I identified 

75 methodological publications until December 2021.  

I categorised the publications into seven categories: Models for aggregate data 

(11 publications), methods for reconstruction of TTE data (5 publications), models 

for IPD (16 publications), methods for NMA (12 publications), multivariate MA (7 

publications), method comparison via real life conditions and/or simulations (16 

publications) and finally papers including discussions, critiques and other 

suggestions for MA of TTE outcomes (6 publications). Publications could overlap 

among multiple categories.  The methodology review identified the research that 

exists in the literature to support systematic reviewers and meta-analysts to 

perform MA of TTE outcomes. It has also described more complex methodologies 

with regards to different modelling techniques that are primarily aimed at 

statisticians and not necessarily aimed to be applied by systematic reviewers and 

meta-analysts. The review identified that most publications in the past were 

focusing mainly on models for aggregate data, whereas recent publications are 

focusing mainly on meta-analysis of IPD or NMA. The use of Bayesian techniques 

in recent years has explored. 

The review identified limited publications focusing on the issue of analysing TTE 

outcomes as binary such Michiels et al161. I was able also to extract information 

from some research publications on the significance of the use of different effect 

measures. I described various methodologies for MA of TTE data, however, 

according to past reviews their application to date was still quite limited45, 46.  

Finally, I indicated that further research is needed in order to understand the 

impact of analysing TTE outcomes as binary rather than using specific methods 

developed for MA of TTE outcomes, within different MA datasets having various 

characteristics. 

In Chapter 3, I used TTE data from the CDSR (Issue 1, 2008) analysed originally 

as binary and explored the differences that occur when data are analysed as 
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binary on an OR scale as opposed to analysing the data using the complementary 

log-log link where interpretation is conducted on a HR scale.  

My analysis showed that there are important reasons associated with 

discordance among the results, indicating that the correct choice of the method 

does matter and may affect the interpretation and conclusions drawn from the 

results. I highlighted that those differences between the scales arise mainly when 

event probability is high and may occur via differences in between-study 

heterogeneity or via increased within-study standard error in the OR relative to 

the HR analyses. There were also situations where there was no clear single 

factor driving the differences, since there was a combination of reasons affecting 

the individual study estimates and corresponding weights. All my analyses were 

conducted both under two- and one-stage random effects models in R. 

 

In Chapter 4, using an additional subset of meta-analysis data from the CDSR 

(“OEV” data), I re-investigated the impact of analysing TTE outcomes as binary 

within meta-analysis. I identified the differences that occur when these data are 

analysed as binary as opposed to analysing the data using the complementary 

log-log link or using the “O-E” and “V” statistics where interpretation is conducted 

on a HR scale. 

As in Chapter 3, my analysis confirmed that the correct choice of method for a 

MA of TTE data does matter; high event probability, changes to between and 

within-study variation appeared to be important factors producing differences in 

the results in this subset of meta-analyses.   

However, in this subset there were more occasions under which there was no 

clear indication of one single factor driving these differences and a combination 

of reasons affected the discordance among the results. Therefore, regarding 

method selection, based on the “OEV” data I identified that a mixed pattern was 

observed and there was no clear indication of the exact conditions under which 

the clog-log link outperforms logit link on an OR scale or vice versa. In this subset, 

my analyses were conducted only under two-stage random effects models using 

R software. 

Summarising the findings from Chapters 3 and 4, I indicated that TTE data should 

ideally be analysed accounting for their natural properties, as it is possible for 
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important discrepancies to be observed and conclusions from the MA to be 

altered. I identified that dichotomising TTE outcomes may be adequate for low 

event probabilities but not for high event probabilities. In meta-analyses where 

only binary data are available, the complementary log-log link may be a useful 

alternative when analysing TTE outcomes as binary, however the exact 

conditions under which this would be acceptable needed further exploration. 

In Chapter 5, using IPD, I investigated whether important properties of TTE data 

such as percentage total censoring and follow-up times could additionally affect 

the results obtained from a MA when data are analysed using “gold-standard” 

approaches (such as Cox proportional hazards model and the log-rank test) as 

opposed to analysing the data as binary using the clog-log or the logit link where 

interpretation is conducted on a HR or an OR scale respectively.  

Compared to the “gold-standard” methods, my analyses conducted on an OR 

scale indicated discordancy both in the individual and pooled effect estimates 

when the event probability was high. Smaller trials provided consistently different 

individual trial and pooled effect estimates in the OR relative to the HR analyses. 

The confidence intervals for individual study results were systematically wider in 

the OR compared to HR analyses since they provided an increased within-study 

standard error. I also identified a mixed pattern in between-study heterogeneity 

and  I2 estimates in the OR and HR clog-log analyses. For some TTE outcomes, 

the between-study heterogeneity estimate obtained from the model in the HR 

clog-log analysis was not in agreement with the estimates obtained from the gold-

standard approaches, although it was still quite low and close to the estimates 

from other models. This has affected both the individual study weights and the I2 

estimates; however, the individual study estimates in the HR clog-log analysis 

were closer than those from the OR analysis to the corresponding estimates from 

the gold-standard approaches.  

From my analyses in Chapter 5, I was not able to explain the situations where a 

model using the complementary log-log link would be a more suitable approach 

than a model treating TTE as binary in a meta-analysis since a mixed pattern was 

observed regarding whether or not the results fall in between the “gold-standard” 

approaches and the binary model with a logit link. I could not explain whether 

censoring and follow-up time were distinct factors affecting the discordance 

among the MA estimates since a) high event probability was a strong factor 
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affecting the results as observed in previous chapters and b) I could not 

distinguish between random and fixed censoring given the data I had. 

Finally, I suggested a comprehensive simulation study that would examine which 

meta-analysis characteristics affect differences between MA results obtained on 

the HR or OR scales. 

In Chapter 6, using simulation-based datasets, I performed a simultaneous 

comparison of the “gold standard” approaches (Cox and log-rank method) to the 

approximate methods (assuming a normal approximation to binomial likelihood 

with a clog-log link or a binomial likelihood with a logit link) for using aggregate 

data to conduct TTE MA. 

I generated 28 simulation scenarios defined by: number of trials per meta-

analysis, trial sample size, log HR, between-study variability, follow-up time, and 

percentage random and fixed censoring. I compared “gold standard” approaches 

to analysis on the HR scale (Cox and log-rank method) with analysis as binary 

using either a logit link on the OR scale or a clog-log link on the HR scale. 

The simulation indicated that analysing TTE outcomes as binary using the logit 

link performed well with respect to bias and coverage in many simulation 

scenarios apart from those where large percentage random censoring (~40%) 

and when long follow-up time (~5 years) was present. However, for the majority 

of the simulation scenarios the method lacked precision particularly for small 

meta-analyses. On the other hand, analysing the data as binary using the clog-

log link consistently produced more bias, low coverage and low power. This 

method though provided much more precise estimates compared to the logit link.  

I concluded that, if a HR estimate cannot be obtained per trial to perform a meta-

analysis of TTE data, a meta-analysis using the OR scale (using the logit link) 

could be conducted but with awareness that this would provide less precise 

estimates in the analysis. Investigators should avoid performing meta-analyses 

on the OR scale in the presence of large percentage random censoring (~ 40%) 

and long follow-up times (~5 years) of the trials included in the meta-analysis.  
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Chapter & 

Objectives 
Key findings Limitations Further work 

Chapter 2: Identify 

the guidance that 

exists in the literature 

for MA of TTE 

outcomes and any 

discussions raised for 

analysing these data 

as binary. 

• Identified 75 methodological 

publications divided into 7 

categories. 

• Many methodologies have been 

proposed but their application is 

limited. 

• No publications discussing the 

analysis of TTE outcomes as 

binary. 

• It is not a systematic review, 

although I followed a systematic 

approach to searching and 

screening to identify the necessary 

evidence. 

• Excluded publications reported in 

languages other than English. 

• Understand how these 

methodologies perform 

comparatively when applied 

to different MA datasets 

having various 

characteristics, using effect 

measures such as the HR 

and OR. 

Chapter 3: Exploring 

the differences 

between TTE MA 

analysed originally as 

binary on the OR 

scale in the CDSR 

with MA results from 

analyses performed 

• High event probability was an 

important factor associated with 

discordant effect estimates. 

Changes to between and within-

study variation were mechanisms 

producing differences in the results. 

• Combination of reasons affecting 

the individual study estimates and 

corresponding weights. 

• Not able to distinguish MAs with 

short follow-up which may have 

been appropriately analysed as 

binary. 

• Results might be different for other 

TTE outcomes and results might 

have changed in reviews after 

2008. 

• Additional research is 

needed in order to examine 

whether meta-analysts have 

improved the way they are 

performing MA of TTE 

outcomes after 2008. 
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using the clog-log link 

on the HR scale. 

 

• One-stage MA models were also 

used and demonstrated a similar 

pattern to the two-stage models for 

comparisons between different 

modelling approaches. 

• Lack of information on censoring 

and follow-up times. 

Chapter 4: 

Comparing a subset 

of TTE data initially 

analysed using “O-E” 

and “V” statistics in 

the CDSR on the HR 

scale to results from 

analysing these data 

as binary on the OR 

(via the logit link) or 

HR (via the clog-log 

link) scale. 

• TTE data should be ideally 

analysed accounting for their 

natural properties. 

 

• Dichotomising TTE outcomes may 

be adequate for low event 

probabilities but not for high event 

probabilities. 

 

• The clog-log link may be a useful 

alternative when analysing TTE 

outcomes as binary, however the 

exact conditions need further 

exploration. 

• The comparison of OR/HR scale in 

the “OEV” data was slightly 

different; the number of events and 

non-events were used for the OR & 

HR clog-log calculation (as in 

Chapter 3) and calculated a HR 

based on “O-E” & “V” statistics. For 

some cases the two data sets 

entered by Cochrane reviewers 

may not completely correspond to 

each other.  

• Not able to make comparisons 

using one-stage models in the 

“OEV” data due to IPD 

unavailability. 

• The exact conditions under 

which the clog-log link might 

be a useful alternative to 

analysing TTE data as binary 

on an OR scale need further 

exploration. 
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Chapter 5: 

Comparison between 

“gold-standard” 

approaches to 

analysing the data as 

binary on the HR (via 

the clog-log link) or 

the OR (via the logit 

link) scale using IPD. 

• Confirmed previous findings 

obtained from the CDSR that the 

method choice does matter. 

• Discordancy between OR and HR 

analyses both in the individual and 

pooled effect estimates in presence 

of high event probability. 

• Smaller trials provided consistently 

different individual trial and pooled 

effect estimates in the OR relative 

to the HR analyses. 

• Increased within-study standard 

error in the OR relative to the HR 

analyses. 

• Mixed pattern was observed for 

between-study heterogeneity and  

I2 estimates between the OR and 

HR clog-log analyses. 

• Careful consideration on the most 

appropriate method for a TTE MA 

• Not able to explain the situations 

where a model using the clog-log 

link is more suitable than analysing 

TTE data as binary in a MA 

 

• Could not explain whether 

censoring and follow-up time were 

distinct factors affecting the 

discordance among the MA 

estimates since:  

a) high event probability was 

a strong factor affecting the 

results as observed in 

previous chapters  

b) I could not distinguish 

between random and fixed 

censoring given the data I 

had. 

 

• A comprehensive simulation 

study is necessary since real 

world evidence only cannot 

explain the situations where 

a model using the clog-log 

link is more suitable than 

analysing TTE data as binary 

in a MA. 
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depending on data availability is 

necessary. 

• RMST method was not used since 

the scope was not to compare 

methods in the presence of non-

proportional hazards.  

Chapter 6: 

Comprehensive 

simulation study 

examining which 

meta-analysis 

characteristics affect 

differences between 

results obtained on 

the HR and OR 

scales. 

• Analysing TTE data as binary using 

the logit link performed well in many 

scenarios with some exceptions 

where large % random censoring 

(~40%) and long follow-up time (~5 

years) were present; the method 

lacked precision in the majority of 

scenarios. 

• Analysing TTE data using the clog-

log link was not suitable to analyse 

the data as binary on a HR scale 

since a lot of bias was observed, 

the coverage was low, and the 

method provided also low power. 

• Scenarios were examined by 

varying characteristics one by one 

from a baseline setting rather than 

examining every possible 

combination of parameters. 

• Implications of analysing 

TTE data as binary in other 

settings (e.g. NMA, 

multivariate MA, inclusion of 

interaction terms). 
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• Between-study heterogeneity and 

study sample size did not affect the 

levels of bias 

Table 7.1: Summary of objectives, key findings, limitations and future work per individual chapter. 
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7.3 Strengths and limitations 

In this thesis, I gave an adequate description of all related guidance for meta-

analyses of TTE outcomes. Several methods have been discussed (Chapter 2) 

and have been applied (Chapters 3-6).  

There has been limited research on assessing the impact of analysing these 

outcomes as binary in a meta-analysis setting. For example, Michiels et al.161 

found that both median survival times and OR methods could result in an 

important loss of statistical power and under- or overestimation of treatment 

effects. In the presence of lower event rates, median survival time methods 

provided more biased results. Although there was limited evidence identified at a 

MA level, Green and Symons33 on an individual study level indicated that 

proportional hazards models provide relatively stable coefficients and decreased 

SE with increasing follow-up time, which is not the case for logistic models where 

SEs of the estimates generally increase. These authors also mentioned that the 

two models produce similar estimates in the presence of rare incidence of a 

disease and short follow-up time.   

My analyses using the CDSR of 2008 was a very large empirical study of the 

implications of different methods of analysis within real meta-analyses and my 

analyses using IPD allowed a more thorough exploration of the differences within 

several real meta-analyses using more detailed study data. They both provided 

useful information on the potential factors affecting the differences between 

analysing the data as binary and accounting for their natural properties. These 

analyses informed my subsequent simulation study which provided the most 

accurate evidence as the truth was known and gave a more definitive answer 

about the circumstances under which analysing TTE data as binary could be 

acceptable. Via my simulation study, I found that analysing TTE data as binary 

using the clog-log link is not a suitable approach. 

The models I used to obtain the results for all my analyses were the most suitable 

according to the literature and the advantages and disadvantages of each one of 

them have been discussed extensively in earlier chapters. Finally, even though I 

focused mainly on outcomes such as overall survival and all-cause mortality in 

the empirical research, I considered a range of event probabilities and censoring 

rates in my simulation study and therefore similar findings could be expected for 

other TTE outcomes.  
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A limitation associated with the analyses using the CDSR (Chapters 3,4) was that 

the database provided meta-analyses up to 2008. However, since 2008 it has no 

longer been possible to export the Cochrane database in the same form (i.e., in 

the form of an Access database as originally extracted in 2008), and therefore 

obtaining an updated database requires scraping of HTML files and would involve 

a lot of additional work. 

Additionally, my analyses have focused on TTE meta-analyses where the 

proportionality assumption holds. I did not examine how the results would differ if 

other methodology accounting for non-proportional hazards such as RMST or 

Poisson regression models could affect the results. Little discussion (and no 

additional method implementation) has also been provided related to the use of 

Kaplan-Meier plots and its importance in a TTE meta-analysis. 

In my simulation study (Chapter 6), I was able to identify important factors 

associated with the results being discordant between the different scales. 

However, since I varied characteristics one by one from a baseline setting instead 

of examining every combination of factors simultaneously, I might have missed 

additional situations under which analysing TTE data as binary might have been 

acceptable.  

7.4 Related research  

As identified in previous chapters, limited research exists to date assessing the 

impact of analysing TTE outcomes as binary in a meta-analysis. For example, at 

a single study level, T.V. Perneger54 proposed the use of the relative log survival 

and complementary log-log link for binary TTE analyses when the traditional two-

by-two table is a fair summary of results and therefore duration of follow-up is the 

same for all individuals. The author suggested the use of Kaplan-Meier curves in 

case follow-up time varies among individuals.  

Simmonds et al.21 restricted their attention to estimation of the log hazard or log 

odds ratio and its variance for a single trial. Simmonds et al.21 specifically showed 

that bias is present when the hazards or the odds are not proportional. The 

authors of this paper also stated the potential implications for a meta-analysis 

setting highlighting specifically the extra complications that are introduced in the 

presence of heterogeneity included in a random-effects meta-analysis but they 

did not explicitly explore that.  
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On a meta-analysis level, Michiels et al.65 compared results obtained from MAs 

when median survival times were used as an alternative to HRs, or ORs of 

survival rates. Authors found that both median survival times and OR methods 

could result in an important loss of statistical power and under- or overestimation 

of treatment effects. In the presence of lower event rates, the median survival 

time method provided more biased results.  

Additionally, Tudur-Smith and Williamson107, in 2007, compared three methods 

for fixed-effect IPD MA using TTE outcomes: the stratified log-rank analysis, 

stratified Cox regression and inverse variance weighted average of estimates. 

The authors indicated circumstances under which the models could produce 

similar estimates of the pooled log HR and its variance (when the underlying 

treatment effect was close to zero and the degree of heterogeneity across trials 

was minimal).  

In relation to the research above my study added this extra complexity that 

Simmonds et al21 recommended in their paper to assess all the factors affecting 

a time-to-event meta-analysis simultaneously and tried to assess whether the use 

of the clog-log link presented by T.V. Perneger54 could also be observed at a 

meta-analysis level.   

 

7.5 Generalisability 

The results obtained from the CDSR of 2008 in Chapters 3 and 4 include meta-

analyses of clinical trials. The conclusions drawn from these chapters could be 

generalised to non-Cochrane reviews; projects that are still within the scope of 

evidence synthesis, beyond the requirements set by Cochrane and different in 

terms of reporting quality167. In comparison to Cochrane reviews, non-Cochrane 

reviews report usually larger effect sizes with lower precision and provide 

systematically larger methodological differences that can generate different 

interpretations of the interventions under question168. The improvement of 

reporting and transparency of non-Cochrane reviews has been discussed 

multiple times in the past169, 170.  

 

7.6 Opportunities for further research 

A number of possible extensions could be conducted for the present project. My 

work in Chapter 2 allowed me to obtain an in-depth summary of relevant 
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published literature for a MA of TTE data, identify any discussions raised for 

analysing these data as binary and inform the subsequent research presented in 

later chapters. However, it would be interesting to understand how many of these 

novel methodologies proposed would perform in different meta-analysis settings 

since to date most systematic reviewers and meta-analysts are focusing mostly 

on the more conventional methodology to perform MA of TTE outcomes.  

The analyses performed in Chapters 3 and 4 involve meta-analyses from the 

CDSR up to 2008. Given the fact that methodology for meta-analyses of TTE 

outcomes has been improved over the last decade, examination on whether 

systematic reviewers and meta-analysts have improved the way they are 

performing these analyses would be interesting. There are plans to obtain an 

updated CDSR database with classifications of outcomes and intervention types, 

and there could be a possibility to use this to explore whether analysis choices 

have changed. 

Additionally, I considered differences between analysing using the effect sizes of 

OR and HR solely within a pairwise meta-analysis framework. Other types of 

meta-analyses exist such as network meta-analysis and multivariate meta-

analysis, having their own assumptions that were not considered in this thesis. 

For example, a NMA allows for simultaneous comparison of multiple interventions 

by combining the direct and indirect evidence in a network. Direct evidence is 

obtained from a specific pairwise comparison whereas indirect evidence is 

derived from studies that do not include that specific comparison. Therefore, an 

extension of this project could be the implications of analysing TTE outcomes as 

binary in NMA framework and how this would affect the results between the 

scales, and how this could affect treatment rankings. Additionally, multivariate 

meta-analysis allows for simultaneous analysis of multiple outcomes which 

allows us to incorporate the correlation that might be present across them and 

also facilitates more studies to contribute towards each outcome and treatment 

comparison171. Another extension of the current project could be the implications 

of analysing multiple correlated TTE outcomes as binary in multivariate meta-

analysis. 
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7.7 Conclusion & Recommendations  

The findings presented on this thesis provide an adequate and comprehensive 

exploration of the implications of analysing TTE outcomes as binary in meta-

analysis. No research exists examining the specific comparisons I performed in 

this thesis. However, there is a limited body of work that did look at related 

comparisons such as combining published survival curves using effect measures 

of HR and RR or weighted log RR102, or using median survival times as an 

alternative to HRs and ORs, stratified Cox models and ORs161. Those 

comparisons have been discussed extensively in Chapter 2, Section 2.4.6.  

A time-to-event IPD meta-analysis is the gold standard and should be analysed 

on a HR scale since it allows systematic reviewers and meta-analysts to 

overcome limitations of already published data, avoids data quality issues and 

usually includes more mature data. However, if the data available in publications 

(which can also include data obtained from Cox proportional hazards model) are 

sufficient then an aggregate data approach would also be appropriate and less 

time consuming. In the absence of IPD, alternative methodology exists allowing 

researchers to perform a TTE meta-analysis on a HR scale either by extracting 

suitable information from trial reports and applying a log-rank test or by using the 

Kaplan-Meier plots which could be used to collect an approximate HR rather than 

a direct one; this latter method would also be preferable to applying a TTE MA on 

an OR scale.   

The complementary log-log link is not a suitable approach to analyse the data as 

binary on a HR scale a lot of bias is observed, the coverage is low, and the 

method provides also low power.  If a HR estimate cannot be obtained per trial to 

perform a meta-analysis of TTE data, a meta-analysis using the OR scale (using 

the logit link) could be conducted but with awareness that this would provide less 

precise estimates in the analysis.  

It is advised that systematic reviewers and meta-analysts should think carefully 

about the circumstances before analysing time-to-event data as binary because 

this may produce different conclusions than the correct time-to-event analysis. 

Investigators should avoid performing meta-analyses on the OR scale in the 

presence of high event probability, large percentage random censoring (~40%) 

and therefore longer follow-up times (~5 years) assuming of large event rates 

(>70%) of the trials included in the meta-analysis. Investigators should also be 
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cautious about performing meta-analyses on the OR scale if events are not likely 

to occur early on time, events are not rare, and the lengths of follow-up are not 

similar between the patients. It is worth reminding researchers also that 

interpretations on an OR scale should be interpreted in the context of a particular 

time point for a TTE outcome. Finally, on occasions where some MAs are 

providing HR estimates and standard errors or “O-E” and “V” statistics and others 

OR estimates, investigators should either consider excluding the studies 

involving ORs from the meta-analysis or transforming the HR estimates into OR 

estimates and performing a MA on an OR scale. The decision should take into 

account whether the events are occurring earlier on, events are rare and lengths 

of follow-up are similar between the patients.  
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Appendices 
  

A - Articles collected for Methodology Review 
 

I identified 75 articles via electronic and hand searching describing the methodology for MA of TTE outcomes. I present the papers 

included in our review in chronological order in the following table. 

Author Journal Title Year 

U. R. Abel and L. Edler Controlled clinical trials A pitfall in the meta-analysis of hazard ratios 1988 

A. Whitehead and J. Whitehead Statistics in Medicine 
A general parametric approach to the meta-analysis of 

randomized clinical trials 
1991 

K. B. Dear Biometrics 
Iterative generalized least squares for meta-analysis of 

survival data at multiple times 
1994 

M. G. Hunink and J. B. Wong Medical Decision Making 
Meta-analysis of failure-time data with adjustment for 

covariates 
1994 

M. K. Parmar, V. Torri and L. 

Stewart 
Statistics in Medicine 

Extracting summary statistics to perform meta-analyses 

of the published literature for survival endpoints 
1998 

A. Messori, S. Trippoli, M. Vaiani 

and F. Cattel 

Clinical Drug 

Investigation 

Survival meta-analysis of individual patient data and 

survival meta-analysis of published (aggregate) data: Is 
2000 
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there an intermediate approach between these two 

opposite options? 

C. C. Earle, Ba'Pham and G. A. 

Wells 
Medical Decision Making 

An assessment of methods to combine published survival 

curves 
2000 

L. Duchateau, J. P. Pignon, L. 

Bijnens, S. Bertin, J. Bourhis and 

R. Sylvester 

Controlled Clinical Trials 

Individual patient-versus literature-based meta-analysis of 

survival data: time to event and event rate at a particular 

time can make a difference, an example based on head 

and neck cancer 

2001 

C. Tudur, P. R. Williamson, S. 

Khan and L. Y. Best 

Journal of the Royal 

Statistical Society Series 

a-Statistics in Society 

The value of the aggregate data approach in meta-

analysis with time-to-event outcomes 
2001 

C. L. Vale, J. F. Tierney and L. A. 

Stewart 

International Journal of 

Epidemiology 

Effects of adjusting for censoring on meta-analyses of 

time-to-event outcomes 
2002 

P. R. Williamson, C. T. Smith, J. L. 

Hutton and A. G. Marson 
Statistics in Medicine 

Aggregate data meta-analysis with time-to-event 

outcomes 
2002 

P. Royston and M. K. Parmar Statistics in medicine 

Flexible parametric proportional‐hazards and 

proportional‐odds models for censored survival data, with 

application to prognostic modelling and estimation of 

treatment effects 

2002 
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O. N. Keene Statistics in Medicine 
Alternatives to the hazard ratio in summarizing efficacy in 

time-to-event studies: an example from influenza trials 
2002 

P. F. Moodie, N. A. Nelson and G. 

G. Koch 
Statistics in Medicine 

A non-parametric procedure for evaluating treatment 

effect in the meta-analysis of survival data 
2004 

S. Michiels, P. Piedbois, S. 

Burdett, N. Syz, L. Stewart and J. 

P. Pignon 

International Journal of 

Technology Assessment 

in Health Care 

Meta-analysis when only the median survival times are 

known: a comparison with individual patient data results 
2005 

M. C. Simmonds, J. P. Higgins, L. 

A. Stewart, J. F. Tierney, M. J. 

Clarke and S. G. Thompson 

Clinical Trials 
Meta-analysis of individual patient data from randomized 

trials: a review of methods used in practice 
2005 

C. T. Smith, P. R. Williamson and 

A. G. Marson 

Journal of Evaluation in 

Clinical Practice 

An overview of methods and empirical comparison of 

aggregate data and individual patient data results for 

investigating heterogeneity in meta-analysis of time-to-

event outcomes 

2005 

S. Michiels, B. Baujat, C. Mahe, D. 

J. Sargent and J. P. Pignon 

Journal of Clinical 

Epidemiology 

Random effects survival models gave a better 

understanding of heterogeneity in individual patient data 

meta-analyses 

2005 

C. T. Smith, P. R. Williamson and 

A. G. Marson 
Statistics in Medicine 

Investigating heterogeneity in an individual patient data 

meta-analysis of time to event outcomes 
2005 
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C. T. Smith and P. R. Williamson Clinical Trials 
A comparison of methods for fixed effects meta-analysis 

of individual patient data with time to event outcomes 
2007 

J. F. Tierney, L. A. Stewart, D. 

Ghersi, S. Burdett and M. R. 

Sydes 

Trials [Electronic 

Resource] 

Practical methods for incorporating summary time-to-

event data into meta-analysis 
2007 

L. R. Arends, M. G. M. Hunink and 

T. Stijnen 
Statistics in Medicine Meta-analysis of summary survival curve data 2008 

S. Katsahian, A. Latouche, J. Y. 

Mary, S. Chevret and R. Porcher 

Contemporary Clinical 

Trials 

Practical methodology of meta-analysis of individual 

patient data using a survival outcome 
2008 

G. Massonnet, P. Janssen and T. 

Burzykowski 
Biometrics 

Fitting conditional survival models to meta-analytic data 

by using a transformation toward mixed-effects models 
2008 

V. Rondeau, S. Michiels, B. Liquet 

and J. P. Pignon 
Statistics in Medicine 

Investigating trial and treatment heterogeneity in an 

individual patient data meta-analysis of survival data by 

means of the penalized maximum likelihood approach 

2008 

T. Hirooka, C. Hamada and I. 

Yoshimura 

Methods of Information 

in Medicine 

A note on estimating treatment effect for time-to-event 

data in a literature-based meta-analysis 
2009 

Fiocco, M., Putter, H. and Van 

Houwelingen, J.C. 
Statistics in Medicine 

Meta-analysis of pairs of survival curves under 

heterogeneity: A poisson correlated gamma-frailty 

approach 

2009 
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Fiocco, M., Putter, H. and Van 

Houwelingen, J.C. 
Biostatistics 

A new serially correlated gamma-frailty process for 

longitudinal count data 
2009 

N. J. Welton, S. R. Willis and A. E. 

Ades 

Research Synthesis 

Methods 

Synthesis of survival and disease progression outcomes 

for health technology assessment of cancer therapies 
2010 

B. S. Woods, N. Hawkins and D. 

A. Scott 

BMC Medical Research 

Methodology 

Network meta-analysis on the log-hazard scale, 

combining count and hazard ratio statistics accounting for 

multi-arm trials: A tutorial 

2010 

X. Yuan and S. J. Anderson Biometrical Journal 

Meta-analysis methodology for combining treatment 

effects from Cox proportional hazard models with 

different covariate adjustments 

2010 

S. Thompson, S. Kaptoge, I. 

White, A. Wood, P. Perry, J. 

Danesh and C. Emerging Risk 

Factors 

International Journal of 

Epidemiology 

Statistical methods for the time-to-event analysis of 

individual participant data from multiple epidemiological 

studies 

2010 

F. Siannis, J. K. Barrett, V. T. 

Farewell and J. F. Tierney 
Statistics in Medicine 

One-stage parametric meta-analysis of time-to-event 

outcomes 
2010 

Ouwens MJ, Philips Z and Jansen 

JP. 

Research Synthesis 

Methods 
Network meta-analysis of parametric survival curves 2010 

D. Fisher, A. Copas, J. Tierney 

and M. Parmar 

Journal of clinical 

epidemiology 

A critical review of methods for the assessment of 

patient-level interactions in individual participant data 
2011 
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meta-analysis of randomized trials, and guidance for 

practitioners 

J. Bowden, J. F. Tierney, M. 

Simmonds, A. J. Copas and J. P. 

Higgins 

Research Synthesis 

Methods 

Individual patient data meta-analysis of time-to-event 

outcomes: one-stage versus two-stage approaches for 

estimating the hazard ratio under a random effects model 

2011 

C. Combescure, D. S. Courvoisier, 

G. Haller and T. V. Perneger 

Statistical Methods in 

Medical Research 

Meta-analysis of binary outcomes from two-by-two tables 

when the length of follow-up varies and hazards are 

proportional 

2011 

M. C. Simmonds, J. Tierney, J. 

Bowden and J. P. Higgins 

Research Synthesis 

Methods 

Meta-analysis of time-to-event data: a comparison of two-

stage methods 
2011 

D. B. Rubin 
International Journal of 

Biostatistics 

An Alternative to Pooling Kaplan-Meier Curves in Time-

to-Event Meta-Analysis 
2011 

Jansen J.P. 
BMC Medical Research 

Methodology 

Network meta-analysis of survival data with fractional 

polynomials 
2011 

M. J. Crowther, R. D. Riley, J. A. 

Staessen, J. Wang, F. Gueyffier 

and P. C. Lambert 

BMC Medical Research 

Methodology 

Individual patient data meta-analysis of survival data 

using Poisson regression models 
2012 

J. P. Jansen and S. Cope 
BMC Medical Research 

Methodology 

Meta-regression models to address heterogeneity and 

inconsistency in network meta-analysis of survival 

outcomes 

2012 
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J. K. Barrett, V. T. Farewell, F. 

Siannis, J. Tierney and J. P. 

Higgins 

Statistics in Medicine 
Two-stage meta-analysis of survival data from individual 

participants using percentile ratios 
2012 

M. Fiocco, T. Stijnen and H. Putter 
Computational Statistics 

& Data Analysis 

Meta-analysis of time-to-event outcomes using a hazard-

based approach: Comparison with other models, 

robustness and meta-regression 

2012 

P. Guyot, A. E. Ades, M. Ouwens 

and N. Welton 

BMC Medical Research 

Methodology 

Enhanced secondary analysis of survival data: 

Reconstructing the data from published Kaplan-Meier 

survival curves 

2012 

C. Combescure, D. S. Courvoisier, 

G. Haller and T. V. Perneger 

Statistical Methods in 

Medical Research 

Meta-analysis of two-arm studies: Modelling the 

intervention effect from survival probabilities 
2012 

M. C. Simmonds, J. P. Higgins and 

L. A. Stewart 

Research Synthesis 

Methods 

Random-effects meta-analysis of time-to-event data 

using the expectation-maximisation algorithm and 

shrinkage estimators 

2013 

S. Cope and J. P. Jansen 
BMC Medical Research 

Methodology 

Quantitative summaries of treatment effect estimates 

obtained with network meta-analysis of survival curves to 

inform decision-making 

2013 

M. M. Bennett, B. J. Crowe, K. L. 

Price, J. D. Stamey and J. W. 

Seaman, Jr. 

Journal of 

Biopharmaceutical 

Statistics 

Comparison of Bayesian and frequentist meta-analytical 

approaches for analyzing time to event data 
2013 
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M. J. Crowther, M. P. Look and R. 

D. Riley 
Statistics in Medicine 

Multilevel mixed effects parametric survival models using 

adaptive Gauss-Hermite quadrature with application to 

recurrent events and individual participant data meta-

analysis 

2014 

D. Jackson, K. Rollins and P. 

Coughlin 

Research Synthesis 

Methods 

A multivariate model for the meta-analysis of study level 

survival data at multiple times 
2014 

P. Saramago, L. H. Chuang and 

M. O. Soares 

BMC Medical Research 

Methodology 

Network meta-analysis of (individual patient) time to 

event data alongside (aggregate) count data 
2014 

Y. Wei, P. Royston, J. F. Tierney 

and M. K. Parmar 
Statistics in Medicine 

Meta-analysis of time-to-event outcomes from 

randomized trials using restricted mean survival time: 

application to individual participant data 

2015 

R. D. Riley, M. J. Price, D. 

Jackson, M. Wardle, F. Gueyffier, 

J. Wang, J. A. Staessen and I. R. 

White 

Research Synthesis 

Methods 

Multivariate meta-analysis using individual participant 

data 
2015 

V. Rondeau, J. P. Pignon and S. 

Michiels 

Statistical Methods in 

Medical Research 

A joint model for the dependence between clustered 

times to tumour progression and deaths: A meta-analysis 

of chemotherapy in head and neck cancer 

2015 
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S. Batson, G. Greenall and P. 

Hudson 

PLoS ONE [Electronic 

Resource] 

Review of the Reporting of Survival Analyses within 

Randomised Controlled Trials and the Implications for 

Meta-Analysis 

2016 

F. Bonofiglio, J. Beyersmann, M. 

Schumacher, M. Koller and G. 

Schwarzer 

Research Synthesis 

Methods 

Meta-analysis for aggregated survival data with 

competing risks: a parametric approach using cumulative 

incidence functions 

2016 

B. Lueza, F. Rotolo, J. Bonastre, J. 

P. Pignon and S. Michiels 

BMC Medical Research 

Methodology 

Bias and precision of methods for estimating the 

difference in restricted mean survival time from an 

individual patient data meta-analysis 

2016 

X. V. Wang, B. Cole, M. Bonetti 

and R. D. Gelber 
Statistics in Medicine 

Meta-STEPP: subpopulation treatment effect pattern plot 

for individual patient data meta-analysis 
2016 

S. C. Freeman and J. R. Carpenter 
Research Synthesis 

Methods 

Bayesian one-step IPD network meta-analysis of time-to-

event data using Royston-Parmar models 
2017 

B. Holzhauer Statistics in Medicine Meta-analysis of aggregate data on medical events 2017 

C. Watkins and I. Bennett 
Research Synthesis 

Methods 

A simple method for combining binomial counts or 

proportions with hazard ratios for evidence synthesis of 

time-to-event data 

2018 

S. Ghanbari, N. Zare and Z. 

Shayan 

Advances and 

Applications in Statistics 

A practical method based on functional data analysis and 

single exponential smoothing to combine survival curves 

in meta-analysis: A simulation study 

2018 
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S. van Beekhuizen, M. J. Ouwens, 

M. J. Postma and B. Heeg 
Value in Health 

Network Meta-analyses in survival data: A comparison 

and guidance for different methodologies 
2018 

X. V. Wang, B. Cole, M. Bonetti 

and R. D. Gelber 

Research Synthesis 

Methods 
Meta-STEPP with random effects 2018 

V.M.T. de Jong, K. Moons, R. 

Riley, C.T. Smith, A.G.G Marson, 

M.J.C. Eikemans, T.P.A. Debray 

Research Synthesis 

Methods 

Individual Participant data meta-analysis of intervention 

studies with time-to-event outcomes: A review of 

methodology and an applied example 

2019 

A.Wiksten, N. Hawkins, H-P. 

Piepho, S. Gsteiger 
Value in Health 

Nonproportional Hazards in Network Meta-analysis: 

Efficient Strategies for Model Building and Analysis 
2020 

B. Holzhauer 

Statistics in 

Biopharmaceutical 

Research 

Methods for Using Aggregate Historical Control Data in 

Meta-Analyses of Clinical Trials with Time-to-Event 

Endpoints 

2020 

S. Cope, K. Chan, J.P. Jansen 
Research Synthesis 

Methods 

Multivariate network meta-analysis of survival function 

parameters 
2020 

A.Irvine, S. Waise, E.W. Green, B. 

Stuart 

BMC Medical Research 

Methodology 

A non-linear optimisation method to extract summary 

statistics from Kaplan-Meier survival plots using the 

published P value 

2020 

I.Weier, L. Tian, L. Trinquart Biostatistics 
Multivariate meta-analysis model for the difference in 

restricted mean survival times 
2021 
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E. Ollier, P. Blanchard, G. Le 

Tueff, S. Michiels 
Statistics in Medicine 

Penalized Poisson model for network meta-analysis of 

individual patient time-to-event data 
2021 

X.Tang, L. Trinquart Statistics in Medicine 
Bayesian multivariate network meta-analysis model for 

the difference in restricted mean survival times 
2021 

Tamási, Bálint ; Crowther, Michael 

; Puhan, Milo Alan ; Steyerberg, 

Ewout W ; Hothorn, Torsten 

Biostatistics 
Individual participant data meta-analysis with mixed-

effects transformation models. 
2021 

C. H. Daly, R. Maconachie, AE 

Ades, N.J. Welton 

Research Synthesis 

Methods 

A non-parametric approach for jointly combining evidence 

on progression free and overall survival time in network 

meta-analysis 

2021 

Table 2.2: Methodological papers obtained from MEDLINE (Ovid Version), Scopus, and Web of Science. 
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B – Additional material relating to the binary data meta-analyses 

analysed in Chapter 3 

B.1 – Baseline Graphs 
  

 

Figure 3.9: Examination of baseline risk for two-stage models 

  

Figure 3.10: Examination of baseline risk for one-stage models. 
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B.2 – Model Implementation 

Two-stage MA for ORs 

resultsREML=data.frame(matrix(NA, max(CDSR_2008$ma), 8)) 

colnames(resultsREML)<-c("estimates","SE", "LowerCI", "UpperCI","Tau", "Isq", 

"MA", "Med_Area") 

for (i in unique(CDSR_2008$ma)) { 

        cat(i,"\n") 

        try.fit<- try(rma.uni(ai = treat_n, bi = nontreat_n, ci = ctrl_n, di = nonctrl_n,  

        data = CDSR_2008[CDSR_2008$ma==i,], measure = 

"OR",method="REML", 

        control=list(maxiter=500, verbose=TRUE, stepadj=0.5), verbose=TRUE)) 

        resultsREML[i,7]<-i 

        resultsREML[i,8]<-unique(CDSR_2008[CDSR_2008$ma==i,]$scode) 

        if (class(try.fit)!="try-error") { 

                CDSR.2008[[i]]<- try.fit 

                resultsREML[i,1]<-as.numeric(exp(CDSR.2008[[i]]$b)) 

                resultsREML[i,2]<-as.numeric(CDSR.2008[[i]]$se) 

                resultsREML[i,3]<-as.numeric(exp(CDSR.2008[[i]]$ci.lb)) 

                resultsREML[i,4]<-as.numeric(exp(CDSR.2008[[i]]$ci.ub)) 

                resultsREML[i,5]<-as.numeric(CDSR.2008[[i]]$tau2) 

                resultsREML[i,6]<-as.numeric(CDSR.2008[[i]]$I2) 

        } else { 

                CDSR.2008[[i]] <- NULL   }}  

Two-stage MA for HRs 

resultsREMLHR=data.frame(matrix(NA, max(CDSR_2008$ma), 8)) 

colnames(resultsREMLHR)<-c("estimates","SE", "LowerCI", "UpperCI","Tau", 

"Isq", "MA", "Med_Area") 
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for (i in unique(CDSR_2008$ma)) { 

        cat(i,"\n") 

        try.fit1<- try(rma.uni(yi = logHR, vi = varHR, data = 

CDSR_2008[CDSR_2008$ma==i,], method="REML",control=list(maxiter=10e9, 

verbose=TRUE, stepadj=0.2), verbose=TRUE)) 

        resultsREMLHR[i,7]<-i 

        resultsREMLHR[i,8]<-unique(CDSR_2008[CDSR_2008$ma==i,]$scode) 

        if (class(try.fit1)!="try-error") { 

                CDSR.2008HR[[i]]<- try.fit1 

                resultsREMLHR[i,1]<-as.numeric(exp(CDSR.2008HR[[i]]$b)) 

                resultsREMLHR[i,2]<-as.numeric(CDSR.2008HR[[i]]$se) 

                resultsREMLHR[i,3]<-as.numeric(exp(CDSR.2008HR[[i]]$ci.lb)) 

                resultsREMLHR[i,4]<-as.numeric(exp(CDSR.2008HR[[i]]$ci.ub)) 

                resultsREMLHR[i,5]<-as.numeric(CDSR.2008HR[[i]]$tau2) 

                resultsREMLHR[i,6]<-as.numeric(CDSR.2008HR[[i]]$I2)   

        } else { 

                CDSR.2008HR[[i]] <- NULL }}  

resultsREMLHR<-na.omit(resultsREMLHR) 

 

One-stage MA for ORs 

for (i in unique(CDSR_2008$ma)) { 

        cat(i,"\n") 

        try.fit2<- try(rma.glmm(ai = treat_n, bi = nontreat_n, ci = ctrl_n, di = 

nonctrl_n, data = CDSR_2008[CDSR_2008$ma==i,], measure = 

"OR",model="UM.FS", drop00=F,nAGQ=7)) 

        resultsUMFS[i,7]<-i 

        resultsUMFS[i,8]<-unique(CDSR_2008[CDSR_2008$ma==i,]$scode) 



 

190 

        if (class(try.fit2)!="try-error") { 

                CDSR.2008stg1[[i]]<- try.fit2 

                resultsUMFS[i,1]<-as.numeric(exp(CDSR.2008stg1[[i]]$b)) 

                resultsUMFS[i,2]<-as.numeric(CDSR.2008stg1[[i]]$se) 

                resultsUMFS[i,3]<-as.numeric(exp(CDSR.2008stg1[[i]]$ci.lb)) 

                resultsUMFS[i,4]<-as.numeric(exp(CDSR.2008stg1[[i]]$ci.ub)) 

                resultsUMFS[i,5]<-as.numeric(CDSR.2008stg1[[i]]$tau2) 

                resultsUMFS[i,6]<-as.numeric(CDSR.2008stg1[[i]]$I2)  

        } else { 

                CDSR.2008stg1[[i]] <- NULL  }}  

 

One-stage MA for HRs 

for (i in unique(datlong.CDSR_2008$ma.num)) { 

        cat(i,"\n") 

        try.fit3<-try(glmer(cbind(event,n-event) ~ factor(treat) + factor(study) + 

(treat12-1|study), data=datlong.CDSR_2008[datlong.CDSR_2008$ma.num==i,], 

family=binomial(link="cloglog"),nAGQ=7)) 

        resultsUMFSHR[i,6]<-i 

        resultsUMFSHR[i,7]<-

unique(datlong.CDSR_2008[datlong.CDSR_2008$ma.num==i,]$medical.area) 

        if (class(try.fit3)!="try-error") { 

                CDSR.2008long[[i]]<- try.fit3 

                CDSR.2008long1.CI[[i]]<-confint.merMod(CDSR.2008long[[i]], 

method="Wald") 

                resultsUMFSHR[i,1]<-

as.numeric(exp(summary(CDSR.2008long[[i]])$coeff[2,1])) 
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                resultsUMFSHR[i,2]<-

as.numeric(summary(CDSR.2008long[[i]])$coeff[2,2]) 

                resultsUMFSHR[i,3]<-

as.numeric(summary(CDSR.2008long[[i]])$varcor) 

                resultsUMFSHR[i,4]<-exp(CDSR.2008long1.CI[[i]][3,1]) 

                resultsUMFSHR[i,5]<-exp(CDSR.2008long1.CI[[i]][3,2]) 

        } else { 

                CDSR.2008long[[i]] <- NULL   }} 
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B.3 – Clog-log link & HR derivation 

A) Information on the Complementary log-log link (clog-log) 

Singer et al.125 and Hedeker et al.128 are providing all the information including 

the assumptions and details involved when models are analysed under a logit or 

a clog-log link. Both papers are describing that another useful link function for the 

discrete-time hazards models that worth’s consideration is the clog-log function. 

While logit link provides with the logarithm of the odds of event of occurance, 

clog-log link produces the logarithm of the negative logarithm of the probability of 

event non-occurrence125. Differences between the logit and clog-log 

transformations invoke the following: 1) the logit transformation is symmetric 

mapping event probabilities from [0,1] to (−∞,∞) (i.e. without lower and upper 

bound) whereas clog-log transformation is asymmetric meaning that approaches 

zero at a slower pace than approaches 1, and does not have upper and lower 

bound. 2) When small hazards are involved (i.e. the probability of the event 

occurring is small), both transformations produce similar results whereas at 

higher values of hazard the transformation produce discordant results as shown 

in Figure 3.8. 3) Logit link has a build-in proportional odds assumption whereas 

clog-log link a build-in proportional hazards assumption, a direct analogy to 

survival analysis in which the same assumption is made. Familiar terminology for 

model specification, comfortability with results interpretation and widely available 

software for estimation of the results are important advantages of the logit 

transformation. On the other hand, specifying a model with a clog-log link invokes 

the following assumptions: a) “for each combination of predictor values, there is 

a postulated clog-log hazard function; b) each of these clog-log hazard functions 

has an identical shape; c) and the distance between each of these clog-log 

hazard functions is identical in every time period”125. 
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Figure 3.11: Replication of the figure presented on (Singer et al., 2003) paper. 

Identification of differences when comparing effects of the logit and clog-log 

transformations. 
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B) Derivation of the log Hazard Ratio and its variance using the clog-log link 

for the two-stage MA models. 

Assuming 𝑌 = 𝑐𝑙𝑜𝑔𝑙𝑜𝑔(𝑥) = log [−𝑙𝑜𝑔(1 − 𝑥)], and  

𝑉𝑎𝑟(𝑦) ≈ (
𝑑𝑦

𝑑𝑥
)
𝑥=𝐸(𝑥)

2

𝑉𝑎𝑟(𝑥) we have: 

If 𝑓(𝑥) =  𝑙𝑜𝑔 [−𝑙𝑜𝑔(1 − 𝑥)], then: 

𝑓′(𝑥) =
𝑑

𝑑𝑥
{log[− log(1 − 𝑥)]} =

1

−[log (1−𝑥)]
[− log(1 − 𝑥)]′ or 

𝑓′(𝑥) =
1

−[log (1−𝑥)]
[(−1)′log (1 − 𝑥)⏟          

0

+ (−1)log (1 − 𝑥)′] or 

𝑓′(𝑥) =
1

−[log (1−𝑥)]
+ (−1)

1

1−𝑥
(1 − 𝑥)′ or 

𝑓′(𝑥) =
1

−[log (1−𝑥)]
+ (−1)

1

1−𝑥
[(−1)′⏟  

0

− (𝑥)′] or 

𝑓′(𝑥) =
1

−[log (1−𝑥)]
+ (−1)

1

1−𝑥
(−1) or 

𝑓′(𝑥) =
1

−[log (1−𝑥)]

1

1−𝑥
 or 

𝑓′(𝑥) =
1

log(1 − 𝑥) (𝑥 − 1)
 

In our occasion: 

For the treatment arm: 𝑌1 = log [− log(1 − 𝑥1)] 

For the control arm: 𝑌0 = log [− log(1 − 𝑥0)] 

𝐸(𝑌1 − 𝑌0) = log [− log(1 − 𝑥1)] − log [− log(1 − 𝑥0)] 

𝑉𝑎𝑟(𝑌1 − 𝑌0) = 𝑉𝑎𝑟{log[− log(1 − 𝑥1)]} + 𝑉𝑎𝑟{log[− log(1 − 𝑥0)]} 

Where 𝑥1 =
𝐴

𝐴+𝐵
, and 𝑥0 =

𝐶

𝐶+𝐷
 is the proportion of events for the treatment and 

control arms obtained from the 2𝑥2 table.  
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B.4 – Calculation of 𝐼2 

Assuming we have obtained the variance of the logarithm of the HRs and ORs, 

𝑠𝑖
2, we can obtain the corresponding within-study precisions as  𝑤𝑖 =

1

𝑠𝑖
2, and the 

within-study precisions of power of 2, 𝑤𝑖
2 =

1

(𝑠𝑖
2)2

. 

Then, according to Higgins et al.172, we can obtain the within-study variances as: 

𝜎2 =
∑𝑤𝑖(𝑚 − 1)

(∑𝑤𝑖)2 − ∑𝑤𝑖
2 

where 𝑚 is the number of studies included in meta-analysis.  

From the models applied we can obtain 𝜏2, and hence the between-study 

heterogeneity using the following formula: 

𝐼2 =
𝜏2

𝜏2 + 𝜎2
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B.5 – Table containing the exact results from the two-stage meta-analysis 

models & additional forest plots considered as outliers from the Bland-

Altman plots   
 

Two-Stage Random-Effects Model 

MA 
Identifier 

OR (95% CI) vs. HR (95% CI) 
𝜏2 𝑂𝑅  

vs. 𝜏2 HR 

𝐼2 OR  

vs.  𝐼2 HR 

7 
1.036 (0.946, 1.135)  

vs. 1.019 (0.916, 1.134) 
0.001  

vs. 0.003 
3% vs. 8% 

156 
0.606 (0.451, 0.813)  

vs. 0.652 (0.484, 0.878) 
0.012  

vs.  0.038 
8% vs. 25% 

158 
0.744 (0.524, 1.058)  

vs. 0.797 (0.584, 1.086) 
0.030  

vs.  0.033 
31% vs. 

44% 

177 
0.662 (0.495, 0.886)  

vs. 0.701 (0.532, 0.926) 
0.028  

vs. 0.036 
22% vs. 

32% 

201 
0.190 (0.065, 0.555)  

vs. 0.250 (0.085, 0.730) 
0.333  

vs. 0.386 
20% vs. 

25% 

214 
0.733 (0.586, 0.916)  

vs. 0.791 (0.678, 0.924) 
0.005  

vs. 0.000 
4% vs. 0% 

246 
0.674 (0.448, 1.013)  

vs. 0.877 (0.722, 1.066) 
0.000  

vs. 0.007 
0% vs. 9% 

296 
0.262 (0.044, 1.569)  

vs. 0.382 (0.146, 1.005) 
1.146  

vs. 0.242 
45% vs. 

30% 

322 
0.537 (0.343, 0.842)  

vs. 0.694 (0.522, 0.923) 
0.010  

vs. 0.017 
6% vs. 26% 

327 
0.522 (0.275, 0.993)  

vs. 0.681 (0.469, 0.988) 
0.000  

vs. 0.081 
0% vs. 32% 

330 
0.795 (0.575, 1.098)  

vs. 0.824 (0.618, 1.098) 
0.033  

vs. 0.083 
15% vs. 

52% 

331 
0.910 (0.622, 1.331)  

vs. 0.963 (0.790, 1.174) 
0.000 

 vs. 0.013 
0% vs. 16% 

373 
1.363 (1.050, 1.770)  

vs. 1.350 (1.086, 1.678) 
0.027 

 vs. 0.012 
12% vs. 6% 

394 
0.662 (0.161, 2.726)  

vs. 0.733 (0.334, 1.608) 
1.974 

 vs. 0.515 
82% vs. 

75% 

417 
0.742 (0.344, 1.599)  

vs. 0.712 (0.390, 1.300) 
0.226 

 vs. 0.109 
21% vs. 

16% 

431 
0.501 (0.413, 0.609)  

vs. 0.569 (0.492, 0.658) 
0.116  

vs. 0.056 
70% vs. 

62% 

434 
1.193 (0.461, 3.089)  

vs. 1.135 (0.588, 2.190) 
0.150 

 vs. 0.139 
12% vs. 

31% 

448 
0.784 (0.547, 1.123)  

vs. 0.853 (0.707, 1.030) 
0.027 

 vs. 0.000 
13% vs. 0% 

506 
0.673 (0.404, 1.121)  

vs. 0.807 (0.533, 1.222) 
0.146  

vs. 0.162 
22% vs. 

38% 

507 
0.442 (0.321, 0.608)  

vs. 0.603 (0.485, 0.750) 
0.128 

 vs. 0.068 
29% vs. 

33% 

525 
0.686 (0.541, 0.870)  

vs. 0.746 (0.592, 0.940) 
0.000 

 vs. 0.012 
0% vs. 14% 

558 
1.263 (0.621, 2.565)  

vs. 0.964 (0.556, 1.670) 
0.241  

vs. 0.239 
49% vs. 

78% 
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559 
1.274 (0.482, 3.368)  

vs. 1.046 (0.665, 1.644) 
0.197 

 vs. 0.071 
26% vs. 

44% 

560 
1.429 (0.819, 2.492)  

vs. 1.278 (0.759, 2.150) 
0.000 

 vs. 0.057 
0% vs. 26% 

574 
0.835 (0.552, 1.262)  

vs. 0.778 (0.522, 1.159) 
0.080 

 vs. 0.097 
34% vs. 

46% 

580 
0.606 (0.116, 3.168)  

vs. 0.922 (0.419, 2.031) 
0.990 

 vs. 0.000 
47% vs. 0% 

621 
1.033 (0.700, 1.524)  

vs. 1.082 (0.857, 1.366) 
0.062 

 vs. 0.000 
32% vs. 0% 

647 
1.038 (0.719, 1.497)  

vs. 1.053 (0.745, 1.490) 
0.000 

 vs. 0.045 
0% vs. 36% 

711 
0.607 (0.437, 0.845)  

vs. 0.789 (0.665, 0.935) 
0.000 

 vs. 0.007 
0% vs. 19% 

Table 3.5: Characteristics of meta-analyses outside the 95% limits of agreement 

based on difference of standardised estimates and difference in  𝐼2 (Two-stage 
models).  

MA coloured in blue represent characteristics of studies outside the 95% limits of 
agreement based on difference of standardised estimates. MA coloured in red 
represent characteristics of studies outside the 95% limits of agreement based on 

difference in  𝐼2. MA coloured in black represent characteristics of studies outside the 
95% limits of agreement based on difference of standardised estimates and difference 

in  𝐼2. 
 

The meta-analysis forest plots below correspond to the meta-analyses presented 

in Table 3.5.  The meta-analyses already presented in Chapter 3 were omitted 

from the figures below.   
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C – Additional material relating to the “OEV” data meta-analyses 

analysed in Chapter 4 

C.1 – Bland-Altman plots for IPD, Non IPD and baseline risk 

 

 

Figure 4.9: IPD - Bland-Altman Plot comparing standardised OR vs. HR estimates for 

two-stage models in “OEV” data. 

 

 

Figure 4.10: IPD - Bland-Altman Plot comparing 𝐼2 estimates (OR vs. HR) for two-stage 

models in “OEV” data. 
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Figure 4.11: Non IPD - Bland-Altman Plot comparing standardised OR vs. HR 

estimates for two-stage models in “OEV” data. 

 

 

Figure 4.12: Non IPD - Bland-Altman Plot comparing 𝐼2 estimates (OR vs. HR) for two-

stage models in “OEV” data. 
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Figure 4.13: Overall Survival – Bland-Altman plot examining the association between 

the difference in the scales to baseline risk. 

 

 

Figure 4.14: Progression/Disease Free Survival – Bland-Altman plot examining the 

association between the difference in the scales to baseline risk. 
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C.2 – Model Implementation 

Two-stage MA for ORs 

for (i in unique(CDSR_2008$ma)) { 

  cat(i,"\n") 

  try.fit<- try(rma.uni(ai = treat_n, bi = nontreat_n, ci = ctrl_n, di = nonctrl_n,  

                        data = CDSR_2008[CDSR_2008$ma==i,], measure = 
"OR",method="REML", 

                        control=list(maxiter=500, verbose=TRUE, stepadj=0.5), 
verbose=TRUE)) 

  resultsREML[i,7]<-i 

  resultsREML[i,8]<-unique(CDSR_2008[CDSR_2008$ma==i,]$scode) 

  if (class(try.fit)!="try-error") { 

    CDSR.2008[[i]]<- try.fit 

    resultsREML[i,1]<-as.numeric(exp(CDSR.2008[[i]]$b)) 

    resultsREML[i,2]<-as.numeric(CDSR.2008[[i]]$se) 

    resultsREML[i,3]<-as.numeric(exp(CDSR.2008[[i]]$ci.lb)) 

    resultsREML[i,4]<-as.numeric(exp(CDSR.2008[[i]]$ci.ub)) 

    resultsREML[i,5]<-as.numeric(CDSR.2008[[i]]$tau2) 

    resultsREML[i,6]<-as.numeric(CDSR.2008[[i]]$I2)  

  } else { 

    CDSR.2008[[i]] <- NULL }} 

 

Two-stage MA for HRs 

CDSR_2008$logHR<-CDSR_2008$o_e/CDSR_2008$variance   # Log HR 
calculation 

CDSR_2008$varHR<-1/CDSR_2008$variance                              # Variance 
HR calculation 

for (i in unique(CDSR_2008$ma)) { 

  cat(i,"\n") 

  try.fit1<- try(rma.uni(yi = logHR, vi = varHR, data = 
CDSR_2008[CDSR_2008$ma==i,],  

                         method="REML",control=list(maxiter=10e9, verbose=TRUE, 
stepadj=0.2), verbose=TRUE)) 

  resultsREMLHR[i,7]<-i 

  resultsREMLHR[i,8]<-unique(CDSR_2008[CDSR_2008$ma==i,]$scode) 
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  if (class(try.fit1)!="try-error") { 

    CDSR.2008HR[[i]]<- try.fit1 

    resultsREMLHR[i,1]<-as.numeric(exp(CDSR.2008HR[[i]]$b)) 

    resultsREMLHR[i,2]<-as.numeric(CDSR.2008HR[[i]]$se) 

    resultsREMLHR[i,3]<-as.numeric(exp(CDSR.2008HR[[i]]$ci.lb)) 

    resultsREMLHR[i,4]<-as.numeric(exp(CDSR.2008HR[[i]]$ci.ub)) 

    resultsREMLHR[i,5]<-as.numeric(CDSR.2008HR[[i]]$tau2) 

    resultsREMLHR[i,6]<-as.numeric(CDSR.2008HR[[i]]$I2) 

  } else { 

    CDSR.2008HR[[i]] <- NULL }} 

 

Two-stage MA for HRs using the Clog-log link 

A) Calculation of HR clog-log and corresponding variance 

CDSR_2008$proptreat<-
CDSR_2008$treat_n/(CDSR_2008$treat_n+CDSR_2008$nontreat_n) 

CDSR_2008$propctrl<-
CDSR_2008$ctrl_n/(CDSR_2008$ctrl_n+CDSR_2008$nonctrl_n) 

CDSR_2008$logHRclog<-(log(-log(1-CDSR_2008$proptreat)))-log(-log(1-
CDSR_2008$propctrl)) 

CDSR_2008$derivTreat<-1/((log(1-
CDSR_2008$proptreat))*(CDSR_2008$proptreat-1)) 

CDSR_2008$derivCtrl<-1/((log(1-
CDSR_2008$propctrl))*(CDSR_2008$propctrl-1)) 

CDSR_2008$varTreat<-
(CDSR_2008$derivTreat^2)*((CDSR_2008$proptreat*(1-
CDSR_2008$proptreat))/CDSR_2008$treat_total) 

CDSR_2008$varCtrl<-(CDSR_2008$derivCtrl^2)*((CDSR_2008$propctrl*(1-
CDSR_2008$propctrl))/CDSR_2008$ctrl_total) 

CDSR_2008$varHRclog<-CDSR_2008$varTreat+CDSR_2008$varCtrl 

B) Model Implementation 

CDSR.2008HRclog = list() 

resREMLclogHR=data.frame(matrix(NA, max(CDSR_2008$ma), 8)) 

colnames(resREMLclogHR)<-c("estimates_HRclog","SE_HRclog", 
"LowerCI_HRclog", "UpperCI_HRclog","Tau_HRclog", "Isq_HRclog", "MA", 
"Med_Area") 

 

for (i in unique(CDSR_2008$ma)) { 
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  cat(i,"\n") 

  try.fit2<- try(rma.uni(yi = logHRclog, vi = varHRclog, data = 
CDSR_2008[CDSR_2008$ma==i,],  

                         method="REML",control=list(maxiter=10e9, verbose=TRUE, 
stepadj=0.2), verbose=TRUE)) 

  resREMLclogHR[i,7]<-i 

  resREMLclogHR[i,8]<-unique(CDSR_2008[CDSR_2008$ma==i,]$scode) 

  if (class(try.fit1)!="try-error") { 

    CDSR.2008HRclog[[i]]<- try.fit2 

    resREMLclogHR[i,1]<-as.numeric(exp(CDSR.2008HRclog[[i]]$b)) 

    resREMLclogHR[i,2]<-as.numeric(CDSR.2008HRclog[[i]]$se) 

    resREMLclogHR[i,3]<-as.numeric(exp(CDSR.2008HRclog[[i]]$ci.lb)) 

    resREMLclogHR[i,4]<-as.numeric(exp(CDSR.2008HRclog[[i]]$ci.ub)) 

    resREMLclogHR[i,5]<-as.numeric(CDSR.2008HRclog[[i]]$tau2) 

    resREMLclogHR[i,6]<-as.numeric(CDSR.2008HRclog[[i]]$I2) 

  } else { 

    CDSR.2008HRclog[[i]] <- NULL }} 

 

 

C.3 – Table containing the exact results from the two-stage meta-analysis 

models & additional forest plots considered as outliers from the Bland-

Altman plots   

 

Two-Stage Random-Effects Model – Overall Survival 

MA 

Identifier 

OR (95% CI)  

vs. HR (95% CI) 

τ2 OR 

vs. τ2 HR 

I2 OR  

vs.  I2 HR 

IPD 

(Yes/No) 

03 
1.206 (1.152, 1.263)  

vs 1.172 (1.129, 1.216) 

0.000  

vs. 0.000 
0% vs. 3% Yes 

17 
2.144 (1.347, 3.410)  

vs. 1.535 (1.311, 1.797) 

0.000  

vs. 0.002 
0% vs. 5% Yes 

21 
1.482 (1.166, 1.885)  

vs. 1.433 (1.154, 1.779) 

0.003  

vs. 0.003 

45% 

 vs. 0% 
Yes 

22 
1.464 (1.182, 1.812)  

vs. 1.382 (1.180, 1.619) 

0.003 

 vs. 0.001 

45% 

 vs. 1% 
Yes 
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29 
1.841 (1.112, 3.050) 

 vs. 1.349 (1.162, 1.567) 

0.204 

 vs.  0.011 

31%  

vs. 28% 
No 

35 
1.470 (0.663, 3.263)  

vs. 0.785 (0.533, 1.157) 

0.221  

vs.  0.224 

19%  

vs. 85% 
Yes 

42 
1.075 (0.748, 1.546)  

vs. 1.022 (0.781, 1.337) 

0.000  

vs.  0.050 

0%  

vs. 49% 
No 

71 
1.009 (0.848, 1.201) 

 vs. 0.868 (0.802, 0.939) 

0.068  

vs. 0.012 

35%  

vs. 29% 
No 

72 
0.986 (0.843, 1.153)  

vs. 0.875 (0.815, 0.939) 

0.055  

vs. 0.009 

30% 

 vs. 23% 
No 

74 
1.088 (0.837, 1.413)  

vs. 1.003 (0.818, 1.228) 

0.007 

 vs. 0.045 

5% 

 vs. 55% 
No 

79 
0.753 (0.668, 0.849)  

vs. 0.854 (0.752, 0.970) 

0.019  

vs. 0.030 

25% vs. 

36% 
Yes 

82 
0.771 (0.609, 0.977)  

vs. 0.849 (0.784, 0.919) 

0.000  

vs. 0.000 
0% vs. 0% Yes 

87 
1.110 (0.694, 1.773)  

vs. 0.982 (0.744, 1.297) 

0.061  

vs. 0.000 

36%  

vs. 0% 
No 

95 
0.857 (0.735, 1.000)  

vs. 0.895 (0.813, 0.984) 

0.000  

vs. 0.000 

0% 

 vs. 26% 
Yes 

96 
0.748 (0.627, 0.894)  

vs. 0.821 (0.821, 0.944) 

0.010  

vs. 0.023 

12% 

 vs. 58% 
Yes 

Table 4.4: Characteristics of meta-analyses outside the 95% limits of agreement 

based on difference of standardised estimates and difference in  𝐼2.  

MA coloured in blue represent characteristics of studies outside the 95% limits of 

agreement based on difference of standardised estimates. MA coloured in red 

represent characteristics of studies outside the 95% limits of agreement based on 

difference in  I2. MA coloured in black represent characteristics of studies outside the 

95% limits of agreement based on difference of standardised estimates and difference 

in  𝐼2. 
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Two-Stage Random-Effects Model – Progression/disease free survival 

MA 

Identifier 

OR (95% CI) vs. HR (95% 

CI) 

τ2 OR 

vs. τ2 HR 

I2 OR vs. 

 I2 HR 

IPD 

(Yes/No) 

45 
0.655 (0.440, 0.975)  

vs. 0.747 (0.651, 0.857) 

0.005  

vs.  0.000 
1% vs. 0% Yes 

48 
1.465 (0.548, 3.914)  

vs. 2.120 (0.809, 5.554) 

0.000  

vs.  0.000 
0% vs. 0% Yes 

51 
1.465 (1.034, 2.076)  

vs. 1.374 (0.992, 1.903) 

0.000  

vs.  0.000 
0% vs. 0% Yes 

53 
0.438 (0.301, 0.638)  

vs. 0.503 (0.371, 0.682) 

0.373  

vs.  0.267 

76% vs. 

62% 
Yes 

56 
0.810 (0.627, 1.045)  

vs. 0.842 (0.674, 1.051) 

0.036  

vs.  0.044 

23% vs. 

0% 
Yes 

60 
0.856 (0.699, 1.047)  

vs. 0.919 (0.756, 1.117) 

0.000  

vs.  0.100 

0% vs. 

85% 
No 

62 
0.865 (0.726, 1.031)  

vs. 0.923 (0.760, 1.120) 

0.000  

vs.  0.099 

0% vs. 

86% 
No 

68 
0.847 (0.478, 1.502)  

vs. 0.921 (0.592, 1.434) 

0.025  

vs.  0.120 
9% vs. 0% No 

73 
0.778 (0.602, 1.004)  

vs. 0.785 (0.707, 0.872) 

0.092  

vs.  0.033 

28% vs. 

61% 
No 

81 
0.463 (0.354, 0.605)  

vs. 0.624 (0.548, 0.711) 

0.052  

vs.  0.000 

52% vs. 

62% 
No 

83 
0.805 (0.573, 1.129)  

vs. 0.767 (0.632, 0.931) 

0.000  

vs.  0.043 

0% vs. 

70% 
Yes 

85 
0.996 (0.396, 2.510)  

vs. 0.801 (0.665, 0.964) 

0.684  

vs.  0.022 

62% vs. 

45% 
No 

90 
0.723 (0.603, 0.868)  

vs. 0.758 (0.641, 0.895) 

0.000  

vs.  0.028 

0% vs. 

39% 
Yes 

Table 4.5: Characteristics of meta-analyses outside the 95% limits of agreement 

based on difference of standardised estimates and difference in  𝐼2.  

MA coloured in blue represent characteristics of studies outside the 95% limits of 

agreement based on difference of standardised estimates. MA coloured in red 

represent characteristics of studies outside the 95% limits of agreement based on 

difference in  𝐼2. 
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The meta-analysis forest plots below correspond to the meta-analyses presented 

in Table 4.4-5.  The meta-analyses already presented in Chapter 4 were omitted 

from the figures below.   
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D –Additional material relating to the Individual Participant Data 

Meta-analysis analysed in Chapter 5 
 

D.1- Kaplan-Meier Plots for time-to-event outcomes in IPD 
 

Event Free Survival 

 

Figure 5.8: Kaplan-Meier plot for the outcome of event free survival 

Local Recurrence Free Survival 

 

Figure 5.9: Kaplan-Meier plot for the outcome of local recurrence free survival 
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Metastasis Free Survival 

  

Figure 5.10: Kaplan-Meier plot for the outcome of metastasis free survival 

 

D.2- Model Implementation 

Initially, I obtained the HR and associated standard error per trial and O-E and V 

statistics from the log-rank test. The code below is an example using the outcome 

of overall survival. Similar code was used for the outcomes of event free survival, 

metastasis free survival and local recurrence free survival. 

for (i in unique(IPD$TrialID)) { 

cat(i,"\n") 

res.O_E <- try(survdiff(Surv(Survtime_year, Surv) ~ Arm, data = 

IPD[IPD$TrialID==i,])) 

res.cox <- try(coxph(Surv(Survtime_year, Surv) ~ Arm, data = 

IPD[IPD$TrialID==i,])) 

IPDSurv[i,1]<-i 

IPDSurv[i,2]<-res.O_E[["obs"]][[1]] 

IPDSurv[i,3]<-res.O_E[["n"]][[1]] 

IPDSurv[i,4]<-res.O_E[["n"]][[1]]-res.O_E[["obs"]][[1]] 
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IPDSurv[i,5]<-res.O_E[["obs"]][[2]] 

IPDSurv[i,6]<-res.O_E[["n"]][[2]] 

IPDSurv[i,7]<-res.O_E[["n"]][[2]]-res.O_E[["obs"]][[2]] 

IPDSurv[i,8]<-res.O_E[["obs"]][[1]]-res.O_E[["exp"]][[1]]  #O-E from treatment 

only# 

IPDSurv[i,9]<-res.O_E[["var"]][[1,1]] 

IPDSurv[i,10]<-coef(summary(res.cox))[,1] 

IPDSurv[i,11]<-coef(summary(res.cox))[,3]} 

IPDSurv<-na.omit(IPDSurv) 

IPDSurv$TrialID<-ordered(IPDSurv$TrialID, levels = c(1,2,3,4,7,8,9,10,11), 

c("Spain","Australia","Nordic 1","UK","GUONE","BA06","Nordic 

2","DAVECA","SWOG")) 

IPDSurv$Outcome<-1 

 

Useful functions facilitating model implementation at later stages 

cloglogfun<-function(dat) 

{  dat$proptreat<-dat$treat_n/(dat$treat_n+dat$nontreat_n) 

  dat$propctrl<-dat$ctrl_n/(dat$ctrl_n+dat$nonctrl_n) 

  dat$logHRcloglog<-(log(-log(1-dat$proptreat)))-log(-log(1-dat$propctrl)) 

  dat$derivTreat<-1/((log(1-dat$proptreat))*(dat$proptreat-1)) 

  dat$derivCtrl<-1/((log(1-dat$propctrl))*(dat$propctrl-1)) 

  dat$varTreat<-(dat$derivTreat^2)*((dat$proptreat*(1-

dat$proptreat))/dat$treat_total) 

  dat$varCtrl<-(dat$derivCtrl^2)*((dat$propctrl*(1-dat$propctrl))/dat$ctrl_total) 

  dat$varHRcloglog<-dat$varTreat+dat$varCtrl 

  dat$logOR<-log((dat$treat_n*dat$nonctrl_n)/(dat$ctrl_n*dat$nontreat_n)) 
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  dat$varOR<-

(1/dat$treat_n)+(1/dat$nontreat_n)+(1/dat$ctrl_n)+(1/dat$nonctrl_n) 

  dat$O_ElogHR<-dat$O_E/dat$var_O_E 

  dat$O_EvarHR<-1/dat$var_O_E 

  dat$within_prec<-1/dat$varHRcloglog 

  dat$within_prec2<-(1/dat$varHRcloglog)^2 

  dat_table <- data.frame(dat) 

  dat_table} 

IPDSurv<-cloglogfun(IPDSurv) 

 

#Create data in long format in order to create dataset forms necessary for one-

stage models 

golong <- function(dat) 

{n <- c(dat$treat_n+dat$nontreat_n, dat$ctrl_n+dat$nonctrl_n) 

  event <- c(dat$treat_n, dat$ctrl_n) 

  study <- c(1:nrow(dat), 1:nrow(dat)) 

  obs <- 1:length(n) 

  treat <- c(rep(1, length(n)/2), rep(0, length(n)/2)) 

  control <- 1-treat 

  treat12 <- treat - 0.5 

  outcome.num<-c(dat$Outcome) 

dat_long <- data.frame(n, event, study, obs, treat, control, treat12, 

outcome.num) 

dat_long} 

datlong.IPDEvent <- golong(IPDEvent) 

datlong.IPDLRFS <- golong(IPDLRFS) 
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datlong.IPDMFS <- golong(IPDMFS) 

datlong.IPDSurv <- golong(IPDSurv) 

 

#Function extracting information from one-stage cox models. 

se <- function(object) 

sqrt(diag(vcov(object))) 

confint.coxme <- function(object, level = .95, digits = 9) { 

z <- qnorm(1 - (1 - level)/2) 

b <- coef(object) 

s <- se(object) 

ci.lb <- b - z * s 

ci.ub <- b + z * s 

out <- data.frame(b, ci.lb, ci.ub, s, exp(b), exp(ci.lb), exp(ci.ub)) 

out <- round(out, digits = digits) 

colnames(out) <- c("coef", "ci.lb(coef)", "ci.ub(coef)", "se(coef)", "exp(coef)", 

"ci.lb(exp(coef))", "ci.ub(exp(coef))") 

out$`Wald p` <- round(pnorm(b/s, lower.tail = F) * 2, digits + 1) 

out$CI <- paste(out$`ci.lb(exp(coef))`, " to ", out$`ci.ub(exp(coef))`, sep = "", 

collapse = NULL) out} 

 

Model Implementation 

try.fit1<- try(rma.uni(ai = treat_n, bi = nontreat_n, ci = ctrl_n, di = nonctrl_n, data 

= IPDSurv, measure = "OR",method="REML",slab=paste(TrialID), 

control=list(maxiter=500, verbose=TRUE, stepadj=0.5), verbose=TRUE)) 

try.fit2<- try(rma.uni(yi = logHRcloglog, vi = varHRcloglog, data = IPDSurv, 

slab=paste(TrialID), method="REML",control=list(maxiter=10e9, 

verbose=TRUE, stepadj=0.2), verbose=TRUE)) 
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try.fit3<- try(rma.uni(yi = O_ElogHR, vi = O_EvarHR, data = IPDSurv, 

slab=paste(TrialID), method="REML",control=list(maxiter=10e9, 

verbose=TRUE, stepadj=0.2), verbose=TRUE)) 

try.fit4<- try(rma.uni(yi = -logHR, sei = logHR_se, data = IPDSurv, 

slab=paste(TrialID), method="REML",control=list(maxiter=10e9, 

verbose=TRUE, stepadj=0.2), verbose=TRUE)) 

try.fit5<- try(rma.glmm(ai = treat_n, bi = nontreat_n, ci = ctrl_n, di = nonctrl_n, 

data = IPDSurv, measure = "OR",model="UM.FS", drop00=F,nAGQ=7)) 

try.fit6<-try(glmer(cbind(event,n-event) ~ factor(treat) + factor(study) + (treat12-

1|study), data=datlong.IPDSurv, family=binomial(link="cloglog"),nAGQ=7)) 

try.fit7<-try(coxme(Surv(Survtime_year, Surv) ~ Arm + (1+Arm |TrialID), data = 

IPD)) 

 

 



 

223 

E – Additional material relating to the Simulation Study presented in Chapter 6 

E.1-Simulation Code 
 

#Reproducibility: Set the seed at the beginning of the DGM script 

set.seed(2109990) 

# This function simulates the data 

simdata <- function(j, dgm, n=5, prob = 0.5,mean.trialsize=1000, mean.trialsize.sd=100, mean.hr=0, hr.tau=0,  

                    mean.fu=5, mean.fu.sd=1, Size=1,lambdae = 0.1,lambdac=0.05, gamma = 2) { 

  trialsize=list() 

  trialsize[[1]] <- data.frame(rep(floor(rnorm(n=n, mean=mean.trialsize, sd=mean.trialsize.sd)),1)) 

  colnames(trialsize[[1]])<-"TrialSize" 

  for (i in 1:length(trialsize[[1]][,])) { 

    trialsize[[1]]$Beta[i]<-rnorm(n=1, mean=mean.hr, sd=sqrt(hr.tau)) #0.0002 when tau changes 

    trialsize[[1]]$ExpBeta[i]<-exp(trialsize[[1]]$Beta[i]) 

    trialsize[[1]]$followUp[i]<-round(rnorm(n=1, mean=mean.fu, sd=mean.fu.sd), 1) } 

   

  # Generate a data set with ID and a binary variable treatment group indicator: 

  df=list() 

  for (i in seq_along(trialsize[[1]]$TrialSize)) { 
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    cat(i,"\n") 

    df[[i]] <- data.frame( id = 1:trialsize[[1]]$TrialSize[i], trt = rbinom(n = trialsize[[1]]$TrialSize[i], size = Size, prob = prob) ) } 

   

  # Simulate survival time & censoring time with maximum follow-up time of x years 

  s=list() 

  #c=list() #censoring 

  for (i in seq_along(df)) { 

    cat(i,"\n") 

    s[[i]] <- simsurv(dist = "weibull", lambdas = lambdae, gammas = gamma, betas = c(trt = trialsize[[1]]$Beta[i]), x = df[[i]], maxt = 

trialsize[[1]]$followUp[i]) 

    #c[[i]] <- simsurv(dist = "weibull", lambdas = lambdac, gammas = gamma, betas = c(trt = trialsize[[1]]$Beta[i]), x = df[[i]], maxt = 

trialsize[[1]]$followUp[i])    #Run this if you want to add censoring 

    #output: id=identifier, eventtime=simulated event(censoring time), status=event indicator,1=failure,0=censored} 

  # without censoring in your data 

  for (i in seq_along(df)){ 

    for (l in 1:length(df[[i]]$id)){ 

      s[[i]]$eventtime[l]<-s[[i]]$eventtime[l] 

      #s[[i]]$randcenstime[l]<-c[[i]]$eventtime[l]    

      s[[i]]$fixedcenstime[l]<-max(s[[i]]$eventtime) 
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      s[[i]]$Observed_time[l] <- s[[i]]$eventtime[l] 

      s[[i]]$case[l] <- ifelse(s[[i]]$Observed_time[l] == s[[i]]$eventtime[l], 1, 2) 

      s[[i]]$status_new[l] <- ifelse(s[[i]]$case[l] == 1, s[[i]]$status[l], 0) }} 

 

  #include censoring in your data 

  for (i in seq_along(df)){ 

    for (l in 1:length(df[[i]]$id)){ 

      s[[i]]$eventtime[l]<-s[[i]]$eventtime[l] 

      s[[i]]$randcenstime[l]<-c[[i]]$eventtime[l] 

      s[[i]]$fixedcenstime[l]<-trialsize[[1]]$followUp[i] 

      s[[i]]$Observed_time[l] <- pmin(s[[i]]$eventtime[l], s[[i]]$randcenstime[l], s[[i]]$fixedcenstime[l]) 

      s[[i]]$case[l] <- ifelse(s[[i]]$Observed_time[l] == s[[i]]$eventtime[l], 1, ifelse(s[[i]]$Observed_time[l] == s[[i]]$randcenstime[l], 2, 3)) 

      s[[i]]$status_new[l] <- ifelse(s[[i]]$case[l] == 1, s[[i]]$status[l], 0) }} 

   

  simuldata<-list() 

  for (i in seq_along(df)) { 

    simuldata[[i]] <- merge(df[[i]], s[[i]]) 

    simuldata[[i]]$TrialID<-i 
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    simuldata[[i]]$SimID<-j 

    simuldata[[i]]$dgm<-dgm} 

   

  # Merge all data in a data matrix 

  simuldata<-data.frame(do.call(rbind, simuldata)) 

   

  # Merge covariates data and survival times: 

  #We save the current seed as an attribute of each data set 

  attr(simuldata, "seed") <- .Random.seed 

  return(simuldata)} 

 

# This function fits the models using the simulated data 

simfit <- function(k, dgm,simuldata) {  

  # For each Trial apply log-rank and Cox proportional hazards model 

  IPDSim=data.frame(matrix(NA, max(simuldata$TrialID), 11)) 

  colnames(IPDSim)<-c("TrialID","treat_n", "treat_total","nontreat_n",  

                      "ctrl_n", "ctrl_total","nonctrl_n", 

                      "O_E", "var_O_E", "logHR", "logHR_se") 
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  for (i in unique(simuldata$TrialID)) { 

    cat(i,"\n") 

    res.O_E <- tryCatch(survdiff(Surv(Observed_time, status_new) ~ trt,  

                                 data = simuldata[simuldata$TrialID==i,]), error = function(e) NULL) 

    res.cox <- tryCatch(coxph(Surv(Observed_time, status_new) ~ trt,  

                              data = simuldata[simuldata$TrialID==i,]), error = function(e) NULL) 

    IPDSim[i,1]<-i 

    IPDSim[i,2]<-res.O_E[["obs"]][[2]] 

    IPDSim[i,3]<-res.O_E[["n"]][[2]] 

    IPDSim[i,4]<-res.O_E[["n"]][[2]]-res.O_E[["obs"]][[2]] 

    IPDSim[i,5]<-res.O_E[["obs"]][[1]] 

    IPDSim[i,6]<-res.O_E[["n"]][[1]] 

    IPDSim[i,7]<-res.O_E[["n"]][[1]]-res.O_E[["obs"]][[1]] 

    IPDSim[i,8]<-res.O_E[["obs"]][[2]]-res.O_E[["exp"]][[2]]  #O-E from treatment only# 

    IPDSim[i,9]<-res.O_E[["var"]][[2,2]] 

    IPDSim[i,10]<-coef(summary(res.cox))[,1] 

    IPDSim[i,11]<-coef(summary(res.cox))[,3] 

 } 
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  # #Identify rare events and apply continuity correction  

  IPDSim$rare<-ifelse(IPDSim$treat_n<1, 1, 

                      ifelse(IPDSim$ctrl_n<1, 1, 

                             ifelse(IPDSim$nontreat_n<1, 1, 

                                    ifelse(IPDSim$nonctrl_n<1, 1,0)))) 

  table(IPDSim$rare) 

   

   #CC adding the reciprocal of the opposite treatment arm size to those with rare events 

  IPDSim$result<-ifelse(IPDSim$rare==1,IPDSim$treat_total/IPDSim$ctrl_total,0) 

  IPDSim$armtreat<-1/IPDSim$treat_total 

  IPDSim$armctrl<-1/IPDSim$ctrl_total 

  IPDSim$TCC<-ifelse(IPDSim$result!=0, 1/(IPDSim$result+1),0) 

  IPDSim$CCC<-ifelse(IPDSim$result!=0, IPDSim$result/(IPDSim$result+1),0) 

  IPDSim$treat_n<-ifelse(IPDSim$result!=0, IPDSim$TCC+IPDSim$treat_n, IPDSim$treat_n) 

  IPDSim$ctrl_n<-ifelse(IPDSim$result!=0, IPDSim$CCC+IPDSim$ctrl_n, IPDSim$ctrl_n) 

  IPDSim$nontreat_n<-ifelse(IPDSim$result!=0, IPDSim$TCC+IPDSim$nontreat_n, IPDSim$nontreat_n) 

  IPDSim$nonctrl_n<-ifelse(IPDSim$result!=0,IPDSim$CCC+IPDSim$nonctrl_n, IPDSim$nonctrl_n) 
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# Calculation facilitating implementation of a cloglog model 

  cloglogfun<-function(dat) 

  {dat$proptreat<-dat$treat_n/(dat$treat_n+dat$nontreat_n) 

    dat$propctrl<-dat$ctrl_n/(dat$ctrl_n+dat$nonctrl_n) 

    dat$logHRcloglog<-(log(-log(1-dat$proptreat)))-log(-log(1-dat$propctrl)) 

    dat$derivTreat<-1/((log(1-dat$proptreat))*(dat$proptreat-1)) 

    dat$derivCtrl<-1/((log(1-dat$propctrl))*(dat$propctrl-1)) 

    dat$varTreat<-(dat$derivTreat^2)*((dat$proptreat*(1-dat$proptreat))/dat$treat_total) 

    dat$varCtrl<-(dat$derivCtrl^2)*((dat$propctrl*(1-dat$propctrl))/dat$ctrl_total) 

    dat$varHRcloglog<-dat$varTreat+dat$varCtrl 

    dat$logOR<-log((dat$treat_n*dat$nonctrl_n)/(dat$ctrl_n*dat$nontreat_n)) 

    dat$varOR<-(1/dat$treat_n)+(1/dat$nontreat_n)+(1/dat$ctrl_n)+(1/dat$nonctrl_n) 

    dat$O_ElogHR<-dat$O_E/dat$var_O_E 

    dat$O_EvarHR<-1/dat$var_O_E 

    dat$within_prec<-1/dat$varHRcloglog 

    dat$within_prec2<-(1/dat$varHRcloglog)^2 

    dat_table <- data.frame(dat) 

    dat_table} 
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  IPDSim<-cloglogfun(IPDSim) 

  # Run two-stage MA models and compare.  

  IPDsimRes=data.frame(matrix(NA, 4, 6)) 

  colnames(IPDsimRes)<-c("logestimates","SE", "LowerCI", "UpperCI","Tau", "Isq") 

  try.fit1<- tryCatch(rma.uni(ai = treat_n, bi = nontreat_n, ci = ctrl_n, di = nonctrl_n,  

                              data = IPDSim, measure = "OR",method="REML", slab=paste(TrialID), 

                              control=list(maxiter=500, verbose=TRUE, stepadj=0.5), verbose=TRUE), error = function(e) NULL) 

  try.fit2<- tryCatch(rma.uni(yi = logHRcloglog, vi = varHRcloglog, data = IPDSim, slab=paste(TrialID), 

                              method="REML",control=list(maxiter=10e9, verbose=TRUE, stepadj=0.2), verbose=TRUE), error = function(e) NULL) 

  try.fit3<- tryCatch(rma.uni(yi = O_ElogHR, vi = O_EvarHR, data = IPDSim, slab=paste(TrialID), 

                              method="REML",control=list(maxiter=10e9, verbose=TRUE, stepadj=0.2), verbose=TRUE), error = function(e) NULL) 

  try.fit4<- tryCatch(rma.uni(yi = logHR, sei = logHR_se, data = IPDSim, slab=paste(TrialID), 

                              method="REML",control=list(maxiter=10e9, verbose=TRUE, stepadj=0.2), verbose=TRUE), error = function(e) NULL) 

  try.fit<-list(try.fit1,try.fit2,try.fit3,try.fit4) 

  #Extract results from models 

  for (i in 1:4) { 

    cat(i,"\n") 

    if(!is.null(try.fit[i])) {  
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      IPDsimRes[i,1]<-as.numeric(try.fit[[i]][["b"]]) 

      IPDsimRes[i,2]<-as.numeric(try.fit[[i]][["se"]]) 

      IPDsimRes[i,3]<-as.numeric(try.fit[[i]][["ci.lb"]]) 

      IPDsimRes[i,4]<-as.numeric(try.fit[[i]][["ci.ub"]]) 

      IPDsimRes[i,5]<-as.numeric(try.fit[[i]][["tau2"]])     

      IPDsimRes[i,6]<-as.numeric(try.fit[[i]][["I2"]])  

    } else { 

      IPDsimRes[i,1]<-NA 

      IPDsimRes[i,2]<-NA 

      IPDsimRes[i,3]<-NA 

      IPDsimRes[i,4]<-NA 

      IPDsimRes[i,5]<-NA   

      IPDsimRes[i,6]<-NA 

    } 

  } 

  remove(try.fit1, try.fit2, try.fit3, try.fit4) 

  #Indicate the model applied 

  modelfun<-function(dat) 
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  { dat$Model<-c("OR REML (2-stage)","HR cloglog (2-stage)","HR O-E & V (2-stage)", 

                 "HR CoxPH (2-stage)") 

    dat_table <- data.frame(dat) 

    dat_table } 

  IPDsimRes<-modelfun(IPDsimRes) 

  out <- data.frame( k = k, dgm = dgm, 

                     IPDsimRes = IPDsimRes)  

  return(out) } 

#Run Simulation 1000 times 

B <- 1000 

dgm<-1:1  

set.seed(2109990) 

datares<-foreach (k = 1:B, .combine=rbind, .packages= "foreach") %do%  

{      

simdata(j=k, dgm = 1)} 

results <- foreach (k = 1:B, .combine=rbind, .packages= "foreach") %do% { 

  simfit(k = k, dgm=1, simuldata=datares[datares$SimID==k,]) 

} 
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E.2- Information obtained from the literature facilitating the decision of simulation scenarios and exact tables containing the 

results from the simulation scenarios 

 

Source 

No. of 

studies 

per MA 

Study 

Sample 

Size 

Follow-up 
Censoring 

Rate 
𝝉𝟐 𝑰𝟐 Log HR 

Survival 

times/other 

MRC CTU  

18 IPD MA* 
5-19 491-8447 

<1 month-

(approx. 10 y) 
- - 40%-70% (-0.43,-0.19) - 

Bowden et 

al.159 

4,8,10, 

16,25 
50, 100, 150 - 10% 0.1 42%-69% (0, 0.4, 0.8) Exponential 

Simmonds et 

al.21 
- 100-1000 5 or 10 years 0%-20% - - (0-1) Weibull 

Hirooka et 

al.109 
- 

100, 300  

per group 
5 years 0%, 30% - - 

1, 0.9, 0.8, 

0.7, 0.6 

Exponential/ 

Surv rate: 20%, 

50%, 80% 

Katsahian et 

al.108  

3,5,10, 

20,30 

240, 600, 

2400 
- - 0, 0.15, 0.6 - 0, -0.223 

30 studies only for 

2400 participants 

Tudur-Smith et 

al.107 
5 

100 per 

group 
- - 

0, 0.01, 

0.03, 0.07, 

0.1 

14%, 25%, 

43%, 62%, 

70% 

0, 0.1, 0.5, 

0.9 
Exponential 
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IPD MA 

(Chapter 5) 
9 96-976 1-5 years 15%-51% 0-0.017 0%-37% 

-0.147, -

0.052 

Overall survival 

outcome 

“OEV” data 

(Chapter 3) 

3, 6, 10, 

14, 32 

72, 116, 

160, 279, 

739, 985 

- - 
0, 0, 0.01, 

0.04, 0.13 

0%, 0%, 

21%, 46%, 

75% 

0.68, 0.82, 

0.93, 1.03, 

1.35 

- 

*Based on Bowden et al.159 paper & research papers from the literature review chapter. 

Table 6.3: Information obtained from the literature facilitating the decision of parameters for the simulation scenarios. 

 

 

Run 
Participants 

per trial 
(Mean, SD) 

Log 
HR 
(M) 

𝜏2 
Follow-
up (M, 

sd) 

𝛾𝑒
= 𝛾𝑐 

𝜆𝑒 𝜆𝑐 p(E>FU) p(C>FU) 
P(min(E, 
C) > FU)  

P(min(E, 
C) < FU)  

P(E 
<C < 
FU)  

P(C < 
E < 
FU)  

5 trial per MA 

Scenario 0* (1000, 100) 0 0 (5, 1) 2 0.1 0 0.08 1.00 0.08 0.92 0.92 0.00 

Base Case** (400, 40) -0.3 0.05 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

Short F-up (400, 40) -0.3 0.05 (1, 0.2) 2 0.1 0 0.90 1.00 0.90 0.10 0.10 0.00 

Long F-up (400, 40) -0.3 0.05 (5, 1) 2 0.1 0.07 0.08 0.17 0.01 0.99 0.58 0.41 

Large 
heterogeneity 

(400, 40) -0.3 0.1 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

Small 
heterogeneity 

(400, 40) -0.3 0.001 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 
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Large effect 
size 

(400, 40) -0.8 0.05 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

No effect size (400, 40) 0 0.05 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

Small sample 
size 

(100, 15) -0.3 0.05 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

Large sample 
size 

(1000, 100) -0.3 0.05 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

Small 
P(Event) 

(400, 40) -0.3 0.05 (3, 0.3) 2 0.05 0.04 0.64 0.70 0.44 0.56 0.31 0.25 

Large % 
R_cens+Small 
P(Event)  

(400, 40) -0.3 0.05 (5, 1) 2 0.05 0.04 0.29 0.37 0.11 0.89 0.50 0.40 

80% Power (400, 40) -0.3 0.027 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

Long Follow-
up+0% 
R_cens 

(400, 40) -0.3 0.05 (5, 1) 2 0.05 0 0.29 1.00 0.29 0.71 0.71 0.00 

20 trial per MA 

Scenario 0* (1000, 100) 0 0 (5, 1) 2 0.1 0 0.08 1.00 0.08 0.92 0.92 0.00 

Base Case** (400, 40) -0.3 0.05 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

Short F-up (400, 40) -0.3 0.05 (1, 0.2) 2 0.1 0 0.90 1.00 0.90 0.10 0.10 0.00 

Long F-up (400, 40) -0.3 0.05 (5, 1) 2 0.1 0.07 0.08 0.17 0.01 0.99 0.58 0.41 

Large 
heterogeneity 

(400, 40) -0.3 0.1 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 



 

236 

Small 
heterogeneity 

(400, 40) -0.3 0.001 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

Large effect 
size 

(400, 40) -0.8 0.05 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

No effect size (400, 40) 0 0.05 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

Small sample 
size 

(100, 15) -0.3 0.05 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

Large sample 
size 

(1000, 100) -0.3 0.05 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

Small 
P(Event) 

(400, 40) -0.3 0.05 (3, 0.3) 2 0.05 0.04 0.64 0.70 0.44 0.56 0.31 0.25 

Large % 
R_cens+Small 
P(Event)  

(400, 40) -0.3 0.05 (5, 1) 2 0.05 0.04 0.29 0.37 0.11 0.89 0.50 0.40 

80% Power (400, 40) -0.3 0.2 (3, 0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 0.49 0.25 

Long Follow-
up+0% 
R_cens 

(400, 40) -0.3 0.05 (5, 1) 2 0.05 0 0.29 1.00 0.29 0.71 0.71 0.00 

Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size, medium 

heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event) 
 
Table 6.4: Presentation of simulation scenarios and event, censoring probabilities for the different simulation scenarios applied.  
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Simulation Scenarios Methods 

Run 

No. of 

participants 

per trial 

(Mean, SD) 

Mean 

Log HR 
𝜏 

Follow-up time 

(Mean, SD) 

Two-stage 

Cox PH 

Model (HR) 

Two-stage  

(“O-E” & V) 

(HR) 

Two-stage  

clog-log 

(HR) 

Two-stage  

Logit link 

(OR) 

5 trials per MA         

Scenario 0* (1000, 100) 0 0 (5, 1) -0.0006 -0.0006 -0.0003 -0.0005 

Base Case** (400, 40) -0.3 0.05 (3, 0.3) 0.0072 0.005 0.0822 0.01 

Short F-up (400, 40) -0.3 0.05 (1, 0.2) 0.0096 0.0081 0.0092 -0.0062 

Long F-up (400, 40) -0.3 0.05 (5, 1) 0.0043 -0.0026 0.2321 0.2009 

Large heterogeneity (400, 40) -0.3 0.1 (3, 0.3) 0.0085 0.0062 0.0764 0.0058 

Small heterogeneity (400, 40) -0.3 0.001 (3, 0.3) 0.0025 0.0009 0.0855 0.0124 

Large effect size (400, 40) -0.8 0.05 (3, 0.3) 0.0082 0.0012 0.1739 0.0017 

No effect size (400, 40) 0 0.05 (3, 0.3) 0.006 0.0063 -0.006 -0.007 

Small sample size (100, 15) -0.3 0.05 (3, 0.3) 0.0057 0.0013 0.0807 0.0048 

Large sample size (1000, 100) -0.3 0.05 (3, 0.3) 0.0048 0.0031 0.0795 0.0088 

Small P(Event) (400, 40) -0.3 0.05 (3, 0.3) 0.0094 0.0092 0.0599 0.0181 

Large % R_cens+Small 

P(Event)  
(400, 40) -0.3 0.05 (5, 1) 0.005 0.0004 0.1566 0.1077 
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Long Follow-up+0% 

R_cens 
(400, 40) -0.3 0.05 (5, 1) 0.0048 0.0028 0.0027 -0.187 

80% Power (400, 40) -0.3 0.027 (3, 0.3) 0.0061 0.0041 0.0844 0.0117 

20 trials per MA         

Scenario 0* (1000, 100) 0 0 (5, 1) -0.0006 -0.0006 -0.0006 -0.0019 

Base Case** (400, 40) -0.3 0.05 (3, 0.3) 0.006 0.0036 0.0818 0.0082 

Short F-up (400, 40) -0.3 0.05 (1, 0.2) 0.0242 0.0176 0.0235 0.0079 

Long F-up (400, 40) -0.3 0.05 (5, 1) 0.0027 -0.004 0.2327 0.2002 

Large heterogeneity (400, 40) -0.3 0.1 (3, 0.3) 0.0075 0.0049 0.0763 0.0044 

Small heterogeneity (400, 40) -0.3 0.001 (3, 0.3) 0.0006 -0.0012 0.0838 0.0095 

Large effect size (400, 40) -0.8 0.05 (3, 0.3) 0.0093 0.0013 0.1758 0.0025 

No effect size (400, 40) 0 0.05 (3, 0.3) 0.0048 0.0049 -0.0057 -0.0078 

Small sample size (100, 15) -0.3 0.05 (3, 0.3) 0.0123 0.0067 0.0845 0.0065 

Large sample size (1000, 100) -0.3 0.05 (3, 0.3) 0.0037 0.0018 0.0793 0.0079 

Small P(Event) (400, 40) -0.3 0.05 (3, 0.3) 0.0117 0.0107 0.0634 0.0209 

Large % R_cens+Small 

P(Event)  
(400, 40) -0.3 0.05 (5, 1) 0.0042 -0.0005 0.1586 0.1086 

Long Follow-up+0% 

R_cens 
(400, 40) -0.3 0.05 (5, 1) 0.0042 0.002 0.0019 -0.1901 

80% Power (400, 40) -0.3 0.2 (3, 0.3) 0.0092 0.0075 0.064 -0.0048 
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Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size, 

medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event) 

Table 6.5: Bias observed per simulation scenario across different meta-analysis models. 

 

 

Simulation Scenarios Methods 

Run 

No. of 

participants 

per trial 

(Mean, SD) 

Mean 

Log HR 
𝜏 

Follow-up time 

(Mean, SD) 

Two-stage 

Cox PH 

Model (HR) 

Two-stage  

(“O-E” & V) 

(HR) 

Two-stage  

clog-log 

(HR) 

Two-stage  

Logit link 

(OR) 

5 trials per MA         

Scenario 0* (1000, 100) 0 0 (5, 1) 10% 10% 9% 10% 

Base Case** (400, 40) -0.3 0.05 (3, 0.3) -4% -4% -2% -2% 

Short F-up (400, 40) -0.3 0.05 (1, 0.2) 6% 4% 6% 6% 

Long F-up (400, 40) -0.3 0.05 (5, 1) -3% -3% 9% 9% 

Large heterogeneity (400, 40) -0.3 0.1 (3, 0.3) -3% -3% -3% -2% 

Small heterogeneity (400, 40) -0.3 0.001 (3, 0.3) 7% 6% 9% 10% 

Large effect size (400, 40) -0.8 0.05 (3, 0.3) -3% -3% -1% -1% 

No effect size (400, 40) 0 0.05 (3, 0.3) -3% -3% 0% 0% 
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Small sample size (100, 15) -0.3 0.05 (3, 0.3) 0% -1% 4% 5% 

Large sample size (1000, 100) -0.3 0.05 (3, 0.3) 0% 0% 1% 1% 

Small P(Event) (400, 40) -0.3 0.05 (3, 0.3) -1% -1% 0% 0% 

Large % R_cens+Small 

P(Event)  
(400, 40) -0.3 0.05 (5, 1) -2% -2% 4% 4% 

Long Follow-up+0% 

R_cens 
(400, 40) -0.3 0.05 (5, 1) -1% -1% -1% 1% 

80% Power (400, 40) -0.3 0.027 (3, 0.3) -3% -3% 0% 0% 

20 trials per MA         

Scenario 0* (1000, 100) 0 0 (5, 1) 8% 8% 7% 7% 

Base Case** (400, 40) -0.3 0.05 (3, 0.3) -1% -1% -2% -2% 

Short F-up (400, 40) -0.3 0.05 (1, 0.2) 2% 2% 2% 2% 

Long F-up (400, 40) -0.3 0.05 (5, 1) 0% 0% 1% 1% 

Large heterogeneity (400, 40) -0.3 0.1 (3, 0.3) 0% 0% -2% -1% 

Small heterogeneity (400, 40) -0.3 0.001 (3, 0.3) 5% 5% 5% 5% 

Large effect size (400, 40) -0.8 0.05 (3, 0.3) -1% -1% -3% -3% 

No effect size (400, 40) 0 0.05 (3, 0.3) 0% 0% -1% -1% 

Small sample size (100, 15) -0.3 0.05 (3, 0.3) 1% 0% 1% 1% 

Large sample size (1000, 100) -0.3 0.05 (3, 0.3) -1% -1% -1% -1% 

Small P(Event) (400, 40) -0.3 0.05 (3, 0.3) 0% 0% -1% -1% 
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Large % R_cens+Small 

P(Event)  
(400, 40) -0.3 0.05 (5, 1) -1% -1% -5% 0% 

Long Follow-up+0% 

R_cens 
(400, 40) -0.3 0.05 (5, 1) 2% 2% 3% 4% 

80% Power (400, 40) -0.3 0.2 (3, 0.3) 0% 0% -1% -1% 

Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size, 

medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event) 

Table 6.6: Percent difference between the modelled and empirical standard errors per simulation scenario across different meta-

analysis models 

 

 

Simulation Scenarios Methods 

Run 

No. of 

participants 

per trial 

(Mean, SD) 

Mean 

Log HR 
𝜏 

Follow-up time 

(Mean, SD) 

Two-stage 

Cox PH 

Model (HR) 

Two-stage  

(“O-E” & V) 

(HR) 

Two-stage  

clog-log 

(HR) 

Two-stage  

Logit link 

(OR) 

5 trials per MA         

Scenario 0* (1000, 100) 0 0 (5, 1) 0% 0% -44% -91% 

Base Case** (400, 40) -0.3 0.05 (3, 0.3) 0% -2% 38% -20% 
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Short F-up (400, 40) -0.3 0.05 (1, 0.2) 0% 2% 0% -9% 

Long F-up (400, 40) -0.3 0.05 (5, 1) 0% -7% 182% 35% 

Large heterogeneity (400, 40) -0.3 0.1 (3, 0.3) 0% -2% 51% -11% 

Small heterogeneity (400, 40) -0.3 0.001 (3, 0.3) 0% -2% 2% -42% 

Large effect size (400, 40) -0.8 0.05 (3, 0.3) 0% -1% 17% -21% 

No effect size (400, 40) 0 0.05 (3, 0.3) 0% -2% 64% -13% 

Small sample size (100, 15) -0.3 0.05 (3, 0.3) 0% -3% 18% -33% 

Large sample size (1000, 100) -0.3 0.05 (3, 0.3) 0% -2% 53% -9% 

Small P(Event) (400, 40) -0.3 0.05 (3, 0.3) 0% 1% 20% -11% 

Large % R_cens+Small 

P(Event)  
(400, 40) -0.3 0.05 (5, 1) 0% -4% 90% 9% 

Long Follow-up+0% 

R_cens 
(400, 40) -0.3 0.05 (5, 1) 0% -2% -4% -64% 

80% Power (400, 40) -0.3 0.027 (3, 0.3) 0% -2% 28% -27% 

20 trials per MA         

Scenario 0* (1000, 100) 0 0 (5, 1) 0% 0% -44% -90% 

Base Case** (400, 40) -0.3 0.05 (3, 0.3) 0% -2% 33% -22% 

Short F-up (400, 40) -0.3 0.05 (1, 0.2) 0% 0% 0% -10% 

Long F-up (400, 40) -0.3 0.05 (5, 1) 0% -7% 151% 18% 

Large heterogeneity (400, 40) -0.3 0.1 (3, 0.3) 0% -2% 48% -13% 
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Small heterogeneity (400, 40) -0.3 0.001 (3, 0.3) 0% -2% -5% -46% 

Large effect size (400, 40) -0.8 0.05 (3, 0.3) 0% 0% 12% -24% 

No effect size (400, 40) 0 0.05 (3, 0.3) 0% -2% 57% -17% 

Small sample size (100, 15) -0.3 0.05 (3, 0.3) 0% -4% 13% -37% 

Large sample size (1000, 100) -0.3 0.05 (3, 0.3) 0% -2% 50% -11% 

Small P(Event) (400, 40) -0.3 0.05 (3, 0.3) 0% 0% 18% 13% 

Large % R_cens+Small 

P(Event)  
(400, 40) -0.3 0.05 (5, 1) 0% -5% 71% -2% 

Long Follow-up+0% 

R_cens 
(400, 40) -0.3 0.05 (5, 1) 0% -2% -2% -62% 

80% Power (400, 40) -0.3 0.2 (3, 0.3) 0% -2% 61% -3% 

Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size, 

medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event) 

Table 6.7: Relative (%) increase (or decrease) in precision per simulation scenario across different meta-analysis models.  
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Simulation Scenarios Methods 

Run 

No. of 

participants 

per trial 

(Mean, SD) 

Mean 

Log HR 
𝜏 

Follow-up time 

(Mean, SD) 

Two-stage 

Cox PH 

Model (HR) 

Two-stage  

(“O-E” & V) 

(HR) 

Two-stage  

clog-log 

(HR) 

Two-stage  

Logit link 

(OR) 

5 trials per MA         

Scenario 0* (1000, 100) 0 0 (5, 1) 0.001 0.001 0.0017 0.0112 

Base Case** (400, 40) -0.3 0.05 (3, 0.3) 0.0161 0.0163 0.0184 0.0201 

Short F-up (400, 40) -0.3 0.05 (1, 0.2) 0.0351 0.0344 0.0352 0.0386 

Long F-up (400, 40) -0.3 0.05 (5, 1) 0.0148 0.0159 0.0591 0.0514 

Large heterogeneity (400, 40) -0.3 0.1 (3, 0.3) 0.0264 0.0269 0.0233 0.0296 

Small heterogeneity (400, 40) -0.3 0.001 (3, 0.3) 0.0052 0.0052 0.0124 0.0091 

Large effect size (400, 40) -0.8 0.05 (3, 0.3) 0.017 0.017 0.0447 0.0215 

No effect size (400, 40) 0 0.05 (3, 0.3) 0.0154 0.0157 0.0094 0.0178 

Small sample size (100, 15) -0.3 0.05 (3, 0.3) 0.031 0.0319 0.0328 0.0465 

Large sample size (1000, 100) -0.3 0.05 (3, 0.3) 0.0119 0.0121 0.0141 0.0133 

Small P(Event) (400, 40) -0.3 0.05 (3, 0.3) 0.0184 0.0182 0.0188 0.021 

Large % R_cens+Small 

P(Event)  
(400, 40) -0.3 0.05 (5, 1) 0.0155 0.0162 0.0326 0.0257 
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Long Follow-up+0% 

R_cens 
(400, 40) -0.3 0.05 (5, 1) 0.0138 0.0140 0.0143 0.0734 

80% Power (400, 40) -0.3 0.027 (3, 0.3) 0.0111 0.0113 0.0158 0.0152 

20 trials per MA         

Scenario 0* (1000, 100) 0 0 (5, 1) 0.0002 0.0002 0.0004 0.0022 

Base Case** (400, 40) -0.3 0.05 (3, 0.3) 0.0037 0.0037 0.0094 0.0047 

Short F-up (400, 40) -0.3 0.05 (1, 0.2) 0.0088 0.0086 0.0089 0.0092 

Long F-up (400, 40) -0.3 0.05 (5, 1) 0.0034 0.0037 0.0555 0.043 

Large heterogeneity (400, 40) -0.3 0.1 (3, 0.3) 0.0061 0.0062 0.01 0.007 

Small heterogeneity (400, 40) -0.3 0.001 (3, 0.3) 0.0012 0.0012 0.0082 0.0022 

Large effect size (400, 40) -0.8 0.05 (3, 0.3) 0.004 0.0039 0.0344 0.0052 

No effect size (400, 40) 0 0.05 (3, 0.3) 0.0035 0.0036 0.0023 0.0043 

Small sample size (100, 15) -0.3 0.05 (3, 0.3) 0.0072 0.0074 0.0134 0.0112 

Large sample size (1000, 100) -0.3 0.05 (3, 0.3) 0.003 0.003 0.0083 0.0034 

Small P(Event) (400, 40) -0.3 0.05 (3, 0.3) 0.0043 0.0043 0.0076 0.0053 

Large % R_cens+Small 

P(Event)  
(400, 40) -0.3 0.05 (5, 1) 0.0037 0.0039 0.0273 0.0156 

Long Follow-up+0% 

R_cens 
(400, 40) -0.3 0.05 (5, 1) 0.0032 0.0033 0.0033 0.0448 

80% Power (400, 40) -0.3 0.2 (3, 0.3) 0.0111 0.0113 0.0109 0.0114 
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Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size, 

medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event) 

Table 6.8: Mean squared error obtained per simulation scenario across different meta-analysis models.  

 

 

Simulation Scenarios Methods 

Run 

No. of 

participants 

per trial 

(Mean, SD) 

Mean 

Log HR 
𝜏 

Follow-up time 

(Mean, SD) 

Two-stage 

Cox PH 

Model (HR) 

Two-stage  

(“O-E” & V) 

(HR) 

Two-stage  

clog-log 

(HR) 

Two-stage  

Logit link 

(OR) 

5 trials per MA         

Scenario 0* (1000, 100) 0 0 (5, 1) 96% 96% 95% 96% 

Base Case** (400, 40) -0.3 0.05 (3, 0.3) 88% 88% 82% 89% 

Short F-up (400, 40) -0.3 0.05 (1, 0.2) 95% 94% 94% 95% 

Long F-up (400, 40) -0.3 0.05 (5, 1) 89% 88% 16% 54% 

Large heterogeneity (400, 40) -0.3 0.1 (3, 0.3) 87% 87% 82% 87% 

Small heterogeneity (400, 40) -0.3 0.001 (3, 0.3) 95% 94% 81% 94% 

Large effect size (400, 40) -0.8 0.05 (3, 0.3) 89% 60% 88% 90% 

No effect size (400, 40) 0 0.05 (3, 0.3) 88% 88% 91% 91% 
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Small sample size (100, 15) -0.3 0.05 (3, 0.3) 92% 91% 91% 93% 

Large sample size (1000, 100) -0.3 0.05 (3, 0.3) 88% 88% 77% 88% 

Small P(Event) (400, 40) -0.3 0.05 (3, 0.3) 90% 90% 88% 92% 

Large % R_cens+Small 

P(Event)  
(400, 40) -0.3 0.05 (5, 1) 89% 89% 53% 79% 

Long Follow-up+0% 

R_cens 
(400, 40) -0.3 0.05 (5, 1) 87% 87% 88% 77% 

80% Power (400, 40) -0.3 0.027 (3, 0.3) 89% 89% 80% 91% 

20 trials per MA         

Scenario 0* (1000, 100) 0 0 (5, 1) 97% 97% 96% 96% 

Base Case** (400, 40) -0.3 0.05 (3, 0.3) 92% 93% 61% 94% 

Short F-up (400, 40) -0.3 0.05 (1, 0.2) 93% 93% 93% 94% 

Long F-up (400, 40) -0.3 0.05 (5, 1) 93% 93% 0% 6% 

Large heterogeneity (400, 40) -0.3 0.1 (3, 0.3) 93% 93% 73% 93% 

Small heterogeneity (400, 40) -0.3 0.001 (3, 0.3) 96% 96% 35% 95% 

Large effect size (400, 40) -0.8 0.05 (3, 0.3) 92% 93% 15% 94% 

No effect size (400, 40) 0 0.05 (3, 0.3) 93% 93% 93% 93% 

Small sample size (100, 15) -0.3 0.05 (3, 0.3) 95% 95% 78% 95% 

Large sample size (1000, 100) -0.3 0.05 (3, 0.3) 93% 93% 54% 93% 

Small P(Event) (400, 40) -0.3 0.05 (3, 0.3) 94% 94% 79% 94% 
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Large % R_cens+Small 

P(Event)  
(400, 40) -0.3 0.05 (5, 1) 93% 94% 9% 53% 

Long Follow-up+0% 

R_cens 
(400, 40) -0.3 0.05 (5, 1) 93% 94% 94% 48% 

80% Power (400, 40) -0.3 0.2 (3, 0.3) 94% 94% 84% 93% 

Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size, 

medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event) 

Table 6.9: Coverage obtained per simulation scenario across different meta-analysis models.  

 

 

 

Simulation Scenarios Methods 

Run 

No. of 

participants 

per trial 

(Mean, SD) 

Mean 

Log HR 
𝜏 

Follow-up time 

(Mean, SD) 

Two-stage 

Cox PH 

Model (HR) 

Two-stage  

(“O-E” & V) 

(HR) 

Two-stage  

clog-log 

(HR) 

Two-stage  

Logit link 

(OR) 

5 trials per MA         

Scenario 0* (1000, 100) 0 0 (5, 1) 5% 5% 5% 4% 
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Base Case** (400, 40) -0.3 0.05 (3, 0.3) 68% 68% 58% 58% 

Short F-up (400, 40) -0.3 0.05 (1, 0.2) 34% 36% 33% 34% 

Long F-up (400, 40) -0.3 0.05 (5, 1) 70% 70% 13% 14% 

Large heterogeneity (400, 40) -0.3 0.1 (3, 0.3) 51% 51% 47% 48% 

Small heterogeneity (400, 40) -0.3 0.001 (3, 0.3) 97% 97% 80% 81% 

Large effect size (400, 40) -0.8 0.05 (3, 0.3) 100% 100% 100% 100% 

No effect size (400, 40) 0 0.05 (3, 0.3) 12% 12% 9% 10% 

Small sample size (100, 15) -0.3 0.05 (3, 0.3) 43% 43% 28% 29% 

Large sample size (1000, 100) -0.3 0.05 (3, 0.3) 76% 76% 71% 72% 

Small P(Event) (400, 40) -0.3 0.05 (3, 0.3) 62% 62% 52% 53% 

Large % R_cens+Small 

P(Event)  
(400, 40) -0.3 0.05 (5, 1) 69% 69% 36% 37% 

Long Follow-up+0% 

R_cens 
(400, 40) -0.3 0.05 (5, 1) 72% 73% 72% 72% 

80% Power (400, 40) -0.3 0.027 (3, 0.3) 80% 80% 66% 67% 

20 trials per MA         

Scenario 0* (1000, 100) 0 0 (5, 1) 3% 3% 4% 4% 

Base Case** (400, 40) -0.3 0.05 (3, 0.3) 100% 100% 99% 99% 

Short F-up (400, 40) -0.3 0.05 (1, 0.2) 86% 87% 87% 87% 

Long F-up (400, 40) -0.3 0.05 (5, 1) 100% 100% 46% 48% 
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Large heterogeneity (400, 40) -0.3 0.1 (3, 0.3) 96% 96% 95% 95% 

Small heterogeneity (400, 40) -0.3 0.001 (3, 0.3) 100% 100% 100% 100% 

Large effect size (400, 40) -0.8 0.05 (3, 0.3) 100% 100% 100% 100% 

No effect size (400, 40) 0 0.05 (3, 0.3) 7% 7% 7% 8% 

Small sample size (100, 15) -0.3 0.05 (3, 0.3) 93% 93% 76% 77% 

Large sample size (1000, 100) -0.3 0.05 (3, 0.3) 100% 100% 100% 100% 

Small P(Event) (400, 40) -0.3 0.05 (3, 0.3) 99% 99% 97% 97% 

Large % R_cens+Small 

P(Event)  
(400, 40) -0.3 0.05 (5, 1) 100% 100% 88% 88% 

Long Follow-up+0% 

R_cens 
(400, 40) -0.3 0.05 (5, 1) 100% 100% 100% 100% 

80% Power (400, 40) -0.3 0.2 (3, 0.3) 80% 80% 84% 83% 

Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size, 

medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event) 

Table 6.10: Power obtained per simulation scenario across different meta-analysis models.  
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