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Abstract

Systematic reviews and meta-analysis of time-to-event outcomes can be
analysed on the hazard ratio (HR) scale but are very often dichotomised and
analysed as binary using effect measures such as odds ratios (OR). This thesis
investigates the impact of using these different scales by re-analysing meta-
analyses from the Cochrane Database of Systematic Reviews (CDSR), using

individual participant data (IPD) and a comprehensive simulation study.

For the CDSR and IPD, the pooled HR estimates were closer to 1 than the OR
estimates in most meta-analyses. Important differences in between-study
heterogeneity between the HR and OR analyses were observed. These caused
discrepant conclusions between the OR and HR scales in some meta-analyses.
Situations under which the clog-log link outperformed the logit link and vice versa
were apparent, indicating that the correct method choice does matter. Differences
between scales occurred mainly when event probability was high and could occur
via differences in between-study heterogeneity or via increased within-study

standard error in OR relative to HR analyses.

In many simulation scenarios, analysing time-to-event data as binary using the
logit link did not substantially affect bias and coverage apart from those where
large percentage random censoring and long follow-up time was present. The
method though lacks precision particularly for small meta-analyses. Analysing the
data as binary using the clog-log link consistently produced more bias, low

coverage and low power.

If a HR estimate cannot be obtained per trial to perform a meta-analysis of time-
to-event data, a meta-analysis using the OR scale (using the logit link) could be
conducted but with awareness that this would provide less precise estimates in
the analysis. Investigators should avoid performing meta-analyses on the OR
scale in the presence of high event probability, large percentage random
censoring and therefore longer follow-up times assuming of large event rates of

the trials included.



Impact Statement

Medical research questions are usually investigated multiple times by different
research groups performing separate studies. The results may be contradictory,
and may not allow clear conclusions to be drawn, producing difficulties in medical

decision-making.

Systematic reviews and meta-analyses of time-to-event outcomes (e.g., time to
death, recurrence of symptoms, relief of pain etc.) are frequently carried out and
are very common in areas such as cancer, respiratory and cardiovascular
diseases. These outcomes are related to “IF” and “WHEN” an event has occurred
and they are commonly analysed as binary in meta-analysis, rather than
accounting for their natural properties. The work presented in this thesis focuses
on time-to-event outcomes and the implications of analysing them as binary in a
meta-analysis. My aim was to provide guidance to systematic reviewers and
meta-analysts on the most appropriate methodology that should be used when

conducting such meta-analyses.

Using empirical survival meta-analysis data from the Cochrane Database of
Systematic Reviews (Issue 1, 2008) and individual participant data (IPD), |
indicated that time-to-event data should ideally be analysed accounting for their
natural properties and meta-analysts need to be careful about choice of method.
| identified that dichotomising time-to-event outcomes may be adequate for low
event probabilities but not for high event probabilities. In the IPD meta-analysis
performed, | confirmed the results obtained from my empirical study, however, it
was not possible to explain whether censoring and follow-up time were distinct

factors affecting the discordance among the meta-analysis estimates.

My simulation study indicated that a time-to-event meta-analysis should be
conducted ideally in the presence of IPD with interpretation on a HR scale,
whereas in absence of IPD, extracting information from trial reports and using a
log-rank test performs equally well. The logit link performed well in many
simulation scenarios with some exceptions; the method though lacked precision
in most scenarios. The complementary log-log link was not suitable to analyse
the data as binary on a HR scale since substantial bias, low coverage, and low

power were observed. If HR estimates cannot be obtained, a meta-analysis using
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the OR scale (using the logit link) could be conducted but with awareness that
this would provide less precise meta-analytic estimates. Investigators should
avoid performing meta-analyses on the OR scale in the presence of large

percentage random censoring and long follow-up times.

It is advised that systematic reviewers and meta-analysts should think carefully
about the circumstances before analysing time-to-event data as binary because
this may produce different conclusions than the correct time-to-event analysis.
Investigators should avoid performing meta-analyses on the OR scale in the
presence of high event probability, large percentage random censoring and long
follow-up times of the trials included in the meta-analysis. Researchers should
consider also that precision will be lower so the analysis will have lower power
especially in small meta-analyses and will be less likely to detect a significant
treatment effect. The complementary log-log link should not be used as an

alternative to analysing time-to-event outcomes as binary on a HR scale.
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1. Introduction

1.1 Chapter Overview

This chapter introduces the main definitions and characteristics of Time-to-Event
(TTE) data along with Systematic Reviews and Meta-analyses (MA). It provides
preliminary background information on how these data are used in a systematic
review and MA, including also important justifications for the necessity of this
research.

1.2 What is Time to an Event?

In many clinical and non-clinical studies, an important outcome of interest is
measured by the time-to-event (TTE). These types of outcomes are unique in the
sense that they are dependent on two essential characteristics; the first is related
to “IF” and the second “WHEN” an event has occurred. Examples of such events
may involve time from diagnosis of cancer to death, time to weaning of breast-

fed infants, or time from start of in vitro fertilisation treatment to pregnancy.

A key feature of TTE data is that the event will not necessarily occur for all
participants in the study by the end of the follow-up period, meaning that we will
never know whether and when some participants experience the event!. Such
observations are known as “censored”, indicating that the follow-up period ended
before the event occurred. Other examples of censored observations include
participants being lost to follow-up during the study (for example, because study
participants may have moved to another country) or dying from a cause not
related to the outcome of interest. There are three forms of censoring: right

(where the observed survival time is less than the actual unknown survival time),
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left (where the actual survival time is less than that observed) and interval (where

the participant experiences the event within a known time interval)?.

Finally, TTE are not symmetrically distributed, they are positively skewed,
producing a longer “tail” to the right of the distribution; this is indicative that it is
not reasonable to assume that these data follow a normal distribution?. Traditional
linear or logistic regression methods are not suitable to model these data as they
are not able to account for their natural properties.

1.3 Analysing Time-to-Event data

An important step prior to modelling TTE data is to present a numerical (e.qg., life-
tables) or graphical representation of the survival times (e.g., Kaplan-Meier
curves) for the participants of a group in a study. TTE data can be summarised
via a survival or a hazard function; details on the estimation of these functions
has been described elsewhere?“. Once a survival function has been defined
adequately, different percentiles of the distribution of survival times can be
estimated and displayed graphically. Kaplan-Meier curves are a useful
representation of TTE data when we want to obtain an estimate of the proportion
of participants alive at certain time points®.

In the presence of two or more groups in a study, there are non-parametric,
parametric and semi-parametric procedures available to compare formally the
survival times of the groups. Non-parametric procedures include tests such as
the log-rank test®, the Wilcoxon test?, and stratified versions of these tests.
However, when additional information are recorded for each participant in the
study such as demographic or disease related characteristics, parametric models
(i.e. Exponential or Weibull) and semi-parametric (i.e. Cox) models are able to
account for these covariates, providing more reliable results for the analyses® 7.
The exponential model assumes a constant hazard function over time, the
Weibull model has a more flexible form of the hazard function, and the Cox model
is most commonly used and does not make any assumption on the form of the

underlying baseline hazard function.

A key assumption for the application of these models is that censoring is non-
informative with respect to the distribution of survival time. This means that
participants’ censoring time is independent of their failure time, whereas

censoring is informative if patients’ censoring time depends on the failure time?®

19



9. For example, censoring that occurs where study participants drop out of a trial
comparing two treatments for cancer due to an ineffective control arm is
considered as informative. In this case, the aforementioned models may produce
biased results. Other methodology such as multiple imputation techniques for
missing data, the use of drop-out event as a study end-point, and joint modelling
of longitudinal and TTE data has been developed to examine data under these

circumstancesio.

1.4 Systematic Reviews and Meta-analyses

Many medical research questions are investigated multiple times by different
research groups performing separate medical studies. The results of the studies
may be contradictory, and may not allow clear conclusions to be drawn,

producing difficulties in medical decision-making*.

A systematic review aims to combine empirical evidence based on pre-specified
eligibility criteria, answering specific research questions that are not able to be
answered by the individual studies themselves!? 13, Characteristics of a well-
conducted systematic review include a protocol stating clearly the objectives,
research questions, and methods prior to conduct of the review, a comprehensive
search strategy including various bibliographical databases, explicitly stated
inclusion and exclusion criteria, and development of quality criteria to evaluate
research validity!4. Different types of Cochrane reviews exist and these include
intervention, diagnostic test accuracy, methodology, qualitative and prognosis

reviews!3,

A MA is a statistical analysis performed within a systematic review and is able to
identify whether strong evidence exists on the effectiveness of treatment for a
particular disease!?. The main aim is to mathematically summarise the results
across studies, if appropriate, using suitable methodology, even if studies have
used different effect measures to assess their outcomes. These summary results
can provide greater statistical power on treatment effects, assess between-study
heterogeneity, and identify characteristics of studies that are importantly
associated with effective treatments!!. In comparison to running a clinical trial, it
is a relatively quick way to assess the effectiveness of healthcare interventions,
facilitates medical decision-making, introduces new guidelines for treatments on

different diseases and initiates new medical studies.
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Once relevant studies from the literature have been identified and data are either
extracted from published reports or collected from study authors, appropriate
methodology should be applied. Two models are usually considered; one uses a
common-effect approach (known also as “fixed-effect”) and the other a random-
effects approach for combining study estimates'# >, When treatment estimates
are combined under a common-effect (or fixed-effect) model, we assume a single
underlying treatment effect and no variability between the study results. This
assumption frequently seems unrealistic as studies involved in a MA may differ
in terms of study design, participant demographics, follow-up time and other
characteristics'*. When random-effects models are used, the true underlying
treatment effects are assumed to vary at random across studies, and a normal
distribution is usually assumed for these effects. Therefore, two sources of

variation are observed: the within and between-study variability4.

1.4.1 The Cochrane Collaboration

Cochrane is an international collaboration that has performed high-quality
research over the last 29 years and includes independent researchers, heath
care professionals, patients, carers and other stakeholders interested in
improving health outcomes*3. Their aim is to produce high-quality and accessible
systematic reviews to promote evidence-based health decision-making. Official
guidance including detailed useful information on the process of conducting a
systematic review and MA is provided in the Cochrane Handbook of Systematic
Reviews®. Authors are advised to follow the guidance provided by the book both
on standard methods and more advanced topics!®. The Cochrane Database of
Systematic Reviews (CDSR) is a database including systematic reviews,
protocols, editorials and supplements in health care and to date includes over

7,500 systematic reviews?'’.

1.5 Systematic Reviews and Meta-analysis of Time-to-Event

Outcomes

Special methods are required to combine studies including TTE data in a MA;
censoring cannot be accommodated by analyses such as linear or logistic
regression. If we treat TTE data as continuous we are assuming uncensored
observations instead of allowing for censoring, we are underestimating average
survival and therefore we are inadequately addressing the unique properties of

these data. On the other hand, treating TTE data as binary may be sensible in
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specific circumstances (discussed in 1.6); however, to account properly for the
number of participants experiencing an event and the amount of time taken for

the event to occur needs a more sensitive approach.

Guidelines are provided by the Cochrane Handbook of Systematic Reviews®®,
providing support to researchers who are wishing to perform such MA. The
easiest way to perform a MA of TTE data is to obtain a summary estimate from
each study along with its standard error (SE) and combine them under a
common-effect (also known as fixed-effect) or random-effects model.
Specifically, if log HRs and SEs from Cox proportional hazards analyses can be
obtained, study results can be combined to provide a pooled effect estimate along
with its confidence interval (CI)®. The pooled HR obtained represents a
comparison of the instantaneous risk of event in the treatment against the control
group over the follow-up time!4. If data are collected from published reports (i.e.
aggregate data), we can obtain the log-rank observed minus expected events
(“O-E”) and variance (“V”) statistics and by using appropriate statistical software

we can perform a MA?,

In more detail, the log-rank test® performs a comparison across the whole length
of the survival curve. Time is split into intervals, observed and expected events
are calculated, the “O-E” and “V” values are summarised across the studies for
each time interval and finally “O-E” values are divided by the “V” values; a
comparison against the standardised normal distribution is constructed to obtain
a test statistic for the survival difference among the study groups. This method

will give a rise to a Hazard Ratio (HR).

“‘O-E” and “V” statistics can also be obtained by using Peto’s method on
dichotomous data. Peto’s method was firstly proposed by Yusuf et al.1® and gives
a rise to an Odds Ratio (OR) also called a “Peto OR”. In order to obtain a “Peto
OR”, we need the number of exposed and non-exposed participants on each
study’s group and the number of events and non-events that occurred; this can
be easily summarised by a contingency table. “O-E” and “V” values are calculated
for each study and “O-E” values are divided by the “V” values to obtain an OR. It
is important to state that in the presence of substantial difference in the group
sizes, serious bias can occur?’. Failure times and censoring are also ignored
under this method. In the presence of long medical studies examining mortality,

for example, no difference between treatments may be observed since all
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participants may experience the event, regardless of whether the treatment

delayed the event or not??,

To avoid some of these limitations, a modified version of the Peto method was
specifically proposed for TTE data by Simmonds et al.?! and provides an OR
estimate. By dividing the trial into pre-defined time intervals (e.g., by year or by
month), multiple contingency (two by two) tables for each study can be obtained.
“O-E” and “V” statistics can be obtained for each time interval, and the log OR
over all time intervals can be estimated by dividing the sum of “O-E” values by
the sum of “V” values. Using this approach, a hypergeometric distribution is
assumed for the observed events, misclassification bias is minimised since
censored observations are excluded from the analyses for time intervals after
their censoring time, and failures in the two treatment groups occurring at different

times are considered?:.

It is worth mentioning though that published studies seldom report all the statistics
needed to obtain a modified Peto OR or a HR and variance estimates. Both
Parmar et al.?? and Williamson et al.?® have considered various ways to account
for information from published reports and extract HR and variance estimates to
facilitate MA implementation. A more detailed description of this methodology is
presented in Chapter 2. The ideal scenario and the only reliable way to perform
a MA according to some researchers?* is to obtain the individual participant data
(IPD) since we can then adjust for differences in case-mix by using covariates in

our analyses, allowing also for variation among studies?®.

Various different software packages can be used to carry out a MA. Software
such as STATA?6, SAS?’, R?8, Python?°, WinBUGS® are able to handle TTE data
and perform MA; functions are continuously developing to accommodate new
methodological developments. RevMan3! has been specifically developed to
facilitate preparation of systematic reviews and MA; however, the choice of
models is restrictive when “O-E” and “V” statistics are available since only

common-effect (or fixed-effect) MA is allowed*®.

1.6 Effect Measures for Time-to-Event Outcomes

For TTE outcomes, several effect measures have been used previously; the most
commonly reported effect measures are the OR, HR and relative risk or risk ratio

(RR). Below, | provide brief definitions of these outcome measures and then in

23



1.6.1 | carry out a chronological overview of important research conducted on the

differences between effect measures observed in a single study.

When TTE outcome data are dichotomised and are therefore in a binary form,
they can be conveniently arranged into a contingency table, and several different
measures of treatment effect may be used. An OR can be calculated, providing
a relative measure of the probability of an event: the odds of having the event in
the treatment group relative to the odds of having the event in the control group2.
For beneficial events, if an OR yields an estimate greater than one, a new
treatment is more effective when the treatment and control groups are compared,
whereas an OR of less than one indicates that a new treatment is less effective
than the control group. For adverse events, interpretation is conducted the other
way around. As an alternative to an OR, a RR can be calculated and is defined
as the ratio of the probability of event occurring in the treatment group compared
to the probability of event occurrence in the control group?®?. Risk difference, which
is the difference between the probabilities of event occurring between groups,
and number needed to treat, which is the reciprocal of the risk difference, are

additional measures of comparative effects for binary outcomes32.

Once the full nature and properties of TTE data are considered, the most sensible
summary statistic usually employed when comparing a TTE outcome between
two groups is the HR. A HR measures the instantaneous reduction in the risk of
an event over a particular time frame in the treatment group relative to that of the
control group®. If a HR is independent of time (i.e. constant), then proportional
hazards are assumed among the two groups; this is the most important

assumption underpinning covariates inclusion in a Cox regression model’,

1.6.1 Past Comparisons Among Different Effect Measures for Time-to-
Event Outcomes

A number of authors have previously discussed the comparison between logistic
regression and Cox proportional hazards models. One of the first papers
comparing the two models was written by Green and Symons33 in 1983. Green
and Symons?? explained the mathematical relationship between logistic and Cox
regression models; via an example they indicated that proportional hazards
models provide relatively stable coefficients and decreased SE with increasing

follow-up time, which is not the case for logistic models where SEs of the
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estimates generally increase. These authors also mentioned that the two models
produce similar estimates in the presence of rare incidence of a disease and short

follow-up time.

Peduzzi et al.3* evaluated the logistic and the Cox proportional hazards model
when the event occurs in all participants after a fixed period of time. OR, RR and
HR are discussed in the paper which shows that in the presence of rare events
logistic and proportional hazard models’ estimates are very similar to log RR
model estimates. As the event probability increases, estimates become more
discordant, however the likelihood ratio statistics are asymptotically equivalent
under the null hypothesis that the regression coefficients are equal to zero.
Finally, the authors indicated that these findings extend also to the multivariate

case (i.e. when adjustment for baseline covariates is considered)34.

In 1989, two research papers were published, one using a real-world example
and the other using a simulation dataset, both comparing logistic regression and
proportional hazards models. Annesi et al.®® extended work conducted by J.
Cuzick3®, by examining whether the asymptotic relative efficiency, which is
defined as “ratio of the numbers of subjects necessary for the two models, to gain
the same asymptotic statistical power”, is close to one in the presence of high
survival rate, when several risk factors are adjusted for and censoring time is
identical for all subjects. The authors showed via analysis of a longitudinal dataset
that the logistic model is less efficient than the Cox model; inclusion of several
risk factors showed that these models are asymptotically equivalent in identifying
predictors of events with low event probability®>. However, they mentioned that
logistic models may be appealing when survival times are recorded by intervals,
where in the presence of many failures the model assumes no tied

observations3®.

Ingram and Kleinman®’ in the same year, using simulation datasets mainly,
compared estimates among a newly introduced person-time model (i.e. a
modified version of logistic model), cumulative logistic and Cox models. The
person-time model divides the study period into intervals, counts the numbers of
risks and events in each interval, and sums these counts overall. The authors
demonstrated that person-time, logistic and Cox models are identical for similar
censoring rates as long as the event probability and follow-up time increase,

however discordant estimates are observed in the cumulative logistic model?’.
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Furthermore, when the distribution of survival time was close to exponential and
in the presence of mild violations of the proportional hazards assumption, person-

time and Cox models yielded little effect on parameter estimates®’.

Docksum and Gasko?®, in 1990, using a theoretical framework, discussed the fact
that survival analysis models can be considered as modelling a specified
transformation of the dependent variable, a linear combination of the independent
variables accounting also for errors; they acknowledged similarities of the two
models described by Green and Symons33. The authors discussed the
development of Berkson’s logit model three decades before the development of
proportional odds model in the 1970’s; they justified this since the key ingredients
for model development were not in place before the 70s and 80s, such as
computing tools and repurposing a model for a new application area requires a

large amount of time.

In 1998, Callas et al.®?, using occupational cohort data, compared Poisson,
logistic and Cox proportional hazards models. Their analyses indicated that
Poisson and Cox PH models yielded nearly identical results in the presence of
small sample size and rare events, in terms of coefficients and Cls, apart from a
case where an age confounder included into the model in four wide intervals
produced residual confounding and affected the estimates. A finding the authors
found which was consistent with other studies was that logistic regression models
provided discordant estimates for common outcome and strong RR; however,
length of follow-up had little impact on the estimates, a finding not necessarily
consistent with other studies. Authors discussed the generalisability of the results

due to use only on real data conditions.

In the beginning of the new millennium, Symons and Moore#® discussed the
reporting of HR in prospective epidemiological studies. They indicated that in
cases where the HR is greater than one, it consistently exceeds RR and is
exceeded by OR. The authors provided evidence that similarities or differences
of the three estimates is based upon the following three factors: the first is related
to the length of follow-up, the second to the average rate of event occurrence,
and the third to the risk of the exposed relative to the control group. Furthermore,
they state that lack of preciseness in the terminology usage exist probably

because these measures are often similar.
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Finally, in a more recent research work conducted by Stare and Maucort-
Boulch*!, using simple examples, the authors tried to challenge the misbelief that
ORisaRR, and HR is a RR. They indicated that there are circumstances in which
reporting these measures to be something they are not can produce misleading
results. Therefore, they examined the relation between OR/RR and HR/RR by
giving appropriate definitions for each one of them and describing the

circumstances under which each measure approaches each other.

1.7 Real Problems Cochrane Review Groups Face with Meta-

analyses of Time-to-Event Outcomes

A project*? was conducted in 2008 at the Medical Research Council, Clinical
Trials Unit with the main aim of improving the quality of analysing TTE outcomes
in Cochrane Reviews based on methodology described by Parmar et al.*® and
Williamson et al.*4. A survey was distributed to 49 different Cochrane Review
groups and the response rate was 55%%. The responders spanned a range of
health care areas including cancer, infectious diseases, genetic disorders,
cardiovascular health and oral health. Among the responders most of the groups
(78%) included dichotomous outcomes based on TTE data, 67% included
continuous time-related outcomes and 59% included TTE outcomes, in their
reviews?*?. Additionally, 69% extracted dichotomous data on the outcomes and
analysed them as odds ratios, relative risks or (rarely) risk differences. However,
only 37% of the groups used the methods of Parmar et al*3. and Williamson et

al.** despite their awareness of these methods in the literature.

The main output of the project was that although HR is considered the most
appropriate scale for analysis of TTE data, in practice OR and RR are frequently

used instead due to the following reasons*?:

= unavailability of individual participant data (IPD)

= [limitations on how these outcomes are reported in individual trial reports

» lack of familiarity in handling TTE outcomes for meta-analysis

= difficulties in understanding the methods of analysing such data without a
statistician

» [limited available training for the majority of systematic reviewers and meta-

analysts who perform such analyses.
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1.8 Thesis Objectives

In this thesis, | am interested to explore how TTE data are analysed within a MA
and investigate the implications of analysing TTE outcomes using various meta-
analytic models resulting in the different effect measures of OR and HR. To my
knowledge there is no previous research on analysing TTE outcomes as binary

within MA. More specifically, | am interested in answering the following questions:

= What are the implications of analysing TTE outcomes as binary in MA and
how do the implications vary according to MA characteristics?

» How are TTE outcomes analysed within the biggest database publishing
systematic reviews and MA, the CDSR? Are they analysed as binary or
are they analysed as HR, taking into account the full properties of the
data?

= Which medical areas within the database analyse the data under which
scale?

= What are the assumptions made when different meta-analytic models are
applied and what are the advantages and disadvantages of each one of
them?

» |s there any other method that could allow us to mitigate the undesirable

properties from treating the data as binary?

To answer these questions, | used real life data sets extracted from the CDSR,
IPD MA data sets, and simulation studies. This thesis has seven chapters. In
Chapter 2, | present a methodology review on guidance for MA of TTE
outcomes. In Chapter 3, using data from the CDSR analysed originally as
binary for TTE outcomes, | compare the methods of analysing these data as
binary on the OR scale to an alternative option where interpretation can be
performed on the HR scale. In Chapter 4, using a subset from the same
database, | perform comparisons to explore differences in the results on MAs
originally analysed on the HR scale using the “O-E and V” statistics, to treating
the data as binary using a methodological alternative interpreting the results
on a HR scale and by analysing the data as binary on the OR scale. In chapter
5, | present the results obtained under the different scales when analysing an
IPD dataset obtained from the MRC Clinical Trials Unit; this chapter
additionally includes the gold-standard approach of a Cox proportional
hazards model. In chapter 6, | perform a simulation-based study comparing
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different methods for meta-analysis in TTE outcomes allowing me to identify
separately the factors affecting the potential discordance among the scales.
Finally in Chapter 7, | provide a summary and discussion of the key findings
obtained from the previous chapters. In the same chapter a final conclusion

on the research question is drawn.

Overall, the objective of this research is to provide guidance to systematic
reviewers about the implications of analysing TTE outcomes as binary, how
the implications vary according to MA characteristics and in which

circumstances analysing the outcome as binary may be adequate.
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2. A Methodology Review for Meta-analysis of Time-

to-Event Outcomes

2.1 Chapter Overview

This chapter outlines the guidance that exists in the literature for MA of TTE
outcomes and any discussions raised for analysing these data as binary. A
specific search strategy was followed, and research papers were extracted from
the following databases: Medline (Ovid Version), Scopus and Web of Science.
Literature was assessed for eligibility, was assigned to specific categories and

was reviewed.

2.2 Introduction

Previous research has documented the effect measures needed for a survival
analysis and provided appropriate methodology on how TTE data should be
ideally handled in a single study, and under which circumstances it could be
acceptable to treat these data as binary33-3% 37. 39, Recent reviews indicate that
Kaplan-Meier methods, Cox regression models, logistic regression are the most
commonly used methods in analysing TTE outcomes, while techniques avoiding
making the proportional hazards assumption such as accelerated failure time
models or time dependent Cox regression techniques are less frequently used*®>
46, Additional methods for the analysis of TTE data exist including the non-
parametric log-rank test and parametric proportional hazard models assuming a

specific distribution for the hazard such as Weibull, Exponential, Gompertz.

TTE data MA should be ideally analysed using IPD and interpretation is

performed on the HR scale assuming constant hazards over time (i.e.
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proportional hazards assumption). However, access to IPD is rarely available and
different techniques have been employed to obtain study level data from research
publications?® 44 47 The current methodology review was performed to ascertain
the guidance for MA of survival outcomes and any discussions raised on MA of
TTE data as binary, with the objective of informing the subsequent research

reported in later chapters.

2.3 Searching the Literature

| performed a methodology review to identify all methodological publications
providing guidelines for MA of TTE data. Medline (Ovid version, 1946-December
2021), Scopus (2004-December 2021) and Web of Science (1900-December

2021) were searched using keywords such as “meta-analysis”, “time-to-event”,

“survival”’, “methodology” via the “Advanced search” function in the electronic

databases. Details on the search strategy are provided in 2.3.1.

2.3.1 Search Strategy
The following search strategy was applied in order to extract all the relevant
papers from the databases.

Search strateqgy for MEDLINE (Ovid version)

‘meta-analys#s”.ti,ab.

(“time-to-event” or “time to event”).ti,ab.

w N =Y

(“survival outcome” or “survival endpoint” or “survival data” or “survival
study” or “survival analys$”).ti,ab.

(“failure time” or “failure time data”).ti,ab.

(“guid*” or “method*” or “framework”).ti,ab.

2or3or4

1and 5and 6

N o g A

» Search strateqy for Scopus
TITLE-ABS-KEY (“meta-analys*’) AND TITLE-ABS-KEY (“time to event” OR

“survival outcome” OR “survival endpoint” OR “survival data” OR “survival

study” OR “survival analys® OR “failure time” OR “failure time data”) AND
TITLE-ABS-KEY (“method” OR “guid*” OR “framework”) AND NOT INDEX
(medline) AND (LIMIT-TO (LANGUAGE, “English”)) AND (LIMIT-TO
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(SUBJAREA, “MEDI”)) OR (LIMIT-TO (SUBJAREA, “MATH?)) OR (LIMIT-TO
(SUBJAREA, “DECI"))

Search strateqgy for Web of Science (WoS)

TS=("meta-analys?s” or “meta*analys?s”) AND LANGUAGE: (English)
TS =(“time-to-event” or “time*to*event”) AND LANGUAGE: (English)
TS =(“survival outcome” or “survival endpoint” or “survival data” or
“survival study” or “survival analys$”) AND LANGUAGE: (English)

TS =("failure time” or “failure time data”) AND LANGUAGE: (English)
TS =(“guid*” or “method” or “framework”) AND LANGUAGE: (English)
#4 OR #3 OR #2

#6 AND #5 AND #1

W N Py

N o g A

The inclusion and exclusion criteria of the methodology review were broad (Table
2.1). | did not aim to make any comparisons or judgements on the proposed

methodologies but to provide descriptions of methods.

Criteria Inclusion Exclusion
Journal No restriction No restriction
o L Abstracts, conferences
Publication Type Full publications
abstracts, notes
Country No restriction No restriction
Language English publications Non-English publications
Year of L L
. No restriction No restriction
publication
) Binary, continuous,
Outcomes Time-to-event ) y
mixed, surrogate
Applied methodology
Methodology, extensions, and only,
Methods 9y . i y. .
comparisons prognostic/diagnostic

accuracy studies
Table 2.1: Inclusion and exclusion criteria of the methodology review used in
MEDLINE (Ovid Version), Scopus, and Web of Science.

In the review, | identified 2,523 publications based on the search terms used.
Among those, | removed 2,352 after title screening, 41 after abstract reading, 46
after duplicates removed, and 27 after full-text reading. | additionally included 17

publications via hand searching which were missed from the basic search terms.
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Hence, | included 75 methodological publications according to the search
methods described above. A full list of references is available in Appendix A. A

flowchart of the identified publication is provided below in Figure 2.1.

Identified records from Identified records from Identified records from
MEDLINE (n=1214) Scopus (n=399) WoS (n=911)

Identified records Identified records from Identified records from
from Scopus (n=16) WoS (n=80)

Identified records from Identified records from Identified records from
MEDLINE (n=58) Scopus (n=12) WoS (n=61)

Records remaining
(n=85)

Identified records after
hand search (n=17)

Reco}ds remaining
(n=102)

Records remaining
(n=75)

Figure 2.1: Flowchart of Methodology Review.

Literature discussing methods for performing MA of TTE data was published from
1988 onwards. Very few publications were found before 2000, whereas from the
beginning of the new millennium numbers of publications increased and most
research has been published during the last decade. The distribution of research

publications across the years is presented in Figure 2.2.
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Fisher et al, Bowden et al

Combescure et al

Simmonds et al

Weier et al

JRUhm [;E Ollier et al
ansi1 o Tang et al
Vale et al Daly ?t al
- Tamasi et al
Williamson et al Py
Royston et al
Keene O.N. Hirooks et 2l Bennett et al Wei et al
» i} rooka et a Cope et al Riley et al
Fiocco et al (1) .
Simmeonds et al Rondeau et al
Fiocco et al (2)
Dear K.B. Messori et al Tierney et al Freeman et al
Hunink et al Earle et al Tudur-5mith et al Holzhauer B.
Abel et al Moodie et al De long et al
1991 1998 2001 2003 2005 2008 2010 2012 2014 2016 2018 2020 -
>
1988 1994 2000 2002 2004 2007 2009 2011 2013 2015 2017 2019 2021
Whitehead et al Parmar et al Bennett DA,
Tudur et al
Duchateau et al
Crowther et al
Jackson et al
° Saramago et al . -\\‘
Arends et al Watkins et al
& Katsashian et alI Batson et al Gh:: bari et al | Willis:len et al
Massonnet et a N Beekhuizen et al Holzhauer B.
Michiels et al {1} Rondeau et al Benofiglio et al wWang et al Cope et al
Simmonds et al Lueza et al £ v £l
Tudur-Smith et al (1) welton®t al cMwther et al Wang et al ruine =t =
Michiels et al {2) Woods et al lansen et al
Tudur-Smith et al {2) Yuan et al Barrett et al

Thompson et al
Siannis et al
Cuwens et al

Ficcco et al
Guyot et al
Combescure et al

Figure 2.2: Distribution of research publications identified in methodology review
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2.4 Methodology Review Results

The research papers are divided into seven main categories. These are related
to models for aggregate data (11 publications), methods for reconstruction of
survival data (5 publications), models for IPD (16 publications), methods for NMA
(12 publications), multivariate MA (7 publications), method comparison via real
life conditions and/or simulations (16 publications) and finally papers including
discussions, critiques and other suggestions for MA of TTE outcomes (6
publications). | present below summaries of the methodological papers | found in

the review in chronological order within each chosen theme.

2.4.1 Models for aggregate data

In 1991, Whitehead and Whitehead*® was one of the first papers presenting
comprehensive methodology on how survival (and other) data should be treated
in a MA context. Particularly, they presented a general parametric approach for
estimation of treatments effects based on hypothesis testing, identifying and
dealing also with the issue of treatment heterogeneity in the trials. They presented
both fixed and random effects models and indicated that their methodology is
appropriate when large number of patients are considered; for smaller samples
biased estimation should be taken into account as mentioned by Greenland and

Salvan?°.

Hunink and Wong?®, in 1994, recommended a new technique combining
aggregate TTE data from different sources adjusting for case-mix (i.e. different
frequencies) of covariates. The authors stated that without adjusting for case-mix
covariates results were misleading, providing narrow confidence intervals without
accounting for the variability among subgroups. Limitations of the method such
as the difficulties arising from the insufficient details from the published reports

were also discussed.

One of the most important and key papers to perform MA of TTE outcomes was
written by Parmar et al.*3 in 1998. The authors used a series of simple methods
to extract data from publications, to facilitate the performance of MA and improve
the reliability and quality of literature-based MA. More specifically, they stated
that in presence of a HR and its variance from each trial these values should be
used to perform a MA. If these statistics were not available other statistics could

be used such as the confidence interval given for the log HR, p-values from the

35



log-rank® or Mantel-Haenszel test*, and p-value from the Cox proportional
hazard model® after adjustment for covariates. If limited information was available
to extract from the literature for either direct or indirect estimation of the necessary
statistics, published survival curves could be used to reconstruct the log HR,
accounting also for censoring by adjusting for the number at risk and number of
events. Full derivation of the methods was conducted by illustrative examples
and the authors discuss various difficulties raised during this process such as
selecting the most appropriate interval so that the event rate within each time
interval is appropriate. One of the first applications of one of these methods which
adjusted for censoring was conducted by Vale et al.> during 2002 in MAs of
cancer studies, indicating that accounting for censoring answered more reliably
the questions posed by systematic reviewers and meta-analysts in the presence

of aggregate data.

Moodie et al.>}, in 2004, presented methodology in which the log (—log) survival
function difference for the examination of treatment effects in the MA of TTE data
was used. The authors indicated the non-parametric nature of the procedure
which could be used as an alternative when HRs were unavailable in the
literature. The proposed methodology provided estimation of the treatment effect
and was not as affected by the length of follow-up as were other effect measures

such as ORs, RRs and risk difference.

In 2007, Tierney et al.*’ significantly contributed to the literature by “translating”
the methods proposed by Parmar et al.*® and Williamson et al.** to extract data
from published reports and facilitate aggregate data MA of TTE outcomes, in a
more practical way that was accessible to systematic reviewers and meta-
analysts. Authors created a macro-enabled Excel spreadsheet facilitating the use
of indirect methods for the calculation of HRs and their corresponding variances.
This piece of research has been very widely cited (4,239 times, until 14/02/2022)
and has improved the quality and interpretation of systematic reviews and MASs.

Yuan et al.%?, in 2010, discussed the fact that when different studies adjust for
different covariates bias was caused when combination of the potential effect
sizes is performed via MA. More specifically, authors introduced a method which
combined via meta-regression incomparable Cox proportional hazards models

obtained by omitting important information in an aggregate data MA.
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Combescure et al.3, in 2011 in 2011, recommended another method of meta-
analysis for binary outcomes (using the relative logarithm of survival). This
method was similar to Moodie’s method®! and was originally proposed by T. V.
Perneger®*, when results were available in a two-by-two table, the proportionality
assumption holds and information on the HR were absent. The method reduced
the heterogeneity due to differential follow-up across the studies, provided a
direct estimate for a HR, and can be constructed under tabulated data. In 2012,
Combescure et al.?®, as an extension to Moodie’s method®!, proposed a flexible
method to perform meta-analysis of two-arm studies using survival probabilities
collected at various time points instead of the reported measures of intervention
effect, allowing detection of variation of the intervention effect over time. The
authors stated that the specification of the baseline survival function was not
necessary, and study level factors affecting survival were ignored. On the other
hand, the method had disadvantages in the presence of non-proportional
hazards, and when the assumption of a stable treatment effect over time could

not be evaluated.

Bonofiglio et al.>8, in 2016, present methodology for MA of aggregate TTE data
with competing risks in a frequentist framework. The authors used the cumulative
incidence function to obtain cumulative incidence function ratios measuring

treatment effect and developed methods to pool these ratios across studies.

B. Holzhauer®’, in 2016, discussed a Bayesian hierarchical model using
aggregate data to perform TTE MA allowing differences in the follow-up period
between two groups. The author performed a simulation study comparing the
method to other commonly methods used for aggregate data MA, illustrating the
usefulness of the exchangeability assumption that his model required, using prior
information about expected control groups outcomes and increasing the power
of the meta-analysis. In 2020, the same author via a simulation study compared
methods for incorporating historical control data into MA. Specifically, a number
of existing proposals making posterior inference more robust against prior-data
conflicts were examined such as the meta-analytic combined, meta-analytic
predictive in the meta-analysis setting, robust meta-analytic predictive and using
a Bayesian model averaging via shrinkage priors. The simulation indicated that
the last model with well-chosen hyperpriors performed best in terms of credible

interval coverage and mean-squared error across scenarios.
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Finally, Irvine et al®® in 2020, developed a non-linear optimisation method for
aggregate MAs that requires only the Kaplan-Meier plot and a published p-value
to calculate a logHR and its variance without a requirement on the published
number at risk. The method allowed for better estimation of the underlying
censoring pattern and was compared to the Parmar method“® which also did not
require any published number at risk. The authors indicated that the proposed
method outperformed the Parmar method, enhanced the accuracy of meta-
analyses of survival outcomes and they provided the necessary R scripts for the

method implementation.

2.4.2 Methods for reconstruction of survival data

Messori et al*®, in 2000, suggested an intermediate approach facilitating the
reconstruction of IPD from survival curve graphs particularly in cases where the
actual IPD data were not available and could not be retrieved. Via an illustrative
example, the authors showed good correlation between the estimated and true
IPD indicating that their approach was attractive in the absence of resources to
conduct IPD MA; however, it must be noted that this approximate procedure could
be less reliable than the actual IPD MA since individual survival times are

approximately estimated and are not directly measured from the participants®®.

Williamson et al.*4, in 2002, extended and improved a method proposed by
Parmar et al.*3, on estimating log HR from survival curves. Specifically, the
extension assumed a constant censoring rate within trial intervals and varying
censoring rate among time intervals. The authors examined also differences in
proportionality of hazards across trials within a MA as a potential source of

heterogeneity.

D. B. Rubin®, in 2011, proposed an unbiased non-parametric approach to
synthesize survival curves across studies. A counterfactual model for TTE MA
was applied, avoiding confounding in non-randomised trials, a method similar to
the one proposed by Xie and Liu®! on Kaplan-Meier adjustment. Even though this
method was immune to biases, the authors suggested that their method still

required trials with similar characteristics and assessing similar interventions.

In 2012, Guyot et al.? created an algorithm which attempted to reconstruct

Kaplan-Meier data obtained from survival curves, using Digitizelt software to read
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the coordinates of the Kaplan-Meier curves. A high degree of accuracy and
reproducibility was observed especially for median survival times and
probabilities of survival; however, reconstruction of HRs was less adequate
without complete information on censoring patterns and finally the algorithm
could not be used in the absence of numbers at risk and events.

Ghanbari et al.?3 proposed a new method in 2018 for combining survival curves
in MA of TTE endpoints in the absence of IPD, bypassing limitations of other
approaches. Specifically, the authors combined survival curves using functional
data analysis which was corrected by single exponential smoothing and then a
test similar to log-rank test was performed. Via a simulation study and an example
using clinical data, the authors indicated the method was useful in groups with

small or moderate hazard rates, moderate or high sample sizes across all studies.

2.4.3 Models for individual participant data (IPD)

Royston and Parmar®, in 2002, suggested extensions to the Weibull and log-
logistic models aiming for the estimation of hazard, density and survival functions
by smoothing the cumulative odds or hazard functions. This was implemented by
modelling as a natural cubic spline function of log time the logarithm of the
baseline cumulative odds or hazard failure functions. Extensions of the models
were suggested, facilitating allowance of non-proportional effects of the

covariates.

In 2005, Michiels et al.?®> extended the use of Cox proportional hazards model by
suggesting Cox random (frailty) effects models to assess the heterogeneity
obtained from the variation in treatment effects from the difference in baseline
hazard rates. The methods applied (under frequentist and Bayesian frameworks)
used treatment-study interaction terms to adjust for study specific covariates. An
assumption of a common baseline hazard function shape across trials was

necessary.

In the same year, Tudur-Smith et al.%¢ introduced and compared five hierarchical
Cox regression models aiming to explore potential heterogeneity by including
patient level covariates in IPD MA. Trial effects were included either by fixed trial
effects using indicator variables or using stratification or via inclusion of random

trial effects. Authors indicated that stratified models with random treatment effects
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were more appropriate since they maintained the likelihood construction and
allowed for different baseline hazard functions for the studies. Hazards could also
be proportional within each study, and important assumptions could be relaxed

when synthesising studies conducted under different settings.

During 2008, Massonnet et al.®” presented an alternative way to fit frailty models
as an equivalent linear mixed-effects model assuming a clustered data structure
with random cluster and random treatment effects. The authors suggested that
the method was useful for large number of clusters in the datasets and relatively
large sample sizes within covariate-level subgroups in the clusters. They also
highlighted the fact that standard statistical software was limited to fitting

conditional random-effects survival models.

In the same year, Rondeau et al.®® proposed a one-stage additive random-effects
Cox model, similar to those proposed by Vaida and Xu®, modelling
simultaneously a random treatment-study interaction and a random trial effect.
Their approach jointly accounted for different sources of heterogeneity such as
a) heterogeneity in MA of treatment effects and b) heterogeneity obtained from
baseline risk. The authors indicated that in the presence of MA with a large
number of trials or large sample sizes with a non-zero correlation (p) between the

two random-effects, the results obtained were more accurate.

In 2010, Thompson et al.”? extended statistical methods for IPD MA of TTE
outcomes from multiple epidemiological studies accounting for a) the shape of
exposure-risk association, b) inclusion of interaction terms dividing the within and
between-study information, c) the regression dilution bias that could occur from

measurement error and within-person variation in confounders.

Siannis et al.”* proposed methodology for IPD MA of TTE data using percentile
ratios which are a function of survival percentile, allowing reduction to the median
ratio (i.e. 50th survival percentile) estimated through an accelerated failure time
model. This was an alternative methodology to the restrictive semi-parametric
proportional hazard model which allowed shape parameters to vary among the
trials, offering greater flexibility in the parametric representation of treatment
effects. Barrett et al.”?, in 2012, extended this methodology™® into a two-stage
method for meta-analysis of percentile ratios using only Kaplan-Meier estimates.

Specifically, by using these estimates for the survival function to calculate the
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percentile ratios in a first stage and combining them in a second stage by
univariate or multivariate random-effects meta-analysis, the authors avoided the

need to make any distributional assumptions at the study level.

Crowther et al.”3, in 2012, introduced a Poisson regression model to perform one-
stage and two-stage IPD MA of TTE outcomes, accounting also for random-
effects, non-proportional hazards and treatment-effect modifiers. Their approach
provided identical estimates to the Cox model both under frequentist and
Bayesian frameworks. Heterogeneity estimates were slightly underestimated
under the frequentist approach; the performance of the model under a Bayesian

framework was improved.

In 2013, Simmonds et al.”* recommended a new approach using the expectation-
minimisation (EM) algorithm to fit a random-effects proportional hazards model
treating random effects as missing data. The authors suggested that that their
method provided suitable estimates for random effects without any biases or loss

of precision.

In 2014, Crowther et al.” extended the methodology of parametric frailty models,
incorporating multiple normally distributed random effects (including exponential,
Weibull, Gompertz proportional hazards models, log logistic, log normal and
generalised gamma accelerated failure time models) and using adaptive or non-
adaptive Gauss-Hermite quadrature. The authors extended also the Royston and
Parmar flexible parametric survival model® to include random effects and time-
dependent effects (i.e. non-proportional hazards). They indicated that results
were in agreement with previous findings; small bias and good coverage was

observed on the baseline hazard parameters of the Weibull distributions.

Rondeau et al.’®, in 2015, proposed a joint frailty model for clustered TTE
outcomes and a dependent terminal event (e.g. time-to-progression and death).
Using a semi-parametric penalized likelihood approach, the authors showed that
they could calculate the joint model parameters simultaneously, accounting for

data clusters and the relationship between the outcomes.

In 2016, Wang et al.”” introduced a method examining the patterns of
heterogeneity in treatment effect across covariate values in TTE MA of IPD with
a continuous covariate of interest. The Meta-STEPP (subpopulation treatment

effect pattern plot for meta-analysis) method estimated treatment effects using a
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continuous variable by “forming overlapping subpopulations” and estimating
treatment effects for a particular subpopulation via the use of fixed-effects meta-
analysis. The method yielded a weighted average of specific study treatment
effects for different subpopulations. In 2018, the same authors extended their
work by assessing treatment effect variation across a continuous covariate for
TTE outcomes in the presence of IPD"8. Authors indicated that Meta-STEPP tool
with random effects was more conservative in assessing treatment effect

variability than the fixed-effect approach, due to the larger variances produced.

De Jong et al’® in 2019, performed a narrative review of the methods related to
IPD MA of TTE data. Specifically, the authors focused on modelling frailty of trial
participants across trials, heterogeneity in treatment effects, interactions, dealing
with censoring and follow-up times using parametric and semi-parametric
methods both in a one- and two-stage IPD MA framework. They recommended
exploring heterogeneity via interactions and non-linear terms and highlighted the

importance of random-effects models which account for residual heterogeneity.

In 2021, Tamasi et al., presented a one-stage IPD MA model for TTE outcomes
that incorporates general normally distributed random effects into linear
transformation models. The authors stated that the model could handle arbitrary
random censoring patterns, could model between-study heterogeneity in
baseline risks and the assumption of proportional hazards could be relaxed via

the use of time-varying prognostic factor effects.

2.4.4 Methods for Network meta-analysis

Welton et al.&, in 2010, initially developed a framework under which the synthesis
of outcomes reported in clinical trials would be feasible using summary statistics
such as mean or median TTE to perform NMA on the log HR scale, taking into
account important assumptions for each of the models. Woods et al®?, in the same
year, provided a tutorial which allowed HRs and cumulative count survival
statistics to be combined in an evidence network, accounting for multi-arm trials
and allowing results to be interpreted on the HR scale. They noted that median
survival times could be incorporated in the models; however, they required strong

assumptions of a constant hazard in each arm.
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Ouwens et al.?, suggested a NMA framework of analysing TTE data with
treatment effects based on shape and scale parameters of survival curves. The
authors extended the use of the Weibull model by proposing the use of two-
dimensional treatment effects; shape and scale parameters were reformulated to
understand better the relative treatment effects rather than assuming constant
hazards. Building on the Weibull model presented initially by Arends et al.®3, the
authors diversified it by using hazard over time instead of log(-log) survival
proportions, evaluated random treatment-log(time) interactions, and considered

evidence networks of more than two treatments.

In the absence of proportional hazards, J. P. Jansen® introduced a NMA
technique which used fractional polynomials to model treatment effect via several
parameters. The author showed that less bias occurred when IPD and aggregate
data were incorporated in NMA rather than aggregate data alone especially when

indications of heterogeneity, inconsistency and confounding bias were observed.

Jansen and Cope®, in 2012, extended the models originally proposed by
Ouwens et al.?? and J.P. Jansen®*; they presented multidimensional NMA models
for TTE outcomes, accounting for treatment-covariate interactions and adjusting
for bias caused by the differences in treatment effect modifiers. Their models did
not rely on a proportional hazards’ assumption and adjustments for any
imbalances could be made. Jansen and Cope criticized their work, indicating that
covariate adjustment was based on aggregate level data, and recommended that
their models can only be used with study level data in the presence of limited

variation in effect modifiers within studies.

Saramago et al.8% introduced a Bayesian framework, combining jointly aggregate
data (for specific follow-up) and IPD of censored TTE outcomes in NMA by
extending work conducted by Woods et al.8!, and Soares et al.®’. In their
framework, IPD directly informed the distribution (likelihood), and aggregate data
informed a probability estimate using a binomial likelihood for a specific subset of
evidence. A common distribution for TTE data was assumed accounting for
duration of follow-up in each study provided by the aggregate data. The authors
discussed strengths such as the flexibility in modelling the IPD and aggregate
data using treatment-covariate interactions and exploring within and across study

interactions.
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Freeman and Carpenter®8, in 2017, described a flexible and computationally
practical approach to apply a Bayesian one-step IPD NMA of TTE data using
Royston-Parmar models. The authors showed that the model presented allowed
for inclusion of patient level covariates and examination of non-proportional
hazards a) via inclusion of treatment-log(time) interaction and b) by allowing
interaction to vary by trial in order to understand which trial is driving non-

proportionality.

Watkins et al.8? proposed a method for HR and variance derivation from reported
binomial data based on a Taylor series expansion for the approximation of
variance. Proportional hazards and minimal non-informative right censoring at the
binomial data measurement time were necessary requirements that need to hold
for the application of the method. Other methods such as digitised Kaplan-Meier
curves and Bayesian analysis methods could provide more accurate estimates;
however, according to the authors these could be time consuming and most of

the time curve data were not always published.

Cope et al®® in 2020, proposed a two-step approach for NMA of TTE data with a
multidimensional treatment effect to overcome limitations (e.g. approximate
likelihood on discrete hazards instead of a likelihood for individual event times)
introduced by Ouwens et al®? and Jansen® models. On the first step, for each
trial arm reconstructed patient data were fit to alternative survival distributions
(i.e., exponential, Weibull, Gompertz, log-normal, log-logistic); on the second step
the scale and shape parameter estimates were synthesized and using a
multivariate NMA model were indirectly compared across trials providing time-

varying treatment effects for the competing interventions.

In the same year Wiksten et al®! reformulated fractional polynomial and piecewise
constant NMA models as generalised linear models with time-varying covariates
initially introduced by Jansen®*. The authors indicated that the proposed method
allowed for rapid exploration of different frequentist NMA models allowing for the
best one to be refitted in a Bayesian framework.

In 2021, Ollier et al®? extended work conducted by Crowther et al”® in a NMA
framework. Specifically, the authors introduced a Poisson regression model for
IPD NMA of TTE data allowing implementation of one-stage MA while accounting

for heterogeneity and non-proportionality. The authors indicated that the
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quantification of model’s heterogeneity and model selection were performed
simultaneously by a penalised fixed effect model, overcoming the optimization

problem met when random-effects models were applied.

Tang and Trinquart®® introduced a Bayesian multivariate NMA model for the
difference in restricted mean survival times (RMST). The model synthesized
simultaneously all the necessary evidence from multiple time points; via the
between and within-study covariance for the difference in RMST it borrowed
information across different time points. A simulation study indicated lower mean
squared error and increased precision compared to a single time point model.
Comparisons to previous methodology focusing on the synthesis of survival
functions (e.g. Ouwens et al®?, Cope et al.?%, Jansen®*, Wiksten et al®!, Freeman
et al®®) rather than reporting differences in RMST in NMA showed improved
interpretation of the findings. Their work could be described as an extension of
the Weir et al®* research (described in 2.4.5) which introduced a meta-analysis
model for the difference in RMST by borrowing strength from multiple time points

for conventional meta-analysis of pairwise treatment comparisons.

Finally, Daly et al®® extended the RMST approach of Wei et al®® (discussed in
2.4.6) in a NMA framework. Their approach jointly synthesised relative treatment
effects from progression-free and overall survival Kaplan-Meier curves in a NMA
without any parametric and proportionality assumptions; it also respected the
constraints related to the overall survival that should be equal or greater than

progression-free survival.

2.4.5 Methods for Multivariate meta-analysis

K.B. Dear?, in 1994, presented a generalised least-squares algorithm for the
analysis of survival proportions reported at multiple times, accounting for single
arm trials and including also between and within trial covariates. Multiple
outcomes were considered as repeated measures. Multi-arm studies and non-
randomised historical controls did not require additional considerations. K.B.
Dear claimed particularly that they could not incorporate a random-effects

baseline term.

Arends et al.®, in 2008, suggested a multivariate, random, mixed-effects model

for simultaneous analysis of survival proportions at different time points, which
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was an extension of the proposed fixed-effect model®’. At a fixed time point the
model reduced to the DerSimonian-Laird random-effects model and therefore
could be seen as a generalisation of it. The authors indicated that their model
allowed for investigation of non-proportional hazards and inclusion of trial and

treatment interactions.

In 2009, Fiocco et al.®® proposed a new correlated gamma frailty Poisson model
using a newly constructed multivariate gamma distribution allowing for between-
subjects correlation within a study. Composite likelihood was approximated using
two factors, one related to parameter estimation and the other related to
correlation parameter estimation®®. The method was less sensitive to rounding
errors due to the absence of quite large terms in a simulation. Bootstrap standard
errors and Cls could be obtained for the parameters via simulation of the
multivariate gamma distribution. This work was extended to MA of pairs of
survival curves under heterogeneity, using aggregate TTE data, and suggested
a simultaneous analysis of survival proportions reported at multiple time-points
using a multivariate random-effects model®®. The authors stated that their method
did not require an assumption on the shape of individual survival curves, as K.B.
Dear®” and Arends et al.®3 proposed in the past; it could also deal with missing
data and allowed for heterogeneity in baseline risk. Restrictions related to the

estimation of lower dimension models and incomplete follow-up were discussed.

Jackson et al.}® developed a random-effects multivariate aggregate MA model
for TTE outcomes. The authors suggested modelling event probabilities using
multiple time-points instead of the hazard function, avoiding any proportional
hazards assumptions. Their method could be preferable in situations where crude
overall survival was desired or when inferences on specific time-points’ survival

probabilities were needed.

Riley et al.1%! described the methodology needed for a multivariate MA, using IPD
to estimate within-study correlations using also non-parametric bootstrapping
methods, particularly for survival outcomes. Methodology for other outcomes has
been described including continuous, binary and mixed outcomes. The method
produced more appropriate standard errors particularly in the presence of

longitudinal data and allowed for adjusted estimates and treatment-covariate
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interactions. The authors indicated that their method could be used both under

two- and one-stage model approaches.

Finally, Weir et al®* in 2019, introduced a multivariate random-effects model for
meta-analysis of the difference in RMST with IPD. The model borrowed strength
from all available data at different follow-up times across trials and incorporated
between-time point covariances. Unlike previous methods such as Wei et al® it
did not rely on predictions from fitted models but incorporated all observed data
at all time points of interest. In a simulation study their approach yielded in smaller
mean standard error at all time points when compared to other univariate

methods.

2.4.6 Method comparison and application to real life conditions and/or
simulations

In 2000, Earle et al.1%? assessed five methods combining published survival
curves in medical research; the iterative generalized least squares, MA of TTE
data adjusting for covariates, non-linear regression, the log relative risk, and the
weighted log relative risk. The authors suggested that all methods maintained
reproducibility of summary survival curves from published literature, however, the
best method was dependent on the data characteristics and the aim of the

analysis.

Duchateau et al.1%3, during 2001, compared the results from TTE outcomes from
IPD MAs to those obtained from aggregate data MAs. The authors indicated that
the differences mainly occurred since IPD MAs were based on duration of survival
whereas aggregate data MAs were based on the cumulative mortality at specific

time points.

Tudur et al.1%4, in 2001, compared three indirect methods proposed by Parmar et
al.*3 and an extension of the survival curve approach proposed by Williamson (via
internal communication during that time). The authors indicated that estimating
the variance of the log HR from a Cl and estimating log HR and variance using
the p-value from the log-rank test performed better compared to estimating log
HR and variance from survival curves where variability in the estimates was

present. In the presence of low event probability, the indirect method using
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survival curves was not reliable. Finally, they suggested situations under which

an aggregate data approach was adequate.

In 2005, Michiels et al.®> compared results obtained from MAs when median
survival times were used as an alternative to HRs, or ORs of survival rates.
Authors found that both median survival times and OR methods could result in
an important loss of statistical power and under- or overestimation of treatment
effects. In the presence of lower event rates, median survival time method
provided more biased results. They highlighted the necessity of collecting
important information on measures such as the degrees of freedom, HR with 95%
Cls or the exact p-value allowing for replication of the HRs directly from the
summary statistics of the trial report.

Tudur-Smith et al.1% compared methodology investigating heterogeneity in TTE
MA for aggregate data and IPD in 2005. Aggregate data meta-regression was
accurate in the presence of within-study treatment-covariate interaction in
addition to the between-trial variations for the aggregate value of the covariate.
Additionally to previous evidence from Lambert et all%, the authors indicated that
IPD should be used to study patient characteristics reliably and assess
heterogeneity since adequate summary data are usually limited.

Tudur-Smith and Williamson'®’, in 2007, compared three methods for fixed-effect
IPD MA using TTE outcomes: the stratified log-rank analysis, stratified Cox
regression and inverse variance weighted average of estimates. The authors
indicated circumstances under which the models could produce similar estimates
of the pooled log HR and its variance (when the underlying treatment effect was
close to zero and the degree of heterogeneity across trials was minimal). The
stratified log-rank analysis biased the results for larger treatment effects; all
methods were approximately equivalent for modest treatment effects and low

heterogeneity.

In 2008, Katsahian et al.1°®® compared four approaches for IPD MA of TTE
endpoints via simulation: the fixed-effect, random-effects (frailty), stratified and
marginal models. The conditional model results differed substantially from
marginal models since they were trying to address different questions. Frailty and
random-effects models behaved fairly well even if few trials (i.e., not less than

three) per study were present. Stratified models performed similarly to frailty
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models; heterogeneity though could not be measured. Smaller type | errors and
greater power were obtained from the random-effects compared to fixed-effect
models when heterogeneity was explored. Finally, frailty models appeared to be

the best suited models as they could handle trial-treatment interactions.

Hirooka et al.l®, during 2009, reported the performance of the estimation
methods for literature based MA suggested by Parmar et al.*® via a simulation
study comparing Cox regression analysis to direct method (i.e. log HR and
variance were calculated from the log-rank score and its variance calculated from
data), indirect method (log HR was approximately calculated as the “(total
observed events)/4”), survival curve method and the survival curve method
involving Mantel-Haenzel method (i.e. modified survival curve method). The
authors indicated that the direct method performed similarly to Cox regression;
the indirect method was highly accurate but underestimated the effect size in
presence of a large effect with large sample size and high event probability.
Finally, the survival curve and modified survival curve methods underestimated

the effect size for large effect size with small sample size and low event rate.

In 2011, Fisher et al.'19 evaluated four methods (the pooling of within-trial
covariate interactions (PWT), one-stage model with a treatment-covariate
interaction term (OSM), testing for difference between covariate subgroups in
their pooled treatment effects (TDCS) and combining PWT with meta-regression
(CWA)) assessing patient-level interactions in IPD MA and provided guidance on
method selection. They indicated that method selection should be based upon
whether across-trial information is accounted for in the analysis. PWT and CWA
methods were considered important initial steps of any analysis; OSM could be
a more attractive approach since it allowed for multiple parameters to be
simultaneously estimated, however, methodology and software issues exist for
the application of this method. TDSC could identify treatment-covariate
interaction, however, it could increase the risk of ecological bias since estimates

could contain both within and between-trial information.

In 2011, Bowden et al.''! compared the performance of two-stage log-rank and
Cox model methods to the one-stage methods using Cox proportional hazards
model and made use of the restricted maximum likelihood (REML). Negligible

bias was present in the two-stage and one-stage Cox model estimates whereas

49



a small amount of bias was observed with the log-rank method; the estimates
were though quite similar. The coverage of the model reduced when the sample
size increased in all methods, and more conservative effect estimates were
obtained because of the increased variance of the HR under the random-effects
model used.

Simmonds et al.1*? compared three two-stage common methods for analysis of
TTE data via simulation in 2011: a hypergeometric proportional odds model (Peto
method), a Cox proportional hazards and an interval-censored logistic model.
The Cox proportional hazards model and interval-censored logistic regression
provided generally unbiased results, with the log-rank method yielding bias for
large HRs. The authors discussed the relevant implications on a meta-analysis
level and suggested that maximume-likelihood methods such as Cox and interval
censored logistic models should be preferred over log-rank test for MA of TTE

endpoints since they are able to test if the proportionality assumption holds.

Fiocco et al.'!? evaluated in 2012 three models for MA of survival curves. The
authors compared the results from the model proposed by K.B. Dear®’ using
iterative least squares, a multivariate random effects model which was suggested
by Arends et al®® as an extension of the previous model and a model proposed
by Fiocco et al.®® using a Poisson correlated gamma frailty model. The same
trend was observed in the estimated overall survival in the presence of
heterogeneity. The Poisson correlated gamma frailty model could deal with the
proportionality assumption as indicated in a simulation study; potential sources
of heterogeneity between the studies were explained via inclusion of covariates

at the study-level.

Bennett et al.1!4, in 2013, assessed three Cox proportional hazard models for
TTE data MA, two from a frequentist and one from a Bayesian perspective,
considering also how these methods perform in the presence of low event rates.
Based on simulation studies the Heinze and Schemper method!!® with firth
correction was consistently better in predicting log HR when the event rate was
low, however, all methods performed equally well when the event count was large

enough.

In 2015, Wei et al.% evaluated one flexible parametric and two non-parametric

estimation methods using restricted mean survival time (RSMT) for MA of survival
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outcomes as an alternative way to the calculation of HR in the two-stage IPD MA.
RMST did not require the proportional hazard assumption, allowed the treatment
effect evaluation to rely on the difference in TTE, facilitated interpretation of the
results and allowed trial data inclusion in a MA in the presence of trials with
shorter follow-up. The authors compared the three methods via simulation,
concluding that methods perform similarly well in terms of the coverage, and
flexible parametric method produced smaller mean square errors under specific

scenarios.

Lueza et al.}'® ,in 2016, compared methodology used to estimate the difference
in the RMST from IPD MA of TTE outcomes, as Wei et al® did, looking at a
different range of scenarios. Specifically, the authors compared the “Naive
Kaplan-Meier”, the “Peto-quintile”, the “Pooled Kaplan-Meier” method, and the
“Pooled exponential” method. Simulation studies indicated that the Pooled
Kaplan-Meier with DerSimonian-Laird random effects performed better in terms
of bias and variance. Pooled exponential method showed bias in presence on
non-proportional hazards; Peto-quintile underestimated the RMST apart from the
case where non-proportional hazards considered; fixed effects underestimated
the standard error of the RMST in most cases apart from the Pooled Kaplan-

Meier and Pooled Exponential with DerSimonian-Laird random effects.

Finally in 2018, van Beekhuizen et al.*'” compared three methods for NMA of
TTE outcomes: the HR NMA, the parametric survival NMAs (PNMA) and finally
fractional polynomial NMAs (FPNMA). Using datasets where the proportionality
assumption was either valid or violated and making outcome comparisons based
on RMST, the authors indicated that all methods predicted equally well mean
survival in the presence of proportional hazards, however in the absence of them,
HR NMA performed worse than PNMA and FPNMA. PNMA was not very good in
selecting the best fit due to option limitations and having fewer opportunities to

predict survival plateaus.

2.4.7 General Discussions, Suggestions and/or Critiques on meta-
analysis of Time-to-Event Outcomes

In 1988, Abel and Edler!'® were among the first researchers identifying issues

with the conventional approaches of measuring relative risk in MA. Using a simple
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example, the authors indicated that in the presence of time-dependent treatment
effect, when the number of individuals at risk changes markedly, the true relative
risk was likely to be underestimated. They claimed that estimation of relative risk
should account for the time-dependence of observed and expected events at

each time point.

O.N. Keene!®® described in 2002 classic approaches to the analysis of TTE data
when the proportionality assumption seemed questionable and explored
alternative estimates of efficacy including the HR. The author suggested that
using median times to event could result in a robust measure of efficacy within a
non-parametric framework, using a bootstrap method for the calculation of
confidence intervals. A calculation of bootstrap standard errors for the difference
in medians was also performed. In 2003, D.A. Bennett*?° provided an outline of
methods necessary for the analysis of observational TTE outcomes. The authors
discussed the implications for MA and the relevant areas of concern involved in
MA such as publication bias, heterogeneity, misclassification and measurement

error.

In 2005, Simmonds et al.'?! performed a methods review used for IPD MA. The
authors indicated that MA of TTE outcomes were more apparent when IPD MA
was performed; the majority of them used the Peto method, the log-rank and Cox
proportional hazard models. Review authors discussed the need of developing
methods incorporating heterogeneity via random-effects models; they also

suggested that more clear strategies were needed in the absence of IPD.

Cope and Jansen'??, using a fractional polynomial Bayesian NMA of parametric
survival curves, discussed different approaches to present rank probabilities.
They looked into effect measures such as: median survival, expected survival,
mean survival, mean survival of the trial with the shortest follow up time point,
hazard or hazard ratio over time, cumulative survival or survival proportions over
time and finally mean survival at subsequent time points. The authors indicated
that the first half of the rank probabilities were easier to understand,
communicated and did not vary over time whereas the other three improved the
information related to the relative treatment effects over time, facilitating decision

making by providing a more transparent approach.
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Finally, Batson et al.*5, in 2016, published a review of the methodology reported
in oncology clinical trials and its suitability for informing their inclusion in a MA.
The authors indicated that serious limitations were observed in the reporting of
clinical trials; they were most influenced by traditional approaches such as Cox,
stratified Cox, log-rank test without justifying important assumptions of the models
posed such as the proportional hazard assumption. The authors suggested that
statistical methodology should be assessed by goodness of model fit and
alternative approaches for MA of TTE outcomes where the proportional hazards
assumption does not hold such as accelerated failure time models should be

considered for valid decision making.

2.5 Discussion

This chapter aimed to identify and describe methodological research papers
describing the methods for MA of TTE outcomes, without providing direct
comparison or judgements among proposed methodologies. The review of the
articles included was based on searches conducted in Medline (Ovid version),
Scopus and Web of Science from the earliest date up to December 2021. |
reviewed a total of 75 articles. The purpose of carrying out the review was to
obtain an in-depth summary of relevant published literature, to inform the

subsequent research presented in later chapters.

| categorised the publications into seven main categories: Models for aggregate
data (11 publications), methods for reconstruction of TTE data (5 publications),
models for IPD (16 publications), methods for NMA (12 publications), multivariate
MA (7 publications), method comparison via real life conditions and/or
simulations (16 publications) and finally papers including discussions, critiques
and other suggestions for MA of TTE outcomes (6 publications). | described
various methodologies including proportional hazards, non-proportional hazards,
RMST, data extraction from survival curves to conduct MA, methodology for IPD
and aggregate data MA, and frailty models for the examination of heterogeneity.
The review identified limited publications focusing on the issue of analysing TTE
outcomes as binary such Michiels et al®®. | was able also to extract information
from some research publications on the significance of the use of different effect

measures.
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For example, Abel and Edler''® discussed that the estimation of the effect
measure in TTE outcomes has to account for the time-dependence of observed
and expected events at each time point. Via an example they indicated that
calculation of the cumulative observed and expected events could lead to
underestimation of the true risk. Duchateau et al.1%3 claimed that in an IPD MA
interpretation is conducted in terms of a HR, therefore taking into account
patient’s time to death, whereas aggregate data MA is often interpreted using
ORs, leading to non-representative conclusions on the overall treatment effect

sizel?.

Additionally, Combescure et al.>3 indicated that MA of binary outcomes when
censoring is present could affect the reliability of MA on TTE data, highlighting
the necessity of further research in assessing the implications of censored data
being present in aggregate data MA. Cope and Jansen'??, from a NMA
perspective, discussed the potential advantages and disadvantages of different
effect measures related to treatment rankings. Specifically, the authors claimed
that ranking based upon one-dimensional measures did not yield the necessary
information needed by rank probabilities whereas those based upon the HR could
provide important information over time on the treatment effect at each time
point'?2, Finally, a recent review conducted by Otwombe et al.*® stressed the fact
that the research using logistic regression on TTE outcomes is classified as

“suboptimal” due to their failure in accounting for follow-up.

The methodology review identified the research that exists in the literature to
support systematic reviewers and meta-analysts to perform MA of TTE outcomes.
It has also described more complex methodologies with regards to different
modelling techniques that are not necessarily aimed to be applied by systematic
reviewers and meta-analysts. The review identified that most publications in the
past were focusing mainly on models for aggregate data, whereas recently
publications are focusing mainly on meta-analysis of IPD or NMA. The use of

Bayesian techniqgues in recent years has been explored.

This review did not aim to collect all empirical evidence from a certain topic, but
to evaluate a broad pre-specified methodological question'?4. Therefore, | did not
intend to consider it as a systematic review, even though | took a systematic

approach to searching and screening to identify the necessary evidence.
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Furthermore, | excluded any methodological studies that were reported in

languages other than English and this may have introduced language bias.

Even though the use of the complementary log-log link was not directly explored
here due to the limited publications identified in the literature | focus on this for
the rest of this PhD since it provides a direct interpretation on a HR scale, it is
closely related to continuous-time models, has a built-in proportional hazards
assumption, and therefore has important application in survival analysis.'?®> The
use of RR has not been explored further since according to the literature34 35 39
41 is placed in between the OR and HR measures and therefore, it is expect to

capture any biases within these extremes.

To my knowledge there is one previous PhD report by Sarah Nevitt (published in
2017) identifying methodology that exists on MA of TTE data or application of the
existing methods; this included more than a hundred publications'?¢. However,
this review had different inclusion and exclusion criteria and different databases
were searched. It is important to note that the core of methodological papers (up
to January 2017) that were described here were similar to those identified in the
previous report, while additional methodological publications were identified in
more recent years. Additionally, important contribution to the literature on
analysing TTE outcomes as binary in meta-analysis was conducted by research

produced by Tudur-Smith et al*?’.

In conclusion, | explored and described methodological papers for MA of TTE
outcomes, including discussions on the significance of the correct choice of the
effect measure, including quite limited discussions on the element of analysing
TTE outcomes as binary. My review indicated that many different methodologies
have been proposed specifically for MA of TTE outcomes, however past reviews
have indicated that their application to date is still quite limited*®> 45, Further
research is needed in order to understand how these methodologies perform
comparatively when applied to different MA datasets having various
characteristics, using effect measures such as the HR and OR.
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3. Analysing Time-to-Event Endpoints Originally
Treated as Binary on a HR scale Using Empirical
Data from the CDSR

3.1 Chapter Overview

This chapter provides an empirical comparison between TTE MA analysed
originally as binary in the CDSR and interpreted on the OR scale with MA results
from analyses performed using the complementary log-log link (clog-log) and
interpreted on the HR scale. | describe the reasons for performing these
analyses, the statistical models and comparisons conducted, and present the

results, together with a discussion of the findings.

3.2 Introduction

Systematic reviews and MA of TTE outcomes (e.g. time to death, recurrence of
symptoms, time to conception, relief of pain etc.) are frequently carried out and
are very common in areas such as cancer, respiratory and cardiovascular, since
event timings are crucial to assessing the impact of an intervention?’.

The decision on how TTE outcomes are handled in a particular meta-analysis
largely depends on how eligible studies are reported and is often out of the control
of the meta-analyst except if individual participant data (IPD) are available. The
information extracted by systematic reviewers may include the total number of
participants and events per arm, and/or the HR alongside its CI, and/or the log-
rank observed minus expected statistic (“O-E”) and its variance (“V”) (which are

useful alternative statistics if a hazard ratio is not directly reported*’).
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Time-to-event data can be analysed using the effect measure of hazard ratio
(HR), or can be dichotomised and analysed as binary using effect measures such
as the odds ratio (OR) or risk ratio (RR)*6. Although HR is considered the most
appropriate scale for analysis of TTE data, in practice OR and RR are frequently
used instead due to the following reasons: unavailability of individual participant
data (IPD); limitations on how these outcomes are reported in individual trial
reports; lack of familiarity in handling TTE outcomes for meta-analysis; difficulties
in understanding the methods of analysing such data without a statistician; limited
available training for the majority of systematic reviewers and meta-analysts who
perform such analyses*?.

Discussions have been raised in the past and are still ongoing over how TTE
outcomes should be analysed in a MA. Since TTE data take into account the
timing and censoring of the events, strong assumptions are made if these data
are dichotomised, ignoring their natural properties and treating them as any other
binary outcome. This could have a serious impact on the final pooled effect
estimates, potentially producing misleading decisions on the appropriateness of
healthcare interventions, which in turn could adversely affect patient heath and
healthcare services, or lead to initiation of new trials which may not be cost-

effective.

In the past, research was conducted comparing the differences between the OR
using logistic regression models and the HR using proportional hazard (PH)
models within individual studies. Green and Symons3? showed that logistic and
Cox proportional hazard models produce similar results when the event is rare
and for shorter follow-up times under a constant hazard rate. Ingram and
Kleinman3’ added that important differences among the methods occur in the
presence of varying censoring rates and length of follow-up. However, it has not
been established yet how such results transfer to the context of an aggregate
data meta-analysis for which summary data is extracted from trial reports.
Further, in this context it is of interest to examine potential alternatives such as
the use of the complementary log-log (clog-log) link, which may reduce the
difference in the results between the two effect measures used. The overall meta-
analytic estimate can be affected due to changes to the weighting allocated to
each study, and therefore changes to the results of a meta-analysis can be

unpredictable.
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In this chapter | aimed to carry out an empirical “meta-epidemiological” study
using survival meta-analysis data from the Cochrane Database of Systematic
Reviews (CDSR) (Issue 1, 2008) to explore the implications of analysing TTE
outcomes as binary in meta-analysis. Since only binary data were available |
examined the impact of using alternative methodology such as the
complementary log-log link (clog-log), proven to facilitate interpretation of the
results on a HR scale.1?> 128 | assess only the differences between the OR and
the HR, as the RR, according to the literature34 353941 is placed in between these
measures and therefore, | expect to capture any bias within these extremes. |
perform these analyses under both two- and one-stage models.

The rest of this chapter is set out as follows. In Section 3.3, | describe the dataset
| used and the statistical models that | applied. In Section 3.4, | present
descriptive statistics of the database and then | describe the results obtained from
re-analysing the data originally analysed as binary on an HR scale in two
subsections: one for the two-stage and one for the one-stage models. These
results are followed by a discussion exploring the strengths and limitations of my
findings in Section 3.5, together with conclusions and plans for further work.

3.3 Methods
3.3.1 Data

The Nordic Cochrane Centre provided the content of the first issue from 2008 of
the CDSR and includes meta-analyses within reviews which have been classified
previously by outcome type, medical specialty and types of interventions included
in the pairwise comparisons??°. The database did not record whether data type
was TTE; however, based on the outcome classification | was able to identify
(using words such as “survival’, “death”, “fatality”) meta-analyses with outcome
classification “all-cause mortality” where the information recorded was based only
on the number of events and participants per arm. Therefore, a first subset of

TTE MA was identified; those recorded as binary summaries.

3.3.2 Eligibility Criteria

Rebecca M. Turner previously extracted these binary data and conducted initial
cleaning including examination of the outcome classification; | repeated the data
extraction to confirm the information obtained were accurate. The dataset could
contribute more than one meta-analysis per Cochrane review.
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RMT identified 30 misclassifications due to disagreement with the original
outcome classification as listed in the datasets, conflicting information in the
database or unavailability of the correct version of the Cochrane review, leaving
1,102 MA in the dataset. | excluded 1,252 studies including double zero events,
since they do not contribute to the meta-analysis results*® 129, | removed another
352 meta-analyses including fewer than 3 studies because some of the models
applied below (i.e. generalised linear mixed models) will be affected by estimation
issues and inevitable failures using small numbers of studies'3°; hence | wanted
to make fair comparisons between the models applied. Derivation of the analysis

sample is provided in Figure 3.1.

Binary

‘ 1,132 Meta-analyses ‘

6,872 studies
30 MAs (126 studies)
> removed due to
v misclassification

1,102 Meta-analyses
6,746 studies

with double zero events

|

1,252 studies removed ]

3

1,067 Meta-analyses
5,496 studies

352 MAs (625 studies)
removed due to failures
in one-stage models

I

All-cause mortality
715 Meta-analyses
4 871 studies

Figure 3.1: Analysis sample of binary dataset from the CDSR (2008, Issue 1).

3.3.2 Descriptive Statistics

Prior to analysis, | obtained descriptive statistics on the number of studies per
meta-analysis, number of events and study size by the median and interquartile
range (IQR). | identified also the number of medical specialities, and median

number of events (and IQR) per medical specialty.



3.3.3 Model description

| used the following meta-analysis models to analyse the data on the OR or HR
scale. The model was initially presented by Jackson et al.13% on meta-analysis
level and by T.V Perneger® on a single study level; | applied it on the HR scale.
The first was a model proposed for binary data (assuming a binomial likelihood
with a logit link) which is based only on the number of patients and number of
events which occurred. Interpretation for the treatment effect is conducted in
terms of the logarithm of an OR.

In the second approach, | modelled the binary data using a normal approximation
to binomial likelihood with a complementary log-log link (clog-log), where
treatment effect interpretation was based on the logarithm of a HR. This method
is also based only on the number of patients and events which occurred, and
ignores censoring and the time element; however it is closely related to
continuous-time models, has a built-in proportional hazards assumption, and
therefore has important application in survival analysis!?>. More details on this

approach are presented in Appendix B.3 (part A).

3.3.3.1 Fitting two-stage random-effects models for binary data

Prior to fitting the two-stage random-effects models, study arms with zero events
were identified for the binary data. For 771 studies, a “treatment arm” continuity
correction was applied as proposed by Sweeting et al.*3! and was constrained to
sum to one as this ensures that the same amount of information is added to each
study. Specifically, the reciprocal of the size of the opposite treatment arm was
added to both cells (m/n where m is a constant of a chosen size and n represents

the total amount of patients randomised in the opposite arm).

Leti = 1,2,...,n denote the study. The estimated log odds and log hazard ratios
were given by:

1 (Ai) 1 (Ci)f OR 3.1
ogBi ogDi or ORs (3.1)

log[—log(1 — Pr;)] — log[—log(1 — Pg;)] for HRs (3.2)

i =

where A;, C; represented number of events, B;, D; represented number of non-

events in the treatment and control groups respectively, P = A_TB_ was the

Ci
C;+Dj

proportion of events on the treatment arm of the i** study, and Py = was
the proportion of events on the control arm of the it* study.
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The corresponding variances were given by:

+=+—= for ORs (3.3)

= 1 2 Pp * (1 - PTi) 1 2 P, * (1 _ PCi)
<log(1 - PTi) * (PTi - 1)> " ( A+ B; ) * (log(l - PCi) * (PCi - 1)) * < C, +D, )fOI‘ HRs (3-4)

Equations (3.2) and (3.4) provided a HR estimate via the use of the clog-log link
considered as a useful link function for the discrete-time hazards models as
recommended by Hedeker et al.1?® and Singer et al.'?>. More information on the
derivation of the HR estimate using the clog-log link is provided in Appendix B.3
(part B). | estimated the study-specific log odds ratios or log hazard ratios, y; and
their within-study variances s? as shown above and fitted a standard two-stage
random-effects model to these. Additionally, | obtained the I? statistic from the

fitted models as follows:

:EZ

1?2 = (3.5)

12462

where 72 denotes the variance of the underlying true effects across studies and

a? the typical within-study variance.

To avoid downward bias in the variance components estimates, | used the
restricted maximum likelihood (REML) estimator for model implementationt3?,
The models were implemented via the “rma.uni” command from “metafor”

package in R (Appendix B.2).

3.3.3.2 Fitting one-stage random-effects models for binary data

The following model is a generalised linear mixed model which enables us to
perform the analysis in one-stage with the possibility to provide us with more
accurate inferences. Let i = 1,2, ...,n denote the study and k = 0,1 denote the
treatment group (k = 0 indicates control and k = 1 indicates active treatment
group). Assuming that m;, is the event probability in the i*® study for the k"

treatment group.

A generalised linear mixed model was fitted first from Jackson et al.*3 for the

binary data and | extended it to the HR scale. This model uses the exact binomial
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likelihood allowing us to provide more accurate results, especially with sparse

data'3°. According to the Simmonds and Higgins model'*® | assumed that:
g(my) =v; + k- 6;, 8;~N(6,7%) (3.7)
where g(m;;,) is a link function with:

() = { logit(m;;) for ORs

8LTik) = 11og [— log(1 — my.)] for HRs

y; was the baseline risk of event in study i, & was the overall treatment effect
across studies, t2 was the heterogeneity across studies, 6; was the true study-
specific treatment effect which varies between studies. Using the “gimer” function

in R, | obtain the following:

g(@) =vi + k-0 + k- g, where g,~N(0,72) and all ; are independent. | applied
to this dataset a modification of the Simmonds and Higgins model with random
treatment effects and fixed study-specific effects indicating that there is a

separate baseline risk parameter y; for each study as follows:

g(mix) = vi + k-0 + zjg (3.8)

| replaced k - 6 from the above equation with z;;,0 = (k — 0.5)8. The model’s form
does not change and z;;,6 is only a re-parameterisation of the model as described
in detail by Jackson et al.130, The difficulty related to using common study specific
effects is that of the number of parameters needing to be estimated since the
asymptotic theory of maximum likelihood requires the number of parameters to
remain stable as the sample size increases!3C. The original and the modified
versions of the Simmonds and Higgins model are similar with the same mean
and variance, however they have different bivariate structures (i.e. the variance
covariance matrix is defined in a different way). No serious bias in the estimation
of variance components was found using REML in fitting this model in a small

scale simulation study using continuous data conducted by Jackson et al.130.

The “rma.glmm” command from “metafor” package was used to calculate the
one-stage ORs and the “glmer” command from “Ime4” package was used for the
corresponding HR estimates (Appendix B.2). Estimation of between-study
heterogeneity (I?) for the one-stage HR models was considered computationally

intensive'®* and was computed outside the model specification (Appendix B.4);
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to provide justification for the method of calculation, I? estimates were obtained
similarly for the one-stage OR models and were compared to the directly

modelled ones, indicating almost identical results.

3.3.3 Model Comparison

The following model comparisons were performed. Initially, | examined whether
the results from analysing TTE data as binary on an OR scale are similar to
results from analysing on the HR scale using the clog-log link, both under two-
stage and one-stage models.

First, | calculated the proportion of significant and non-significant meta-analytic
pooled effect estimates under the different scales used (OR vs HR scale); |
identified the number of meta-analyses which were significant under one scale

and non-significant under the other at a two-sided 5% level of significance.

Bland-Altman plots with associated 95% limits of agreement were constructed,
with the aim of facilitating interpretation of results and producing fair comparisons
between the two scales'®®. In order to create these plots, results were
standardised by dividing the logarithm of the estimate by its standard error. Plots
were produced for the standardised treatment effect estimates and for the 12
statistics. I? represents the percentage of variability that is due to between-study
heterogeneity rather than chance; I? values range from 0% to 100%. This
measure was chosen for model comparison as it enables us to compare results
directly between the two scales used. The variance of underlying true effects
across studies (t?) was not used as it does not allow direct comparison between
different outcome measures. Finally, | examined whether the difference between
standardised estimates on the treatment effects between the OR and HR scales

is associated with level of baseline risk in individual studies.

| identified “outliers” as meta-analyses outside the 95% limits of agreement, and
| examined their characteristics. The meta-analysis characteristics | examined

were the following:

» between-scale differences in the magnitude of the pooled treatment effect
estimate and its 95% confidence intervals

= the levels of within-study standard error and between-study heterogeneity
and study weights in the meta-analysis
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» study-specific event probabilities and baseline risk

| summarised these differences by meta-analysis and reported those
characteristics which were mostly associated with substantial differences
between OR pooled effect estimates and corresponding HR pooled effect

estimates.

3.4 Results

For the outcome of “all-cause mortality”, 1,132 meta-analyses within the
Cochrane database were originally analysed as binary; after applying the
exclusion criteria 715 meta-analyses were explored further. The median number
of meta-analyses per review was 1 with IQR (1,2). The median number of studies
and the median number of events are provided in Table 3.1.

Outcome All-cause Mortality
Total Number of MA 715
Number of studies per MA: Median (IQR) 5(@3,8)
Number of events per MA: Median (IQR) 13 (4, 40)
Median Study Size (IQR) 124 (60, 312)

Table 3.1: Descriptive statistics for binary data from the Cochrane Database of
Systematic Reviews (Issue 1, 2008).

The distribution of medical specialities of the meta-analyses is presented in Table
3.2. For these data, “Cardiovascular’ (23%) is the most frequently occurring
category, followed by “Cancer” (13%), “Gynaecology, pregnancy and birth” (12%)
and ‘“respiratory diseases” (12%). The median number of events in cancer

substantially exceeded the median number of events in other medical areas.

Medical Specialty ACM* Number Events per MA:
(%) of MAs Median (IQR)

Cancer 95 (13%) 49 (17, 120)

Cardiovascular 168 (23%) 14 (4, 43)

Central nervous 44 (6%) 12 (5, 33)

system/musculoskeletal

Digestive/endocrine, nutritional 71 (10%) 7 (3, 18)

and metabolic

Gynaecology, pregnancy and birth 87 (12%) 7 (2, 20)
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Infectious diseases 46 (6%) 18 (8, 47)

Mental health and behavioural 21 (3%) 2(1,5)
conditions

Pathological conditions, symptoms 5 (1%) 9 (2, 15)
and signs

Respiratory diseases 87 (12%) 11 (5, 36)
Urogenital 30 (4%) 4(2,12)
Other* 61 (9%) 9 (3, 27)
*QOther: Blood and immune system, General heath, Injuries, Mouth and dental, and
Cystic fibrosis.

*ACM: All-cause mortality
Table 3.2: Distribution of medical specialties for the binary data meta-analyses in the
CDSR.

Once the models were applied, we compared results between OR and HR
analyses. Table 3.3 provides the percentages of significant and non-significant
meta-analyses at a two-sided 5% level of significance indicating that there are

few discrepancies present under two- or one-stage models.

Two-stage One-stage
Outcome
OR OR
- Non- o Non-
Significant o Significant o
Significant Significant
HR Significant 106 (15%) 2 (0.1%) 123 (17%) 2 (0.3%)
(clog-log)
Non-
All-cause o 4(0.6%) 603 (84%) 4(0.6%) 589 (82%)
. Significant
Mortality

Table 3.3: Number (%) of (non-)significant meta-analyses under different scales for

two- and one-stage models.

3.4.1 Results for Two-stage models

According to the Bland-Altman plot (Figure 3.2), the average difference between
the two methods for the standardised pooled effect estimates was -0.004 units (-
0.222 units, 0.214 units) and -0.1% (-10.6%, 10.3%) for the estimation of |2 for
two-stage models; this indicates a relatively small percentage difference between
the two methods in the estimation of the measure of impact of heterogeneity I2.

The width of the 95% Ilimits of agreement is small, indicating acceptable
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agreement between the two methods except in specific circumstances mentioned

below.

i
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Figure 3.2: Bland-Altman plots comparing standardised pooled effect and I? estimates

for two-stage models.

Based on Bland-Altman plots, 6% (n=47) of the meta-analyses were considered
as outliers both under two- and one-stage models. In 21% of the outlying meta-
analyses (e.g., MA 327; outlier obtained from I? estimates) a high event
probability (defined here as probability greater than 0.7 for the majority of the
individual studies) was observed. For example, meta-analysis 327 consists of 7
studies for which the event probability was greater than 0.7 for 5 out of 7 studies;
consequently, high event probability affected substantially the difference in the
individual study estimates between the OR and HR analyses, leading to different
allocated relative weights for the studies, and discrepancies in the pooled effect
estimates as shown in Figure 3.3. Other examples of meta-analyses under the
same category include MA 246, 322, 331, 394,448, 559, 711 (Appendix B.5).
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Treatment Control

A7 1o Tem or el OR [95% CI] HR clog [95% CI]
Study 1 23 20 21 24 = 1820% 0.550.12,2.47] —B 17.94% 0.76[0.38, 1.50]
Study 2 26 28 23 24 4—————» 680% 0.57[0.05 665] =i 14.92% 0.83[0.38, 1.83]
Study 3 5 6 10 &7 — - 3264% 0.64[021,1.98] 1 049% 066022 192]
Study 4 11 21 18 19 a— 8.63% 0.06[0.01,0.55] —— 12.67% 0.25[0.10, 0.61]
Study 5 17 23 19 20 +————  B842% 015[0.02,137] —=—  1418% 0.45[0.20,1.02]
Study 6 18 20 18 20 ——<——» 068% 1.00[0.13,7.89] —%— 14.43% 1.00[0.45 2.24]
Study 7 19 22 19 23 ——=»1562% 1.33[0.26,6.78] —m— 16.37% 1.14[0.55, 2.37]

ORREML (Q =67, df=6,p=03; 7= 0%)

- - - -
Clog REML (Q=8.9,df=6,p=02"=32%) g  10000% 052027, 099] & 10000% 068[047 099]
1T 1T 1T 1T
005 025 1 4 005 025 1 4

Figure 3.3: Forest plot (MA 327) indicating discrepancies in the presence of high event

probability.

The pooled HR estimates were closer to 1 than the OR estimates in the majority
of meta-analyses with some exceptions such as MA 574 (outlier obtained from
standardised and I? estimates) for binary data where, even though most of the
individual study HR estimates are closer to 1 than the individual OR estimates,
the pooled HR estimate is further from 1 than the pooled OR estimate. Other MA
under the same category include MA 417, 621, and 647 (Appendix B.5).

Treatment Control

MAS574 T+ Total C+ Total OR [95% C]] HR clog [95% CI]
Study 1 113 4 16 e—————— 207% 025[0.02 258 1 307% 028[0.03,249]
Study 2 13 15 20 21 4~ 147% 0.10[0.00,2.83] —e—H  1121% 045[0.16, 1.25]
Study3 101 348 90 353 M 40.94% 1.19[0.86, 167] W 3493% 116[0.88, 155]
Study 4 23 380 24 376 —m— 2607% 0.94[0.52,171] o 2268% 0.95[053, 1.68]
Study 5 3 12 4 6 e 349% 017[0.02 142 — 584% 0.26[0.06, 1.21]
Study 6 19 237 28 243 = 2507% 067[0.36,1.23] b 2228% 068[0.38,1.22]

ORREML (Q=86,di=5,p=0.1;1° =35%)
Clog REML (Q=9.2,df = 5, p = 0.1, F = 46%)

-» 100.00% 0.83[0.55, 1.26] - 100.00% 0.78[0.52, 1.16]
1 T 1 T 1 1
005 025 1 4 005 025 1 4

Figure 3.4: Forest plot (MA 574) in which pooled OR estimate is closer to one than pooled

HR estimate.

Increased within-study variability on the OR scale relative to the HR scale may
affect the weighting more than the actual estimates in the studies, for example
within binary data meta-analysis 7 (outlier obtained from standardised estimates),

67



producing some differences in the pooled effect estimates between the two
scales. Other outlier MAs lying under the same category are 156, 201, 214, 373,
431.

Treatment Control

MA7 T+ Total G+ Total OR [95% CI] HR clog [95% CI]
Study 1 8 26 7 25 1 057% 1.14[0.34,3.82] 1 1.08% 1.12[0.40,3.10]
Study2 2165 9717 2076 9718 B 8134% 1.06[0.99,1.13] B 60.68% 1.05[0.99, 1.11]
Study 3 31 144 53 161 — 3.07% 0.56[0.33,0.94] i 5.40% 0.61[0.39,0.95]
Study 4 32 207 20 105 = 216% 0.78[0.42,1.44] i 3.49% 079[0.45 1.39]
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Figure 3.5: Forest plot (MA 7) showing increased within-study variability on the OR scale

relative to the HR scale.

Important differences in between-study heterogeneity between the HR and OR
analyses were also observed (MA: 330, 434, 506). For example, meta-analysis
330 (outlier obtained from I? estimates) consists of 8 studies of which 6 are
smaller studies which received increased weight in the HR analysis compared to
the OR analysis while the two larger studies received smaller weights; this
affected both the individual HR estimates that have moved closer to each other

and the relevant weights of the studies as presented in Figure 3.6.
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MAsz  qeatment - Contol OR [95% O] HR clog [95% CT
Study 1 27 44 15 25 —=— 023% 106[0.39,2389] Hﬂ 11.02% 1.04[0.54,2.00]
Study 2 73 99 72 99 —m— 20.03% 1.05[0.56,1.98] w 18.63% 1.03[0.73,1.46]
Study 3 g8 3 12 15  4—i 441% 0.09[0.02,039] ——i 6.88% 0.19[0.07,0.47]
Study 4 11 30 19 31 — 8.73% 0.37[0.13,1.03] —— 923% 0.48[0.23,1.03]
Study 5 48 102 59 107 HBH 24.74% 072[042,125] W 17.48% 079[0.54,1.17)
Study 6 31 50 16 25 —=—  036% 0.02[0.34,2.49] —a—  1152% 095[0.50,178]
Study 7 6 61 18 32 —=— 11.97% 1.12[0.47, 266 —a 12.49% 1.08[0.60,1.93]
Study 8 38 59 19 32 —=— 1153% 124[051,3.00] —8 1275% 1.15[0.65,2.03]
ORREML (Q=134,df=7,p=01;F=15%)
Clog REML (Q=157,df=7,p=00;7=52%)  «  100.00% 079[0.57,1.10] +  100.00% 0.82[0.62,1.10]
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Figure 3.6: Forest plot (MA 330) indicating discrepancies arising from differences in

between-study heterogeneity.

In 34% of the outlying meta-analyses (e.g., MAs 158, 177, 296, 507, 525, 558,
560), the individual study estimates and the corresponding weights were affected

by a combination of differing event probability across study arms, differences in

between-study heterogeneity or increased within-study variability on the OR

relative to the HR scale (Figure 3.7). In the presence of a limited amount of

studies in the meta-analyses this was even more evident. Additional examples of

forest plots indicating the discrepancies among the results are shown in the

Appendix B.5, including tables presenting the treatment effect, /> and t2

estimates.
Treatment Control
MA 525 T+ Total C+ Total OR[95% CI| HR clog [95% CI]
Study 1 13 26 12 26 1 4.78% 1.17[0.39,3.47] —— 7.78% 1.12[0.50,2.49]
Study 2 30 60 28 60 e 11.04% 1.14[0.56, 2.34] e 16.61% 1.10[0.65, 1.86]
Study3 133 432 170 429 w  7161% 068[051,090] ®  5464% 073[058 092]
Study 4 13 29 17 24 e 433% 0.33[0.11,1.05] e 8.78% 0.48[0.23,1.02]
Study 5 1750 25 45 —— 824% 0.41[0.18,0.94] ——i  1218% 051[0.27,0.96]
ORREML (Q=58,df=4,p=02;F =0%)
— — — -2 — o,
Clog REML (A=58, df =4,p =021 = 14%) & 100.00% 069[0.54,0.87] *  100.00% 0.75[0.59, 0.94]
1T 1T 1 1T
005 025 1 4 005 025 1 4

Figure 3.7: Forest plot in which a combination of reasons affect differences between the

OR scale and the HR scale.
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Finally, examination of the effect of baseline risk on the differences between OR
and HR estimates shows somewhat greater differences for central values of

control risk (Figure Appendix B.1, values between 0.3 and 0.7).

3.4.2 Results for One-stage models

In a similar way to the two-stage models, Bland-Altman plots were obtained to
identify any potential discrepancies in the results once one-stage models were
applied. According to the Bland-Altman plot (Figure 3.8), the average difference
between the two methods for the standardised pooled effect estimates was -
0.008 units (-0.340 units, 0.324 units) and -0.1% (-6.5%, 6.4%) for the estimation
of I? for one-stage models; this indicates an even smaller percentage difference
between the two methods in the estimation of the measure of impact of
heterogeneity I? . The width of the 95% limits of agreement is small, indicating

acceptable agreement between the two methods.

(A) All-cause mortality (One-stage) (B) All-cause mortality (One-stage)
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Figure 3.8: Bland-Altman plots comparing standardised pooled effect and I? estimates

for one-stage models.

Since there were no available forest plots for one-stage models, only a table was
produced for the differences in the treatment effect, I? and 12 estimates between
the OR and HR analyses (Table 3.4). Similarly to two-stage models, high event
probability was defined here as probability greater than 0.7 for the majority of the
individual studies) was observed for some of the outlying meta-analyses (e.g. MA

245, 246, 327).
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The pooled HR estimates were closer to 1 than the OR estimates for the majority
of the MA with the exception of MA 201 and 574 where, even though most of the
individual study HR estimates are closer to 1 than the individual OR estimates,

the pooled HR estimate is further from 1 than the pooled OR estimate.

Increased within-study variability on the OR scale relative to the HR scale may
have affected the weighting more than the actual estimates in the studies, for
example within meta-analysis 628. Important differences in between-study
heterogeneity between the HR and OR analyses were also observed for a lot of
meta-analyses such as MA 157, 178, 179, 294, 295, 330, 356, 415, 431, 557,
690.

In 43% of the outlying meta-analyses, (MA 118, 139, 156, 158, 177, 485, 493,
506, 512, 523, 535, 559, 560) the individual study estimates and the
corresponding weights were affected by a combination of differing event
probability across study arms, differences in between-study heterogeneity or

increased within-study variability on the OR relative to the HR scale.

One-Stage Random-Effects Model

MA OR (95% Cl) 2 OR Z OR
Identifier vs. HR (95% CI) vs. 2 HR vs. I2 HR
8 0ses(036,0708) o000  2Lve 0%
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150 0ess(0aoh 009 oopi  O%Ve 1S
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70701 (05460099 001 Ve 19%
8 07530502, 000 006 Z2NVe 0%
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294

295

327

330

356

415

431

485

493

506

512

523

535

557

559

560

574

628

690

0.700 (0.390, 1.256)
vs. 0.760 (0.463, 1.247)
0.701 (0.385, 1.278)
vs. 0.793 (0.470, 1.337)
0.446 (0.232, 0.855)
vs. 0.676 (0.478, 0.956)
0.768 (0.532, 1.110)
vs. 0.873 (0.725, 1.051)
0.818 (0.657, 1.018)
vs. 0.846 (0.689, 1.039)
0.880 (0.407, 1.900)
vs. 0.924 (0.473, 1.804)
0.500 (0.414, 0.605)
vs. 0.569 (0.495, 0.654)
1.179 (0.910, 1.529)
vs. 1.102 (0.949, 1.279)
0.792 (0.584, 1.074)
vs. 0.857 (0.726, 1.011)
0.664 (0.383, 1.151)
vs. 0.771 (0.512, 1.162)
0.503 (0.217, 1.165)
vs. 0.576 (0.311, 1.066)
0.733 (0.585, 0.918)
vs. 0.805 (0.619, 1.045)
0.390 (0.023, 6.565)
vs. 0.550 (0.081, 3.729)
1.293 (0.469, 3.566)
vs. 1.269 (0.523, 3.082)
1.246 (0.462, 3.359)
vs. 1.008 (0.631, 1.611)
1.437 (0.830, 2.487)
vs. 1.231 (0.809, 1.872)
0.870 (0.534, 1.418)
vs. 0.788 (0.485, 1.280)
0.730 (0.168, 3.165)
vs. 0.821 (0.449, 1.502)
0.434 (0.264, 0.712)
vs. 0.479 (0.276, 0.832)

0.101 vs.
0.012
0.166 vs.
0.055
0.070 vs.
0.049
0.046 vs.
0.000
0.005 vs.
0.007
0.224 vs.
0.097
0.106 vs.
0.048
0.104 vs.
0.029
0.008 vs.
0.000
0.144 vs.
0.160
0.675 vs.
0.329
0.000 vs.
0.018
3.889 vs.
1.759
0.660 vs.
0.469
0.040 vs.
0.056
0.000 vs.
0.000
0.035 vs.
0.066
0.125 vs.
0.000
0.000 vs.
0.129

16% vs. 3%

26% vs. 16%

8% vs. 22%

20% vs. 0%

7% vs. 14%

32% vs. 24%

68% vs. 58%

53% vs. 47%

8% vs. 0%

21% vs. 38%

61% vs. 54%

0% vs. 21%

70% vs. 63%

67% vs. 75%

6% vs. 39%

0% vs. 0%

19% vs. 37%

10% vs. 0%

0% vs. 27%

Table 3.4: Results from meta-analyses outside the 95% limits of agreement
based on difference of standardised estimates and difference in I2.

MA coloured in blue represent results from studies outside the 95% limits of
agreement based on difference of standardised estimates. MA coloured in
red represent results from studies outside the 95% limits of agreement based
on difference in I2. MA coloured in black represent results from studies
outside the 95% limits of agreement based on both difference of standardised
estimates and difference in I2.
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3.5 Discussion

Using meta-analysis data from the CDSR of 2008, | investigated how TTE
outcomes are sometimes treated within meta-analysis; | explored the differences
that occur when data are analysed as binary as opposed to analysing the data
using the complementary log-log link where interpretation is conducted on a HR
scale. For this dataset, | identified important reasons associated with discordance
among the results, indicating that the correct choice of the method does matter
and may affect the interpretation and conclusions drawn from the results.

My analyses highlighted that high event probability was an important factor
associated with discordant effect estimates; changes to between and within-study
variation were important mechanisms producing differences in the results as well.
However, there were occasions where there was no clear single factor driving the
differences, since there was a combination of reasons affecting the individual

study estimates and corresponding weights.

While most of the meta-analyses within the database were analysed originally as
binary, with an outcome classification of all-cause mortality it is worth mentioning
that these meta-analyses could include the outcome of short-term mortality (e.g.
30 days) or longer-term mortality (e.g. 5 years); therefore some of these meta-
analyses with short follow-up may have been appropriately analysed as binary.
The outcome classification of all-cause mortality was considered a representative
sample of survival meta-analysis up to 2008, however results might be different
for other outcomes and results might have changed in later reviews where more

information on methodology was available.

| did not assess other reasons for differences between the results due to lack of
information on censoring and follow-up times. Interpretation of the results was
conducted with caution as | was interpreting the results based on known factors,
without excluding other unknown factors that may have affected the results. | was
not able to examine whether current practice of analysing TTE data has changed
and whether methodological choices have improved since 2008. Further work
examining the differences observed between analyses on the OR and HR scales

in the presence of IPD is necessary.

The model used to analyse TTE data as binary is the conventional approach

widely used by many systematic reviewers and meta-analysts'33. It is quick,
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inexpensive and study results are obtained from appropriately synthesized study
publications or by contacting study authors!3®, This approach to analysis ignores
censored observations®’ and treats them as missing and has also been criticised

for the within-study normality assumptions required*36.

The use of a clog-log link function, facilitating the results’ interpretation in a HR
scale for the binary data, was the best alternative approach enabling us to make
comparisons between the scales used if only binary summaries are available. In
the past, the clog-log link has been proven to provide a close approximation to
Cox regression invoking a proportional hazards assumption, rather than a
proportional odds assumption!?>. However, for these data, | was not able to
assess whether the HR obtained from the clog-log link is a close approximation
to the HR estimate that would be obtained under a proportional hazards model;
therefore, this magnifies the importance of extracting appropriate information
when conducting TTE MA. Similarly, | was not able to identify a clear pattern
under which the complementary log-log link could be employed since we were
not able to compare the clog-log approach to an approach including for example
information on “O-E” and “V” statistics or HR summaries. This will be explored in

later chapters.

A limitation observed by T.V Perneger® who conducted research on an individual
level basis indicated that the use of the clog-log function is useful when the
duration of follow-up is the same for all individuals and whenever the traditional
two-by-two table is a fair summary of results. However, when duration varies from
observation-to-observation Kaplan-Meier curves or incidence rates could be
obtained. This could be another justification on the mixed results observed in

some of the meta-analyses performed.

For these data, | also used a one-stage random-effects model with fixed study-
specific effects describing the baseline risk probability of the event in each study.
These models use exact binomial likelihoods and may therefore be more
accurate, especially with sparse data'®. The fixed study-specific effects cause
difficulties in estimation since the number of parameters increases with the
number of studies, but maximum likelihood theory requires the number of
parameters to remain stable as the sample size increases. A random-effects

model with random study-specific effects could be applied, however based on
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simulation studies this model performed better than others without any serious

biases present!,

To my knowledge, no research has been conducted using such a large database
assessing the differences between a) analysing the data as binary and
interpreting the results in an OR scale and b) analysing the data either using the

clog-log link facilitating interpretation on the HR scale.

| have demonstrated the impact of re-analysing binary TTE meta-analyses within
the Cochrane Database on a different scale, identifying the main drivers
influencing discrepancies between the meta-analytic results. My findings
provided useful insights into changes to meta-analytical results; however,
additional research is needed in order to proceed with more extensive
comparisons within meta-analyses where data such as “O-E” and “V” statistics or

individual participant data are available.

Parts of this Chapter were presented as an oral presentation at the 42"
conference of International Society of Clinical Biostatistics and at the 2021
annual meeting of the Society for Research Synthesis Methodology. The
results of the chapter were published in BMC Medical Research
methodology, doi:10.1186/s12874-022-01541-9.
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4. Comparing Methodology of Analysing Time-to-
Event Outcomes as Binary in Meta-analysis using
Empirical Data from the CDSR

4.1 Chapter Overview

As an extension to the previous chapter, here | compare MA results for a subset
of TTE data initially analysed using “O-E” and “V” statistics in the CDSR and
interpreted on the HR scale to results from analysing these data as binary on the
OR (via the logit link) or HR (via the clog-log link) scale. A detailed comparison
using various statistical methods for TTE MA is conducted. At the end of the

chapter, | conclude with a discussion of the findings.

4.2 Introduction

As discussed in previous chapters, TTE data is a unique category of data
recording “IF” and “WHEN" the event occurred. Various techniques have been
developed for analysing TTE data enabling us to utilize multiple time points,
account for censoring across study subjects and provide unbiased survival

estimates3.

The Cochrane handbook®® (version 5.1.0) suggests two approaches for MA of
TTE outcomes. Depending on whether data are extracted from the literature or
IPD are obtained, either “O-E” and “V” statistics (which are useful alternative
statistics if a hazard ratio is not directly reported*’) can be used or estimates of
the log HR and its corresponding standard error can be obtained for these

analyses. In the presence of “O-E” and “V” statistics, Peto’s method can provide
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us with an OR estimate, the log-rank approach®®*® with a HR estimate and a
variation of Peto's method with something in between?!. Simpler than the
previous statistics, if log HR and its standard error is provided, the exponential of

the logHR will give rise to a HR estimate.

According to Davey et al'%, in January 2008, the Cochrane database contained
22,453 MAs containing 112,600 studies, and the authors performed
classifications of MAs by outcome type, medical specialty and types of
interventions compared’. Systematic reviews and MA of TTE data are published
frequently within that database. Among these classified MAs, 1,693 MAs
containing 10,959 studies involved TTE outcomes such as “all-cause mortality”,
“‘composite mortality/morbidity only”, and “cause-specific mortality”. Surprisingly,
more than 90% of them dichotomised their TTE outcomes and only a small

proportion of them accounted for the natural properties of the data.

Having previously analysed TTE data from the CDSR which had been originally
analysed as binary, it was important for me to perform comparisons and
understand the differences | would obtain in the results if MAs analysed using “O-
E” and “V” statistics giving rise to a HR estimate were contrasted to the meta-
analytic estimates of OR (via the logit link) or HRs (via the clog-log link) when
data were analysed as binary accounting only for the total number of participants

and events per arm.

A substantial amount of research was conducted in the past examining the
differences between logistic and proportional hazards models in presence of TTE
outcomes. In Chapters 1 and 3, | provided detailed comparisons on the
differences between the two models using individual studies, while in Chapter 3,
| presented “meta-epidemiological” results exploring differences between the
models in meta-analyses of outcomes originally analysed as binary. In this
chapter, | aimed to extend my previous “meta-epidemiological” study by re-
analysing meta-analyses originally analysed using “O-E” and “V” statistics; using
additional data from the CDSR, | am able to provide a more accurate conclusion

for the analyses performed within the database.

The rest of this chapter is set out as follows. In Section 4.3, | present descriptive
statistics of the database and describe the two-stage model | applied. Section 4.4

describes the results obtained from re-analysing the data originally analysed
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using “O-E” and “V” data on an OR (via the logit link) and HR (via the clog-log
link) scale. In Section 4.5, | perform discussion of the results, present the
advantages and disadvantages of the findings and | finish with some conclusions

and plans for further work.

4.3 Methods
4.3.1 Data

As described in detail in Chapter 3, the Nordic Cochrane Centre permitted access
to the data of the CDSR 2008. Details related to outcomes, outcome
classifications, range of sample sizes in the MAs and medical areas are described
by Davey et al.}?. From the database, | was interested in study MAs analysed as
HRs with outcome classifications of overall survival and progression/disease free
survival. Based on the database using the outcome classification | was able to
identify (using words such as “survival’, “death”, “fatality”) another two sets of

TTE meta-analyses:

= “OEV” meta-analyses: Those with outcome classifications “overall
survival” and “progression/disease free survival” where the information
recorded was based on “binary” data (as in Chapter 3) in addition to log-
rank “O-E” and “V” statistics”; these were originally analysed as HRs in the
RevMan software;

» Meta-analyses with estimated log HR and its standard error. These were
removed from further analyses since there was no available information
on the number of events and participants per arm and therefore no binary

data meta-analysis could be conducted.

Therefore, | identified another subset of TTE MAs: those with binary summaries
in addition to “OEV” data. | analysed the outcome types of overall survival and
progression/disease free survival separately to assess whether differences exist
due to different characteristics of the outcomes. | also examined whether the
information available as “OEV” data was based on aggregate data or IPD by

examining the individual Cochrane reviews.
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4.3.2 Eligibility Criteria

| initially extracted the “OEV” data and conducted cleaning including examination
of the outcome classification; Rebecca M. Turner confirmed the choice of
included meta-analyses obtained from “OEV” data extraction. | identified 16
misclassifications due to disagreement with the original outcome classification as
listed in the datasets, conflicting information in the database or unavailability of
the correct version of the Cochrane review. Another 158 studies were excluded
due to the fact that even though an estimate of the log HR and its variance were
available, the number of events and total number of patients in the studies were
not available. Finally, 32 studies were excluded because they had double zero
events, therefore not contributing to any analyses, and another 7 MAs were
excluded because they contained fewer than three studies, for which we know
that a synthesis is usually questionable®0. Figure 4.1 shows the sample

derivation.

OEV

157 Meta-analyses
1,626 studies

16 MAs (216 studies)
removed due to
misclassification

h 4

Y \_
‘ 141 Meta-analyses

1,410 studies

32 MAs (158 studies)
removed due to unavailable
number of events/patients

¥ 9 in the database

109 Meta-analyses
1,252 studies

double zero events

> 32 studies removed due to ‘

h

‘ 107 Meta-analyses

1,226 studies

-
7 MAs (13 studies) removed
containing less than three

studies
s
Overall Survival Progression/Disease
69 Meta-analyses, free survival 31 Meta-
903 studies analyses, 310 studies

Figure 4.1: Analysis sample of “OEV” dataset from the CDSR (2008, issue 1).
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4.3.3 Descriptive Statistics

For both outcome classifications, as in the binary data analysed in Chapter 3, |
obtained descriptive statistics such the number of studies per meta-analysis,
number of events and study size by the median and interquartile range. | also
identify the number of medical specialities, and median number of events (and

IQR) per medical specialty.

4.3.4 Model description for “OEV” data

For these data, the “O-E” and “V” statistics were available in the Cochrane
database alongside the number of patients and events. They came either from
published reports or from IPD; | examined the individual reviews from the
Cochrane database and assessed the data origin. Since there was more
available information for these data than for the binary data (Chapter 3), the

following three models were applied, using only two-stage meta-analysis models.

| initially analysed the “OEV” data as binary data and modelled them as described
in detail in Chapter 3. | also used the log-rank Observed - Expected events (O-E)
and the log-rank Variance (V) statistics calculated previously from the number of
events and the individual times to event on each research arm of the trial; | used
the log-rank approach'3® in order to obtain another type of HR estimate. | used
random-effects models to analyse the data throughout, including between-study

heterogeneity to account for variation across studies.

4.3.5 Fitting two-stage random-effects models for “OEV” data
Similarly to Chapter 3, the estimated log odds and log hazard ratios were given
by equations (3.1) and (3.2) for the binary summaries while the “O-E” and “V”

statistics were used as follows:

_ logrank Observed — Expected events (O — E)

- for HRs (4.1
i logrank Variance (V) or HRs (4.1)

The corresponding variances were given by equations (3.3) and (3.4) as shown

in Chapter 3 for binary summaries while for “O-E” and “V” statistics as follows:

2 1
i

— for HRs (4.2
S logrank Variance (V) or HRs (4.2)

where V denotes the variance of the logrank statistic.
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To avoid biases such as downward bias on the unknown variance components
estimates, | used the REML estimator as the most suitable approach for the
model implementation?3?. Between the treatment and control arms, a hypothesis
test is performed assuming identical proportions of patients for whom the event
occurs versus the alternative hypothesis of higher or lower proportion of patients
experiencing the event. Test accuracy is based on the following assumptions: a)
drop out times are identically distributed across treatment and control groups and
b) drop out times are independent of the occurring event time'2’. The model was
implemented via the “rma.uni” command from “metafor” package in R as shown

in Appendix C.2.

4.4.6 Model comparison for “OEV” data

For the “OEV” data set, comparisons on overall and progression/disease free
survival outcomes were conducted separately; this was because differences
between these outcomes might be observed in the presence of different disease
severities, and therefore this would be associated with different length of follow-

up and risk of the outcome.

For both outcomes, | performed comparisons by examining the differences
between analysing the data as binary on an OR scale, analysing the data as
binary using the clog-log link on a HR scale, or analysing the data using the “O-
E” and “V” statistics on a HR scale. | assessed whether the differences observed
from analysing the data as binary on an OR scale could be reduced by the use
of the clog-log link. | present only comparisons of the results under two-stage
models since there were no available IPD to perform comparisons under one-

stage models.

Similarly to Chapter 3, | examined the proportion of significant and non-significant
meta-analytic pooled effect estimates under the different scales used and
identified the number of meta-analyses which were significant under one scale
and non-significant under the other. | created Bland-Altman plots for the
standardised treatment effect estimates and for the I? statistics to explore the
agreement among the methods producing fair comparisons between the two
scales’®. Meta-analyses outside the 95% limits of agreement were examined for

their characteristics.
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4.4 Results

In the Cochrane database, 157 meta-analyses were originally analysed using the
“O-E” and “V” statistics on a HR scale. After applying the exclusion criteria, 100
MAs remained for further analysis. The median number of meta-analyses per
review was 2 with IQR (2, 3). The median number of studies and the median
number of events are provided in Table 4.1. The overall survival category
contains 38 (55%) IPD and 31 (45%) non-IPD MAs whereas progression/disease
free survival contains 17 (55%) IPD and 14 (45%) non-IPD MAs. The median
number of events for IPD MAs was 122 with an IQR (57, 278) while non-IPD MAs
had a median of 93 with an IQR of (41, 202).

After applying the same exclusion criteria to the excluded MAs from this chapter,
which presented estimated log HR and its standard error only (32 MAs including
158 studies, see Figure 4.1), overall survival was represented in the sample with
13 MAs and 84 studies whereas progression/disease free survival was
represented with 8 MAs and 40 studies. The median number of studies in the
former outcome was 7 IQR (6,12) and for the latter outcome 6 IQR (4,8), slightly
less but still in the same range as the included MAs providing the “O-E” and “V”
statistics. The median number of events and median study size could not be
obtained and therefore we could not assess further how similar the excluded MAs

are to those included in the sample analysed.

“OEV”

Outcome Overall Survival Progression/Disease

Free Survival
Total Number of MA 69 31
Number of studies per MA: 10 6, 14) 1007, 14)
Median (IQR) ’
Number of events per MA:
Median (IOR) 108 (58, 254) 104 (70, 192)
Median Study Size (IQR) 182 (93, 369) 185 (90, 317)

Table 4.1: Descriptive statistics for “OEV” data from the CDSR.
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The distribution of medical specialities of the meta-analyses is presented in Table

4.2. | observed that analysing TTE outcomes as HRs is restricted to very few

medical specialties; “Cancer” was still the most frequent medical specialty for

both outcome types as observed in Chapter 3.

“OEV”
++.
os*: Events per Z[:r:Sber Events per
Medical Specialty Number MA: Median (%) of MA: Median
0
0,
(%) of MAs (IQR) MAS (IQR)
Cancer 60 (87%) 104 (45,221) 31(100%) 116 (56,243)
Digestive/endocrine,
nutritional and 1 (1%) 52 (35, 64) - -
metabolic
Infectious diseases 482
12% - -
8(12%)  (1601109)

**0OS: Overall Survival, PDFS: Progression/Disease free survival
Table 4.2: Distribution of medical specialties for the “OEV” data meta-analyses in the

CDSR.

Table 4.3 provides the percentages of significant and non-significant meta-

analyses for each outcome for two-stage models at a two-sided 5% level,

indicating that discrepancies are more prevalent in the “OEV” data compared to

the “binary” data (in Chapter 3); additionally the amount of discrepancies

observed in statistical significance from the comparison of OR and HR obtained

from the clog-log link was smaller than the amount of discrepancies observed

between the OR and HR analyses. With regards to dichotomisation of MAs into
IPD and non-IPD, IPD MAs had 9 (16%) MAs having a non-significant OR and
significant HR and another 1 (2%) MA with a significant OR and non-significant

HR; the corresponding numbers for non-IPD MAs were 6 (13%) and 3 (7%)

respectively.
OR HR (O-E & V)

“OEV” Sig* Non-Sig* Sig* Non-Sig*

Overall Sig* 20 (29%) 1(0.2%) 18 (26%) 10 (14%)
HR Survival Non-Sig* 1 (0.2%) 47 (68%) 3 (4%) 38 (55%)
(clog- Progressio  gjgx 9 (29%) 0 (0%) 8 (26%) 6 (19%)
log) n/Disease

free Non-Sig* 1 (3%) 21(68%) 1(3%) 16 (52%)

Survival
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Overall Sig* 18 (26%) 10 (14%)
Survival Non_Sig* 3 (4%) 38 (55%)

HR
(O-E Progressio  sjg* 9(29%) 5 (16%)
&V) n/Disease
free Non-Sig* 1 (3%) 16 (52%)
Survival

*Sig/Non-Sig: Significant; Non-Significant
Table 4.3: Number (%) of (non-)significant meta-analyses under different scales for two-
stage models (“OEV” data).

Bland-Altman plots produced for this subset indicated that the average difference
between each pair of methods is larger than those obtained from the “binary” data
(Figures 4.2 — 4.4). For overall survival, the average difference between the two
methods for the standardised pooled effect estimates was 0.2 units (-1.8 units,
2.1 units) for OR versus HR and 0.2 units (-2.2 units, 2.5 units) for HR using clog-
log versus HR; however, for OR vs HR clog-log differences the average bias was
0 units (-2.6 units, 2.7 units) indicating that clog-log is a closer approximation to
OR rather than HR analyses (Figure 4.2). For the estimation of I?, the average
difference between the methods is -6% (-41%, 29%) for OR versus HR, -6% (-
42%, 31%) for HR using clog-log versus HR, and 0% (-21%, 21%) for OR vs HR
clog-log differences; similarly the clog-log seems a closer approximation to OR
analyses rather than HR analyses (Figure 4.3). For progression/disease free
survival, the average difference between the two methods for the standardised
pooled effect estimates was 0.4 units (-1.5 units, 2.2 units) for OR versus HR, 0
units (-2.9 units, 2.9 units) for HR using clog-log versus HR, and 0.4 units (-2.7
units, 3.5 units) for OR vs HR clog-log differences (Figure 4.4). For the estimation
of I?, the average difference between the methods is -16% (-86%, 53%) for OR
versus HR, -16% (-89%, 57%) for HR using clog-log versus HR, and 0% (-13%,
13%) for OR vs HR (Figure 4.5). Bland-Altman plots produced for the average
difference between each pair of methods for IPD and non IPD datasets are

presented in Appendix C.1.

84



(A)

Difference in Standardised Estimates

ORvs HR clog-log

-

(B8 HR clog-log vs HR

(€)

ORvsHR

VIO T oOrnomTWO -0 2
Average Measure
* Cancer Digestive/endocr  ®  Infect

=]

PRI TorumT0woORDo 2

Average Measure
* Infect

* Cancer Digestivefendocr

=}

GV IT YT o rNoTWO - ©o 2

Average Measure

*  Cancer Digestive/endocr  ®  Infect

Outcome: overall Sunvival; Dashed lines: 95% limits of agreement

Figure 4.2: Overall Survival - Bland-Altman Plot comparing standardised OR vs. HR

estimates for two-stage models in “OEV” data.
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two-stage models in “OEV” data.
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Figure 4.5: Progression/Disease Free Survival - Bland-Altman Plot comparing 12

estimates (OR vs. HR) for two-stage models in “OEV” data.

Outliers were considered 28% of the “OEV” meta-analyses. Of these, 57% were

from IPD rather than non-IPD and 54% of them were for the outcome of overall
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survival. In 50% of the outliers a high event probability (defined here as probability
greater than 0.7) was observed, suggesting that this may be an important factor
associated with differences among the scales used. For example, meta-analysis
45 (outlier obtained from standardised estimates) consists of 7 studies for which
the event probability was greater than 0.7 for all the studies; consequently, high
event probability affected substantially the differences in the individual study
estimates between the OR and HR analyses, leading to different allocated
relative weights for the studies, and discrepancies in the pooled effect estimates
as shown in Figure 4.6. Even though the individual HR clog-log estimates were
closer to the individual OR estimates, the final pooled effect estimate was closer

to the pooled HR estimate; this was not though the case for all meta-analyses.

Treatment Control

MA 45 T+ Total C+ Total OR [95% CI] HR clog [95% Cl] HR LR*[95% Cl]
Study1 21 23 21 23—+ 376% 1.00[0.13, 7.78] - 5.22% 1.00 [0.46.2.15] b+ 4.88% 0.68[0.36, 1.27]
sudy2 25 28 24 27 —s—p 5.49% 1.04[0.19, 5.68] - 6.54% 1.02[0.51.2.01] f44 5.00% 0.90[0.51, 1.58]
Study3 15 17 14 15 4———P252% 0.54[0.04, 658] e 362% 0.79[0.31, 2.00] b 312% 0.53[0.24,1.16]
Study 4 135 149 137 151 e 2550% 099 [0.45, 2.15] W 2867% 0.99[0.74, 1.34] W 3248% 074[058 094
Study5 154 194 108 120  HE  3213% 043[0.21, 0.85] W 2061% 0.69[0.51,0.92] B 2002% 074[0.57,0.96]
Study® 80 100 96 111 H{ 2868% 0.62[0.30, 1.30] W 2322% 0.80[0.57,1.13] M 21.48% 0.80[0.60,1.08]
Study7 14 15 13 14 +——+P»192% 108 [0.06, 19.05] ——312% 1.03[0.38,2.79] =H 311% 067[0.31,1.47]
ORREML (Q=31,dr=6,p=08, = 1%)
Clog REML (Q =38, df=6,p=07; "= 10%)
LR*REML (0=15,d7=6,p = 1.0; "= 0%) € 10000% 0.65[0.44, 098] #100.00% 0.84[0.71.1.01] §i 100.00% 0.75[0.65, 0.86]
—r—t —r—t —r—t—
005 1 4 005 1 4 005 1 4

Figure 4.6: Forest plot (MA 45) indicating discrepancies in the presence of high event
probability.

Increased within-study variability on the OR scale relative to the HR scale may
affect the weighting more than the actual estimates in the studies, for example
for meta-analysis 17 (outlier obtained from standardised estimates), producing

differences in the pooled effect estimates between the two scales (Figure 4.7).
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Treatment Control

MA 17 T+ Total C+Total OR [95% CI] HR clog[95% CI] HR LR"[95% CI]
Study1 & 92 2 90 H— 8.12% 3.07 [0.60, 15.63] H—» 6.97% 3.00 [0.67, 14.67] B 2495% 125[0.92, 169
Study2 4 19 4 42 b 9.45% 2.53[0.55, 11.46] F—p 9.27% 2.35[0.59, 9.46] e 7.64% 1.54[0.88, 2.70]
Stugy3 1 12 1 11 ——i— 2.02% 2.83[0.11,74.20] ——— 163% 2.71[0.10, 74.09] > 267% 221[0.855.75]
Study4 5 81 2 82 H— 7.72% 2.63[0.50, 13.97] % 6.64% 2.58 [0.50, 13.30] ™ 2231% 1.39[1.01,1.92]
Stdy5 7 51 3 49 H—10.76% 2.44[0.59, 10.03] - 9.76% 2.34[0.60, 9.04] - 1322% 1.54[1.01,2.36]
Stdy6 2z 33 1 2 i 2.39% 4.33[0.21, 87.30] ——k 1.97% 4.20[0.21, 85.53] = 7.30% 2.19[1.23,3.90]
Study7 59 129 18 90 e 53.55% 1.82[1.00, 3.31] e 63.75% 168[0.99, 2.85] W 2181% 1.82[131,251]
ORREML (@ =0.9, df =6, p=1.0; [ = 0%)
Clog-log REML (Q = 1.1, df =6, p= 1.0; I = 0%)
Log-rank” RENL (= 5.2,df= 6, p = 0.5,F = 5%) A100.00% 214[1.35, 3.40] 100.00% 187 [1.28, 3.00] 4 10000% 1.53[1.31,1.80]
[ —r T 1 [
0.05 14 0.0s 14 0.05 14

Figure 4.7: Forest plot (MA 17) indicating increased within-study variability on the OR
scale relative to the HR scale.

Similarly, even though the individual study estimates and weights of OR and HR
clog-log were closer to each other, the HR clog-log pooled effect estimate was
closer to the pooled HR estimate; however, this was not the case for all meta-
analyses (e.g., MA 83, 85). Important differences in between-study heterogeneity
between the HR and OR analyses were observed in meta-analyses such as 42,
90. For example, meta-analysis 90 (outlier obtained from I? estimates) consists
of 11 studies out of which 8 are smaller studies and 3 are larger studies. Smaller
studies received increased weight in the HR analysis compared to the OR
analysis, while larger studies received smaller weights in the HR scale compared
to OR scale. However, this was not the case on the HR clog-log scale as

presented in Figure 4.8.
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Treatment Control
1A 90 Tt Total C+Total DR [95% CI] HR clog[95% CI] HR LR"[95% CI]

Study 1 18 56 23 55 —H 551% 0.68[0.30,1.43] H 413% 072[038 133 = 574% 072[0.39,137]
Study 2 19 5T 23 54 -+ 5.58% 0.67[0.31,1.46] FH o 425% 073[040,1.35] [ 583% 0720039132
Study 3 a7 97 T1o% b 805% 0.33[0.18, 0.61] = 10.73% 0.49[0.34,0.72) ] 11.25% 0.40[0.28, 0.58]
Study 4 44 80 51 78 b= B.06% 0.6500.34,1.23] Lo 9.08% 0.75[0.50,1.14] b 10.27% 0.52[055,1.23]
Study 5 19 57 18 6 I 5.37% 1.06[0.48,2.32] o 280% 1.05[0.55, 2.00] HH 529% 1.01[053,183)]
Study 6 1737 17 40 - 4.08% 1.15[0.47, 2.83] e 3.44% 1.11[0.56,2.20] H  492% 0.98[050, 1.94]
Study 7 102171 114 168 ) 15.74% 0.70[0.45, 1.09] W 2006% 0.80[061,1.06] W 15.44% 0.76[0.58,0.99]
Study & 100 167 108 167 W 18.88% 0.82 [0.52,1.27] W 19.50% 0.88[0.65, 1.16] M 1526% 0.88[0.67,1.16]
Study 9 77 174 87 176 W 1876% 0.81[0.53,1.24] W 16.15% 0.86(063,1.17] W 1375% 0.80[0.59,1.08]
Study 10 23 54 23 55 i 5.74% 1.03[0.48,2.21] o 488% 1.02[0.57, 1.84] i B.29% 0.97[055,1.74]
Study 11 19 40 24 40 H 422% 0.60[0.25, 1.46] P 420% 0700038 1.30] b= 556% 0.70[0.39,1.28]
ORREML (@ =101, dT =10, p= 0.4, = 0%}

Clog-log REML (Q= 8.4, df = 10, p=0.5; I = 1%}

Log-rank* RENL (Q = 14., df = 10, p= 0.1, F = 39%# 100.00% 0.72[0.60, 0.87] ¥ 100.00% 079070, 0.90] £ 100.00% 0.760.64, 0.901

T T [ —
0.05 14 0.08 1 4 0.05 1 4

Figure 4.8 Forest plot (MA 90) indicating discrepancies arising from differences in

between-study heterogeneity.

In 46% of the outlying meta-analyses, the individual study estimates, and the
corresponding weights were affected by a combination of differing event
probability across study arms, differences in between-study heterogeneity or
increased within-study variability on the OR relative to the HR scale (e.g., MA 3,
35, 56, 68, 71-74, 79, 87). In the presence of a limited amount of studies in the
meta-analyses this was even more evident. Additional examples of forest plots
and the exact tables indicating the discrepancies among the results are shown in
Appendix C.3.

Overall, using the “OEV” data, a mixed pattern was observed. In 39% (n=11) of
outlying meta-analyses the OR pooled effect estimate was closer to HR pooled
effect estimate; however, in 4 out of 11 outlying meta-analyses the individual
study estimates obtained from the HR clog-log link were a closer approximation
to the individual study HR estimates. Similarly, even though in 61% (n=17) of the
outlying meta-analyses the HR clog-log pooled effect estimate was closer to the
pooled HR estimate, 3 of outlying meta-analyses provided individual study OR
estimates closer to individual study HR estimates, and another 3 individual study
HR clog-log estimates were closer to individual study OR estimates. Finally,
observing Figures 4.13 - 4.14 from Appendix C.1, | was not able to identify
whether the differences between the OR and HR scales are associated with the

level of baseline risk in individual studies.
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4.5 Discussion

Using an additional subset of meta-analysis data from the CDSR of 2008 (“OEV”
data), | compared different methods for handling TTE outcomes within meta-
analysis. | identified the differences that occur when these data are analysed as
binary as opposed to analysing the data using the clog-log link additionally to
using the “O-E” and “V” statistics where interpretation is conducted on a HR scale.
As in Chapter 3, the analysis confirmed that there are important reasons
associated with discordance among the results, indicating that the correct choice
of the method does matter affecting also the interpretation and conclusions drawn

from the results.

High event probability, changes to between and within-study variation were
confirmed to be important factors producing differences in the results in this
subset of meta-analyses as well. However, in this dataset there were more
occasions under which there was no clear indication of one single factor driving
these differences and a combination of reasons affected the individual study
estimates and corresponding weights. Therefore, regarding method selection,
based on the “OEV” data | identified that a mixed pattern was observed and there
was no clear indication of the exact conditions under which the clog-log link

outperforms logit link on an OR scale or vice versa.

The data used for the comparison of OR/HR scale in the “OEV” data were slightly
different; | used the number of events and non-events for the OR and HR clog-
log calculation (as in Chapter 3 using binary data) and calculated a HR based on
“O-E” and “V” statistics. Therefore, there is a possibility that for some cases the
two data sets entered by Cochrane reviewers may not completely correspond to
each other. Lack of information on censoring pattern and follow-up times was
present in this subset as well and therefore interpretation was conducted carefully
since | interpreted the results based on known factors and cannot exclude other

unknown factors affecting the results.

Two out of the three models applied were the same as those applied in Chapter
3 (i.e. the conventional two-stage approach and the use of the clog-log link
function). The third approach used for the “OEV” data was the log-rank approach;
“O-E and V” data provide the best method to analyse aggregate data and facilitate
interpretation of results on the HR scale, but in the absence of IPD important

biases may occur when large treatment effects and unbalanced data are
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present?°. | was not able to identify a clear pattern under which the clog-log link
could be employed since there were circumstances under which it performed
better or worse than an OR analysis; therefore, | was not able to identify whether
the clog-log approach is useful when a MA includes binary summaries alongside
“‘OEV” or HR summaries. IPD and simulation studies are required to assess in

more detail the conditions determining where this method would be acceptable.

Finally, I was not able to make comparisons using one-stage models in the “OEV”
data. | would be able to apply one-stage models when the data were analysed as
binary, but | did not have the IPD required to fit one-stage models on the HR

scale.

To my knowledge, no previous research has been conducted using a large
database subset such as this to assess the differences between a) analysing the
data as binary and interpreting the results in an OR scale and b) analysing the
data either using the clog-log link or log-rank “O-E” and V statistics facilitating

interpretation on the HR scale.

In conclusion, summarising the findings from Chapter 3 and 4, the results
obtained indicate that TTE data should be ideally analysed accounting for their
natural properties, as it is possible for important discrepancies to be observed
and conclusions from the meta-analysis to be altered. | identified that
dichotomising TTE outcomes may be adequate for low event probabilities but not
for high event probabilities. In meta-analyses where only binary data are
available, the clog-log link may be a useful alternative when analysing TTE
outcomes as binary, however the exact conditions need further exploration.
These findings provide guidance on the appropriate methodology that should be

used when conducting such meta-analyses.

Parts of this Chapter were presented as an oral presentation at the 42"
conference of International Society of Clinical Biostatistics and at the 2021
annual meeting of the Society for Research Synthesis Methodology. The
results of the chapter were published in BMC Medical Research
methodology, doi:10.1186/s12874-022-01541-9.
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5. Analysing Time-to-Event Outcomes as Binary in

Meta-analysis using Individual Participant Data

5.1 Chapter Overview

Using IPD with TTE outcomes, providing sufficient information on censoring and
follow-up time, this chapter makes a comparison between “gold-standard”
approaches such as Cox proportional hazards model and log-rank test and less
appropriate methods analysing the data as binary on the HR (via the clog-log link)
or the OR (via the logit link) scale. In this chapter, | am learning about the
magnitudes of discordances in practice while assessing also whether censoring
and follow-up time are additional factors affecting any discordances among the
results; this is something that | was not able to assess in previous chapters using
the CDSR. | am aiming also to confirm previous evidence that method choice
does matter and to inform a subsequent simulation study which will provide more

definitive evidence on the most appropriate method for handling this data type.

5.2 Introduction

In previous chapters | mentioned that an individual participant data (IPD) meta-
analysis directly obtains evidence from researchers responsible for individual
studies, aiming to re-analyse them simultaneously wusing appropriate
methodology**. This approach can be more costly than conventional systematic
reviews extracting aggregate data and is regularly characterised as a “gold-
standard” since the time element between randomisation and the event is of
interest and allows us to re-analyse individual trial data. Cardiovascular diseases

and cancer are medical areas in which an IPD meta-analysis is considerably
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important since most interventions used in these areas aim for prolongation of

survival#l,

Even though IPD meta-analysis is the ideal approach for TTE outcomes , it can
be time consuming to collect and analyse the data®. Therefore, systematic

reviewers and meta-analysts may instead decide to obtain:

*» a HR alongside its confidence interval via the log-rank test using the “O-
E” and “V” statistics by extracting aggregate data from trial reports, or

» a HR alongside its confidence interval from trial reports and include them
directly in a two-stage meta-analysis model, or

» the number of events and participants per arm and analyse the data as

binary giving rise to an OR or a RR

Other approaches, less familiar to systematic reviewers and meta-analysts, can
be adopted if only aggregate data are available, such as a normal approximation
to binomial likelihood with a clog-log link. However, analysing the CDSR
(Chapters 3, 4) did not reveal any circumstances under which undesirable
properties of analysing TTE outcomes as binary on an OR scale can be mitigated
by using a clog-log link. In the presence of IPD, a Cox proportional hazards model
can also be applied with interpretation on a HR scale. One-stage meta-analysis
models have also been developed allowing for more accurate inferences on the

results!42.

Using IPD of TTE outcomes, | compare the results from the “gold-standard
approaches (Cox PH and log-rank test) on a HR scale to less appropriate
methods treating data as binary on a HR (via the clog-log link) and OR (via the
logit link) scale. In such a way, | can assess the roles of length of follow-up and
censoring in a MA of TTE outcomes that | could not investigate via exploratory
work performed using the CDSR43, | try to confirm previous evidence indicating
that differences between scales arise mainly when event probability is high and
may occur via differences in between-study heterogeneity or via increased within-
study standard error in the OR relative to the HR analyses. The analyses

performed use both two- and one-stage models.

The rest of this chapter is set out as follows: In section 5.3, | describe the IPD
and the statistical models | used. In sections 5.4, | present descriptive statistics

and in sections 5.5-5.6, | present the results obtained from the models performed.
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These results are followed by a discussion exploring the strengths and limitations

of my findings, together with conclusions and further work (sections 5.7, 5.8).

5.3 Methods

5.3.1 Data

The Meta-analysis group from the MRC CTU provided data from the IPD on
“Neoadjuvant chemotherapy in invasive bladder cancer: a systematic review and
meta-analysis™#4. The IPD MA consists of 11 trials. For 2 trials, investigators did
not allow for data analyses related to methodological purposes; therefore data
from 9 trials were accessed (Martinez-Piniero'*®, Raghavan4®, Malmstrom4/,
Wallace!?®, Cortesi (unpublished), MRC/EORTC!8, Sherif!4’, Sengelov,
Grossman?®0). A priori, | was interested in exploring different TTE outcomes
within IPD since they provide diversity in the lengths of follow-up time and
percentage censoring per individual trial. All trials were examining the use of
platinum-based combination chemotherapy prior to local treatment in comparison

to local therapy only.

5.3.2 Descriptive Statistics

| obtained descriptive statistics such as the number of patients allocated per arm,
sex, age group and T category (i.e. size and extent of the main tumour) per trial.
| also calculated the median TTE and 95% confidence interval for the outcomes
of interest, and median follow-up time and IQR per individual trial (based on the
Kaplan-Meier method applied to the censored times reversing the roles of event
status and censored). Kaplan-Meier plots were also produced per outcome per
trial to examine whether the proportional hazards assumption holds. Finally, |
tried to obtain descriptive statistics on the percentage of random and fixed
censoring. Random censoring is referring to those observations who were lost to
follow-up before the end of the study whereas fixed censoring is referring to those
observations that were censored at the end of the follow-up time (i.e., no

information obtained on whether participants experienced the event or not).

5.3.3 Methods for Individual Participant Data Meta-Analysis
Initially, a log-rank test and a Cox proportional hazards model were applied to

each trial, as described in 5.3.3.1, in order to obtain “O-E” and “V” statistics and
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a HR and its standard error; these were entered in a two-stage meta-analysis

model as described in 5.3.3.2.

5.3.3.1 Testing Survival Curve Differences & Cox Proportional Hazards Model
for Individual Trial Data

| calculated the HR with its associated standard error and “O-E” and “V” statistics
per outcome per trial assessing whether the proportionality assumption holds;
this would allow me to apply suitable MA models. Calculations were implemented
via the “coxph” and “survdiff’ command from “survival” package in R. Below |

provide the formulas used to calculate these statistics.

A Cox proportional hazards regression model stratified by trial was given by the
following equation
i) = i (Dexp (Bixij) (5.1)

for the jth patient in the ith study with treatment indicator variable x;;, 1;, the
baseline hazard function in the ith study and B; the linear predictor. A Cox
proportional hazards model does not make any assumptions on the baseline
hazard function but verification of the proportional hazards assumption is
necessary (i.e. the effect should be independent of time). No patient-level

characteristics were entered into the linear predictor of the model.

Survival curve differences stratified by trial were calculated as follows: For each
individual failure time t a 2x2 table was constructed and the number of
participants at risk in each treatment arm (n;;) was recorded alongside the
associated number of deaths in each group (d.:) where k = 0,1 denote the
treatment group (k = 0 indicates the control and k = 1 indicates the treatment
group). Additionally, n, is defined as n; = ny; + n;; and d; = dy; + d;;. Under the
assumption of no association between the groups and the event, the expected

number of deaths in group 1 is
de
€1t = Nq¢ * n_t (5.2)

with variance

Vo = Nt * Ny * de(ng — dy)
ot =
n * (ng — 1)

The log-rank test compares the total number of deaths in one of the treatment

(5.3)

groups
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01 == Zt dlt and Varlance Vl = Zt vlt
with the expected number of deaths in that group under the null hypothesis

E; = Zeu

t

Under the null hypothesis of no difference between the groups | can obtain a X?
test as follows:
(0, — E1)?
Vi
The test provides a p-value, does not give an estimate of the size of the

~X2 (5.4)

difference, and does not allow for inclusion of additional covariates in the
analysis. It is worth mentioning at this point that often systematic reviewers and
meta-analysts do not use the appropriate referencing (i.e. Yusuf et al.*®) for the
use of the log-rank test and they are probably influenced by incorrect citations in
previous research publications. The appropriate referencing for the use of the
log-rank test is given by Harrington et al.'>! and this is the reference used in the

main R documentation.

5.3.3.2 Model Description
Two-stage IPD MA models

First, a Cox proportional hazards model was applied and a HR alongside its
standard error was obtained for each outcome in each trial accounting for
censoring and the time element. The HR and standard error data were entered
in a two-stage meta-analysis model. Second, information on the “O-E” and “V”
statistics were obtained when | performed testing of the survival curve
differences. The “O-E” and “V” statistics were entered in a two-stage MA model.
In the third approach, | modelled the “binary” data obtained from IPD using a
normal approximation to binomial likelihood with a clog-log link on a HR scale
ignoring censoring and follow-up times. Fourth, | applied a model for the same
data, assuming a binomial likelihood and a logit link*33, on an OR scale ignoring

the same information as in the aforementioned model.

One-stage IPD MA models
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| also applied one-stage IPD MA models as these models use the exact binomial
likelihood and may therefore be more accurate, especially with sparse data®.

The three models described below were applied.

Initially, a one-stage random-effects Cox proportional hazards model was applied
with a lognormal frailty term for the intervention effect estimated via penalized
partial likelihood. This accounts for censoring, follow-up time, and the within- and
between-trial intervention effects are estimated simultaneously aiming to provide
a more complete understanding of the data’® 1. The median hazard ratio (MHR)
is used to evaluate the meaning of the frailty and is defined as “the median relative
difference in the hazard of the occurrence of the outcome when comparing
identical participants from two randomly selected studies ordered by hazard”’°.
The MHR is referred to as HR for the rest of this chapter to avoid potential
confusion between MHR and HR in the results, as they will be treated in the same

way for the comparison to the OR scale.

Second, a generalised linear mixed model using a normal approximation to
binomial likelihood with a clog-log link was used based on aggregate data;
interpretation was on a HR scale. Finally, a generalised linear mixed model using
a binomial likelihood with a logit link was used based on binary summaries;
interpretation was conducted on an OR scale. More details describing the latter

two models were presented in Chapter 3.

5.3.3.3 Fitting Random-Effects Models
The estimated log HRs and log ORs for some of these models apart from the Cox
proportional hazards model were presented in detail in Chapters 3 and 4, so are

not repeated here. | indicate the equations to refer to below.

Fitting two-stage random-effects models

The estimated log HRs and log ORs for individual studies were given by:

logHR for HRs obtained from Equation (5.1)
_ ) Equation (4.1) for HRs using "O — E" and "V" statistics (Chapter 4)
Yi= Equation (3.2) for HRs using the clog — log link (Chapter 3)
Equation (3.1) for ORs using the logit link (Chapter 3)

The corresponding sampling variances for these estimates were given by:
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Square of standard error obtained from Equation (5.1)
» _ JEquation (4.2) for HRs using "O — E" and "V" statistics (Chapter 4)
L Equation (3.4) for HRs using the clog — log link (Chapter 3)
Equation (3.3) for ORs using the logit link (Chapter 3)

S

For the Cox proportional hazards model the standard error of the log HR was
obtained instead of the variance. Using these estimates and sampling variances
| fitted two-stage random-effects models incorporating between-study
heterogeneity variance. | also obtained the 1?2 statistic from the fitted models as
shown in Equation (3.5) from Chapter 3. The models were implemented via the

“rma.uni” command from “metafor” package in R (Appendix D.2).

Fitting one-stage random-effects models

A one-stage Cox proportional hazards model was initially fitted by modelling the
distribution of the baseline hazard via frailty terms (i.e. random intercept) and

accounting for clustering as follows:

2i;(6) = Ao (Onijexp(Bixi;) (5.5)
for the jth patient in the ith study with treatment indicator variable x; where
log(n;j) ~Normal(0,72) represents the log-frailty. The frailty term follows a
specific distribution allowing for differences in baseline rate between participants
in the groups. This model accounts for these differences between studies on
unmeasured covariates, assuming that the baseline hazard within each trial has
different magnitude but the same shape’®.

Additionally, two generalised linear mixed models were applied in one stage using
binary summaries: one allowing interpretation on a HR scale and the second on
an OR scale. These models have been described in detail in Section 3.3.3.2 in
Chapter 3. The models applied used: a) the “coxme” command from “coxme”
package for one-stage HRs obtained from Cox model, b) the “rma.gimm”
command from “metafor” package to calculate the one-stage ORs and c) the
“glmer” command from “Ime4” package was used for the HR estimates obtained
from the clog-log link. Estimation of between-study heterogeneity (1?) for the one-
stage HR models using binary data was performed as described in Section
3.3.3.2 and Appendix B.4. Estimation of between-study heterogeneity (I?) for the
one-stage Cox proportional hazards model was conducted using the detailed
description provided by the paper by De Jong et al’®. Model implementation was
conducted in R (version 4.1.1) and is presented in the Appendix D.2.
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5.3.3.4 Model Comparison

For each outcome | prepared forest plots and identified any discrepancies
observed from the application of the two-stage models. For one-stage models |
tried to confirm whether the discrepancies observed from two-stage models are
still observed using this methodology which is considered more accurate

especially with sparse data®®.

5.4 Descriptive Statistics & Preliminary Calculations

The IPD include 9 trials and 7 clinical outcomes; | focused on 4 outcomes with
different lengths of follow-up time and percentage censoring, because these were
considered potential important factors that might impact our results. These 4
outcomes were also used in the main IPD meta-analysis publication published in
2003'*4, The median TTE per outcome per trial (and IQR) and follow-up time per
trial (and IQR) is presented in Table 5.1. All trials have long follow-up times and
the median TTE ranges across trials per outcome from short (e.g., Australia) to
long (e.g., SWOG).

Additional descriptive characteristics per individual trial were obtained such as
the number of patients included in each arm of the trial together with summaries
of sex, age group, and cancer stage (T category) (Table 5.1). As shown in Table
5.1, UK, GUONE and SWOG?™ trials did not provide information on local
recurrence free survival and metastasis-free survival; additionally to this, UK trial
did not provide information on event free survival. The largest trial was the
BA06'#8 followed by Nordic2'¥” and SWOG?0; the majority of the patients
included in this dataset were males, aged over 60 years and were at the third
stage of cancer. For GUONE trial, | could not distinguish between stages T3 and

T4 of tumours and they were merged.

For percentage random and fixed censoring, | did not have data to distinguish
between them (e.g. dates were not provided to me to avoid identifiability issues)
and therefore | had to look at the original trial publications. Across trials | was able
to identify minimum follow-up time only for 4 out of 9 trials (i.e. Spain, Australia,
UK and DAVECA); among those 1 trial (i.e. Spain) had provided additional data
and longer follow-up to the IPD meta-analysis, after the original trial publication.

Therefore, | would wrongly calculate random censoring if | based it on the initial
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follow-up time reported in the trial publication. Nordic 1 and Nordic 2 trials had no
patients lost to follow-up and therefore they provided only fixed censored
observations. One trial was unpublished (i.e. GUONE) and | could not identify
minimum follow-up time, and two trials (BA06 and SWOG) provided median
follow-up time and interquartile range per treatment group without any indication
on the minimum follow-up time. For the rest of this chapter censoring is discussed

as total censoring (i.e. including fixed and random censoring).
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Spain

Australia

] Nordicl UK GUONE BAOG6 Nordic2 DAVECA SWOG
Martinez- Raghavan . .
o Malmstrom®4”  Wallace!4® Cortesi MRC/EORTC!#®  Sherif'4#’  Sengelov!4® Grossmant>®
Piniero4° 146
Median TTE (95% Cls)
Event free 3.2 0.8 5.9 1.6 15 3.2 0.9 2.5
survival  (1.2,4.4) (0.7,1.2) (3.9,8.1) (1.10,2.5) (1.3,1.8) (2.3,4.9) (0.8,1.1) (1.9,4.9)
Local
3.3 0.9 6.8 1.8 3.7 1.0
recurrence - - -
_ (1.3,4.6) (0.8,1.3) (4.5,9.1) (1.6,2.2) (2.6,5.1) (0.8,1.2)
free survival
Metastasis- 3.2 1.5 6.8 2.8 4.1 1.1
free survival  (1.5,4.8) (1.2,3.6) (4.5, 9.0 (2.1,3.7) (2.7,5.7) (0.9, 1.6)
Overall 3.4 1.8 6.9 2.0 2.6 3.7 4.9 1.6 5.0
Survival  (1.7,5.0) (1.3,3.6) (4.7,9.2) (1.6,2.4) (2.0,4.0) (2.9,4.6) (3.3,6.6) (1.3, 2.0) (3.8,6.6)
Median
Follow-up 8.8 7.0 6.4 4.9 10.3 7.8 55 7.8 10.8
Timeinyears (6.3,11.2) (6.0, 7.7) (5.8, 7.0) (3.6, 5.6) (0.0, 11.8) (6.2,9.7) (5.0, 7.5) (6.2, 8.6) (8.8,12.8)
(IQR)
Age
<55 21 (17%) 7 (7%) 36 (12%) 13 (8%) 25 (16%) 167 (17%) 49 (16%) 19 (12%) 60 (19%)
55-64 60 (50%) 32 (33%) 119 (38%) 54 (34%) 65 (43%) 366 (38%) 80 (25%) 69 (45%) 117 (37%)
265 40 (33%) 57(59%) 156 (50%) 92 (58%) 63 (41%) 443 (45%) 188 (59%) 65 (43%) 140 (44%)
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Treatment Arm

Neoadjuvant
: 62 (51%) 41 (43%) 151 (49%) 83 (52%) 82 (54%) 491 (50%) 158 (50%) 78 (51%) 158 (50%)
Chemotherapy
No
59 (49%) 55 (57%) 160 (51%) 76 (48%) 71 (46%) 485 (50%) 159 (50%) 75 (49%) 159 (50%)
Chemotherapy
Sex 105
77 (80%) 246 (79%) 125 (79%) 140 (92%) 863 (88%) 254 (80%) 124 (81%) 258 (81%)
Male (87%)
Female 16 (13%) 19 (20%) 65 (21%) 34 (21%) 13 (8%) 113 (12%) 63 (20%) 29 (19%) 59 (19%)
Stage
TO-T1 0 (0%) 0 (0%) 53 (17%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (1%) 0 (0%)
T2 33 (27%) 16 (17%) 116 (37%) 50 (31%) 57 (37%) 334 (34%) 130 (41%) 24 (16%) 124 (39%)
T3 78 (64%) 34 (35%) 124 (40%) 85 (53%) 79 (52%) 567 (58%) 157 (50%) 85 (56%) 193 (61%)*
T4 10 (8%) 12 (13%) 13 (4%) 24 (15%) 16 (10%) 75 (8%) 23 (7%) 41 (27%) -
Unknown 0 (0%) 34 (35%) 5 (2%) 0 (0%) 1 (1%) 0 (0%) 7 (25) 1 (1%) 0 (0%)

*T3 and T4 categories are merged for SWOG trial.

Table 5.1: Descriptive characteristics per individual trial.
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| calculated the “O-E” and “V” statistics and log HR and its standard error for each
outcome in each individual trial as described in 5.3.3. Kaplan-Meier plots were
used to assess the proportionality hazards assumption for each outcome. In
Figure 5.1, | present an example of Kaplan-Meier plots for the outcome of overall
survival indicating that most trials provide no evidence of non-proportional
hazards. Situations under which the curve declined more rapidly than other trials
were observed (e.g., UK versus SWOG trial). Kaplan-Meier plots for other IPD
outcomes are presented in the Appendix D.1 and provide similar interpretation
with regards to the proportionality assumption.

Spain (Martinez Piniero) UK (Wallace) Nordic2 (Sherif)
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2z Neoadj chemo 2 Neoadj chemo 2z Neoadj chemo
-(Ei, 075- == Nochemo % 075- == No chemo % 075- \\ == No chemo
e} e} )
S S [
5050- 5050 G050 M
5 3 5 T :
> i 2 bt Z
025 e 025 025
3 3 =]
(7] 0 0
0.00- ' i i i i i i 0.00- ' i ' i ' i ' 0.00- ' i i i i i '
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Time Time Time
Australia (Raghavan) GUONE (Cortesi) DAVECA (Sengelov)
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Figure 5.1: Kaplan-Meier plot for overall survival outcome.

5.5 Results from two-stage IPD meta-analysis

In Table 5.3 and Figure 5.2, | present the pooled effect estimates obtained from
the use of two-stage IPD MA models for all outcomes analysed, alongside the

estimates of between-study heterogeneity (t) and I? estimates.
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Log-estimates

Median %

Median Event

Model SE T I> Total Censoring N
(95% Cls) Probability (IQR)
(IQR)
Event Free Survival
OR REML (2-stage) -0.250 (-0.423, -0.077) 0.088 0.000 0
HR O-E & V (2-stage) -0.175 (-0.327, -0.022) 0.078 0.022 49
32% (26%,42%) 0.64 (0.56, 0.76)
HR Cox PH (2-stage) -0.173 (-0.324, -0.023) 0.077 0.021 49
HR clog-log (2-stage) -0.085 (-0.262, 0.092)  0.090 0.034 57
Local Recurrence Free Survival
OR REML (2-stage) -0.173 (-0.364, 0.018) 0.097 0.000
HR O-E & V (2-stage) -0.122 (-0.232, -0.012) 0.056 0.000
32% (18%,41%) 0.68 (0.55, 0.85)
HR Cox PH (2-stage) -0.121 (-0.231, -0.011) 0.056 0.000
HR clog-log (2-stage) -0.020 (-0.232, 0.192) 0.108 0.038 59
Metastasis-Free Survival
OR REML (2-stage) -0.027 (-0.409, 0.355) 0.195 0.133 66
HR O-E & V (2-stage) -0.125 (-0.281, 0.030) 0.079 0.013 35
35% (27%,43%) 0.65 (0.52, 0.80)
HR Cox PH (2-stage) -0.122 (-0.280, 0.035) 0.080 0.014 36
HR clog-log (2-stage) -0.012 (-0.250, 0.227) 0.122 0.056 68
Overall Survival
OR REML (2-stage) -0.147 (-0.308, 0.013) 0.082 0.000 0 35% (31%,45%) 0.62 (0.52, 0.71)
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HR O-E & V (2-stage) -0.114 (-0.214, -0.015)  0.051 0.000 0
HR Cox PH (2-stage) -0.114 (-0.213, -0.015)  0.051 0.000 0
HR clog-log (2-stage) -0.037 (-0.179, 0.105)  0.072 0.016 37

Table 5.2: Pooled effect estimates across different two-stage IPD meta-analysis models.
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Model
- i 4= ORREML (2-stage)
' 4= HRO-E&V(2-stage)
: . : 1 '+' HR CoxPH (2-stage)
~ L 4= HR cloglog (2-stage)

Local Reccur FS EventFS

Outcome

Metastases FS

Overall Survival

-[]I.4 -UI.2 U.ll] U.I2
Log estimates (95% Confidence Interval)

Figure 5.2: Overall meta-analytic estimates across different IPD two-stage meta-

analysis models.

5.5.1 Event Free Survival

Event Free Survival was defined as “the time of randomisation until the first
recurrence or progression or death, whichever happened first’*44. There were
2444 participants within 8 trials contributing to meta-analysis of this outcome and
1617 events. The median event probability was 0.64 IQR (0.56, 0.64) (Table 5.3);
DAVECA' study provided the highest event probability (0.92), Australia study
provided the highest baseline risk (0.84), and Nordic1'>? the lowest event
probability and baseline risk (0.47 and 0.54 respectively) (Figure 5.3). DAVECA
trial reported the smallest percentage total censoring (13%) while Nordicl
reported the highest (49%).

The individual study estimates were almost identical for HR log-rank and HR Cox
regression models. In larger trials (BA06, Nordic2'53 , Nordic1'47, and SWOG),
the OR estimates give better approximations to the gold-standard approaches.

However, when the number of participants included in the studies decreases (e.g.
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Spain'4®, Australia, DAVECA) and the event probability increases, larger
discrepancies can be observed, resulting also in reversal in the direction of the
individual study estimates in the Spain and DAVECA trials, although all intervals

are overlapping (Figure 5.3).

Weighting allocation for individual studies in the OR analysis is different to that in
the HR analyses, with the HR clog-log approach providing a more similar
allocation of study weights to the HR log-rank and HR Cox approaches (e.qg. for
Spain, Australia, BA0O6, DAVECA) than the OR analysis. The OR analysis did not
detect heterogeneity as shown in Figure 5.3. The 95% confidence intervals for
individual studies are wider in the OR analysis indicating that the intervals have
much more overlap (even though the point estimates are just as heterogeneous
or more heterogeneous than under the other scales), making the study results

more in agreement with a heterogeneity estimate of 0 (Figure 5.3).

Even though small percent random censoring and short follow-up time are factors
theoretically associated with smaller differences between the OR and HR scales
in a TTE meta-analysis®> 3739 | was not able to capture a specific pattern for this
in this data set. The overall meta-analytic estimate of treatment effect was in the
same direction across all MA models and similar between outcome scales,
however the clog-log analysis failed to demonstrate statistical significance for the
comparison of neoadjuvant chemotherapy versus no chemotherapy prior to local
therapy (Table 5.3, Figure 5.3).
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Chemo No Chemo  Follow-Up Censor

ID T+ Total C+ Total (Year) (%) OR [95% CI] HR clog[95% Cl] HR LR*[95% ClI] HR Cox [95% CI]
Spain 44 B2 39 59 8.8 9%, e 5.04% 1.25([0.58, 2.70] e 9.26% 1.14[0.72, 1.80] —— 8.54% 0.97 [0.63, 1.50] —— 8.49% 0.97 [0.63, 1.50]
Australa 37 41 46 55 70 14% =  189% 181[052 635 & - 7.83% 1.29[0.77,2.16] - 8.19% 1.34 [0.86, 2.09] o 8.39% 1.33 [0.86, 2.05]
Nordic1 71 151 87 160 6.4 49%  ~mh 14.98% 0.74[0.48, 1.16] - 13.43% 0.81[0.59, 1.11] ra 12.74% 0.76[0.55, 1.03] ra 12.61% 0.76[0.55. 1.03]
GUONE 47 82 2 7 103 42%  —=— 71A7% 0.93[0.49, 1.77] o 9.93% 0.95[0.62, 1.46] - 8.97% 0.96 [0.64, 1.46] i 8.90% 0.96 [0.64, 1.46]
BAOG 321 491 345 485 78 390, W 40.73% 0.77 [0.58, 1.00] = 20.00% 0.85 [0.73, 1.00] = 21.51% 0.82[0.71, 0.96] = 21.65% 0.82[0.71, 0.96]
Nordic2 83 158 101 159 55 42% e 14.76% 0.64[0.41, 1.00] - 14.19% 0.74[0.55, 1.00] - 13.78% 0.77 [0.58, 1.03] - 13.67% 0.77 [0.58, 1.03]
DAVECA 72 78 B1 75 78 13% - 2.80% 2.75[1.00,7.60] Fe— 10.44% 1.53[1.01,2.31] i 11.43% 0.99 [0.70, 1.40] i 11.36% 0.99 [0.70, 1.40]
SWOG 100 158 121 159 108  30% = 12.54% 0.54 [0.33, 0.88] - 14.91% 0.70 [0.53, 0.93] - 14.84% 0.59[0.45, 0.77] - 14.92% (.60 [0.46, 0.78]
ORREMLIQ=124 df=7 =01 I2= 0%)

Clog REML (@ = 14.6, dF =7, p=0.0: F = £7%) - 100.00% 0.78 [0.66, 0.93] - 100.00% 0.92[0.77, 1.10] + 100.00% 0.84 [0.72, 0.98] + 100.00% 0.84 [0.72, 0.98]
LR*REML (Q =13, df =7, p=0; I° = 49%)  E— E— — 1 T 1 | e — 1T 1 1

Cox REML (Q = 13, df = 7, p = 0: 12 = 49%) 005 025 1 4 005 025 1 4 005 025 1 4 005 025 1 4

Figure 5.3: Forest plot of two-stage IPD meta-analysis for Event Free Survival.
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5.5.2 Local Recurrence Free Survival

Local Recurrence Free Survival was defined as “the time from randomisation to
first local recurrence or progression (after randomisation) or death”'44. There
were 6 trials contributing to meta-analysis of this outcome including 1974
participants and 1284 events. The median event probability was 0.68 IQR (0.55,
0.85); similarly, DAVECA study provided the highest event probability (0.92) and
baseline risk (0.81) and Nordicl the lowest event probabilities (0.46 and 0.54
respectively) (Figure 5.4). Furthermore, DAVECA and Nordicl studies also
reported the lowest and highest percentage total censoring (i.e. 13% and 50%

respectively) (Figure 5.4).

The individual study estimates under HR log-rank and HR Cox models were
almost identical. In larger trials, the OR and HR clog-log approaches provided
better approximations to the individual trial estimates across all MA models (e.g.
BAO06). However, for smaller studies when the participants’ number decreases
and the probability of event increases larger discrepancies in the individual trial
estimates may appear (e.g. Australia, DAVECA), resulting also in particular
circumstances in complete reversal of the results (i.e. Spain), although all

intervals are overlapping (Figure 5.4).

The log-rank and Cox models have produced similar study weights in the meta-
analysis compared to the OR and HR clog-log models. However, OR study
weights for this outcome seem closer to trial weights from the gold standard
approaches than do those from the HR clog-log model. This is because the
between-study heterogeneity estimate (t = 0.038) obtained from the model in the
HR clog-log analysis is not in agreement with the estimates obtained from the
gold-standard approaches, even though it is still quite low and close to the
estimates from other models (Table 5.2). As a consequence, this has affected
both the individual study weights and the I? estimate (12=59%); however, the
individual study estimates in the HR clog-log analysis are closer than estimates
from the OR analysis to the corresponding estimates from the gold-standard
approaches (Figure 5.4).

The 95% confidence intervals in the OR model were systematically wider than
those obtained from the HR analyses, indicating that the standard error in the OR
analyses relative to the HR analyses is substantially larger. Small percent random

censoring and short follow-up time are usually associated with smaller
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differences between the OR and HR scales in a TTE meta-analysis. However, in
this dataset | was not able to detect such a pattern. The overall meta-analytic
estimate is in the same direction across all MA models; however, the OR and HR
clog-log analysis fail to capture statistical significance with regards to the
effectiveness of platinum-based combination chemotherapy versus no
chemotherapy (Table 5.3, Figure 5.4).
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Chemo No Chemo  Follow-Up Censor

ID T+ Total G+ Total (Year) (%) OR [95% CI] HR ¢log[95% CI] HR LR*[95% CI] HR Cox [95% CI]
Spain 44 62 39 59 88 3% —e— 617% 1.25[0.58, 2.70] e 1263% 1.14[0.72, 1.80] —— 6.47% 0.99[0.64, 1.52] —— 6.49% 0.99 [0.64, 1.52]
Australia 37 41 46 55 70 14%  ——= 232% 1.81[052, 6.25] Fe— 10.76% 1.29[0.77, 2.16] - 6.06% 127[0.81,1.99] [ £.32% 1.26[0.82, 1.96]
Nordic 1 69 151 8 160 6.4 505 - 18.33% 0.72[0.46, 1.13] - 17.81% 0.79[0.57, 1.09) e 12.17% 0.76[0.55, 1.04] e 12.02% 0.76 [0.55, 1.04]
BA0G 36 491 334 485 78 3% W 51.36% 0.82[0.63, 1.07] ] 25.85% 0.88 [0.75, 1.04] u 50.97% 0.87[0.75, 1.02] = 50.97% 0.87[0.75, 1.02]
Nordic2 82 158 98 159 55 43% 18.29% 067 [0.43, 1.05] - 18.79% 0.76 [0.56, 1.03] vl 14.13% 0.80[0.59, 1.07] vl 14.01% 0.80[0.59, 1.07]
DAVECA 72 78 61 75 78 13% -  3.54% 2.75[1.00, 7.60] Fe 14.16% 1.53[1.01,2.31) - 10.20% 0.9 [0.71, 1.40] - 10.20% 0.99 [0.70, 1.40]
ORREML(Q =92, df=5,p=01.1"=0%) - 100.00% 0.84 [0.70, 1.02 -+ 100.00% 0.98 [0.79, 1.21 - 100.00% 0.89[0.79, 0.99 - 100.00% 0.89 [0.79, 0.99
Clog REML (Q = 10.8,df = 5, p= 0.1, I = 50%) : 84070, 1.02] . 98[0.78,1.21] : 89[0.79,0.99] - 891079, 0.99]
LR*REML (Q =5, df =5, p=0; ° = 0%) N N

CoxREML (Q =6, df=5.p=0: = 0%) 005 025 1 4 005 025 1 4 005 025 1 4 005 025 1 4

Figure 5.4: Forest plot of two-stage IPD meta-analysis for Local Recurrence Free Survival.
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5.5.3 Metastasis-Free Survival

Metastasis-Free Survival was defined as “the time from randomisation to first
metastasis (after randomisation) or death”'44; meta-analysis of this outcome
included 1974 participants from 6 trials and 1221 events. The median event
probability was 0.65 IQR (0.52, 0.80) (Table 5.2). Similarly to other outcomes,
DAVECA and Nordicl studies had the highest and lowest event probability, and
lowest baseline risk (i.e. 0.90 and 0.80 vs 0.46 and 0.53); Those studies reported
also the lowest and highest percentage total censoring (i.e. 15% & 50%

respectively) (Figure 5.5).

Similar to previous outcomes, the individual study estimates from HR log-rank
and HR Cox models were almost identical. Larger studies (e.g. BAO6) provide
more stable individual trial estimates across all models. On the other hand, when
the sample size reduces and the event probability increases in the trials, larger
discordances with regards to the calculation of the individual study estimates
across models are observed (e.g. Australia, Spain, DAVECA, Figure 5.5).

Furthermore, with respect to allocation of study weights, log-rank and Cox models
have similar study weights compared to OR and HR clog-log models. The
between-study heterogeneity estimates in the OR and HR clog-log analyses were
larger than those from the gold-standard approaches and were t = 0.133 and t =
0.056 respectively (Table 5.2). As a consequence, this has affected both the
individual study weights and the I? estimates (I? = 66%, I> = 68%); the individual
study estimates though in the HR clog-log analysis are closer than those in the
OR analysis to the corresponding estimates from the gold-standard approaches
(Figure 5.5).

The standard error and therefore the 95% confidence intervals in the OR model
are systematically wider than the corresponding intervals from HR analyses.
Similarly, censoring and follow-up times are characteristics for which | could not
observe a particular pattern in their impact on the pooled effect estimates in this
dataset. Finally, the overall meta-analytic estimate was in the same direction

across all MA models favouring the same treatment arm (Figure 5.5).
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Chemo No Chemo  Follow-Up Censor

ID T+ Total C+ Total (Year) (%) OR [95% CI] HR ¢log[95% CI] HR LR*[95% CI] HR Cox [95% Cl]
Spain 43 62 38 59 8.8 33%  —=—  4.49% 1.25[0.59, 2.67] —— 737% 1.14[0.72, 1.81] - 5.14% 1.02[0.66, 1.57] —— 514% 1.02[0.66, 1.57]
Australia 34 41 37 55 7.0 26% H—=  254% 2.36[0.88, 6.36] 1 6.23% 1.58[0.95, 2.64] K= 422% 1.42[088,2.31] e 443% 1.41[0.88, 2.26]
Nordic1 68 151 84 160 6.4 51%  ~mh 12.98% 0.74[0.47, 1.16] - 11.92% 0.80[0.58, 1.11] o 9.70% 0.77 [0.56, 1.06] rul 9.59% 0.77 [0.56, 1.06]
UK 59 83 50 76 49 % ——  575% 1.28[0.65, 2.60] e 9.11% 1.16[0.78, 1.72] e 6.95% 1.11[0.76, 1.61] e 6.90% 1.11[0.76, 1.61]
GUONE 43 82 4 7 103 45% =i 6.31% 0.81[0.43, 1.53] e 7.87% 0.86[0.56, 1.34] e 5.33% 0.91[0.60, 1.40] b 5.35% 0.91[0.60, 1.40]
BAOG 275 491 301 485 78 41% A 3952% 0.78 [0.60, 1.01] [ 21.97% 0.85[0.72, 1.00] [ ] 36.69% 0.85[0.72, 1.00] [ ] 36.65% 0.85[0.72, 1.00]
Nordic2 79 158 90 159 55 47%  ~=h 13.21% 0.77[0.49, 1.19] vl 12.69% 0.83[0.61, 1.13] o 10.78% 086 [0.64, 1.16] rab 10.73% 086 [0.64, 1.16]
DAVECA 70 78 60 75 78 15% = 3.02% 2.19[0.87,552] e 8.95% 1.41[0.95,2.12] - 8.17% 1.06[0.75, 1.50] et 8.13% 1.06[0.75, 1.50]
SWOG 98 158 108 159 108  35% r®h 12.07% 0.77 [0.49, 1.23] v 13.90% 0.85[0.64, 1.13] v 13.03% 0.77 [0.58, 1.01] v 13.09% 077 [0.58, 1.01]
ORREML(Q=117.df=8.p=02:1"=0%) - 100.00% 0.86 [0.73, 1.01] . 100.00% 0.96 [0.84, 1.11] L 100.00% 0.89 [0.81, 0.98] « 100.00% 0.89 [0.81, 0.99]
Clog REML (Q = 13.2, df = 8, p = 0.1, ¥ = 37%)

o 11 1 1 1 1 T 1 1 1 1T 1
LR* REML (Q =9.df = 8.0 = 0. I = 0%) 005 025 1 4 005 025 1 4 005 025 1 4 005 025 1 4

Cox REML (Q=9,df=8,p =0, =0%)

Figure 5.5: Forest plot of two-stage IPD meta-analysis for metastasis-free survival.
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5.5.4 Overall Survival

Finally, overall survival, was defined as “the time from randomisation until
death”44. Nine trials contributed to meta-analysis of this outcome with 2603
patients and 1617 events. The median event probability was 0.62 IQR (0.52,
0.71) (Table 5.3). DAVECA and Nordicl studies had the 1) highest and lowest
event probability (0.90 vs. 0.45), 2) highest and lowest baseline risk (0.80 vs.
0.53) and 3) lowest and highest percentage censoring respectively (15% vs. 51%)
(Figure 5.6).

The individual study estimates of HR log-rank and HR Cox models were almost
identical. In larger trials such as BA06, Nordic23 and SWOG?*4, the HR clog-log
and OR approaches provide better approximations to the gold-standard
approaches for the individual trial estimates across all MA models. In contrast,
when the sample size reduces and the event probability increases, larger
discordances were observed with regards to the calculation of the individual study
estimates between OR and HR “gold standard” MA models (e.g. Australia, Spain,
DAVECA, Figure 5.6).

Log-rank and Cox models have identical individual study weights compared to
OR and HR clog-log models. OR study weights seemed closer to the trial weights
from the gold standard approaches than those from the HR clog-log model. The
between-study heterogeneity estimate (t = 0.016) obtained from the model in the
HR clog-log analysis is not in agreement with the estimates obtained from the
gold-standard approaches, although it is still quite low and close to the estimates
from other models (Table 5.3). This has affected both the individual study weights
and the I? estimate (I? =37%); however, the individual study estimates in the HR
clog-log analysis were closer than those from the OR analysis to the
corresponding estimates from the gold-standard approaches.

The standard errors (and 95% CIs) in the OR analysis were systematically wider
than the corresponding standard errors (and CIs) from HR analyses. For % total
censoring and follow-up time | could not observe a particular pattern in their effect
on the final pooled effect estimates across the models applied in the dataset.
Finally, the overall meta-analytic estimate is in the same direction across all MA
models, however the OR and clog-log analysis fail to capture statistical
significance for the comparison of platinum-based combination chemotherapy

versus no chemotherapy prior to local therapy (Table 5.3, Figure 5.6).
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Chemo No Chemo  Follow-Up Censor

ID T+ Total C+ Total (Year) (%) OR [95% CI] HR ¢log[95% CI] HR LR*[95% CI] HR Cox [95% Cl]
Spain 43 62 38 59 8.8 33%  —=—  4.49% 1.25[0.59, 2.67] —— 737% 1.14[0.72, 1.81] - 5.14% 1.02[0.66, 1.57] —— 514% 1.02[0.66, 1.57]
Australia 34 41 37 55 7.0 26% H—=  254% 2.36[0.88, 6.36] 1 6.23% 1.58[0.95, 2.64] K= 422% 1.42[088,2.31] e 443% 1.41[0.88, 2.26]
Nordic1 68 151 84 160 6.4 51%  ~mh 12.98% 0.74[0.47, 1.16] - 11.92% 0.80[0.58, 1.11] o 9.70% 0.77 [0.56, 1.06] rul 9.59% 0.77 [0.56, 1.06]
UK 59 83 50 76 49 % ——  575% 1.28[0.65, 2.60] e 9.11% 1.16[0.78, 1.72] e 6.95% 1.11[0.76, 1.61] e 6.90% 1.11[0.76, 1.61]
GUONE 43 82 4 7 103 45% =i 6.31% 0.81[0.43, 1.53] e 7.87% 0.86[0.56, 1.34] e 5.33% 0.91[0.60, 1.40] b 5.35% 0.91[0.60, 1.40]
BAOG 275 491 301 485 78 41% A 3952% 0.78 [0.60, 1.01] [ 21.97% 0.85[0.72, 1.00] [ ] 36.69% 0.85[0.72, 1.00] [ ] 36.65% 0.85[0.72, 1.00]
Nordic2 79 158 90 159 55 47%  ~=h 13.21% 0.77[0.49, 1.19] vl 12.69% 0.83[0.61, 1.13] o 10.78% 086 [0.64, 1.16] rab 10.73% 086 [0.64, 1.16]
DAVECA 70 78 60 75 78 15% = 3.02% 2.19[0.87,552] e 8.95% 1.41[0.95,2.12] - 8.17% 1.06[0.75, 1.50] et 8.13% 1.06[0.75, 1.50]
SWOG 98 158 108 159 108  35% r®h 12.07% 0.77 [0.49, 1.23] v 13.90% 0.85[0.64, 1.13] v 13.03% 0.77 [0.58, 1.01] v 13.09% 077 [0.58, 1.01]
ORREML(Q=117.df=8.p=02:1"=0%) - 100.00% 0.86 [0.73, 1.01] . 100.00% 0.96 [0.84, 1.11] L 100.00% 0.89 [0.81, 0.98] « 100.00% 0.89 [0.81, 0.99]
Clog REML (Q = 13.2, df = 8, p = 0.1, ¥ = 37%)

o 11 1 1 1 1 T 1 1 1 1T 1
LR* REML (Q =9.df = 8.0 = 0. I = 0%) 005 025 1 4 005 025 1 4 005 025 1 4 005 025 1 4

Cox REML (Q=9,df=8,p =0, =0%)

Figure 5.6: Forest plots comparing two-stage models in IPD meta-analysis for overall survival outcome.
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5.6 Results from one-stage IPD meta-analysis

Similarly to two-stage models, Figure 5.7 and Table 5.3 present the pooled effect
estimates obtained from the use of one-stage IPD meta-analysis models
alongside the estimates of between-study heterogeneity (t) and I? estimates.
Assuming that one-stage Cox proportional hazard model is the “gold standard”
approach, one-stage OR and one-stage clog-log models were compared to

identify whether patterns in the results are similar to those observed for two-stage

models.
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Figure 5.7: Overall meta-analytic estimates across different IPD one-stage meta-

analysis models.

Across all models and outcomes, the overall pooled treatment effect estimate
remained stable, favouring the same treatment arm. For all models, statistical
significance for the treatment effect was only demonstrated in one-stage OR and
HR Cox models for the event free survival outcome. The magnitude of the
treatment effects was larger in the OR compared to the HR analyses with the

exception of metastasis-free survival. In relation to two-stage models, the results
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present a similar pattern for comparisons between different modelling
approaches, however in one-stage models’ statistical significance was not
present in the “gold-standard” approaches for local recurrence free survival and

overall survival outcomes.

An increased standard error was observed in the OR relative to the HR analyses
for all outcomes apart from local recurrence free survival; | assumed that the
individual study standard errors were wider in the OR analyses affecting also the
overall standard error, even though | was not able to observe them individually
as | did with two-stage models. With regards to two-stage models, a similar

pattern was apparent.

The between-study heterogeneity estimates (t) were similar across models
except for metastasis-free survival where the estimate is much lower for the one-
stage Cox model. The I? estimates were identical (i.e. 0%) between OR and HR
clog-log analyses for all outcomes apart from metastasis-free survival and differ
from those in one-stage HR Cox meta-analysis. Due to the fact that there was no
straightforward way of calculating the I? estimates for the one-stage Cox model,
the method | used might be overestimating the true extent of between-study
heterogeneity.
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Log-estimates

Model SE T 12
(95% Cls)

Event Free Survival

OR (1-stage) -0.245 (-0.417, -0.074)  0.088 0.000 0
HR Cox ME (1-stage) -0.176 (-0.312, -0.040)  0.069 0.018 48
HR clog-log (1-stage)  -0.094 (-0.265, 0.077)  0.087 0.023 0
Local Recurrence Free Survival

OR (1-stage) -0.166 (-0.356, 0.023)  0.097 0.000 0
HR Cox ME (1-stage)  -0.105 (-0.250, 0.040) 0.074  0.014 43
HR clog-log (1-stage)  -0.034 (-0.234, 0.166)  0.102 0.022 0
Metastasis-Free Survival

OR (1-stage) -0.069 (-0.489, 0.351) 0.214 0.074 52
HR Cox ME (1-stage)  -0.236 (-0.287,0.015)  0.077 0.015 44
HR clog-log (1-stage)  -0.025 (-0.251, 0.202)  0.115  0.038 74
Overall Survival

OR (1-stage) -0.143 (-0.303, 0.017)  0.082 0.000 0
HR Cox ME (1-stage) -0.072 (-0.204, 0.059)  0.067 0.017 44
HR clog-log (1-stage)  -0.052 (-0.206, 0.103)  0.079 0.008 0

Table 5.3: Pooled effect estimates across different one-stage IPD meta-analysis

models.

5.7 Discussion

Using IPD, | investigated whether important properties of TTE data such as
percentage total censoring and follow-up times could additionally affect the
results obtained from a MA when data are analysed using “gold-standard”
approaches (such as Cox proportional hazards model and the log-rank test) as
opposed to analysing the data as binary using the clog-log or the logit link where

interpretation is conducted on a HR or an OR scale respectively.

| confirmed previous findings obtained from the CDSR that the method choice
does matter43, Cox proportional hazards model (if the proportionality assumption
holds) and the log-tank test (if “O-E” and “V” statistics can be obtained) are known

to be suitable models for an IPD meta-analysis of TTE outcomes. However,
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analysing these data as binary on an OR scale could be inappropriate especially
when event probability is high. My analyses indicated discordancy both in the
individual and pooled effect estimates. Smaller trials provided consistently
different individual trial effect estimates in the OR relative to the HR analyses,
with consequent impact on the pooled effect estimates. The confidence intervals
for individual study results were systematically wider in the OR compared to HR
analyses since they provided an increased within-study standard error, and
consequently confidence intervals for pooled effect estimates were also wider.
Compared to “gold-standard” approaches, a mixed pattern was observed for
between-study heterogeneity and % estimates in the OR and HR clog-log
analyses. | observed TTE outcomes where the intervals have much more overlap
making the study results more in agreement or t estimates that were quite low
and close to the estimates from “gold-standard” methods affecting though

substantially the study weights and I? estimates.

The Cox proportional hazards model | used is considered the “gold-standard”
approach for analysing IPD of TTE outcomes. It does not make any assumptions
on the baseline hazard rate but requires the proportional hazards assumption
meaning that the effect should be independent of time'>. If this assumption is
violated other suitable methods can be used such as Poisson regression
models!®®, restricted mean survival times (RMST)!%’, and percentile ratios!®®. The
use of the log-rank approach via the “O-E” and “V” statistics is the most popular
approach for most IPD meta-analyses, perhaps due to the fact there is a lack of
expertise and readily available software to fit the Cox proportional hazards model.
Previous research indicated that the log-rank approach may give biased
estimates for both treatment effect and heterogeneity estimates, however it is the

easiest method to implement!®°,

| was not able to identify situations where a model using the complementary log-
log link is a more suitable approach than a model treating TTE as binary in a
meta-analysis. For most outcomes, the individual study estimates in the HR clog-
log analysis were closer to the corresponding estimates of the gold-standard
approaches; however, this was not the case for the estimates of between-study
heterogeneity and 12. Real world evidence cannot facilitate providing a definitive
answer because the true underlying model parameters are unknown. To

overcome this limitation and to provide details on the preferable method a
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satisfactory answer could not be purely based on empirical investigations and

therefore a comprehensive simulation study will be carried out as further work.

It was not possible to explain whether censoring and follow-up time were distinct
factors affecting the discordance among the MA estimates for this dataset since
a) high event probability was a strong factor affecting the results as observed in
previous chapters and b) | could not distinguish between random and fixed
censoring given the data | had. Small % random censoring and short follow-up
times are theoretically associated with smaller differences between the OR and
HR scales in a TTE meta-analysis and therefore a combination of the factors

obtained from Chapters 3-5 will be examined separately in a simulation study.

| did not implement the RMST method® in addition to the gold-standard
approaches. A previous study conducted by Wei et al.’>" performing MA using
RMST using the same IPD, indicated that degrees of departure from non-
proportional hazards do not seem to be large in this dataset when a Grambsch
and Therneau’s (G-T) test'®° was performed. The results were dominated by trials
in which the proportional hazards assumption was not violated and the results
between RMST and a log-rank approach were similar. Therefore, | did not
proceed with further application of RMST since the scope of this thesis was to
examine differences between methods which account and do not account for the
important properties of TTE data with interpretation on the HR and OR scale and
not to compare which one of the methodologies using a HR approach was the
best.

To my knowledge, there is very limited research performed (for example by
Michiels et al.15%) using IPD to assess the differences between analysing the data
using the “gold standard” approaches (Cox PH model, log-rank test) on a HR
scale compared to analysing the data the logit link on the OR scale as binary and
no research specifically into using the clog-log link on a HR scale. | was able to
demonstrate the impact of re-analysing IPD via various meta-analytic models
interpreting the results on a different scale, confirming previous evidence and
identifying a combination of characteristics that could influence the final pooled
meta-analytic estimates. Careful consideration on the most appropriate approach

depending on data availability is necessary.
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5.8. Conclusion

In conclusion, my findings indicated that choice of method does matter and that
smaller trials provided consistently different individual trial effect estimates in the
OR compared to the HR analyses, with consequent impact on the pooled effect
estimates. The confidence intervals for individual effect estimates and pooled
effect estimates were wider in the OR analyses. There was no consistent pattern
across methods for heterogeneity estimates. Findings from this chapter suggest
that the influence of trial size, event probability and heterogeneity on differences
between methods should be explored further in the planned simulation study. For
the clog-log link approach, | observed a mixed pattern regarding whether it falls
in between the “gold-standard” approaches and the binary model with a logit link.
A comprehensive simulation study is necessary to examine and compare

separately the factors affecting the results in a TTE meta-analysis.

Parts of this Chapter were presented as an oral presentation at the 42
conference of International Society of Clinical Biostatistics and at the 2021
annual meeting of the Society for Research Synthesis Methodology.
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6. A Simulation Study Comparing Methods for Meta-

Analysis of Time-to-Event Outcomes

6.1 Chapter Overview

This Chapter is a simulation-based comparison of the methods applied in a time-
to-event meta-analysis. In the previous chapters, | was able to identify that the
correct choice of method for handling this type of data does matter, however, |
was not able to distinguish specific patterns among the multiple factors observed
affecting the magnitudes of discordances in the results between scales.
Therefore, this chapter provides more definitive evidence on the most appropriate
method for handling these data and assesses whether undesirable properties
from treating data as binary can be reduced by the use of alternative methods
such as the use of the clog-log link facilitating interpretation on a HR scale.

6.2 Introduction

The previous meta-epidemiological study'*®, using real-world aggregate data
from the CDSR of 2008 (Chapters 3, 4) and an IPD meta-analysis performed
using data from the MRC CTU (Chapter 5), identified that dichotomising time-to-
event outcomes may be adequate for low event probabilities but not for high event
probabilities. Differences between scales arose mainly when event probability
was high and could occur via differences in between-study heterogeneity or
increased within-study standard error in the OR relative to the HR analyses.
Additionally, the combination of censoring and follow-up times could affect the
results, however, | was not able to identify to what extent these factors affect
these differences. Details on the exact conditions under which the various
methods provide a satisfactory answer could not be based purely on empirical

studies. Hence, | performed a comprehensive simulation study allowing separate
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examination of the factors appearing to affect the results obtained from the
previous chapters.

Using simulation-based datasets, | performed a simultaneous comparison of the
“gold standard” approaches (Cox and log-rank method) to the approximate
methods (using the clog-log or logit link functions) for using aggregate data to
conduct a TTE MA. | did not aim to compare directly approaches that provide an
OR estimate to approaches providing a HR estimate but was interested to assess
how well the method behaves as an approximation to the HR. The conditions
under which | simulated the datasets were informed by the findings from previous
chapters, in addition to information from the recent literature (Appendix E.2).

Specifically, using this simulation study I tried to answer the following questions:

. If we analyse time-to-event outcomes as binary how much bias do we
observe in the pooled 8,z compared to the pooled 8yy?

. In which situations do we observe most bias focusing particularly on the role
of event probability and random censoring?

. If bias exists, can we minimise it via the use of the clog-log link as an
alternative method? Might we be willing to accept the bias observed in
exchange for other good properties of the method?

= What is the relative precision of 8, compared to 8y (i.e.Var(8pg )/
Var(@HR ))?

. How does the coverage compare among the methods?

The rest of the chapter is set out as follows. In the methods section (6.3), |
describe the data generating mechanisms used in the study and the statistical
models | applied for both IPD and aggregate data. In the results (Section 6.4), |
perform a simultaneous comparison of the methods used, presenting important
characteristics of the performance measures. These results are followed by a
discussion (Section 6.5) exploring the conclusions and implications of my findings
(Section 6.6).

6.3 Methods

The following section describes the data generating mechanisms used to create

the simulated datasets and the meta-analysis methods | applied.
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6.3.1 Data generating mechanisms

An outline of my simulation approach is presented below. In total, | generated 28
distinct scenarios for TTE meta-analysis covering a wide range of realistic
scenarios informed by the literature?!: 107109, 111" the empirical work conducted
using the CDSR (Chapters 3, 4) and results from analysing an IPD obtained from
the MRC CTU (Chapter 5). The initial 20 scenarios are described in 6.3.1.1 and
another 8 were created under specific conditions described in 6.3.1.2.

6.3.1.1 Initial simulation scenarios

Table 6.1 presents the initial values chosen for the simulation parameters; each
simulation scenario is a combination of the options in the table selected based on
what | think may drive the differences in method performance and also for
generalisability. Twenty scenarios were initially created as follows. The number
of studies per meta-analysis is set at 2 levels (5 and 20) to represent small and
large meta-analyses. The number of participants per trial is set at 3 levels (with a
mean of 100, 400, and 1000 and a standard deviation of 15, 40, and 100) to
represent small, medium and large study sizes. The log HR is set at 3 values (0,
-0.3, -0.8) representing zero, medium and large treatment effect. The between-
study variance is set at 4 values (0, 0.001, 0.05, 0.1 respectively) representing
zero, near-zero, medium and large heterogeneity between the studies. Follow-up
time and percentage random censoring are set simultaneously at 3 levels (1 year
with 0% censoring, 3 years with 25% censoring, 5 years with 40% censoring) to
represent small, medium and large proportions of participants censored and

follow-up times within trials.

# Parameters Values

1 Number of Studies per Meta-analysis (K) 5, 20

2 Study sample size (N) ~100, ~400, ~1000
3 LogHR 0,-0.3,-0.8

4

Between-Study variability (72) of log HR 0, 0.001, 0.05, 0.1

_ ~1 year, ~3 years, ~5
5 Follow-up time (St)
years

6 Percentage (%) random censoring (C) 0%, 25%, 40%

Table 6.1: Initial simulation parameters selected for the study.
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Event times are constructed to have proportional hazards by simulating from a
Weibull distribution for the majority of simulation scenarios (4, = 0.1,4, =
0.05,¥. = Y. = 2); Weibull distribution is considered as one of the most
appropriate distributions to create survival times'62 163, Scenarios were examined
by varying characteristics one by one from a baseline setting (N=400, Log HR=-
0.3, 2 = 0.05, St=3, C=25%) apart from percentage random censoring and
follow-up time which changed simultaneously since it is expected that larger
follow-up times cause larger percentage of random censoring. Scenario under no
effect size (i.e. Log HR=0) was designed using the baseline setting above,
whereas scenario 0 was designed as a more extreme scenario as follows
(N=1000, Log HR=0, 72 = 0, St=5, C=0%) including 5 or 20 studies.

6.3.1.2 Additional simulation scenarios

Since event probability and percentage random censoring are likely to affect
method performance, | created another four scenarios involving 5 and 20 studies
with (4, = 0.05,4, = 0.04,y, = y. = 2); for two of them | only changed the event
probability from the baseline setting described above and for the other two |
changed event probability and increased the percentage of random censoring.
Two scenarios were specifically designed produce 80% power for a random-
effects meta-analysis under the Cox proportional hazards model, including 5 or
20 studies (N = 400,Log HR = —0.3,5t = 3,C = 25%, 1% = 0.027 for 5 studies,
72 = 0.2 for 20 studies). Finally, another two scenarios including 5 or 20 studies
were designed aiming to distinguish between the effect of censoring and follow-
up times favouring the use of the clog-log link as follows: (N=400, Log HR=-0.3,
72 = 0.05, St=5, C=0%). Table 6.2 presents all the simulation scenarios used in

this chapter.
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Simulation Scenarios

Values of simulation parameters under 5 and

20 trials per meta-analysis

Initial Simulation Scenarios

Scenario 0

Base Case

Short F-up*

Long F-up*

Large heterogeneity
Small heterogeneity
Large effect size

No effect size

Small sample size

Large sample size

N=1000, Log HR=0, 7% = 0, St=5, C=0%
N=400, Log HR=-0.3, 72 = 0.05, St=3, C=25%
N=400, Log HR=-0.3, 72 = 0.05, St=1, C=0%
N=400, Log HR=-0.3, 72 = 0.05, St=5, C=40%
N=400, Log HR=-0.3, 72 = 0.1, St=3, C=25%

N=400, Log HR=-0.3, 7% = 0.001, St=3, C=25%
N=400, Log HR=-0.8, 7% = 0.05, St=3, C=25%
N=400, Log HR=0, 72 = 0.05, St=3, C=25%
N=100, Log HR=-0.3, 72 = 0.05, St=3, C=25%
N=1000, Log HR=-0.3, 72 = 0.05, St=3, C=25%

Additional Simulation Scenarios

Small P(Event)
Large % R_cens+Small
P(Event)'

80% Power

Long Follow-up+0% R_cens

N=400, Log HR=-0.3, 72 = 0.05, St=3, C=25%,
A, = 0.051, =0.04,y, =y, =2

N=400, Log HR=-0.3, 2 = 0.05, St=5, C=40%,
Ae = 0.05,4, =0.04,y, =y, =2

5 trials per MA: N=400, Log HR=-0.3, 72 =
0.027, St=3, C=25%
20 trials per MA: N=400, Log HR=-0.3, 72 = 0.2,
St=3, C=25%
N=400, Log HR=-0.3, 2 = 0.05, St=5, C=0%

*F-up: Follow-up time; 'R_cens=Random censoring; P(Event)=Probability of event

Table 6.2: Exact simulation scenarios applied of the chapter.

| generated 1000 random meta-analyses for each scenario. The exact tables are

presented in Appendix E.2, together with additional information collected from the

literature that helped to inform the choice of the parameters.

6.3.2 R software use for simulations

Independent simulation datasets were generated for each of the 28 scenarios

using the R statistical software (Version 4.1.1). | used a starting seed

(seed=2109990) which remained

fixed in order to allow potential future replication

of the simulation datasets. The simulation datasets were used, and various time-
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to-event meta-analysis models were applied. The reliability of the simulation was
confirmed as all our simulation scenarios did run without producing any
convergence problems!%4, The R code used for this simulation study is presented

in Appendix E.1.

6.3.3 Estimands

The estimand is the log HR gx for the treatment effect, whose true value is -0.3.
| evaluated the performance of log OR approach as if the estimand would be the
log HR, in order to assess how well this method behaves as an approximation to
the HR.

6.3.4 Two-stage meta-analysis models for IPD

6.3.4.1 Model description for Cox proportional hazards model and log-rank
approach

In Chapter 5 (sub-sections 5.3.3.1-2), | explained how | obtained a HR and its
standard error and “O-E” and “V” statistics via the use of a Cox proportional
hazards model and a log-rank test respectively. For each trial per simulation
dataset, | applied the same methodology in this chapter, using both methods
which account for censoring and follow-up times. Then, the HR and standard
error data were entered in a two-stage meta-analysis model. Additionally,
information on the “O-E” and “V” statistics were obtained when | performed testing
of the survival curve differences (see 5.3.3.1). The “O-E” and “V” statistics were

entered in a two-stage MA model.

6.3.4.2 Model Fitting for Cox proportional hazards model and log-rank approach
The estimated log hazard ratios for individual studies were given by:

_ { log HR obtained from Cox PH model for HRs (Chapter 5)
Yi= Equation 4.1 for HRs using "O — E" & "V" statistics (Chapter 4)

The corresponding sampling variances for the Cox and log-rank test were given
as follows. For the Cox proportional hazards model the standard error of the log
HR was squared to give the variance. For the log-rank test, | obtained the
variance using the calculations presented in Chapter 4 from Equation 4.2 using
the “O-E” and “V” statistics. Using these estimates and sampling variances I fitted
two-stage random-effects models incorporating between-study heterogeneity
variance. The models were implemented via the “rma.uni” command from

“‘metafor” package in R.

127



6.3.5 Two-stage meta-analysis models using aggregate data

6.3.5.1 Model Description using aggregate data

From the IPD data, | was able to obtain binary summaries for each trial per
simulation dataset. | modelled the “binary” data obtained using a normal
approximation to binomial likelihood with a clog-log link on a HR scale ignoring
censoring and follow-up times. Then | applied a model for the same data,
assuming a binomial likelihood and a logit link33, on an OR scale ignoring the

same information as the aforementioned model.

6.3.5.2 Model Fitting using aggregate data
The estimated log hazard ratios and log odds ratios were given by:

_ {Equation 3.2 for HRs using the clog — log link (Chapter 3)
L Equation 3.1 for ORs using the logit link (Chapter 3)

The corresponding variances were given by:

2 _ {Equation 3.4 for HRs using the clog — log link (Chapter 3)
! Equation 3.3 for ORs using the logit link (Chapter 3)

| estimated the study-specific log odds ratios or log hazard ratios, y; and their
within-study variances s? as shown above and fitted a standard two-stage
random-effects model to these. The models were implemented via the “rma.uni”
command from “metafor” package in R. One-stage meta-analysis models were
not applied to avoid the additional complexities of including these in a simulation

study.

6.3.6 Performance Measures

The performance of the methods was quantified via calculation of bias (also
known as systematic error), relative precision, root mean squared error, model
based standard error, coverage and power. Each of these performance
measures was stored for the 28 simulation scenarios of 1000 iterations. In Table

6.3, | define the performance metrics | used in this study.
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Metric Formula Description
1000 Average difference between the true simulated HR and its
_ logl; — logb . . . . : : :
Bias z % estimate across 1000 simulation replicates in a simulation
=1 scenario. Desirable to be near zero.
— 2 . . . .. .
100((5@5561) —1) The relative increase (or decrease) in precision when using
EmpSEp ’

Relative precision

Root mean

squared error

Model based

standard error

Coverage

Power

where EmpSE = /Var(éA?l)

Z (1ogb; — logb)’
1

1000

1000

1 o
o0 Z Var(®)
l:

1000

1 Z 1( (glow,i > O) )
1000 & \or (Bupp,i < 0)

one method (b) (i.e. “O-E” &“V” statistics (HR), logit link (OR),
clog-log link (HR)) relative to another (a) (i.e. Cox PH (HR)).
The squared average difference between the true simulated
HR and its estimate across 1000 simulation replicates in a
simulation scenario. Desirable to be near zero.

The square root of the summary of the simulated variance of
the HR across 1000 simulation replicates in a simulation
scenario. Desirable to be equal to the empirical SE.

The proportion of times the two-sided 95% CI of the
estimated summary HR contains the true HR. Desirable to

be near 95%.

The proportion of times the two-sided 95% confidence

interval of the estimated summary HR does not contain 0.

Table 6.3: Description of performance measures used in simulation analysis.
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6.4 Results
6.4.1 Bias

Bias was obtained per simulation scenario for each method applied indicating
how much the average estimate exceeds the true estimate; the reference method
was the Cox proportional hazards model. Figure 6.1 indicates the results obtained
using various meta-analysis methods (i.e. columns) across different simulation

scenarios (i.e. rows).

Initially 1 observed that bias was similar between the scenarios including 5 or 20
trials. With regards to the Cox proportional hazards model and the log-rank test
using the “O-E” and “V” statistics, no bias was observed across all simulation
scenarios (i.e. columns 1-2, Figure 6.1). In those scenarios where the effect size
was zero, the analysis of the data as binary did not demonstrate bias compared
to analysing the data accounting for their natural properties (i.e. Scenario 0). Bias
was low for the majority of scenarios analysing TTE data as binary using the logit
link (i.,e. OR REML), except in those where large % random censoring (~40%)
and long follow-up time (~5 years) were present. Across most simulation
scenarios, | identified more bias when the data were analysed as binary under
the clog-log link (column 4, Figure 6.1) on the HR scale. Even though there was
a theoretical assumption that the clog-log link function can be used as a useful
alternative to analysing the data as binary on the HR scale, the bias observed in
the results was much larger than the bias obtained from the logit link (column 4,
Figure 6.1).

Additionally, in the scenario with small % random censoring and short follow-up
time, the bias across all the methods was similar (row 3, Figure 6.1). In the
presence of medium follow up time regardless of the amount of heterogeneity
and the sample size treating the data as binary using the logit link (and not the
clog-log link) might be acceptable because the bias was very low; therefore,
heterogeneity and sample size did not seem to affect bias (rows 5-6, 9-10, Figure
6.1). For larger percentage random censoring and therefore length of follow-up
time more bias was observed for both link functions that treat the data as binary
(row 4, Figure 6.1). Finally, for those scenarios designed with large effect size
large bias was observed when data were treated as binary using the clog-log link
(row 7, Figure 6.1). The tables including the exact numbers obtained for bias are
presented in Appendix E.2.
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5T/MA (HR Cox PH) 5T/MA (HR O-E & V) 5T/MA (OR REML) 5T/MA (HR clog-log)

Scenario 0* . *® 4 ®
Base Case** ® ® ® ; ®
Short F-Up ' PY . ‘»
Long F-Up . ® : L L ]
Large heterogeneity . L 4 ® [ ]
Small heterogeneity ® ) ® ®
Large effect size . L] . ®
No effect size 0 » o .l
Small Sample size . ® ® : [
Large Sample size ® » ] L
Small P(Event) i
Large% R_cens+Small P(E)
Long F-Up+0% R_cens
80% Power
20T/MA (HR Cox PH) 20T/MA (HR O-E & V) 20T/MA (OR REML) 20T/MA (HR clog-log)
Scenario 0* . . . .
Base Case** ® ® f : ®
Short F-Up e ‘e o e
Long F-Up ® L ® ®
Large heterogeneity . L . ®
Small heterogeneity [ ] [ ] ® ®
Large effect size l. ® . : ®
No effect size ® ® e ®
Small Sample size . [ d D ; ®
Large Sample size ® ® ° ®
Small P(Event) i
Large% R_cens+Small P(E) :
Long F-Up+0% R_cens
80% Power | ; | ;
‘ ‘ 0.0 01 02 -02 -0.1 0.0 0.1 0.2 02 -01 0.0 0.1 0.2 02 01 0.0 0.1 0.2

*Note: 5T/MA, 20T/MA: 5 or 20 trials per meta-analysis; Each row within a panel is a different data generating mechanism (DGM); Upper and lower rows of panels are DGMs with K=5
and 20; Columns of panels are different analysis methods; Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium
effect size, medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event)

Figure 6.1: Bias observed per simulation scenario across different meta-analysis models.
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6.4.2 Empirical & Model Based Standard Errors

The empirical and model based standard errors were obtained per simulation
scenario for each method. The empirical standard error measures the spread of
the estimator, and the model based standard error should be equal to the
empirical one. Figure 6.2 shows only how close the empirical (i.e., filled circle)
and model based standard errors (i.e., hollow circles) are without aiming to
compare empirical standard errors between the methods; this is covered in
section 6.4.3.

The empirical and model based standard errors were closer to each other in the
scenarios including 20 trials per meta-analysis than in those including 5 trials per

meta-analysis due to the amount of information involved in the meta-analysis.

For those scenarios designed with 20 trials per meta-analysis, | observed similar
results across different methods for MA of TTE data for the majority of situations.
In the presence of zero or small heterogeneity or short follow-up times the models
are overestimating the standard error; the overestimation/underestimation of
standard error is relatively small (<2%) for most scenarios. For the rest of the
simulation scenarios the differences between the empirical and model based
standard errors seem negligible (Figure 6.2).

On the other hand, for the scenarios designed with 5 trials per meta-analysis a
slightly different pattern was observed apart from the cases with small or zero
heterogeneity where the models seem to overestimate the standard error as in
20 trials per meta-analysis. However, there were a lot of scenarios (e.g., short
follow-up time, large follow-up, small sample size) under which the standard error
is overestimated to a similar extent by the use of the complementary log-log link
or the logit link; the same pattern was also true for the Cox proportional hazards
model and the log-rank approach in the scenario where short follow-up time was

present (Figure 6.2).
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5T/MA (HR Cox PH) ST/MA (HR O-E & V) ST/MA (OR REML)

Scenario 0* L L e L

Base Case** L » e J ]

Short F-Up o« [ =} ®o [ &)
Long F-Up @ ) *0 o

Large heterogeneity L ] » »

S5T/MA (HR clog-log)

Small heterogeneity L 2 -« [ 1) [ =}

Large effect size L » » »

Nec effect size L ] » L ®

Small Sample size ® ® *0 o«
Large Sample size L ® L L 4

Small P(Event)

Large% R_cens+Small P(E)

Long F-Up+0% R_cens

80% Power

20T/MA (HR Cox PH) 20T/MA (HR O-E & V) 20T/MA (OR REML)
Scenario 0* L [ 2 [ 3 [

20T/MA (HR clog-log)

Base Case™

Short F-Up

Long F-Up

Large heterogeneity

® | ®
® L ®

Small heterogeneity ® L] L L]

Large effect size L ] ® » »

No effect size ® ® L ] L 2
Small Sample size L ® L 4 ®
Large Sample size L 4 ® ® ®

Small P(Event)

Large% R_cens+Small P(E)

Long F-Up+0% R_cens

80% Power

0.0 0.1 02 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2

*Note: 5T/MA, 20T/MA: 5 or 20 trials per meta-analysis; Each row within a panel is a different data generating mechanism (DGM); Upper and lower rows of panels are DGMs with K=5
and 20; Columns of panels are different analysis methods; Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium
effect size, medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event)

Figure 6.2 Empirical and model-based standard errors obtained per simulation scenario across different meta-analysis models.
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6.4.3 Relative % increase in precision

The percent increase (or decrease) in precision relative to the Cox proportional
hazards model per simulation scenario for each method applied was obtained. A
similar pattern was observed in the simulation results when 5 or 20 trials were
involved in the meta-analysis. Initially, as expected, | observed that the log-rank
approach provided quite precise estimates relative to the Cox proportional

hazards model (Figure 6.3).

In most scenarios, analysing the data on the HR scale using the clog-log link
shows an increase in relative precision, while analysing data on an OR scale
using the logit link shows a reduction in precision. Specifically, analysing the data
as binary using the logit link was much less precise than the Cox proportional

hazards model since binary analyses are throwing away data (Figure 6.3).

On the other hand, the increased precision observed for the clog-log link should
be cautiously interpreted since according to the literature, a method that has
increased bias towards the null may have small empirical standard error as a
result of the bias'%. Therefore, analysing the data as binary using the clog-log
link in the presence of the bias towards the null discussed in 6.4.1 causes the
meta-analytic estimates to appear more precise (Figure 6.3). The corresponding
tables including the exact numbers obtained for the relative increase/decrease in

precision are presented in Appendix E.2.
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ST/MA (HR O-E & V)

Scenario 0*

Base Case™

Short F-Up

Long F-Up

Large heterogeneity
Small heterogeneity
Large effect size

No effect size

Small Sample size
Large Sample size
Small P(Event) '
Large% R_cens+Small P(E)
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80% Power
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Large heterogeneity .
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Large Sample size ¢
Small P(Event)
Large% R_cens+Small P(E);
Long F-Up+0% R_cens ;
80% Power
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*Note: 5T/MA, 20T/MA: 5 or 20 trials per meta-analysis; Each row within a panel is a different DGM; Upper and lower rows of panels are DGMs with K = 5 and 20; Columns of panels
are different analysis methods; Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size, medium
heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event)

Figure 6.3: Relative percent (%) increase in precision per simulation scenario across different meta-analysis models.
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6.4.4 Mean squared error

The mean squared error was also obtained per simulation scenario as shown in
Figures 6.4 and 6.5. Figure 6.5 was created to facilitate comparison of the
methods applied and can be considered as another representation of the same
results. The mean squared error indicated the overall performance of an
estimator since it integrates both bias and variance; it was desirable for this to be

close to O.

A slightly different pattern was observed in the scenarios involving 20 trials per
meta-analysis compared to those involving 5 trials per meta-analysis due to the
amount of information involved. For most simulation scenarios, the mean squared
error was closer to O for trials involving 20 trials per meta-analysis compared to
those involving 5 trials per meta-analysis. | also observed that the Cox
proportional hazards model and the log-rank approach provide similar mean

squared error estimates (Figure 6.4).

Specifically, for scenarios including 20 trials per meta-analysis, a small mean
squared error was observed (i.e. MSE<0.02, actual numbers are presented in
Appendix E.2). In the scenarios with longer follow-up time, large % random
censoring and/or small event probability, the mean squared error is larger for both
methods treating the data as binary (i.e. using both the clog-log and logit link). In
the presence of large effect size, particularly the clog-log link approach (and not
the logit approach) is performing badly since it is biased with a large model based
standard error (Figure 6.4).

In the scenarios with long follow-up time, large % random censoring and/or small
event probability, the mean squared error was even larger for both methods
treating the data as binary (i.e. using both the clog-log and logit link). For the
scenario created under small sample size, both the clog-log link and the logit link
provided larger mean squared errors; the former mainly driven from the larger
bias observed (Figure 6.1) and the latter one mainly driven from decreased
precision (Figure 6.3). Finally, in the presence of large effect size , particularly the
clog-log link approach (and not the logit approach) is performing badly, similarly
to the 20 trials per meta-analysis scenario, since it is biased with a large model

based standard error (Figure 6.4).
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5T/MA (HR Cox PH) 5T/MA (HR O-E & V) 5T/MA (OR REML) 5T/MA (HR clog-log)

Scenario 0* ® ® ‘e »
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*Note: 5T/MA, 20T/MA: 5 or 20 trials per meta-analysis; Each row within a panel is a different data generating mechanism (DGM); Upper and lower rows of panels are DGMs with K =5
and 20; Columns of panels are different analysis methods; Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium
effect size, medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event)

Figure 6.4: Mean squared error obtained per simulation scenario across different meta-analysis models.
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follow up; R_cens=Random censoring; P(E)=P(Event)

Figure 6.5: Another representation of the mean squared error obtained per simulation scenario across different meta-analysis models.
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6.4.5 Coverage

Coverage for each simulation scenario per method was obtained (Figure 6.6) and
it was desirable to be close to 95%. For those scenarios consisting of 20 trials
per meta-analysis | initially observed that coverage is close to 95% for the
majority of scenarios in three out of the four methods applied. Specifically, the
Cox model, log-rank approach and treating the data as binary using the logit link
performed equally well in terms of coverage for the majority of simulation
scenarios. Some exceptions were observed when the logit link was applied in the
presence of long follow-up times, or large % random censoring in combination
with small event probability; low coverage in these situations appeared to be
driven by the bias observed (Figure 6.1). The coverage under the use of the clog-
log link was quite poor for the majority of the simulation scenarios compared to

the other three methods (column 4, Figure 6.6).

In the presence of 5 trials per meta-analysis, there were situations where the
gold-standard approaches provided a lower coverage than the target of 95%. This
is known to occur when the methods are not allowing for uncertainty in estimating
heterogeneity?’ 132. 166 As a consequence, the scenarios that behaved well in
terms of coverage for the gold-standard approaches were those where
heterogeneity was low or close to 0 (Figure 6.6). Other methods could be used
to calculate alternative confidence intervals such as the Knapp-Hartung method,
bootstrap confidence intervals, however calculation was conducted using the
Wald-type confidence intervals since they are more widely used. A detailed
comparison of these alternative methods was presented by Veroniki et al'32,

Lower coverage than the target of 95% was observed when the data were treated
as binary using the logit link with 5 trials per meta-analysis especially when long
follow-up times, large % random censoring and small event probability, large
heterogeneity was present; however, it was close to the coverage obtained from
the gold-standard approaches. The clog-log link provided poor coverage
especially in the presence of long follow-up times and large % random censoring
however not to the extent of the poor coverage observed with 20 trials per meta-
analysis; the clog-log link performed slightly better in terms of coverage with 5
trials per meta-analysis, but it was still low (Figure 6.6). On this situation, poor
coverage appeared to be driven by bias which becomes more important as the

amount of information increases (i.e. standard error decreases).
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*Note: 5T/MA, 20T/MA: 5 or 20 trials per meta-analysis; Each row within a panel is a different data generating mechanism (DGM); Upper and lower rows of panels are DGMs with K=5
and 20; Columns of panels are different analysis methods; Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium
effect size, medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event)

Figure 6.6: Coverage obtained per simulation scenario across different meta-analysis models.

140



6.4.6 Power

Two scenarios were designed to provide 80% power under the Cox proportional
hazards model as described in 6.3.1. For the scenario involving 5 trials per meta-
analysis providing 80% power, analysing the data as binary using the clog-log
and the logit link functions caused loss of power (Figure 6.7); the loss of power
on these methods was due to the fact that the former method (i.e., clog-log link)
was more biased towards the null as presented in Figure 6.1 and the latter
method (i.e., logit link) was less precise (Figure 6.3).

On the other hand, | observed a different pattern for the scenario including 20
trials per meta-analysis. Specifically, analysing the data as binary under both link
functions improved the power to be slightly higher than 80%. For the clog-log link
this was observed since the method provided a much more precise estimate
compared to the 5 trials scenario and was slightly less biased; hence this caused
better power. For the logit link, the estimate was unbiased and quite precise
relative to the Cox model and therefore the power was improved. Power would
be meaningless without type | error being controlled, but as observed from Figure

6.6 that this was not a problem here (i.e. Scenario under no effect size).

Scenario: 80% Power

5T/IMA 20T/MA
HR Cox PH ® HR Cox PH ®
HR OEV ® HR OEV ®
OR REML OR REML
HR clog-log HR clog-log
0 20 40 60 20 100 0 20 40 60 80

*Note: 5T/MA, 20T/MA: 5 or 20 trials per meta-analysis; Rows of panels are different analysis methods; One

simulation scenario designed specifically with 80% power under the Cox proportional hazards model.

Figure 6.7: Power obtained designing a scenario with 80% power under Cox proportional

hazards model.
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6.5 Discussion

Using a simulation study and following specific pre-determined data generating
mechanisms, | performed a simultaneous comparison of the “gold standard”
approaches (Cox and log-rank method) to the approximate methods (using the
clog-log or a logit link) using aggregate data to conduct time-to-event meta-
analysis. The data generating mechanisms used were representative of
situations observed in reality and informed also by previous simulation studies?*
107-109, 111 some extreme scenarios were also created for clarification purposes
and to ease some results’ interpretation. The estimands that were used were
different, but researchers sometimes use the log HR and log OR interchangeably
to address the same question. The performance of each method was assessed
in terms of bias, empirical standard error, model based standard error, mean

squared error, coverage and the power each method provided.

The simulation indicated that analysing time-to-event outcomes as binary using
the logit link performed well with respect to bias and coverage in many simulation
scenarios apart from those where large percentage random censoring (~40%)
and long follow-up time (~5 years) was present. However, for the majority of the
simulation scenarios the method lacks precision, particularly for small meta-

analyses.

On the other hand, analysing the data as binary using the clog-log link
consistently produced more bias, low coverage and low power. However, the
method provided much more precise estimates compared to the logit link.
Therefore, although the clog-log link allowing interpretation on the HR scale was
considered a possible alternative to analysing the TTE outcomes as binary, and
we observed precise results in the previous empirical analyses presented in
Chapters 3-5, based on this simulation | identified that use of this method
adversely affected the results. It is worth mentioning though that the method
performed well under situations ideally suited to it, which meta-analysts will
probably never face in practice (i.e. Scenario 0, Long follow-up time and 0%
random censoring). Finally, between-study heterogeneity and study sample size

did not affect the levels of bias.

In my simulation study, | was able to identify important factors associated with the
results’ discordance between the different scales. However, a limitation of this

study was that characteristics were varied one by one from a baseline setting
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instead of examining every combination of factors simultaneously, additional
scenarios might have been missed under which analysing time-to-event data as

binary appears acceptable.

To date, there were very limited simulation studies conducted by Tudur-Smith
and Williamson'®” and Simmonds et al.?! examining similar methodologies to
those used in this chapter. However, the former authors did not include any
comparisons related to the use of the clog-log link function whereas the latter
restricted their attention to estimation of the log hazard or log odds ratio and its
variance for a single trial.

Tudur-Smith and Williamson'®’, compared the stratified log-rank analysis,
stratified Cox regression and inverse variance weighted average of estimates.
The authors indicated circumstances where the models produced similar
estimates of the pooled log HR and its variance (when the underlying treatment
effect was close to zero and the degree of heterogeneity across trials was
minimal). The stratified log-rank analysis biased the results for larger treatment
effects.

Simmonds et al.?* showed that bias is present when the hazards or the odds are
not proportional; this was not the focus of our simulation which did not compare
methods in scenarios where the proportionality assumption does not hold. The
authors of this paper also stated the potential implications for a meta-analysis
setting highlighting specifically the extra complications that are introduced in the
presence of heterogeneity included in a random-effects meta-analysis but they
did not explicitly explore that. My study added this extra complexity that
Simmonds et al?! recommended in their paper to assess all the factors affecting

a time-to-event meta-analysis simultaneously.
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6.6 Conclusion

A time-to-event IPD meta-analysis is the gold standard and should be analysed
on a HR scale. In the absence of IPD, alternative methodology exists allowing
researchers to perform a TTE meta-analysis on a HR scale by extracting suitable
information from trial reports and applying a log-rank test. The simulation study
indicated that small differences were observed between the gold-standard
approaches and therefore there was no reason to recommend the one over the
other. The logit link performed well in many simulation scenarios with some
exceptions where large percentage random censoring (~40%) and long follow-up
time (~5 years) were present; the method though lacked precision in the majority
of scenarios. On the other hand, the complementary log-log link was not suitable
to analyse the data as binary on a HR scale since a lot of bias was observed, the
coverage was low, and the method provided also low power. If a HR estimate
cannot be obtained per trial to perform a meta-analysis of TTE data, a meta-
analysis using the OR scale (using the logit link) could be conducted but with
awareness that this would provide less precise estimates in the analysis.
Investigators should avoid performing meta-analyses on the OR scale in the
presence of large percentage random censoring (~ 40%) and long follow-up times

(~5 years) of the trials included in the meta-analysis.

Parts of this Chapter were presented as an oral presentation at the 43"
conference of International Society of Clinical Biostatistics, 2022.
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7. Discussion

7.1 Motivation and Thesis Aims

As outlined in the previous chapters, the overall objective of this thesis was to

provide guidance to systematic reviewers and meta-analysts about the

implications of analysing TTE outcomes as binary, how the implications vary

according to MA characteristics and in which circumstances analysing the

outcome as binary may be adequate. The research questions | aimed to answer

were as follows:

What are the implications of analysing TTE outcomes as binary in MA and
how do the implications vary according to MA characteristics?

How are TTE outcomes analysed within the biggest database publishing
systematic reviews and MA, the CDSR? Are they analysed as binary or
are they analysed as HR, taking into account the full properties of the
data?

Which medical areas within the database analyse the data under which
scale?

What are the assumptions made when different meta-analytic models are
applied and what are the advantages and disadvantages of each one of
them?

Is there any other method that could allow us to mitigate the undesirable

properties from treating the data as binary?

This chapter summarises the work discussed throughout this thesis. The rest of

this chapter is set out as follows: In Section 7.2, | provide a summary of the key

findings of each chapter and in Section 7.3, | indicate the strengths and limitations

of my research. In Section 7.4, | discuss the generalisability of my results and

additional research opportunities (Section 7.5) following this piece of work. |

finally provide a conclusion of my thesis in Section 7.6.
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7.2 Summary of key findings

In Chapter 2, | carried out a methodology review outlining all guidance that exists
for performing a MA of TTE outcomes and also any discussions presented on
analysing TTE data as binary in a MA. | used Medline (Ovid version), Scopus and
Web of Science for my search and according to prespecified criteria, | identified

75 methodological publications until December 2021.

| categorised the publications into seven categories: Models for aggregate data
(11 publications), methods for reconstruction of TTE data (5 publications), models
for IPD (16 publications), methods for NMA (12 publications), multivariate MA (7
publications), method comparison via real life conditions and/or simulations (16
publications) and finally papers including discussions, critiques and other
suggestions for MA of TTE outcomes (6 publications). Publications could overlap
among multiple categories. The methodology review identified the research that
exists in the literature to support systematic reviewers and meta-analysts to
perform MA of TTE outcomes. It has also described more complex methodologies
with regards to different modelling techniques that are primarily aimed at
statisticians and not necessarily aimed to be applied by systematic reviewers and
meta-analysts. The review identified that most publications in the past were
focusing mainly on models for aggregate data, whereas recent publications are
focusing mainly on meta-analysis of IPD or NMA. The use of Bayesian techniques

in recent years has explored.

The review identified limited publications focusing on the issue of analysing TTE
outcomes as binary such Michiels et al®, | was able also to extract information
from some research publications on the significance of the use of different effect
measures. | described various methodologies for MA of TTE data, however,

according to past reviews their application to date was still quite limited> 46,

Finally, | indicated that further research is needed in order to understand the
impact of analysing TTE outcomes as binary rather than using specific methods
developed for MA of TTE outcomes, within different MA datasets having various

characteristics.

In Chapter 3, | used TTE data from the CDSR (Issue 1, 2008) analysed originally

as binary and explored the differences that occur when data are analysed as
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binary on an OR scale as opposed to analysing the data using the complementary

log-log link where interpretation is conducted on a HR scale.

My analysis showed that there are important reasons associated with
discordance among the results, indicating that the correct choice of the method
does matter and may affect the interpretation and conclusions drawn from the
results. | highlighted that those differences between the scales arise mainly when
event probability is high and may occur via differences in between-study
heterogeneity or via increased within-study standard error in the OR relative to
the HR analyses. There were also situations where there was no clear single
factor driving the differences, since there was a combination of reasons affecting
the individual study estimates and corresponding weights. All my analyses were

conducted both under two- and one-stage random effects models in R.

In_Chapter 4, using an additional subset of meta-analysis data from the CDSR
(“OEV” data), | re-investigated the impact of analysing TTE outcomes as binary
within meta-analysis. | identified the differences that occur when these data are
analysed as binary as opposed to analysing the data using the complementary
log-log link or using the “O-E” and “V” statistics where interpretation is conducted

on a HR scale.

As in Chapter 3, my analysis confirmed that the correct choice of method for a
MA of TTE data does matter; high event probability, changes to between and
within-study variation appeared to be important factors producing differences in

the results in this subset of meta-analyses.

However, in this subset there were more occasions under which there was no
clear indication of one single factor driving these differences and a combination
of reasons affected the discordance among the results. Therefore, regarding
method selection, based on the “OEV” data | identified that a mixed pattern was
observed and there was no clear indication of the exact conditions under which
the clog-log link outperforms logit link on an OR scale or vice versa. In this subset,
my analyses were conducted only under two-stage random effects models using

R software.

Summarising the findings from Chapters 3 and 4, | indicated that TTE data should

ideally be analysed accounting for their natural properties, as it is possible for
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important discrepancies to be observed and conclusions from the MA to be
altered. | identified that dichotomising TTE outcomes may be adequate for low
event probabilities but not for high event probabilities. In meta-analyses where
only binary data are available, the complementary log-log link may be a useful
alternative when analysing TTE outcomes as binary, however the exact

conditions under which this would be acceptable needed further exploration.

In Chapter 5, using IPD, | investigated whether important properties of TTE data
such as percentage total censoring and follow-up times could additionally affect
the results obtained from a MA when data are analysed using “gold-standard”
approaches (such as Cox proportional hazards model and the log-rank test) as
opposed to analysing the data as binary using the clog-log or the logit link where

interpretation is conducted on a HR or an OR scale respectively.

Compared to the “gold-standard” methods, my analyses conducted on an OR
scale indicated discordancy both in the individual and pooled effect estimates
when the event probability was high. Smaller trials provided consistently different
individual trial and pooled effect estimates in the OR relative to the HR analyses.
The confidence intervals for individual study results were systematically wider in
the OR compared to HR analyses since they provided an increased within-study
standard error. | also identified a mixed pattern in between-study heterogeneity
and I? estimates in the OR and HR clog-log analyses. For some TTE outcomes,
the between-study heterogeneity estimate obtained from the model in the HR
clog-log analysis was not in agreement with the estimates obtained from the gold-
standard approaches, although it was still quite low and close to the estimates
from other models. This has affected both the individual study weights and the 12
estimates; however, the individual study estimates in the HR clog-log analysis
were closer than those from the OR analysis to the corresponding estimates from

the gold-standard approaches.

From my analyses in Chapter 5, | was not able to explain the situations where a
model using the complementary log-log link would be a more suitable approach
than a model treating TTE as binary in a meta-analysis since a mixed pattern was
observed regarding whether or not the results fall in between the “gold-standard”
approaches and the binary model with a logit link. I could not explain whether
censoring and follow-up time were distinct factors affecting the discordance

among the MA estimates since a) high event probability was a strong factor
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affecting the results as observed in previous chapters and b) | could not

distinguish between random and fixed censoring given the data | had.

Finally, | suggested a comprehensive simulation study that would examine which
meta-analysis characteristics affect differences between MA results obtained on
the HR or OR scales.

In Chapter 6, using simulation-based datasets, | performed a simultaneous

comparison of the “gold standard” approaches (Cox and log-rank method) to the
approximate methods (assuming a normal approximation to binomial likelihood
with a clog-log link or a binomial likelihood with a logit link) for using aggregate
data to conduct TTE MA.

| generated 28 simulation scenarios defined by: number of trials per meta-
analysis, trial sample size, log HR, between-study variability, follow-up time, and
percentage random and fixed censoring. | compared “gold standard” approaches
to analysis on the HR scale (Cox and log-rank method) with analysis as binary

using either a logit link on the OR scale or a clog-log link on the HR scale.

The simulation indicated that analysing TTE outcomes as binary using the logit
link performed well with respect to bias and coverage in many simulation
scenarios apart from those where large percentage random censoring (~40%)
and when long follow-up time (~5 years) was present. However, for the majority
of the simulation scenarios the method lacked precision particularly for small
meta-analyses. On the other hand, analysing the data as binary using the clog-
log link consistently produced more bias, low coverage and low power. This

method though provided much more precise estimates compared to the logit link.

| concluded that, if a HR estimate cannot be obtained per trial to perform a meta-
analysis of TTE data, a meta-analysis using the OR scale (using the logit link)
could be conducted but with awareness that this would provide less precise
estimates in the analysis. Investigators should avoid performing meta-analyses
on the OR scale in the presence of large percentage random censoring (~ 40%)

and long follow-up times (=5 years) of the trials included in the meta-analysis.
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Chapter &
Objectives

Key findings

Limitations

Further work

Chapter 2: Identify
the guidance that
exists in the literature
for MA of TTE
outcomes and any
discussions raised for
analysing these data

as binary.

e Identified 75 methodological
publications divided into 7
categories.

e Many methodologies have been
proposed but their application is
limited.

¢ No publications discussing the
analysis of TTE outcomes as

binary.

e It is not a systematic review,
although | followed a systematic
approach to searching and
screening to identify the necessary
evidence.

e Excluded publications reported in

languages other than English.

e Understand how these
methodologies perform
comparatively when applied
to different MA datasets
having various
characteristics, using effect
measures such as the HR
and OR.

Chapter 3: Exploring
the differences
between TTE MA
analysed originally as
binary on the OR
scale in the CDSR
with MA results from

analyses performed

¢ High event probability was an
important factor associated with
discordant effect estimates.
Changes to between and within-

study variation were mechanisms

producing differences in the results.

e Combination of reasons affecting
the individual study estimates and

corresponding weights.

e Not able to distinguish MAs with
short follow-up which may have
been appropriately analysed as
binary.

¢ Results might be different for other
TTE outcomes and results might
have changed in reviews after
2008.

¢ Additional research is
needed in order to examine
whether meta-analysts have
improved the way they are
performing MA of TTE
outcomes after 2008.
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using the clog-log link

on the HR scale.

¢ One-stage MA models were also
used and demonstrated a similar
pattern to the two-stage models for
comparisons between different

modelling approaches.

e Lack of information on censoring

and follow-up times.

Chapter 4:
Comparing a subset
of TTE data initially
analysed using “O-E”
and “V” statistics in
the CDSR on the HR
scale to results from
analysing these data
as binary on the OR
(via the logit link) or
HR (via the clog-log

link) scale.

¢ TTE data should be ideally
analysed accounting for their

natural properties.

e Dichotomising TTE outcomes may
be adequate for low event
probabilities but not for high event
probabilities.

e The clog-log link may be a useful
alternative when analysing TTE
outcomes as binary, however the
exact conditions need further

exploration.

e The comparison of OR/HR scale in
the “OEV” data was slightly
different; the number of events and
non-events were used for the OR &
HR clog-log calculation (as in
Chapter 3) and calculated a HR
based on “O-E” & “V” statistics. For
some cases the two data sets
entered by Cochrane reviewers
may not completely correspond to
each other.

e Not able to make comparisons

using one-stage models in the
“‘OEV” data due to IPD

unavailability.

e The exact conditions under
which the clog-log link might
be a useful alternative to
analysing TTE data as binary
on an OR scale need further

exploration.
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Chapter 5:
Comparison between
“gold-standard”
approaches to
analysing the data as
binary on the HR (via
the clog-log link) or
the OR (via the logit
link) scale using IPD.

e Confirmed previous findings
obtained from the CDSR that the
method choice does matter.

¢ Discordancy between OR and HR
analyses both in the individual and
pooled effect estimates in presence
of high event probability.

e Smaller trials provided consistently
different individual trial and pooled
effect estimates in the OR relative
to the HR analyses.

e Increased within-study standard
error in the OR relative to the HR
analyses.

e Mixed pattern was observed for
between-study heterogeneity and
12 estimates between the OR and
HR clog-log analyses.

e Careful consideration on the most

appropriate method for a TTE MA

¢ Not able to explain the situations

where a model using the clog-log

link is more suitable than analysing
TTE data as binary in a MA

e Could not explain whether

censoring and follow-up time were

distinct factors affecting the

discordance among the MA

estimates since:

a) high event probability was
a strong factor affecting the
results as observed in
previous chapters

b) I could not distinguish
between random and fixed
censoring given the data |
had.

e A comprehensive simulation
study is necessary since real
world evidence only cannot
explain the situations where
a model using the clog-log
link is more suitable than
analysing TTE data as binary
in a MA.
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depending on data availability is

necessary.

¢ RMST method was not used since
the scope was not to compare
methods in the presence of non-

proportional hazards.

Chapter 6:
Comprehensive
simulation study
examining which
meta-analysis
characteristics affect
differences between
results obtained on
the HR and OR

scales.

¢ Analysing TTE data as binary using
the logit link performed well in many
scenarios with some exceptions
where large % random censoring
(~40%) and long follow-up time (~5
years) were present; the method
lacked precision in the majority of
scenarios.

¢ Analysing TTE data using the clog-
log link was not suitable to analyse
the data as binary on a HR scale
since a lot of bias was observed,
the coverage was low, and the

method provided also low power.

e Scenarios were examined by
varying characteristics one by one
from a baseline setting rather than
examining every possible

combination of parameters.

¢ Implications of analysing
TTE data as binary in other
settings (e.g. NMA,
multivariate MA, inclusion of

interaction terms).
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¢ Between-study heterogeneity and
study sample size did not affect the

levels of bias

Table 7.1: Summary of objectives, key findings, limitations and future work per individual chapter.
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7.3 Strengths and limitations
In this thesis, | gave an adequate description of all related guidance for meta-
analyses of TTE outcomes. Several methods have been discussed (Chapter 2)

and have been applied (Chapters 3-6).

There has been limited research on assessing the impact of analysing these
outcomes as binary in a meta-analysis setting. For example, Michiels et al.16!
found that both median survival times and OR methods could result in an
important loss of statistical power and under- or overestimation of treatment
effects. In the presence of lower event rates, median survival time methods
provided more biased results. Although there was limited evidence identified at a
MA level, Green and Symons®® on an individual study level indicated that
proportional hazards models provide relatively stable coefficients and decreased
SE with increasing follow-up time, which is not the case for logistic models where
SEs of the estimates generally increase. These authors also mentioned that the
two models produce similar estimates in the presence of rare incidence of a

disease and short follow-up time.

My analyses using the CDSR of 2008 was a very large empirical study of the
implications of different methods of analysis within real meta-analyses and my
analyses using IPD allowed a more thorough exploration of the differences within
several real meta-analyses using more detailed study data. They both provided
useful information on the potential factors affecting the differences between
analysing the data as binary and accounting for their natural properties. These
analyses informed my subsequent simulation study which provided the most
accurate evidence as the truth was known and gave a more definitive answer
about the circumstances under which analysing TTE data as binary could be
acceptable. Via my simulation study, | found that analysing TTE data as binary

using the clog-log link is not a suitable approach.

The models | used to obtain the results for all my analyses were the most suitable
according to the literature and the advantages and disadvantages of each one of
them have been discussed extensively in earlier chapters. Finally, even though |
focused mainly on outcomes such as overall survival and all-cause mortality in
the empirical research, | considered a range of event probabilities and censoring
rates in my simulation study and therefore similar findings could be expected for

other TTE outcomes.

155



A limitation associated with the analyses using the CDSR (Chapters 3,4) was that
the database provided meta-analyses up to 2008. However, since 2008 it has no
longer been possible to export the Cochrane database in the same form (i.e., in
the form of an Access database as originally extracted in 2008), and therefore
obtaining an updated database requires scraping of HTML files and would involve

a lot of additional work.

Additionally, my analyses have focused on TTE meta-analyses where the
proportionality assumption holds. | did not examine how the results would differ if
other methodology accounting for non-proportional hazards such as RMST or
Poisson regression models could affect the results. Little discussion (and no
additional method implementation) has also been provided related to the use of

Kaplan-Meier plots and its importance in a TTE meta-analysis.

In my simulation study (Chapter 6), | was able to identify important factors
associated with the results being discordant between the different scales.
However, since | varied characteristics one by one from a baseline setting instead
of examining every combination of factors simultaneously, | might have missed
additional situations under which analysing TTE data as binary might have been

acceptable.

7.4 Related research

As identified in previous chapters, limited research exists to date assessing the
impact of analysing TTE outcomes as binary in a meta-analysis. For example, at
a single study level, T.V. Perneger®* proposed the use of the relative log survival
and complementary log-log link for binary TTE analyses when the traditional two-
by-two table is a fair summary of results and therefore duration of follow-up is the
same for all individuals. The author suggested the use of Kaplan-Meier curves in

case follow-up time varies among individuals.

Simmonds et al.?! restricted their attention to estimation of the log hazard or log
odds ratio and its variance for a single trial. Simmonds et al.?! specifically showed
that bias is present when the hazards or the odds are not proportional. The
authors of this paper also stated the potential implications for a meta-analysis
setting highlighting specifically the extra complications that are introduced in the
presence of heterogeneity included in a random-effects meta-analysis but they

did not explicitly explore that.
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On a meta-analysis level, Michiels et al.%> compared results obtained from MAs
when median survival times were used as an alternative to HRs, or ORs of
survival rates. Authors found that both median survival times and OR methods
could result in an important loss of statistical power and under- or overestimation
of treatment effects. In the presence of lower event rates, the median survival
time method provided more biased results.

Additionally, Tudur-Smith and Williamson'®/, in 2007, compared three methods
for fixed-effect IPD MA using TTE outcomes: the stratified log-rank analysis,
stratified Cox regression and inverse variance weighted average of estimates.
The authors indicated circumstances under which the models could produce
similar estimates of the pooled log HR and its variance (when the underlying
treatment effect was close to zero and the degree of heterogeneity across trials
was minimal).

In relation to the research above my study added this extra complexity that
Simmonds et al** recommended in their paper to assess all the factors affecting
a time-to-event meta-analysis simultaneously and tried to assess whether the use
of the clog-log link presented by T.V. Perneger>* could also be observed at a

meta-analysis level.

7.5 Generalisability

The results obtained from the CDSR of 2008 in Chapters 3 and 4 include meta-
analyses of clinical trials. The conclusions drawn from these chapters could be
generalised to non-Cochrane reviews; projects that are still within the scope of
evidence synthesis, beyond the requirements set by Cochrane and different in
terms of reporting quality*®”. In comparison to Cochrane reviews, non-Cochrane
reviews report usually larger effect sizes with lower precision and provide
systematically larger methodological differences that can generate different
interpretations of the interventions under question'®®. The improvement of
reporting and transparency of non-Cochrane reviews has been discussed

multiple times in the past6% 170,

7.6 Opportunities for further research

A number of possible extensions could be conducted for the present project. My
work in Chapter 2 allowed me to obtain an in-depth summary of relevant
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published literature for a MA of TTE data, identify any discussions raised for
analysing these data as binary and inform the subsequent research presented in
later chapters. However, it would be interesting to understand how many of these
novel methodologies proposed would perform in different meta-analysis settings
since to date most systematic reviewers and meta-analysts are focusing mostly

on the more conventional methodology to perform MA of TTE outcomes.

The analyses performed in Chapters 3 and 4 involve meta-analyses from the
CDSR up to 2008. Given the fact that methodology for meta-analyses of TTE
outcomes has been improved over the last decade, examination on whether
systematic reviewers and meta-analysts have improved the way they are
performing these analyses would be interesting. There are plans to obtain an
updated CDSR database with classifications of outcomes and intervention types,
and there could be a possibility to use this to explore whether analysis choices

have changed.

Additionally, | considered differences between analysing using the effect sizes of
OR and HR solely within a pairwise meta-analysis framework. Other types of
meta-analyses exist such as network meta-analysis and multivariate meta-
analysis, having their own assumptions that were not considered in this thesis.
For example, a NMA allows for simultaneous comparison of multiple interventions
by combining the direct and indirect evidence in a network. Direct evidence is
obtained from a specific pairwise comparison whereas indirect evidence is
derived from studies that do not include that specific comparison. Therefore, an
extension of this project could be the implications of analysing TTE outcomes as
binary in NMA framework and how this would affect the results between the
scales, and how this could affect treatment rankings. Additionally, multivariate
meta-analysis allows for simultaneous analysis of multiple outcomes which
allows us to incorporate the correlation that might be present across them and
also facilitates more studies to contribute towards each outcome and treatment
comparison’t, Another extension of the current project could be the implications
of analysing multiple correlated TTE outcomes as binary in multivariate meta-

analysis.
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7.7 Conclusion & Recommendations

The findings presented on this thesis provide an adequate and comprehensive
exploration of the implications of analysing TTE outcomes as binary in meta-
analysis. No research exists examining the specific comparisons | performed in
this thesis. However, there is a limited body of work that did look at related
comparisons such as combining published survival curves using effect measures
of HR and RR or weighted log RR%?, or using median survival times as an
alternative to HRs and ORs, stratified Cox models and ORs!%!, Those

comparisons have been discussed extensively in Chapter 2, Section 2.4.6.

A time-to-event IPD meta-analysis is the gold standard and should be analysed
on a HR scale since it allows systematic reviewers and meta-analysts to
overcome limitations of already published data, avoids data quality issues and
usually includes more mature data. However, if the data available in publications
(which can also include data obtained from Cox proportional hazards model) are
sufficient then an aggregate data approach would also be appropriate and less
time consuming. In the absence of IPD, alternative methodology exists allowing
researchers to perform a TTE meta-analysis on a HR scale either by extracting
suitable information from trial reports and applying a log-rank test or by using the
Kaplan-Meier plots which could be used to collect an approximate HR rather than
a direct one; this latter method would also be preferable to applying a TTE MA on

an OR scale.

The complementary log-log link is not a suitable approach to analyse the data as
binary on a HR scale a lot of bias is observed, the coverage is low, and the
method provides also low power. If a HR estimate cannot be obtained per trial to
perform a meta-analysis of TTE data, a meta-analysis using the OR scale (using
the logit link) could be conducted but with awareness that this would provide less

precise estimates in the analysis.

It is advised that systematic reviewers and meta-analysts should think carefully
about the circumstances before analysing time-to-event data as binary because
this may produce different conclusions than the correct time-to-event analysis.
Investigators should avoid performing meta-analyses on the OR scale in the
presence of high event probability, large percentage random censoring (~40%)
and therefore longer follow-up times (~5 years) assuming of large event rates

(>70%) of the trials included in the meta-analysis. Investigators should also be
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cautious about performing meta-analyses on the OR scale if events are not likely
to occur early on time, events are not rare, and the lengths of follow-up are not
similar between the patients. It is worth reminding researchers also that
interpretations on an OR scale should be interpreted in the context of a particular
time point for a TTE outcome. Finally, on occasions where some MAs are
providing HR estimates and standard errors or “O-E” and “V” statistics and others
OR estimates, investigators should either consider excluding the studies
involving ORs from the meta-analysis or transforming the HR estimates into OR
estimates and performing a MA on an OR scale. The decision should take into
account whether the events are occurring earlier on, events are rare and lengths

of follow-up are similar between the patients.
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Appendices
A - Articles collected for Methodology Review

| identified 75 articles via electronic and hand searching describing the methodology for MA of TTE outcomes. | present the papers

included in our review in chronological order in the following table.

Author Journal Title Year

U. R. Abel and L. Edler Controlled clinical trials | A pitfall in the meta-analysis of hazard ratios 1988

. _ o o A general parametric approach to the meta-analysis of
A. Whitehead and J. Whitehead Statistics in Medicine 1991

randomized clinical trials

_ _ Iterative generalized least squares for meta-analysis of
K. B. Dear Biometrics . . ) 1994
survival data at multiple times

Meta-analysis of failure-time data with adjustment for

M. G. Hunink and J. B. Wong Medical Decision Making _ 1994
covariates
M. K. Parmar, V. Torri and L. o o Extracting summary statistics to perform meta-analyses
Statistics in Medicine _ ) _ _ 1998
Stewart of the published literature for survival endpoints
A. Messori, S. Trippoli, M. Vaiani Clinical Drug Survival meta-analysis of individual patient data and 000
and F. Cattel Investigation survival meta-analysis of published (aggregate) data: Is
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there an intermediate approach between these two

opposite options?

C. C. Earle, Ba'Pham and G. A.

An assessment of methods to combine published survival

Medical Decision Making 2000
Wells curves
. Individual patient-versus literature-based meta-analysis of
L. Duchateau, J. P. Pignon, L. . . _
3 _ _ . _ survival data: time to event and event rate at a particular
Bijnens, S. Bertin, J. Bourhis and Controlled Clinical Trials | _ 2001
time can make a difference, an example based on head
R. Sylvester
and neck cancer
o Journal of the Royal _
C. Tudur, P. R. Williamson, S. o _ . The value of the aggregate data approach in meta-
Statistical Society Series S 2001
Khan and L. Y. Best o _ analysis with time-to-event outcomes
a-Statistics in Society
C.L. Vale, J. F. Tierney and L. A. | International Journal of Effects of adjusting for censoring on meta-analyses of 2002
Stewart Epidemiology time-to-event outcomes
P. R. Williamson, C. T. Smith, J. L. o o Aggregate data meta-analysis with time-to-event
Statistics in Medicine 2002
Hutton and A. G. Marson outcomes
Flexible parametric proportional-hazards and
o o proportional-odds models for censored survival data, with
P. Royston and M. K. Parmar Statistics in medicine 2002

application to prognostic modelling and estimation of

treatment effects
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Alternatives to the hazard ratio in summarizing efficacy in

O. N. Keene Statistics in Medicine . ' _ . 2002
time-to-event studies: an example from influenza trials
P. F. Moodie, N. A. Nelson and G. o o A non-parametric procedure for evaluating treatment
Statistics in Medicine . _ . 2004
G. Koch effect in the meta-analysis of survival data
S. Michiels, P. Piedbois, S. International Journal of _ _ _ _
Meta-analysis when only the median survival times are
Burdett, N. Syz, L. Stewart and J. | Technology Assessment _ o _ 2005
_ _ known: a comparison with individual patient data results
P. Pignon in Health Care
M. C. Simmonds, J. P. Higgins, L. . o . .
. o . Meta-analysis of individual patient data from randomized
A. Stewart, J. F. Tierney, M. J. Clinical Trials _ _ _ _ 2005
trials: a review of methods used in practice
Clarke and S. G. Thompson
An overview of methods and empirical comparison of
C. T. Smith, P. R. Williamson and | Journal of Evaluation in | aggregate data and individual patient data results for 2005
A. G. Marson Clinical Practice investigating heterogeneity in meta-analysis of time-to-
event outcomes
o _ o Random effects survival models gave a better
S. Michiels, B. Baujat, C. Mahe, D. | Journal of Clinical ) S )
_ ) _ understanding of heterogeneity in individual patient data 2005
J. Sargent and J. P. Pignon Epidemiology
meta-analyses
C. T. Smith, P. R. Williamson and o o Investigating heterogeneity in an individual patient data
Statistics in Medicine 2005

A. G. Marson

meta-analysis of time to event outcomes
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A comparison of methods for fixed effects meta-analysis

C. T. Smith and P. R. Williamson Clinical Trials S . o 2007
of individual patient data with time to event outcomes
J. F. Tierney, L. A. Stewart, D. _ _ _ _ ] ]
. Trials [Electronic Practical methods for incorporating summary time-to-
Ghersi, S. Burdett and M. R. . . 2007
Resource] event data into meta-analysis
Sydes
L. R. Arends, M. G. M. Hunink and o o _ )
- Statistics in Medicine Meta-analysis of summary survival curve data 2008
T. Stijnen
S. Katsahian, A. Latouche, J. Y. Contemporary Clinical Practical methodology of meta-analysis of individual 2008
Mary, S. Chevret and R. Porcher Trials patient data using a survival outcome
G. Massonnet, P. Janssen and T. _ _ Fitting conditional survival models to meta-analytic data
_ Biometrics . . . 2008
Burzykowski by using a transformation toward mixed-effects models
o _ Investigating trial and treatment heterogeneity in an
V. Rondeau, S. Michiels, B. Liquet o o S _ _ _
_ Statistics in Medicine individual patient data meta-analysis of survival data by 2008
and J. P. Pignon _ _ o
means of the penalized maximum likelihood approach
T. Hirooka, C. Hamada and |I. Methods of Information | A note on estimating treatment effect for time-to-event 009
Yoshimura in Medicine data in a literature-based meta-analysis
_ Meta-analysis of pairs of survival curves under
Fiocco, M., Putter, H. and Van o . ) _ _
Statistics in Medicine heterogeneity: A poisson correlated gamma-frailty 2009

Houwelingen, J.C.

approach
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Fiocco, M., Putter, H. and Van

A new serially correlated gamma-frailty process for

' Biostatistics o 2009
Houwelingen, J.C. longitudinal count data
N. J. Welton, S. R. Willis and A. E. | Research Synthesis Synthesis of survival and disease progression outcomes 2010
Ades Methods for health technology assessment of cancer therapies
_ _ Network meta-analysis on the log-hazard scale,
B. S. Woods, N. Hawkins and D. BMC Medical Research o _ o _
combining count and hazard ratio statistics accounting for 2010
A. Scott Methodology _ ) _
multi-arm trials: A tutorial
Meta-analysis methodology for combining treatment
X. Yuan and S. J. Anderson Biometrical Journal effects from Cox proportional hazard models with 2010
different covariate adjustments
S. Thompson, S. Kaptoge, |. o _ _
. . Statistical methods for the time-to-event analysis of
White, A. Wood, P. Perry, J. International Journal of | o . . _ _
. . _ . individual participant data from multiple epidemiological 2010
Danesh and C. Emerging Risk Epidemiology _
studies
Factors
F. Siannis, J. K. Barrett, V. T. o o One-stage parametric meta-analysis of time-to-event
_ Statistics in Medicine 2010
Farewell and J. F. Tierney outcomes
Ouwens MJ, Philips Z and Jansen | Research Synthesis _ _ _
Network meta-analysis of parametric survival curves 2010
JP. Methods
D. Fisher, A. Copas, J. Tierney Journal of clinical A critical review of methods for the assessment of 2011

and M. Parmar

epidemiology

patient-level interactions in individual participant data
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meta-analysis of randomized trials, and guidance for

practitioners

J. Bowden, J. F. Tierney, M.

Research Synthesis

Individual patient data meta-analysis of time-to-event

Simmonds, A. J. Copas and J. P. Method outcomes: one-stage versus two-stage approaches for 2011
ethods
Higgins estimating the hazard ratio under a random effects model
o o _ Meta-analysis of binary outcomes from two-by-two tables
C. Combescure, D. S. Courvoisier, | Statistical Methods in _
] when the length of follow-up varies and hazards are 2011
G. Haller and T. V. Perneger Medical Research _
proportional
M. C. Simmonds, J. Tierney, J. Research Synthesis Meta-analysis of time-to-event data: a comparison of two- 2011
Bowden and J. P. Higgins Methods stage methods
_ International Journal of | An Alternative to Pooling Kaplan-Meier Curves in Time-

D. B. Rubin _ o . 2011

Biostatistics to-Event Meta-Analysis

BMC Medical Research | Network meta-analysis of survival data with fractional
Jansen J.P. ) 2011

Methodology polynomials
M. J. Crowther, R. D. Riley, J. A. _ o _ _ _

_ BMC Medical Research | Individual patient data meta-analysis of survival data

Staessen, J. Wang, F. Gueyffier _ _ ) 2012

Methodology using Poisson regression models
and P. C. Lambert

_ Meta-regression models to address heterogeneity and

BMC Medical Research | _ ) ) )

J. P. Jansen and S. Cope inconsistency in network meta-analysis of survival 2012

Methodology

outcomes
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J. K. Barrett, V. T. Farewell, F.

Two-stage meta-analysis of survival data from individual

Siannis, J. Tierney and J. P. Statistics in Medicine o _ _ _ 2012
o participants using percentile ratios
Higgins
_ o Meta-analysis of time-to-event outcomes using a hazard-
) . Computational Statistics ) .
M. Fiocco, T. Stijnen and H. Putter . based approach: Comparison with other models, 2012
& Data Analysis _
robustness and meta-regression
_ Enhanced secondary analysis of survival data:
P. Guyot, A. E. Ades, M. Ouwens | BMC Medical Research , _ _
Reconstructing the data from published Kaplan-Meier 2012
and N. Welton Methodology .
survival curves
C. Combescure, D. S. Courvoisier, | Statistical Methods in Meta-analysis of two-arm studies: Modelling the 2012
G. Haller and T. V. Perneger Medical Research intervention effect from survival probabilities
_ o . Random-effects meta-analysis of time-to-event data
M. C. Simmonds, J. P. Higgins and | Research Synthesis . . o _
using the expectation-maximisation algorithm and 2013
L. A. Stewart Methods _ _
shrinkage estimators
) Quantitative summaries of treatment effect estimates
BMC Medical Research _ ) ) )
S. Cope and J. P. Jansen obtained with network meta-analysis of survival curves to 2013
Methodology _ o _
inform decision-making
M. M. Bennett, B. J. Crowe, K. L. Journal of ) ) ) _
) ) _ Comparison of Bayesian and frequentist meta-analytical
Price, J. D. Stamey and J. W. Biopharmaceutical 2013

Seaman, Jr.

Statistics

approaches for analyzing time to event data
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M. J. Crowther, M. P. Look and R.

Multilevel mixed effects parametric survival models using

adaptive Gauss-Hermite quadrature with application to

) Statistics in Medicine o o 2014
D. Riley recurrent events and individual participant data meta-
analysis
D. Jackson, K. Rollins and P. Research Synthesis A multivariate model for the meta-analysis of study level 014
Coughlin Methods survival data at multiple times
P. Saramago, L. H. Chuang and BMC Medical Research | Network meta-analysis of (individual patient) time to 014
M. O. Soares Methodology event data alongside (aggregate) count data
_ _ Meta-analysis of time-to-event outcomes from
Y. Wel, P. Royston, J. F. Tierney o o _ _ _ ) ) _
Statistics in Medicine randomized trials using restricted mean survival time: 2015
and M. K. Parmar o o o
application to individual participant data
R. D. Riley, M. J. Price, D.
Jackson, M. Wardle, F. Gueyffier, | Research Synthesis Multivariate meta-analysis using individual participant 2015
J. Wang, J. A. Staessen and |. R. | Methods data
White
) o _ A joint model for the dependence between clustered
V. Rondeau, J. P. Pignon and S. Statistical Methods in _ _ )
times to tumour progression and deaths: A meta-analysis 2015

Michiels

Medical Research

of chemotherapy in head and neck cancer
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S. Batson, G. Greenall and P.

PLoS ONE [Electronic

Review of the Reporting of Survival Analyses within

Randomised Controlled Trials and the Implications for 2016
Hudson Resource] )
Meta-Analysis
F. Bonofiglio, J. Beyersmann, M. . Meta-analysis for aggregated survival data with
Research Synthesis o . . .
Schumacher, M. Koller and G. Method competing risks: a parametric approach using cumulative 2016
ethods
Schwarzer incidence functions
_ Bias and precision of methods for estimating the
B. Lueza, F. Rotolo, J. Bonastre, J. | BMC Medical Research . . , o
_ o difference in restricted mean survival time from an 2016
P. Pignon and S. Michiels Methodology o _ _
individual patient data meta-analysis
X. V. Wang, B. Cole, M. Bonetti o o Meta-STEPP: subpopulation treatment effect pattern plot
Statistics in Medicine o ) _ 2016
and R. D. Gelber for individual patient data meta-analysis
Research Synthesis Bayesian one-step IPD network meta-analysis of time-to-
S. C. Freeman and J. R. Carpenter ) 2017
Methods event data using Royston-Parmar models
B. Holzhauer Statistics in Medicine Meta-analysis of aggregate data on medical events 2017
_ A simple method for combining binomial counts or
_ Research Synthesis _ ) _ _ )
C. Watkins and I. Bennett Method proportions with hazard ratios for evidence synthesis of 2018
ethods
time-to-event data
_ A practical method based on functional data analysis and
S. Ghanbari, N. Zare and Z. Advances and _ _ _ ) _
single exponential smoothing to combine survival curves 2018

Shayan

Applications in Statistics

in meta-analysis: A simulation study

184




S. van Beekhuizen, M. J. Ouwens,

Network Meta-analyses in survival data: A comparison

Value in Health ' . . 2018
M. J. Postma and B. Heeg and guidance for different methodologies
X. V. Wang, B. Cole, M. Bonetti Research Synthesis _
Meta-STEPP with random effects 2018
and R. D. Gelber Methods
V.M.T. de Jong, K. Moons, R. _ Individual Participant data meta-analysis of intervention
) ] Research Synthesis _ o )
Riley, C.T. Smith, A.G.G Marson, Method studies with time-to-event outcomes: A review of 2019
ethods
M.J.C. Eikemans, T.P.A. Debray methodology and an applied example
A.Wiksten, N. Hawkins, H-P. _ Nonproportional Hazards in Network Meta-analysis:
. . Value in Health o _ o . 2020
Piepho, S. Gsteiger Efficient Strategies for Model Building and Analysis
Statistics in Methods for Using Aggregate Historical Control Data in
B. Holzhauer Biopharmaceutical Meta-Analyses of Clinical Trials with Time-to-Event 2020
Research Endpoints
Research Synthesis Multivariate network meta-analysis of survival function
S. Cope, K. Chan, J.P. Jansen 2020
Methods parameters
) ) ) A non-linear optimisation method to extract summary
A.lrvine, S. Waise, E.W. Green, B. | BMC Medical Research o _ _ _
statistics from Kaplan-Meier survival plots using the 2020
Stuart Methodology _
published P value
_ _ _ _ o Multivariate meta-analysis model for the difference in
I.Weier, L. Tian, L. Trinquart Biostatistics 2021

restricted mean survival times
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E. Ollier, P. Blanchard, G. Le

Penalized Poisson model for network meta-analysis of

o Statistics in Medicine o _ . 2021
Tueff, S. Michiels individual patient time-to-event data
) o o Bayesian multivariate network meta-analysis model for
X.Tang, L. Trinquart Statistics in Medicine ) ) . . ) 2021
the difference in restricted mean survival times
Tamasi, Bélint ; Crowther, Michael o o o _
) ) o Individual participant data meta-analysis with mixed-
; Puhan, Milo Alan ; Steyerberg, Biostatistics ) 2021
effects transformation models.
Ewout W ; Hothorn, Torsten
. . A non-parametric approach for jointly combining evidence
C. H. Daly, R. Maconachie, AE Research Synthesis _ . o
on progression free and overall survival time in network 2021

Ades, N.J. Welton

Methods

meta-analysis

Table 2.2: Methodological papers obtained from MEDLINE (Ovid Version), Scopus, and Web of Science.
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B -

Additional material relating to the binary data meta-analyses
analysed in Chapter 3

B.1 — Baseline Graphs
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B.2 — Model Implementation
Two-stage MA for ORs

resultsREML=data.frame(matrix(NA, max(CDSR_2008%ma), 8))

colnames(resultsREML)<-c("estimates"”,"SE", "LowerClI", "UpperCI","Tau", "Isq",
"MA", "Med_Area")

for (i in unique(CDSR_2008%ma)) {
cat(i,"\n")
try.fit<- try(rma.uni(ai = treat_n, bi = nontreat_n, ci = ctrl_n, di = nonctrl_n,

data = CDSR_2008[CDSR_2008%ma==i,], measure =
"OR",method="REML",

control=list(maxiter=500, verbose=TRUE, stepadj=0.5), verbose=TRUE))
resultsREML]i,7]<-i
resultsREML]i,8]<-unique(CDSR_2008[CDSR_2008%ma==i,]$scode)
if (class(try.fit)!="try-error") {
CDSR.2008][[i]]<- try.fit
resultsREML][i,1]<-as.numeric(exp(CDSR.2008][i]]$b))
resultsREML[i,2]<-as.numeric(CDSR.2008][[i]]$se)
resultsREML[i,3]<-as.numeric(exp(CDSR.2008J[i]]$ci.Ib))
resultsREML[i,4]<-as.numeric(exp(CDSR.2008][i]]$ci.ub))
resultsREML[i,5]<-as.numeric(CDSR.2008][i]]$tau2)
resultsREML[i,6]<-as.numeric(CDSR.2008[i]]$I2)
} else {
CDSR.2008J[i]] <- NULL }

Two-stage MA for HRs

resultsREMLHR=data.frame(matrix(NA, max(CDSR_2008%ma), 8))

colnames(resultsREMLHR)<-c("estimates","SE", "LowerCI", "UpperCI","Tau",
"Isq", "MA", "Med_Area")
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for (i in unique(CDSR_2008%ma)) {
cat(i,"\n")

try.fitl<- try(rma.uni(yi = logHR, vi = varHR, data =
CDSR_2008[CDSR_2008%ma==i,], method="REML",control=list(maxiter=10e9,
verbose=TRUE, stepadj=0.2), verbose=TRUE))

resultsREMLHR]i,7]<-i
resultsREMLHR][i,8]<-unique(CDSR_2008[CDSR_2008%$ma==i,]$scode)
if (class(try.fitl)!="try-error") {
CDSR.2008HR{[i]]<- try.fit1
resultsREMLHR]i,1]<-as.numeric(exp(CDSR.2008HR[[i]]$b))
resultsREMLHRJi,2]<-as.numeric(CDSR.2008HR][i]]$se)
resultsREMLHR]i,3]<-as.numeric(exp(CDSR.2008HR([[i]]$ci.Ib))
resultsREMLHR]i,4]<-as.numeric(exp(CDSR.2008HR([[i]]$ci.ub))
resultsREMLHR]i,5]<-as.numeric(CDSR.2008HR[[i]|$tau2)
resultsREMLHR]i,6]<-as.numeric(CDSR.2008HR][i]]$I2)
} else {
CDSR.2008HR][i]] <- NULL }}

resultsREMLHR<-na.omit(resultsREMLHR)

One-stage MA for ORs

for (i in unique(CDSR_2008%$ma)) {
cat(i,"\n")

try.fit2<- try(rma.glmm(ai = treat_n, bi = nontreat_n, ci = ctrl_n, di =
nonctrl_n, data = CDSR_2008[CDSR_2008$ma==i,], measure =
"OR",model="UM.FS", drop00=F,nAGQ=7))

resultsUMFS]i, 7]<-i

resultsUMFS]i,8]<-unique(CDSR_2008[CDSR_2008$ma==i,]$scode)
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if (class(try.fit2)!="try-error") {
CDSR.2008stg1[[i]]<- try.fit2
resultsUMFSJi,1]<-as.numeric(exp(CDSR.2008stg1[[i]]$b))
resultsUMFS]Ji,2]<-as.numeric(CDSR.2008stg1[[i]]$se)
resultsUMFS]Ji,3]<-as.numeric(exp(CDSR.2008stg1[[i]]$ci.lb))
resultsUMFS]Ji,4]<-as.numeric(exp(CDSR.2008stg1[[i]]$ci.ub))
resultsUMFSJi,5]<-as.numeric(CDSR.2008stg1[[i]|$tau2)
resultsUMFSJi,6]<-as.numeric(CDSR.2008stg1[[i]]$12)

} else {

CDSR.2008stg1[[i]] <- NULL }}

One-stage MA for HRs

for (i in unique(datlong.CDSR_2008%ma.num)) {
cat(i,"\n")

try.fit3<-try(glmer(cbind(event,n-event) ~ factor(treat) + factor(study) +
(treat12-1|study), data=datlong.CDSR_2008[datlong.CDSR_2008$ma.num==i],
family=binomial(link="cloglog"),nAGQ=7))

resultsUMFSHRYi,6]<-i

resultsUMFSHR][i, 7]<-
unigue(datlong.CDSR_2008[datlong.CDSR_2008$ma.num==i,]$medical.area)

if (class(try.fit3)!="try-error") {
CDSR.2008longl[[i]]<- try.fit3

CDSR.2008long1.Cl[[i]]<-confint. merMod(CDSR.2008long][[i]],
method="Wald")

resultsUMFSHR(i,1]<-
as.numeric(exp(summary(CDSR.2008long[[i]])$coeff[2,1]))
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resultsUMFSHRi,2]<-
as.numeric(summary(CDSR.2008long][[i]])$coeff[2,2])

resultsUMFSHR]i,3]<-
as.numeric(summary(CDSR.2008long([[i]])$varcor)

resultsUMFSHR([i,4]<-exp(CDSR.2008longl.CI[[i]][3,1])
resultsUMFSHR]i,5]<-exp(CDSR.2008long1.CI[[i]][3,2])
} else {

CDSR.2008long[[i]] <- NULL }}
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B.3 — Clog-log link & HR derivation

A) Information on the Complementary log-log link (clog-log)

Singer et al.*?> and Hedeker et al.1?® are providing all the information including
the assumptions and details involved when models are analysed under a logit or
a clog-log link. Both papers are describing that another useful link function for the
discrete-time hazards models that worth’s consideration is the clog-log function.
While logit link provides with the logarithm of the odds of event of occurance,
clog-log link produces the logarithm of the negative logarithm of the probability of
event non-occurrence!?®, Differences between the logit and clog-log
transformations invoke the following: 1) the logit transformation is symmetric
mapping event probabilities from [0,1] to (—oo, ) (i.e. without lower and upper
bound) whereas clog-log transformation is asymmetric meaning that approaches
zero at a slower pace than approaches 1, and does not have upper and lower
bound. 2) When small hazards are involved (i.e. the probability of the event
occurring is small), both transformations produce similar results whereas at
higher values of hazard the transformation produce discordant results as shown
in Figure 3.8. 3) Logit link has a build-in proportional odds assumption whereas
clog-log link a build-in proportional hazards assumption, a direct analogy to
survival analysis in which the same assumption is made. Familiar terminology for
model specification, comfortability with results interpretation and widely available
software for estimation of the results are important advantages of the logit
transformation. On the other hand, specifying a model with a clog-log link invokes
the following assumptions: a) “for each combination of predictor values, there is
a postulated clog-log hazard function; b) each of these clog-log hazard functions
has an identical shape; c) and the distance between each of these clog-log

hazard functions is identical in every time period”'2®,
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Figure 3.11: Replication of the figure presented on (Singer et al., 2003) paper.
Identification of differences when comparing effects of the logit and clog-log

transformations.
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B) Derivation of the log Hazard Ratio and its variance using the clog-log link
for the two-stage MA models.

Assuming Y = cloglog(x) = log [-log(1 — x)], and
d 2
Var(y) = (d—z)sz(x) Var(x) we have:

If f(x) = log [-log(1 —x)], then:

1
—[log (1-x)]

f'x) = :—x{log[— log(1—x)]} = [—log(1 — x)] or

G = mam [ D'log (1 =) + (~Dlog (1-2)] 0
100 = oy + (D A=) or

/@) = sty P CD D) = Glor

f'0) = S + CD S (D or

100 = s s O

oo =

log(1—x)(x—1)
In our occasion:
For the treatment arm: Y; = log [—log(1 — x4)]
For the control arm: Y, = log [—log(1 — x,)]
E(Y, —Yy) =log [—log(1 — x;)] —log [—log(1 — x,)]
Var(Y, —Yy) = Var{log[—1log(1 — x;)]} + Var{log[—log(1 — x,)]}

Where x; = A%, and x, = C%D is the proportion of events for the treatment and

control arms obtained from the 2x2 table.
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B.4 — Calculation of I?

Assuming we have obtained the variance of the logarithm of the HRs and ORs,
s?, we can obtain the corresponding within-study precisions as w; = siz and the

1

(sH*

within-study precisions of power of 2, w? =

Then, according to Higgins et al.1’?, we can obtain the within-study variances as:

,_ awi(m—-1)
-~ Cw)?-Xwf

where m is the number of studies included in meta-analysis.
From the models applied we can obtain 72, and hence the between-study
heterogeneity using the following formula:

2

2=—"
T2 4+ 02
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B.5 — Table containing the exact results from the two-stage meta-analysis
models & additional forest plots considered as outliers from the Bland-

Altman plots
Two-Stage Random-Effects Model
MA ) . 72 OR IZOR
|dentifier OR (95% Cl) vs. HR (95% Cl) vs. 72 HR vs. I2 HR
1.036 (0,946, 1.135) 0.001 ) )
! vs. 1.019 (0.916, 1.134) vs.0.003  S/oVS. 8%
0.606 (0.451, 0.813) 0.012 . .
156 vs. 0.652 (0.484, 0.878) vs. 0.038 S/NVS. 25%
158 0.744 (0.524, 1.058) 0.030 31% vs.
vs. 0.797 (0.584, 1.086) vs. 0.033 44%
77 0.662 (0.495, 0.886) 0.028 2206 vs.
vs. 0.701 (0.532, 0.926) vs. 0.036 3206
201 0.190 (0.065, 0.555) 0.333 20% vs.
vs. 0.250 (0.085, 0.730) vs. 0.386 250%%
0.733 (0.586, 0.916) 0.005 . .
214 vs. 0.791 (0.678, 0.924) vs.0.000  %0Vs. 0%
0.674 (0.448, 1.013) 0.000 . .
246 vs. 0.877 (0.722, 1.066) vs.0.007  V%VS. 9%
206 0.262 (0.044, 1.569) 1.146 45% vs.
vs. 0.382 (0.146, 1.005) vs. 0.242 30%
0.537 (0.343, 0.842) 0.010 . .
322 vs. 0.694 (0.522, 0.923) vs.0017  0%VS. 26%
0.522 (0.275, 0.993) 0.000 . .
327 vs. 0.681 (0.469, 0.988) vs. 0081  0%VS 32%
230 0.795 (0.575, 1.098) 0.033 15% vs.
vs. 0.824 (0.618, 1.098) vs. 0.083 5206
0.910 (0.622, 1.331) 0.000 . .
331 vs. 0.963 (0.790, 1.174) vs.0013 0% Vs 16%
1.363 (1.050, 1.770) 0.027 . .
373 vs. 1.350 (1.086, 1.678) vs.0.012  12%Vs. 6%
204 0.662 (0.161, 2.726) 1.974 82% vs.
vs. 0.733 (0.334, 1.608) vs. 0.515 75%
17 0.742 (0.344, 1.599) 0.226 21% vs.
vs. 0.712 (0.390, 1.300) vs. 0.109 16%
4a1 0.501 (0.413, 0.609) 0.116 70% vs.
vs. 0.569 (0.492, 0.658) vs. 0.056 62%
434 1.193 (0.461, 3.089) 0.150 12% vs.
vs. 1.135 (0.588, 2.190) vs. 0.139 31%
0.784 (0.547, 1.123) 0.027 o
448 vs. 0.853 (0.707, 1.030) vs.0.000 13%Vs. 0%
S0 0.673 (0.404, 1.121) 0.146 2206 vs.
vs. 0.807 (0.533, 1.222) vs. 0.162 38%
c07 0.442 (0.321, 0.608) 0.128 29% vs.
vs. 0.603 (0.485, 0.750) vs. 0.068 33%
0.686 (0.541, 0.870) 0.000 . .
525 vs. 0.746 (0.592, 0.940) vs.0012 0%Vs. 14%
ceg 1.263 (0.621, 2.565) 0.241 49% vs.
vs. 0.964 (0.556, 1.670) vs. 0.239 78%
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559

560

574

580

621

647

711

1.274 (0.482, 3.368)
vs. 1.046 (0.665, 1.644)
1.429 (0.819, 2.492)
vs. 1.278 (0.759, 2.150)
0.835 (0.552, 1.262)
vs. 0.778 (0.522, 1.159)
0.606 (0.116, 3.168)
vs. 0.922 (0.419, 2.031)
1.033 (0.700, 1.524)
vs. 1.082 (0.857, 1.366)
1.038 (0.719, 1.497)
vs. 1.053 (0.745, 1.490)
0.607 (0.437, 0.845)
vs. 0.789 (0.665, 0.935)

0.197
vs. 0.071
0.000
vs. 0.057
0.080
vs. 0.097
0.990
vs. 0.000
0.062
vs. 0.000
0.000
vs. 0.045
0.000
vs. 0.007

26% vs.

4

4%

0% vs. 26%
349% vs.

4
47%

32%

6%

vs. 0%

vs. 0%

0% vs. 36%

0% vs. 19%

Table 3.5: Characteristics of meta-analyses outside the 95% limits of agreement
based on difference of standardised estimates and difference in I1? (Two-stage
models).

MA coloured in blue represent characteristics of studies outside the 95% limits of
agreement based on difference of standardised estimates. MA coloured in red
represent characteristics of studies outside the 95% limits of agreement based on
difference in 12. MA coloured in black represent characteristics of studies outside the
95% limits of agreement based on difference of standardised estimates and difference
in 12,

The meta-analysis forest plots below correspond to the meta-analyses presented

in Table 3.5. The meta-analyses already presented in Chapter 3 were omitted

from the figures below.

Treatment

Control

MA 158 T+ Total C+ Total OR [95% Cl] HR clog [95% CI]
Study 1 0 17 2 17 <+—————1 0.89% 0.18 [0.01, 3.97] 4————» 0.89% 0.19[0.01, 4.29]
Study 2 6 49 6 51 —a—— 5.75% 1.05[0.31, 3.50] —=—— 6.21% 1.04[0.34,3.24]
Study 3 3 36 7 38 e 4.08% 0.40[0.10, 1.70] P 4.49% 0.43[0.11, 1.65]
Study 4 55 109 56 106 HEH 25.85% 0.91[0.53, 1.55] HEH 30.42% 0.93[0.64, 1.37]
Study 5 23 159 40 149 il 23.08% 0.46 [0.26, 0.82] - 21.58% 0.50[0.30, 0.84]
Study 6 27 208 44 202 il 26.76% 0.54[0.32, 0.91] i, 23.52% 0.57[0.35,0.91]
Study 7 11 176 20 185 - 13.59% 0.55[0.26, 1.18] & 12.89% 0.56[0.27, 1.18]
ORREML (Q =5.1,df =6, p = 0.5; I = 8%)

Clog-log REML (Q=6.5,df =6, p = 0.4; I = 25%) 4 100.00% 0.61[0.45, 0.81] 100.00% 0.65 [0.48, 0.88]

| m— — | o ——

005 025 1 4
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Treatment Control
MA 158 T+ Total C+ Total

OR [85% CI]

HR clog [95% CI]

Study 1 45 224 69 222

Study 2 66 106 69 109

Study 3 29 192 33 193

i 40.71%

1

— 29.31%

- 29.98%

0.56 [0.36, 0.86]

0.96 [0.55, 1.66]

0.86 [0.50, 1.49]

- 35.86% 0.60[0.41, 0.88]

HH  38.53% 0.97[0.68, 1.38]

= 25.61% 0.87[0.53, 1.44]

ORREML (Q=2.8,df=2,p=0.3; I =31%)

Clog-log REML (Q = 3.5, df = 2, p = 0.2; I = 44%)

%  100.00%

T T 1
005 025 1 4

Treatment Control

0.74[0.52, 1.06]

4 100.00% 0.80[0.58, 1.09]

| R
0.05 025 1 4

MA177 T+ Total C+ Total OR [95% Cl] HR clog [95% CI]
Study 1 23 206 50 213 [ 21.40% 0.41[0.24,0.70] - 20.06% 0.44[0.27,0.73]
Study 2 53 115 54 109 e 22.12% 0.87[0.52, 1.47] i 26.74% 0.90[0.61, 1.33]
Study 3 36 176 40 168 FE- 23.04% 0.82[0.49,1.37] FEy O 22.44% 0.84[0.54,1.32]
Study 4 26 614 43 623 HH 23.67% 0.60[0.36, 0.98] . 20.45% 0.60[0.37, 0.98]
Study 5 9 53 1 51 = 7.96% 0.74[0.28 1.98] = 8.38% 077[0.32 185
Study 6 2 12 2 12 % 180% 1.00[0.12,8.56] ————% 193% 1.00[0.14,7.12]
ORREML (Q=52,df=5,p=04; P =22%)
Clog-log REML (Q = 6.1, df = 5, p = 0.3; I” = 32%)

100.00% 0.66 [0.49, 0.89] #  100.00% 0.70[0.53, 0.93]

| I N | I

005 025 1 4

Treatment Control
MA 201 T+ Total C+ Total

OR [95% CI]

005 025 1 4

HR clog [95% CI]

Study 1 1 15 6 13 - 17.39%

Study 2 28 93 54 92 il 69.51%

Study 3 1 10 4 11 -— 10.97%

Study 4 0 11 2 3 «———» 2.12%

0.08[0.01, 0.83]

0.30[0.17, 0.56]

0.08 [0.00, 1.65]

0.000.00, 5.09]

- 18.22% 0.11[0.01, 0.93]

HiH 67.82% 0.41[0.25, 0.64]

4= 10.85% 0.10[0.00,2.10]

4+—F 2.11% 0.01[0.00, 9.70]

ORREML (Q=3.1,df=3, p=0.4; I = 20%)
Clog-log REML (Q = 3.2, df =3, p = 0.4; I’ = 25%)

100.00%

| e —
005 025 1 4

0.19[0.07, 0.56]

198

et 100.00% 0.25[0.09, 0.73]

| . —
005 025 1 4



Treatment Control
MA214 T+ Total C+ Total OR [95% CI] HR clog [95% CI]
Study 1 5 22 6 21 ———— 262% 0.74[0.19,2.91] ———  1.70% 0.77[0.23,2.52]
Study 2 95 167 114 168 - 23.07% 0.62[0.40, 0.98] - 29.93% 0.74[0.56, 0.98]
Study 3 60 147 61 138 - 2091% 0.87[0.54,1.39] - 18.46% 0.90 [0.63, 1.29]
Study 4 43 114 48 116 -+ 16.78% 0.86[0.51, 1.46] Fe 13.90% 0.89[0.58, 1.34]
Study 5 43 114 43 117 8 16.52% 1.04[0.61,1.78] e 13.22% 1.03[0.67,1.58]
Study 6 14 35 20 28 —— 4.36% 0.27[0.09, 0.77] = 4.82% 0.41[0.20, 0.83]
Study 7 21 30 22 30 ——-— 3.90% 0.85[0.28,2561] <~ 590% 0.91[0.48, 1.72]
Study 8 35 79 48 78 - 11.82% 0.50[0.26, 0.94] e 12.07% 0.61[0.39, 0.96]
ORREML (Q=8.0,df=7,p=0.3 %
Clogrlog REML (A =7.3.df =7, p = 04i = 0%) * 100.00% 0.73[0.59, 0.92] ¢ 100.00% 0.79 [0.68, 0.92]
| I | T T 1
005 025 1 4 0.05 025 1 4

Treatment Control
MA 246 T+ Total C+ Total OR [85% CI] HR clog [85% CI]
Study 1 85 8 81 87 ——»1.98% 11.26 [0.62, 203.81] = 9.39% 1.86(1.00,343]
Study 2 42 5 41 49 1 1522% 091[0.32, 2.59] %4 1428% 0.96[0.59, 1.56]
Study 3 2% 3% 29 32 = 761% 050[0.41, 2.19] [ 939% 0.75[0.40, 1.38]
Study 4 78 92 79 90 Wi 23.04% 078[0.33, 1.81] E 23.45% 0.90[0.62, 1.29]
Study 5 21 24 1720 i 560% 124[0.22, 6.92] - 646% 1.10[052,232]
Study 6 15 27 21 30 —=— 14.02% 054[0.18, 1.59] — 7.54% 0.67[0.34,1.34]
Study 7 21 28 23 26 =i 763% 039[0.09, 1.71] [ 7.85% 0.64[0.33, 1.26]
Study 8 62 81 7Mo82 . 2491% 051[0.22, 1.14] r 2165% 0.72[0.49, 1.06]
ORREML (Q=59,df=7,p=06;I" =0%)
- R

Clog-log REML (Q =8.8,df=7,p =03 "= 9%) @ 10000% 067[0.45, 1.01] . 100.00% 0.88 [0.72, 1.07]

| e — | . —

005 025 1 4 005 025 1 4
Treatment Control

MA 296 T+ Total  C+ Total OR[95% CI] HR clog [95% CI]
Study 1 1 1 1 10 - 21.21% 2.82[0.11,74.32) L -> 7.81% 2.69[0.10, 74.26]
Study 2 3 10 9 10 - 30.54% 0.05[0.00, 0.56) - - 32.44% 0.15[0.04, 063]
Study 3 132 18 18 —. 48.25% 0.27[0.06, 1.21) —.— 59.76% 0.48[0.22, 1.07]
ORREML (Q=38, df=2,p=0.1: 1" = 45%)
Clog-log REML (Q=3.3, df =2, p = 0.2, I = 30%)

——ei——— 100.00% 0.26 [0.04, 1.57] - 100.00% 0.38[0.15, 1.00]

B —

0.05 025 1 4 0.05 0.25 1
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Treatment Control

MA322 T+ Total C+ Total OR[95% CI] HR clog [95% CI]
Study 1 66 98 72 91 i 42.88% 0.54[0.28,1.09] HH 41.60% 0.71[0.50,1.02]
Study 2 62 88 73 95 B~ 4260% 0.72[0.37,1.39] HEH 40.97% 0.83[0.58, 1.20]
Study 3 19 35 27 32 A 14.52% 0.22[0.07,0.70] ——i 17.44% 0.42[0.22,0.79]
ORREML(Q=30,df=2,p=0.2; F= 6%)
Clog REML (Q=3.3, df =2, p = 0.2;I* = 26%
9 @ ’ P ’ ) R 100.00% 0.54[0.34,0.84] *» 100.00% 0.69[0.52,0.92]
| I I 1 1
005 025 1 4 005 025 1 4
Treatment Control
MA 331 T+ Total C+ Total OR[95% CI] HR clog [95% CI]
Study 1 58 61 26 32 —»8.78% 4.46[1.04, 19.23] =— 10.55% 1.80[1.02, 3.17]
Study 2 24 30 24 31 —=——19.59% 1.17[0.34, 3.99] = 8.88% 1.08[0.58,2.02]
Study 3 75 102 82 107 Hl—  36.72% 0.85][0.45, 1.59] HH 23.62% 0.91[0.65, 1.28]
Study 4 84 99 91 99 —a— 17.55% 0.49[0.20, 1.22] HiH 21.55% 0.75[0.52, 1.08]
Study 5 24 3N 14 15 +——— 1 3.00% 0.24[0.03, 2.20] - 5.34% 0.55[0.24, 1.25]
Study 6 51 59 27 32 —=——987% 1.18[0.35, 3.96] e 11.40% 1.08 [0.63, 1.85]
Study 7 42 50 21 25 ————8.44% 1.00[0.27, 3.70] 4 9.51% 1.00[0.55, 1.82]
Study 8 37 44 21 25 ——=——8.06% 1.01[0.26, 3.85] i 9.14% 1.00 [0.54, 1.85]

ORREML (Q=8.1,df=7,p=03; "= 0%)
Clog-log REML (Q =87, df =7, p = 0.3; I = 16%)

<4 100.00% 0.91[0.62, 1.33]

111

005 025

Treatment Confrol
MA 373 T+ Total C+ Total

14

OR [95% CIl

4 100.00% 0.96[0.79, 1.17]

T 1
0.05 025 1 4

HR clog [95% CI]

Study 1 1 64 17 ————»0.86% 1.11[0.07, 18.14
Study 2 1 75 5 76 H—+5.11% 2.44[0.80, 7.40
Study 3 5 149 1 51 ———1.13% 241[0.21, 27.52
Study 4 5 93 2 100 ——2.37% 2.78[0.53, 14.71
Study 5 2 219 7 112 ==—+7.72% 1.68[0.69, 4.05
Study 6 3 239 15 238 +———H 4.07% 0.19[0.05, 0.66

Study 7 0 13 2 13  +————»062% 0.31[0.01, 831

Study 8 87 561 52 527

Study 9 4 108 2 56 ———»221% 104[0.18, 585
Study 10 3 51 0 53 ———8.71% 5.54[0.25,121.19
Study 11 1147 2 151 4————*115% 051[0.05 569

Study 12 293 2550 117 1283

W 4388% 129103, 162

Study 13 5 104 1 45 ———»1.06% 3.44[0.28, 42.59
Study 14 0 213 3 111 e—— 053% 007[000, 2.34

]
]
]
]
]
]
]
- 28.58% 1.68[1.16, 2.42)
]
]
]
]
]
]

—————061% 1.11[0.07, 17.75]

H—e+4.06% 233[0.81, 6.71]

————»0.78% 238[0.21, 27.55]
i —173% 274[0.53, 14.10]

H——16.13% 154[0.70, 3.84]

299% 0.19[0.06, 0.67]

[
— e »042% 032[0.01, 8.96]
[

—

[E—

.

[

R

- 2857% 1.62[1.15, 2.29]
+—»162% 104[0.19, 567]
—9.49% 5.43[0.25,119.23]
- 0.81% 0.51[0.05, 5.85]
W 5068% 128[103, 158]
——%0.74% 338[0.27, 42.26]
1 0.37% 007[0.00, 2.36]

ORREML (Q=18.8,df=13,p=0.1, = 12%)
Clog REML (Q = 18.4, df =13, p = 0.1;F = 6%)

* 100.00% 1.36[1.05, 1.77]

1 T 1

005 025

1 4
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Treatment Control
MA 394 T+ Total C+ Total OR[95% CI] HR clog [95% CI]
Study 1 123 168 45 53 —B— 2422% 049021, 1.11] B 6249% 0.70[0.47, 1.03]
Study 2 15 27 17 27 —B—2283% 0.74[0.25, 2.19] —=— 18.19% 0.82[0.40, 1.67]
Study 3 7 10 110 +463% 21.00[1.78,248.10] —2.10% 11.43[1.38,9451]
Study 4 210 8§ 10 +—i 16.17% 0.06[0.01, 0.56] 372% 0.14[0.03, 0.68]
Study 5 10 22 14 22 —8— 2214% 048[0.14, 1.59] —=—H  13.50% 0.60[0.26, 1.38]

ORREML(Q =125, df =4, p=0.0; F = 82%)
Clog REML (Q=11.0,df = 4,p=0.0; = 0%

)--—"%00.00% 0.66[0.16, 2.73]

1T T 1
005 025 1 4

*  100.00% 0.70[0.52, 0.95]

1T 11
1 4

Treatment  Control

MA417 T+ Total C+ Total OR [95% CI] HR clog [95% CI]
Study 1 5 24 5 26 —— 2111% 1.11[0.28, 442] 18.48% 1.0910.32, 3.79]
Study 2 138 6 14 —8——  2375% 054[0.15, 1.93] 25.39% 061[0.22, 1.67]
Study 3 2 11 4 13 ——=—— 1280% 050[007, 3.45] 10.93% 055[0.10, 2.99]
Study 4 2 14 3 15 =% 1251% 067[009, 473] 9.99% 0.69[0.12, 4.14]
Study 5 6 13 13 15 +=— 13.78% 0.13[0.02, 0.83] 24.35% 0.31[0.11, 0.86]
Study 6 1 8 17 ———= 499% 275[0.10,75.08] 3.06% 2.58[0.09,75.45]
Study 7 10 55 127 —— 11.06% 5.78[0.70,47.73] 7.80% 5.32[0.68, 41.55]
ORREML (Q=83,df=6,p=02;=21%)

Clog REML (Q=74,df=6,p=03;=16%

) ~l 100.00% 0.74[0.34, 160]

100.00% 0.71[0.39, 1.30]

005 025 1 4
Treatment Control

MA 431 T+ Total C+ Total OR [95% CI| HR clog [95% CI]
Study 1 10 56 40 139 - 361% 054[025 117] =t 3.02% 058[0.29,1.16]
Study 2 26 T2 37 95 . 447% 0.89[0.47,1.67] [ 448% 0.91[0.55,1.51]
Study 3 26 221 80 302 | 5.46% 0.54[0.33,0.88] - 4.94% 0.57[0.36,0.90]
Study 4 109 238 202 318 HH 8.71% 0.49[0.34,0.66] L T17% 061[048,077]
Study 5 41 435 97 734 - 6.35% 0.68[0.46,1.01] HH 6.06% 0.70[0.48,1.01]
Study 6 14 81 21 75 i 3.78% 0.37[0.18,0.78] = 3.32% 043[0.22,0.81]
Study 7 34 01 104 219 - 543% 066[040,1.09] i 573% 0.73[0.49,1.07]
Study 8 110 542 142 443 HH 7.14% 0.54[0.40,0.72] i 7.61% 0.59[0.48,0.79]
Study 9 9 45 14 32 —— 2.58% 0.32[0.12,0.88] —— 2.28% 0.39[0.17,0.90]
Study 10 223 1490 588 2675 ] 7.96% 062[053,074] ] 8.85% 065[0586,076]
Study 11 64 396 29 136 iy 551% 0.71[044,1.16] e 517% 0.74[047,1.14]
Study12 80 217 129 157 - 5.49% 0.13[0.08,0.21] i 7.00% 0.27[0.20,0.36]
Study13 20 115 31 102 ] 442% 048[0.25,092] o 396% 053[0.30,093]
Study 14 9 52 30 67 —— 317% 0.26[0.11,0.61] —— 2.72% 0.32[0.15,0.68]
Study 15 14 173 37 220 i 4.35% 0.44[0.23,0.83] i 3.55% 0.46[0.25,0.89]
Study 16 27 665 41 521 i 544% 0.50[0.30,0.82] - 468% 051[0.31,082]
Study 17 5 59 7 28 —— 1.88% 0.28[0.08,097] —— 137% 0.31[0.10,0.97]
Study 18 136 455 205 555 i 7.33% 0.73[0.56,0.95] L 8.05% 0.77[0.62,0.96]
Study19 56 173 24 52 ] 4.48% 0.56[0.30, 1.05] [ 469% 063[0.39,1.03]
Study20 31 83 40 74 —a— 4.44% 0.51[0.27,0.96] - 477% 0.60[0.37,0.97]
ORREML (Q=531,df=19,p=0.0; F =70% o, %

Clog REMIi(Q=47.9, o= 19?[):0_0; |2:62°3;))‘ 100.00% 050[041,061] + 100.00% 0.57[0.49, 0.66]

T 1T 1 T 1
005 025 1 4
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Treatment  Confrol

MA434 T+ Total C+ Total OR[95% CI] HR clog [95% CI]
Syl 5 9 6 7 w—v————1 1334% 021[0.02, 252] 19.49% 0421[0.11, 1.52]
Sudy2 0 5 2 5 4————» 709% 026001, 852 > 323% 030[0.01,1064]

Study 3 19 20 6 20

—— 15.55%

475[0.48, 46.01)

- 34.87%

1.860.80, 4.31]

Stuy4 18 37 15 38 e B403% 145058, 363] HB 4241% 133[066, 266]
ORREML (Q=42, df=3,p=02F=12%)
= = = '2: o

ClogREML (Q=4.3,1=3,0 =021 =31%) _qme 100.00% 1.19[0.46, 309] - 100.00% 1.14[059, 2.19]

1T 1 1 1

005 025 1 4 4

Treatment Cantrol
MA448 T+ Total C+ Total OR [95% CI] HR clag [95% CI|
Syl 55 80 64 Of FEH 2654% 0.88[037,1.27] 2462% 079054, 1.16]
Stdy2 86 101 71 83 e 1665% 097[043,2.20) 26.47% 099068, 142]
Sdy3 26 112 21 11 FBe 2486% 130068, 2.47] 1061% 1.26[0.71, 2.24]
Sudy4d B 48 3 45 s 1105% 082[0.29,2.31] 1377% 0.91[0.55,157]
Sudys5 20 W 25 20— 749% 027[0.07,0.95] 841% 0.50 [0.26,0.95]
Sy 41 56 45 54 en 1342% 0550022, 138] 16.11% 0.74[0.46,1.17]
ORREML(Q=6.1.d1=5 p=03 F = 13%)
_ _ —napP-

ClogREML(Q=57,df=5p=03F=0%) o  10000% 078]0551.12] 10000% 085[0.71,103]

1 1 1

005 025 1 4

Treatment Control

MAS06 T+ Total Cr Total OR[95% CIl HR clog [95% CI
Syl 4 5 2 5 ———» 304% 6.00[0.35, 10157] > 457% 3.15[053,18.58]
Sty2 1 12 6 12 e 432% 009001, 094 336% 013[0.02, 105
Siy3 2 5 1 5 e 304% 267[0.16, 45.14] s 268% 229[021,25.55]
Styd 4 10 4 10 4> 593% 1000017, 598] -+ B67% 100[0.25, 406]

Study 5 14 15 9 13

.
e
Study 7 19 64 32 60 i

—

430% 6.2210.60, 64.97]

—s 10.85% 2.30[0.86, 6.14]

Sudy6 19 209 20 33 = 1504% 123[0.44, 3.48] 16.41% 1.14[0.59, 2.20]
235T% 0.37[0.18, 0.77] 18.10% 0.46[0.26, 0.82]
Sudy8 3 6 4 5 e—e—i—— 320% 025[002 377 549% 043[0.09, 2.11]
Sty 20 73 30 T4 .- 25.04% 0.55[0.28, 1.11] 18.21% 062[0.35, 1.00]
Sudy10 6 9 6 6 4——i—» 269% 029[001, 603 6.42% 056013, 237]
Sudy11 4 12 5 12 ————— 7.85% 0.70[0.13, 368] 7.24% 075[0.20, 2.84]
ORREML (Q =144, df=10,p =0.2; £ = 22%)
Clog REML (Q =166, df=10 p=0.1. F = 33%) ®  100.00% 067[040, 1.12] 100.00% 0.81[0.53, 1.22]
1 1 1 1
005 025 1 4 4
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MAB), Lo e OR [95% CI] HR clog [95% CI]
Sudy! 6 9 B B a————— 1.06% 0.20[0.01, 503 e 204% 056[0.13, 2.37)
Suy2 4 5 2 5 —— 120% 6.00[0.35, 101.57] s 1.39% 3.15[0.53, 18.58]
Sudy3 14 15 9 13 H— 1.70% 6.22[0.60, 64.97] —e»  387% 2.30[0.86, 6.14]
Sudy4 24 5 20 39 % 855% 084[0.37, 195] e 760% 0.88[0.48, 162]
Sudy5 99 136 45 53 . 8.47% 0.48[021, 1.10] - 11.37% 0.69[0.46, 1.03]
Sudy6 47 76 45 53 - 7.99% 0.29[0.12, 0.70] HIH 1029% 0.51[0.32, 0.80]
Sudy7 19 64 32 60 . 9.80% 0.37[0.18, 0.77] . 8.06% 0.46[0.26, 0.82]
Sudy8 3 6 4 5 a—=—+ 1 120% 025[002 377] ———— 171% 043009, 2.11]
Sudy® 4 12 5 12 s 3.13% 0.70[0.13, 3.68] e 235% 0.75[0.20, 2.84]
Sudy10 1 5 1 5 a————» 101% 1.00[0.05, 22.18) % 060% 1.00[0.06,16.08]
S IR I — 171% 0.09[0.01, 0.94] -— 1.00% 0.13]0.02, 1.05]
Sudy12 22 59 41 67 i 10.04% 0.38[0.18, 0.78] HH 8.83% 0.49[0.29, 0.84]
Sudy13 3 6 3 4 e———i—» 124% 033[0.02, 533 1 154% 050[0.09, 269]
Sudy14 10 45 21 41 —.— 747% 0.27[0.11, 0.69] —— 568% 0.35[0.16, 0.75]
Sudy15 4 10 4 10 4+ 275% 100[0.17, 598] > 214% 1.00[0.25, 406]
Sudy16 19 20 20 33 1 640% 123[044, 348] e 691% 1.14[0.59, 2.20]
Sudy17 22 41 05 117 - 9.38% 027[0.12, 058] - 963% 046[0.28, 0.75]
Study18 11 22 82 92 ew— 6.27% 0.12[0.04, 0.35] - 6.86% 0.31[0.16, 0.60]
Sudy19 20 73 30 74 .- 10.46% 055[028, 1.11] s 8.14% 0.62[0.35, 1.09]
ORREML (Q=276,df=18,p=01.1" = 29%) @ 100.00% 0.44[0.32, 0.61] * 100.00% 0.60 [0.48, 0.75]
Clog REML (Q=28.0, df = 18, p=0.1: F = 33%)
1 1T 1 1 1T 1
005 025 1 4 005 025 1 4
Treatment Control

MA558 T+ Total C+ Total OR[95% CI] HR clog [95% CI]
Study1 40 51 37 37 +—— 6.20% 0.06(0.00,0.90] —— 2123% 0.38[0.19,0.78]
Study2 18 30 21 36 —8— 26.47% 1.07[0.40,2.87] s 2255% 1.05[0.55,2.01]
Study3 44 62 41 62 B 3343% 1.25[059, 268] HH O 27.01% 114[0.73,1.79]
Study4d 142 158 60 77 —3389% 251[1.19,530] o 2920% 152[107,214]

ORREML (Q=7.9,d=3, p=0.0; = 40%)
Clog REML (Q =118, df =3, p=0.0; = 78%)

-~ 100.00%

| I I B

005 025

1 4

126062, 257]

- 100.00% 096(0.56, 167]

T T 1
005 025 1 4

Treatment Control
MA 559 T+ Total C+ Total OR[95% CI HR clog [95% CI|
Study 1 47 5 37 37 +——————11090% 022[0.01,368] ——H  2532% 065[0.31,1.35]
Study 2 24 30 29 36 —8——4223% 0.97[0.29, 3.26] i 3216% 098[0.54, 1.79]
Study 3 57 62 51 62 H—»46.87% 2.46[0.80,7.56] - 42.51% 1.46[0.92,2.30]

ORREML (Q=30,df=2, p=02;"=26%)
Clog REML (Q=3.6,df =2, p=02; F = 44%)

~eaiiine=-100.00%

0.05 025

14

127048, 3.37]
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Treatment Control
MA 560 T+ Total C+ Total

OR [95% CIl

HR clog [95% CI]

Study 1 18 135 g 120

Study 2 25 37 29 M4

Study 3 8 78 5 &

H—»4373%

—— 3341%

———»22.86%

1.90[0.82, 4.40]

0.86[0.33, 2.26]

1.74[0.54, 5.56]

H—e—3147%

- 50.09%

———>18.44%

184082, 4.09]

0.92 (052, 1.61]

1.70[0.56, 5.19]

ORREML (Q=16,df=2, p=04;[ = 0%)
Clog REML (Q=2.3, df=2, p=0.3;" = 26%)

= 100.00% 1.43[0.82, 249] < 10000% 128(076,2.15]
T 1 1 1T 1T 1
005 025 1 4 005 025 1 4
Treatment Control
MA 580 T+ Total C+ Total OR[95% CI] HR clog [95% CI]
Suy1 0 9 5 7 4——4  17.58% 0.03[0.00,088] L 566% 0.05[0.00,1.34]
stidy2 6 11 5 1 i 4131% 1.44[0.27,7.71) —m»4254% 1.30[0.39, 4.37)
Suy3 6 10 8 13 W 41.11% 094[0.17,507] 1 51.80% 0.96[0.32, 2.87)
ORREML (Q=41,df=2,p=01: = 47%)
= = =02 F=09
ClogREML(QA=33,dl=2,p = 02,1 =0%) _ o 100.00% 0,61 [0.12, 317] g 10000% 092[042 2 03]
1t 11 | N |
005 025 1 4 005 025 1 4
Treatment Control
MA 621 T+ Total _C+ Total OR[95% CI) HR clog [95% CI]
Study 1 9 44 0 48 e——i  545% 020[0.04 098] | 231% 021[005,099]
Sudy?2 12 83 11 86 1 14.41% 118 [0.48, 2.90] =1 808% 116[051,263]
Study3 98 217 89 211 HH 3959% 1413[0.77,165] W 6405% 110[0.82,1.47]
Study4 9 187 14 187 b= 15.43% 0.62[0.26, 1.48] b= 7.73% 0.63[0.27,1.46]
Sudy5 32 149 21 146 i8— 2512% 163 [0.89,2.96] i 17.84% 1.56[0.90,2.70]
ORREML (Q=738,df=4,p=01: = 32%)
_ — — -2— 0
Clog REML (=76, df=4,p=011"=0%) & 100.00% 1.03[0.70,1.52] * 100.00% 1.08[0.86, 1.37]
1T 1T 1 1T 1T 1
005 025 1 4 005 025 1 4
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Treatment Control
MAB47 T+ Total G+ Total OR[95% CI] HR clog [95% CI]
Study 1 24 27 20 29 H—»652% 3.60 [0.86, 15.12] i ~—110.27% 1.88 [0.96, 3.67]
Study 2 30 102 55 193 B 48.13% 105[062, 1.77] FBH 32.26% 1.04[0.66, 1.62]
Study 3 18 30 23 30 ———+  10.75% 046[0.15, 1.40] 4 2002% 063[0.33,1.21]
Study 4 3 91 20 80 —®— 3460% 105[0.56, 1.96] - 2844% 1.04[063,171]
ORREML (Q=50,df=3,p=02;=0%)
- - - 2=
Clog REML (Q =5.2, df = 3,p = 0.2, 1" = 36%) % 100.00% 1.04[0.72, 1.50] & 100.00% 1.05[0.74, 1.49]
1 11 1T T 1
005 025 1 4 005 025 1 4
Treatment Control
MAT711 T+ Total C+ Total OR [95% CI] HR clog [95% CI]
Study 1 130 190 151 184 FEH 4462% 0.60[0.36,0.98] ®  3125% 077[059,099]
Study2 117 148 137 153 - 2571% 0.44[0.23,0.85] - 26.15% 0.69[0.52,0.92]
Study 3 60 68 61 70 —— 10.56% 1.11[0.40, 3.06] P 13.82% 1.04[0.68, 1.60]
Study4 123 138 126 139 —=— 17.81% 0.85[0.39, 1.85] WM 2363% 0.94[0.69,1.27]
Study 5 36 43 42 43 —— 1.30% 0.06 [0.00, 1.01] —— 514% 0.39[0.19,0.81]
ORREML (Q =56, df=4,p =02 =0%)
- - - P
ClogREML (Q=72,df=4,p=01,1"=19%) o' 43000% 061[044,085] ¢  100.00% 0.79[0.67,0.93]
| I . E— | | I —
005 025 1 4 005 025 1 4
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(A)

Difference in Standardised Estimates

C — Additional material relating to the “OEV” data meta-analyses

analysed in Chapter 4

C.1 - Bland-Altman plots for IPD, Non IPD and baseline risk
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Figure 4.9: IPD - Bland-Altman Plot comparing standardised OR vs. HR estimates for

two-stage models in “OEV” data.
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Figure 4.10: IPD - Bland-Altman Plot comparing I? estimates (OR vs. HR) for two-stage
models in “OEV” data.
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(A) ORvs HR clog-log (B) HR clog-log vs HR (C) ORvsHR
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Figure 4.11: Non IPD - Bland-Altman Plot comparing standardised OR vs. HR

estimates for two-stage models in “OEV” data.
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Figure 4.12: Non IPD - Bland-Altman Plot comparing I? estimates (OR vs. HR) for two-

stage models in “OEV” data.
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(A)

Difference in Standardised Estimates
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Figure 4.13: Overall Survival — Bland-Altman plot examining the association between

the difference in the scales to baseline risk.
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Figure 4.14: Progression/Disease Free Survival — Bland-Altman plot examining the

association between the difference in the scales to baseline risk.
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C.2 — Model Implementation
Two-stage MA for ORs

for (i in unique(CDSR_2008%ma)) {
cat(i,"\n")
try.fit<- try(rma.uni(ai = treat_n, bi = nontreat_n, ci = ctrl_n, di = nonctrl_n,

data = CDSR_2008[CDSR_2008%ma==i,], measure =
"OR",method="REML",

control=list(maxiter=500, verbose=TRUE, stepadj=0.5),
verbose=TRUE))

resultsREMLi,7]<-i

resultsREMLYi,8]<-unique(CDSR_2008[CDSR_2008%ma==i,]$scode)

if (class(try.fit)!="try-error") {
CDSR.2008][i]]<- try.fit
resultsREML][i,1]<-as.numeric(exp(CDSR.2008J[i]|$b))
resultsREML][i,2]<-as.numeric(CDSR.2008[[i]]$se)
resultsREML][i,3]<-as.numeric(exp(CDSR.2008[i]]$ci.lb))
resultsREML[i,4]<-as.numeric(exp(CDSR.2008][i]]$ci.ub))
resultsREML][i,5]<-as.numeric(CDSR.2008][[i]]$tau2)
resultsREML[i,6]<-as.numeric(CDSR.2008[[i]]$12)

}else {

CDSR.2008[[i]] <- NULL }}

Two-stage MA for HRs

CDSR_2008%logHR<-CDSR_2008%0_e/CDSR_2008$variance # Log HR
calculation

CDSR_2008%varHR<-1/CDSR_2008%variance # Variance
HR calculation

for (i in unique(CDSR_2008%ma)) {

cat(i,"\n")

try.fitl<- try(rma.uni(yi = logHR, vi = varHR, data =
CDSR_2008[CDSR_2008%ma==i,],

method="REML",control=list(maxiter=10e9, verbose=TRUE,
stepadj=0.2), verbose=TRUE))

resultsREMLHR][i, 7]<-i
resultsREMLHR[i,8]<-unique(CDSR_2008[CDSR_2008%ma==i,]$scode)
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if (class(try.fitl)!="try-error") {
CDSR.2008HR([[i]]<- try.fitl
resultsREMLHR[i,1]<-as.numeric(exp(CDSR.2008HR[[i]]$b))
resultsREMLHR[i,2]<-as.numeric(CDSR.2008HR][i]]$se)
resultsREMLHR[i,3]<-as.numeric(exp(CDSR.2008HR([[i]]$ci.Ib))
resultsREMLHR[i,4]<-as.numeric(exp(CDSR.2008HR[[i]]$ci.ub))
resultsREMLHR([i,5]<-as.numeric(CDSR.2008HR[[i]]$tau2)
resultsREMLHR([i,6]<-as.numeric(CDSR.2008HR[[i]]$I2)

}else {
CDSR.2008HR][i]] <- NULL }}

Two-stage MA for HRs using the Clog-log link

A) Calculation of HR clog-log and corresponding variance

CDSR_2008$proptreat<-
CDSR_2008$treat_n/(CDSR_2008%$treat_n+CDSR_2008%nontreat_n)

CDSR_2008$propctrl<-
CDSR_2008%ctrl_n/(CDSR_2008%$ctrl_n+CDSR_2008$nonctrl_n)

CDSR_2008%logHRclog<-(log(-log(1-CDSR_2008%proptreat)))-log(-log(1-
CDSR_2008$propctrl))

CDSR_2008%$derivTreat<-1/((log(1-
CDSR_20083proptreat))*(CDSR_2008$proptreat-1))

CDSR_2008s$derivCtrl<-1/((log(1-
CDSR_20083$propctrl))*(CDSR_2008$propctrl-1))

CDSR_2008%varTreat<-
(CDSR_2008%derivTreat"2)*((CDSR_2008$proptreat*(1-
CDSR_20083$proptreat))/CDSR_2008$treat_total)

CDSR_2008$varCtrl<-(CDSR_2008$derivCtri*2)*((CDSR_2008$propctri*(1-
CDSR_20083$propctrl))/CDSR_20083ctrl_total)

CDSR_2008%varHRclog<-CDSR_2008%varTreat+CDSR_2008%varCtrl

B) Model Implementation
CDSR.2008HRclog = list()
resREMLclogHR=data.frame(matrix(NA, max(CDSR 2008%$ma), 8))

colnames(resREMLclogHR)<-c("estimates HRclog","SE HRcloqg",
"LowerCl HRclog", "UpperCl HRclog","Tau HRclog", "Isg HRclog", "MA",

"Med Area")

for (i in unique(CDSR_2008%ma)) {
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cat(i,"\n")

try.fit2<- try(rma.uni(yi = logHRclog, vi = varHRclog, data =
CDSR_2008[CDSR_2008$ma==i,],

method="REML",control=list(maxiter=10e9, verbose=TRUE,
stepadj=0.2), verbose=TRUE))

resREMLclogHR([i, 7]<-i
resREMLclogHR[i,8]<-unique(CDSR_2008[CDSR_2008%ma==i,]$scode)
if (class(try.fitl)!="try-error") {
CDSR.2008HRclogl[[i]]<- try.fit2
resREMLclogHR(i,1]<-as.numeric(exp(CDSR.2008HRclog[[i]]$b))
resREMLclogHR[i,2]<-as.numeric(CDSR.2008HRclog[[i]]$se)
resREMLclogHR[i,3]<-as.numeric(exp(CDSR.2008HRclog([[i]]$ci.Ib))
resREMLclogHR[i,4]<-as.numeric(exp(CDSR.2008HRclog|[[i]]$ci.ub))
resREMLclogHR[i,5]<-as.numeric(CDSR.2008HRclog([[i]]$tau2)
resREMLclogHR([i,6]<-as.numeric(CDSR.2008HRclog[[i]]$12)
}else {
CDSR.2008HRclog][[i] <- NULL }}

C.3 — Table containing the exact results from the two-stage meta-analysis
models & additional forest plots considered as outliers from the Bland-

Altman plots

Two-Stage Random-Effects Model — Overall Survival

MA OR (95% CI) 2 OR I OR IPD
Identifier vs. HR (95% ClI) vs. > HR vs. I? HR (Yes/No)
0.000
03 0% vs. 3% Yes
vs. 0.000
17 0% vs. 5% Yes
1.482 (1.166, 1.885) 0.003 45%
21 Yes
vs. 1.433 (1.154, 1.779) vs. 0.003 vs. 0%
1.464 (1.182, 1.812) 0.003 45%
22 Yes
vs. 1.382 (1.180, 1.619) vs. 0.001 vs. 1%
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29

35

42

71

72

74

79

82

87

95

96

1.841 (1.112, 3.050)
vs. 1.349 (1.162, 1.567)
1.470 (0.663, 3.263)
vs. 0.785 (0.533, 1.157)
1.075 (0.748, 1.546)
vs. 1.022 (0.781, 1.337)
1.009 (0.848, 1.201)
vs. 0.868 (0.802, 0.939)
0.986 (0.843, 1.153)
vs. 0.875 (0.815, 0.939)
1.088 (0.837, 1.413)
vs. 1.003 (0.818, 1.228)
0.753 (0.668, 0.849)
vs. 0.854 (0.752, 0.970)
0.771 (0.609, 0.977)
vs. 0.849 (0.784, 0.919)
1.110 (0.694, 1.773)
vs. 0.982 (0.744, 1.297)
0.857 (0.735, 1.000)
vs. 0.895 (0.813, 0.984)
0.748 (0.627, 0.894)
vs. 0.821 (0.821, 0.944)

0.204
vs. 0.011
0.221
vs. 0.224
0.000
vs. 0.050
0.068
vs. 0.012
0.055
vs. 0.009
0.007
vs. 0.045
0.019
vs. 0.030
0.000
vs. 0.000
0.061
vs. 0.000
0.000
vs. 0.000
0.010
vs. 0.023

31%
vS. 28%
19%
vs. 85%
0%
vs. 49%
35%
vSs. 29%
30%
vs. 23%
5%
vs. 55%
25% vs.
36%

0% vs. 0%

36%
vs. 0%
0%
Vs. 26%
12%
vSs. 58%

No

Yes

No

No

No

No

Yes

Yes

No

Yes

Yes

Table 4.4: Characteristics of meta-analyses outside the 95% limits of agreement
based on difference of standardised estimates and difference in 12.

MA coloured in blue represent characteristics of studies outside the 95% limits of
agreement based on difference of standardised estimates. MA coloured in red
represent characteristics of studies outside the 95% limits of agreement based on
difference in 12. MA coloured in black represent characteristics of studies outside the
95% limits of agreement based on difference of standardised estimates and difference

in I2.
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Two-Stage Random-Effects Model — Progression/disease free survival

MA OR (95% CI) vs. HR (95% 2 OR 12 OR vs. IPD
Identifier Cl) vs. 2 HR I? HR (Yes/No)
0.655 (0.440, 0.975) 0.005
45 1% vs. 0% Yes
vs. 0.747 (0.651, 0.857) vs. 0.000
1.465 (0.548, 3.914) 0.000
48 0% vs. 0% Yes
vs. 2.120 (0.809, 5.554) vs. 0.000
1.465 (1.034, 2.076) 0.000
51 0% vs. 0% Yes
vs. 1.374 (0.992, 1.903) vs. 0.000
0.438 (0.301, 0.638) 0.373 76% vs.
53 Yes
vs. 0.503 (0.371, 0.682) vs. 0.267 62%
0.810 (0.627, 1.045) 0.036 23% vs.
56 Yes
vs. 0.842 (0.674, 1.051) vs. 0.044 0%
50 0.856 (0.699, 1.047) 0.000 0% vs. N
0
vs. 0.919 (0.756, 1.117) vs. 0.100 85%
62 0.865 (0.726, 1.031) 0.000 0% vs. N
0
vs. 0.923 (0.760, 1.120) vs. 0.099 86%
0.847 (0.478, 1.502) 0.025
68 9% vs. 0% No
vs. 0.921 (0.592, 1.434) vs. 0.120
23 0.778 (0.602, 1.004) 0.092 28% vs. N
0
vs. 0.785 (0.707, 0.872) vs. 0.033 61%
81 0.463 (0.354, 0.605) 0.052 52% vs. N
0
vs. 0.624 (0.548, 0.711) vs. 0.000 62%
0.805 (0.573, 1.129) 0.000 0% vs.
83 Yes
vs. 0.767 (0.632, 0.931) vs. 0.043 70%
g5 0.996 (0.396, 2.510) 0.684 62% vs. N
0
vs. 0.801 (0.665, 0.964) vs. 0.022 45%
0.723 (0.603, 0.868) 0.000 0% vs.
90 Yes
vs. 0.758 (0.641, 0.895) vs. 0.028 39%

Table 4.5: Characteristics of meta-analyses outside the 95% limits of agreement
based on difference of standardised estimates and difference in 2.

MA coloured in blue represent characteristics of studies outside the 95% limits of
agreement based on difference of standardised estimates. MA coloured in red
represent characteristics of studies outside the 95% limits of agreement based on
difference in I2.
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The meta-analysis forest plots below correspond to the meta-analyses presented
in Table 4.4-5. The meta-analyses already presented in Chapter 4 were omitted

from the figures below.

Treatment Control

MA22  T+Total C+Total OR [95% ClI] HR clog[95% CI] HR LR*[95% Cl|
Study 1 7271080 807 1055 W 41.87% 1.52[1.27, 1.81] W 5269% 1.31[1.17,1.46) W 40.09% 1.37[1.20, 1.58]
Stidy2 29 58 15 80 =+ 671% 2.90([1.33,6.30] e 172% 235125 4.41] - 972% 198[1.24,3.14]
Study 3 148 383 142 372 M 27.57% 1.11[0.83, 1.50] Al 12.49% 1.09[0.86, 1.37] ] 32.14% 1.17[0.87,1.41]
Study 4 543 613 523 619 Is{ 23.84% 155[1.10,217] ] 33.10% 1.20[1.04, 1.39) 1 18.05% 1.55[1.14,2.11]

ORREML (0 =65, df=3 p=01:F = 45%)
Clog-og REML (Q= 6.1, df=3,p=0.1, ' = 1%4)
Log-rank* REML (= 5.7, df =3, p=0.1; F = 45%)

4 10000% 148[1.18,181] 4 100.00% 125118, 1.36) 4 10000% 138[118,152]
| — i L
005 1 4 005 1 4 005 1 4
Treatment Control
MA 35 T+Total C+Total OR[95% CI] HR clog[35% CI] HR LR*[95% CI]
Study1 120121 62 67 | p11.45% 9E8[1.11, 34.68] [ay 16.62% 1.85[1.10,3.11] W 1522% 145(1.08,1.9]
Study2 44 45 41 44 b 6.42% 779[0.38,15773] Loy 973% 178[0.85,374] o 1408% 1.17[074,184)
Stdy3 84 86 80 81 —p 948% 053005, 590) e 14.48% 0.86(0.48, 152] W 15.68% 0.82(0.60,1.11)
Sudys 23 25 2 24 —ap1445% 164 [0.25, 10.81) e 9.90% 1.21(0.58,253) — 1041% 0.20[0.00,0.44)
Sudys 85 111 67 75 L 3774% 076[0.31, 190] W 2495% 0.89(0.61,130] W 1560% 0.67(064,1.20]
SudyB 95 97 5 53 e 1323% 186025, 1362] el 15.59% 1.18(089,204] W 15.08% 067[0.45,097]
Swdy?7 3 32 3 3 ———p 724% 103006, 17.28] —— 872% 1.01[046,223] Y 13.34% 072(0.43,1.20]
ORRENL (Q=67,df=6,p=0.3F = 19%)
Clog-og REML (=74, df=6,p =03 = 27%)
Log-rank* REML (0 = 208, df =, p = 0.0; F = 85%
W-100.00% 147068, 3.26) $ 100.00% 1.17(0.90, 1.51] & 100.00% 07903, 1.16]
LI — | — | —
005 1 4 005 1 4 005 1 4
Treatment Control
MA96 T+ Total C+Total OR [95% CI] HR clog[95% CI] HR LRY95% CI]
Study1 83 158 101 159 fei  13.07% 0B4[0.41,100] s 1151% 074[0.55,100] i 1138% 077[058,103)
Stidy2 44 62 39 59 e 439% 125[0.58,270] B 7.69% 1.14[0.72,1.80) HH7.10% 0.97 (063, 1.50)
Stidy3 54 102 61 104 B 919% 0.79(0.46,1.38] B 9.44% 0.85[0.59,124) Wi B79% 0.84[065,1.3)
Studyd &7 82 42 T b BO2% 093[0.48177] FH O B22% 095062, 148] BH 745% 098[06¢,146)
StudyS 321 491 345 485 B 28.03% 0770058 100 W 1579% 085073100 B 17.53% 0.82[0.71,0.98]
Studys 71 151 &7 160 e 13.22% 074[048,116] W 1093% 081[059,111] I 1052% 078[055,103)
Stidy7 46 % 69 100 bl 530% 0.41(0.23,0.74] B 821% 056[0.38,0.82 B B76% 0.56[0.40,084]
Sdy8 37 41 46 55 b 195% 181052635 by St 1290077, 2.16) il 681% 134[0.85,2.09)
Stdy9 72 78 61 75 b+ 294% 27501.00,7.60] bt B62% 15301.01,231) M 946% 099[0.70,1.40)
Study 10 100 158 121 159 Pl 1138% 054[0.33,0.88] I 1205% 070053093 i 1222% 059[0.45,0.77)
ORREML (Q = 16.6,df =9, p = 0.1; F = 12%)
195 4=, p=00: F = 55%)
Clog-og REML (0 = 19.5, ”"9'”'°'°‘f"5%’0 100.00% 0.75 [0.63, 0.39] 4 100.00% 087[0.74,103) ¥ 100.00% 082[0.71,094]
Log-rank® REML (Q = 17.0,df=0,p=00;F = 49%
| — [ | L
005 1 4 005 1 4 005 1 4
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Treatment Control

MAS6  T+Total C+Tolal OR [95% CI] HR clog[95% CI] HR LR*[35% CI
Study1 20 87 58 113 Fa 1382% 051[0.29,091] P 448% 0590038093 B 1446% 056(0.37,084)
Sudy2 4 24 6 2 ———  208% 050(0.122.09] b 057% 0.54[0.15, 193] b= 666% 0.75[0.35,1.60]
Study3 60 78 147 157 e 1200% 114[060,218] B 804% 107(078, 150 Bl 1044% 122[071,212]
Study4 64 70 63 66 ——H  299% 051[012,212] BH O 410% 073049, 128 ——  261% 053[014 195]
StudyS 30 43 26 47 Fak 731% 188[078,444) bl 307% 148[088257] Wed 758% 158[078,313)
StidyE 512 571 509 565 WM 2283% 095065 1.40] W 4025% 098084, 114) W 16.07% 095[065 137]
Sdy7 13 73 27 & b 928% 047[0.22,101] b 200% 052[027,1.01] I 1500% 061[0.41,091)
Sudy8 55 63 63 67 = 367% 0510014183 B 429% 078[049,124] - 311% 0510016, 169]
StudyS 563 660 282 324 W 2261% 0.85(0.59, 128) B 3263% 084079, 1.11) W 1634% 0.90[062,1.29]
Study10 3 19 5 A b 253% 0.98(0.20, 464) b 045% 0.98(0.23,410) o 762% 120060, 2.40)
ORREML (Q=113,df=9, p=0.3;F =23%)
c‘”“"”“REr"L(°=124""=B‘P=M‘hn%’0 100.00% 0.81[0.63,1.04] 100.00% 0.83[0.85, 1.03] #  100.00% 0.84[067,1.05]
Log-rank® REWL (Q = 13.9, df=8, p = 0.1; [ = 38%

I —— I —— I ——

005 1 4 005 1 4 005 1 4

Treatment Control
TeTotal  Ciotal OR [95% CI] HR clog[95% CI] HR LR*[95% CI]
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SdyZ g6 90 83 88 b 301% 130034, 499] B 449% 1090071, 146) M S18% 1.12[0.83,150]
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Treatment Control
MAB3  T+Total C+Total

OR [95% CI]

HR clog[25% CI]

HR LR*(95% CI]
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N 3043% 1.03[0.83,1.29]

= 3.08% 082[0.38 171]
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0.0s 1 0.05 104 4
Treatment Contral

MABS  TeTotal CiTatal OR [85% CI] HR clog[95% CI] HR LR'[95% CI]
Study1 192 187 191 194 ——— 1499% 060(0.14,256] o 4364% 0.88(062, 1.26] 39.66% 0.79[0.65,0.94]
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D —Additional material relating to the Individual Participant Data
Meta-analysis analysed in Chapter 5

D.1- Kaplan-Meier Plots for time-to-event outcomes in IPD

Event Free Survival
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Figure 5.8: Kaplan-Meier plot for the outcome of event free survival

Local Recurrence Free Survival
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Figure 5.9: Kaplan-Meier plot for the outcome of local recurrence free survival
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Metastasis Free Survival
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Figure 5.10: Kaplan-Meier plot for the outcome of metastasis free survival

D.2- Model Implementation

Initially, 1 obtained the HR and associated standard error per trial and O-E and V
statistics from the log-rank test. The code below is an example using the outcome
of overall survival. Similar code was used for the outcomes of event free survival,

metastasis free survival and local recurrence free survival.
for (i in unique(IPD$TriallD)) {
cat(i,"\n")

res.O_E <- try(survdiff(Surv(Survtime_year, Surv) ~ Arm, data =
IPD[IPD$TriallD==i,]))

res.cox <- try(coxph(Surv(Survtime_year, Surv) ~ Arm, data =
IPD[IPD$TriallD==i,]))

IPDSurv[i,1]<-i
IPDSurv[i,2]<-res.O_E[["obs"]|][[1]]
IPDSurv[i,3]<-res.O_E[["n"]][[1]]

IPDSurv[i,4]<-res.O_E[["n"]][[1]]-res.O_E[["obs"][[1]]
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IPDSurv[i,5]<-res.O_E[["obs"][[2]]
IPDSurvl[i,6]<-res.O_E[["n"][[2]]
IPDSurvl[i,7]<-res.O_E[["n"]][[2]]-res.O_E[["obs"]][[2]]

IPDSurv][i,8]<-res.O_E[["obs"]][[1]]-res.O_E[["exp"]]l[[1]] #O-E from treatment
only#

IPDSurv[i,9]<-res.O_E[["var"]][[1,1]]
IPDSurv][i,10]<-coef(summary(res.cox))[,1]
IPDSurvl[i,11]<-coef(summary(res.cox))[,3]}
IPDSurv<-na.omit(IPDSurv)

IPDSurv$TriallD<-ordered(IPDSurv$TriallD, levels = ¢(1,2,3,4,7,8,9,10,11),
c("Spain”,"Australia","Nordic 1","UK","GUONE","BA06","Nordic
2","DAVECA","SWOG"))

IPDSurv$Outcome<-1

Useful functions facilitating model implementation at later stages

cloglogfun<-function(dat)

{ dat$proptreat<-dat$treat_n/(dat$treat_n+dat$nontreat_n)
dat$propctri<-dat$ctrl_n/(dat$ctrl_n+dat$nonctrl_n)
dat$logHRcloglog<-(log(-log(1-dat$proptreat)))-log(-log(1-dat$propctrl))
dat$derivTreat<-1/((log(1-dat$proptreat))*(dat$proptreat-1))
dat$derivCtri<-1/((log(1-dat$propctrl))*(dat$propctrl-1))

dat$varTreat<-(dat$derivTreat"2)*((dat$proptreat*(1-
dat$proptreat))/dat$treat_total)

dat$varCtrl<-(dat$derivCtri*2)*((datSpropctri*(1-dat$propctrl))/dat$ctrl_total)
dat$varHRcloglog<-dat$varTreat+dat$varCitrl

dat$logOR<-log((dat$treat_n*dat$nonctrl_n)/(dat$ctrl_n*dat$nontreat_n))

219



dat$varOR<-
(1/dat$treat_n)+(1/dat$nontreat_n)+(1/dat$Sctrl_n)+(1/dat$nonctrl_n)

dat$O_ElogHR<-dat$O_E/dat$var O _E
dat$O_EvarHR<-1/dat$var O E
dat$within_prec<-1/dat$varHRcloglog
dat$within_prec2<-(1/dat$varHRcloglog)"2
dat_table <- data.frame(dat)

dat_table}

IPDSurv<-cloglogfun(IPDSurv)

#Create data in long format in order to create dataset forms necessary for one-

stage models

golong <- function(dat)
{n <- c(dat$treat_n+dat$nontreat_n, dat$ctrl_n+dat$nonctrl_n)
event <- c(dat$treat_n, dat$ctrl_n)
study <- ¢(1:nrow(dat), 1:nrow(dat))
obs <- 1:length(n)
treat <- c(rep(1, length(n)/2), rep(0, length(n)/2))
control <- 1-treat
treatl?2 <- treat - 0.5
outcome.num<-c(dat$Outcome)

dat_long <- data.frame(n, event, study, obs, treat, control, treat12,

outcome.num)
dat_long}
datlong.IPDEvent <- golong(IPDEvent)

datlong.IPDLRFS <- golong(IPDLRFS)
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datlong.IPDMFS <- golong(IPDMFS)

datlong.IPDSurv <- golong(IPDSurv)

#Function extracting information from one-stage cox models.

se <- function(object)

sqrt(diag(vcov(object)))

confint.coxme <- function(object, level = .95, digits = 9) {

z <-gqnorm(1 - (1 - level)/2)

b <- coef(object)

s <- se(object)

cilb<-b-z*s

ciub<-b+z*s

out <- data.frame(b, ci.lb, ci.ub, s, exp(b), exp(ci.lb), exp(ci.ub))
out <- round(out, digits = digits)

colnames(out) <- c("coef", "ci.lb(coef)", "ci.ub(coef)", "se(coef)", "exp(coef)",

"ci.Ib(exp(coef))", "ci.ub(exp(coef))")
out$'Wald p° <- round(pnorm(b/s, lower.tail = F) * 2, digits + 1)

out$Cl <- paste(out$ ci.lb(exp(coef))’, " to ", out$ ci.ub(exp(coef))’, sep =",
collapse = NULL) out}

Model Implementation

try.fitl<- try(rma.uni(ai = treat_n, bi = nontreat_n, ci = ctrl_n, di = nonctrl_n, data
= |IPDSurv, measure = "OR",method="REML",slab=paste(TriallD),
control=list(maxiter=500, verbose=TRUE, stepadj=0.5), verbose=TRUE))

try.fit2<- try(rma.uni(yi = logHRcloglog, vi = varHRcloglog, data = IPDSurv,
slab=paste(TriallD), method="REML",control=list(maxiter=10e9,
verbose=TRUE, stepadj=0.2), verbose=TRUE))
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try.fit3<- try(rma.uni(yi = O_ElogHR, vi = O_EvarHR, data = IPDSurv,
slab=paste(TriallD), method="REML",control=list(maxiter=10e9,
verbose=TRUE, stepadj=0.2), verbose=TRUE))

try.fitd<- try(rma.uni(yi = -logHR, sei = logHR_se, data = IPDSurv,
slab=paste(TriallD), method="REML",control=list(maxiter=10e9,
verbose=TRUE, stepadj=0.2), verbose=TRUE))

try.fits<- try(rma.glmm(ai = treat_n, bi = nontreat_n, ci = ctrl_n, di = nonctrl_n,
data = IPDSurv, measure = "OR",model="UM.FS", drop00=F,nAGQ=7))

try.fit6<-try(glmer(cbind(event,n-event) ~ factor(treat) + factor(study) + (treat12-

1|study), data=datlong.IPDSurv, family=binomial(link="cloglog"),nAGQ=7))

try fit7<-try(coxme(Surv(Survtime_year, Surv) ~ Arm + (1+Arm |TriallD), data =
IPD))
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E — Additional material relating to the Simulation Study presented in Chapter 6
E.1-Simulation Code

#Reproducibility: Set the seed at the beginning of the DGM script
set.seed(2109990)
# This function simulates the data
simdata <- function(j, dgm, n=5, prob = 0.5,mean.trialsize=1000, mean.trialsize.sd=100, mean.hr=0, hr.tau=0,
mean.fu=5, mean.fu.sd=1, Size=1,lambdae = 0.1,lambdac=0.05, gamma = 2) {
trialsize=list()
trialsize[[1]] <- data.frame(rep(floor(rnorm(n=n, mean=mean.trialsize, sd=mean.trialsize.sd)),1))
colnames(trialsize[[1]])<-"TrialSize"
for (i in L:length(trialsize[[1]][,]) {
trialsize[[1]]$Beta[i]<-rnorm(n=1, mean=mean.hr, sd=sqrt(hr.tau)) #0.0002 when tau changes
trialsize[[1]]$ExpBeta[i]<-exp(trialsize[[1]]$Beta]i])

trialsize[[1]]$followUp[i]<-round(rnorm(n=1, mean=mean.fu, sd=mean.fu.sd), 1) }

# Generate a data set with ID and a binary variable treatment group indicator:
df=list()
for (i in seq_along(trialsize[[1]]$TrialSize)) {
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cat(i,"\n")

dff[i]] <- data.frame( id = 1:trialsize[[1]]$TrialSize[i], trt = rbinom(n = trialsize[[1]]$TrialSize][i], size = Size, prob = prob) ) }

# Simulate survival time & censoring time with maximum follow-up time of x years
s=list()
#c=list() #censoring
for (i in seq_along(df)) {
cat(i,"\n")

s[[i]] <- simsurv(dist = "weibull", lambdas = lambdae, gammas = gamma, betas = c(trt = trialsize[[1]]$Beta][i]), x = dff[i]], maxt =
trialsize[[1]]$followUpli])

#c[[i]] <- simsurv(dist = "weibull", lambdas = lambdac, gammas = gamma, betas = c(trt = trialsize[[1]]$Beta]i]), x = dff[i]], maxt =
trialsize[[1]]$followUp[i]) #Run this if you want to add censoring

#output: id=identifier, eventtime=simulated event(censoring time), status=event indicator,1=failure,0=censored}
# without censoring in your data
for (i in seq_along(df)){
for (I in L:length(dff[i]]$id)){
s[[i]]$eventtime[l]<-s][[i]]$eventtime][l]
#s[[i]]$randcenstime[l]<-c[[i]]$eventtime]l]

s[[i]]$fixedcenstime[l]<-max(s[[i]]$eventtime)
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s[[i]]$Observed_time][l] <- s[[i]]$eventtime]l]
s[[i]]$case]l] <- ifelse(s[[i]]$Observed_time[l] == s[[i]]$eventtime]l], 1, 2)
s[[i]I$status_new(l] <- ifelse(s[[i]]$case[l] == 1, s[[i]]$status[l], 0) }}

#include censoring in your data
for (i in seq_along(df)){
for (I in 1:length(df[[i]]$id)){

s[[i]]$eventtime[l]<-s][[i]]$eventtime][l]
s[[i]]$randcenstime[l]<-c[[i]]$eventtime]l]
s[[i]]$fixedcenstime[l]<-trialsize[[1]]$followUp]i]
s[[i]]$Observed_time[l] <- pmin(s[[i]]$eventtime][l], s[[i]]$randcenstime][l], s[[i]]$fixedcenstime]l])
s[[i]]$case]l] <- ifelse(s[[i]]$Observed_time[l] == s[[i]]$eventtime][l], 1, ifelse(s[[i]]$Observed_time[l] == s[[i]]$randcenstime]l], 2, 3))
s[[il$status_new[l] <- ifelse(s[[i]]$case[l] == 1, s[[i]]$status[l], O) }}

simuldata<-list()

for (i in seq_along(df)) {
simuldata[[i]] <- merge(df[[i]], s[[i]])
simuldata[[i]]$TriallD<-i
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simuldatal[i]]$SimID<-j
simuldatal[[i]]J$dgm<-dgm}

# Merge all data in a data matrix

simuldata<-data.frame(do.call(rbind, simuldata))

# Merge covariates data and survival times:
#We save the current seed as an attribute of each data set
attr(simuldata, "seed") <- .Random.seed

return(simuldata)}

# This function fits the models using the simulated data
simfit <- function(k, dgm,simuldata) {
# For each Trial apply log-rank and Cox proportional hazards model
IPDSim=data.frame(matrix(NA, max(simuldata$TriallD), 11))
colnames(IPDSim)<-c("TriallD","treat_n", "treat_total","nontreat_n",
“ctrl_n", "ctrl_total","nonctrl_n",

"O_E","var_O_E", "IogHR", "IogHR_se")

226



for (i in unique(simuldata$TriallD)) {
cat(i,"\n")
res.O_E <- tryCatch(survdiff(Surv(Observed_time, status_new) ~ trt,
data = simuldata[simuldata$TriallD==i,]), error = function(e) NULL)
res.cox <- tryCatch(coxph(Surv(Observed_time, status_new) ~ trt,
data = simuldata[simuldata$TriallD==i,]), error = function(e) NULL)
IPDSIim[i,1]<-i
IPDSim[i,2]<-res.O_E[["obs"]][[2]]
IPDSim[i,3]<-res.O_E[["n"][[2]]
IPDSim[i,4]<-res.O_E[["n"]][[2]]-res.O_E[["obs"][[2]]
IPDSim[i,5]<-res.O_E[["obs"]][[1]]
IPDSim[i,6]<-res.O_E[["n"][[1]]
IPDSIim[i, 7]<-res.O_E[["n"]][[1]]-res.O_E[["obs"][[1]]
IPDSim[i,8]<-res.O_E[["obs"]][[2]]-res.O_E[["exp"]][[2]] #O-E from treatment only#
IPDSIm[i,9]<-res.O_E[["var"]][[2,2]]
IPDSim[i,10]<-coef(summary(res.cox))[,1]

IPDSim[i,11]<-coef(summary(res.cox))[,3]
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# #ldentify rare events and apply continuity correction
IPDSim$rare<-ifelse(IPDSim$treat_n<1, 1,
ifelse(IPDSim$ctrl_n<1, 1,
ifelse(IPDSim$nontreat_n<1, 1,
ifelse(IPDSim$nonctrl_n<1, 1,0))))
table(IPDSim$rare)

#CC adding the reciprocal of the opposite treatment arm size to those with rare events
IPDSim$result<-ifelse(IPDSim$rare==1,IPDSim$treat_total/IPDSim$ctrl_total,0)
IPDSim$armtreat<-1/IPDSim$treat_total

IPDSim$armctrl<-1/IPDSim$ctrl_total

IPDSIm$TCC<-ifelse(IPDSim$result!=0, 1/(IPDSim$result+1),0)
IPDSIim$CCC<-ifelse(IPDSim$result!=0, IPDSim$result/(IPDSim$result+1),0)
IPDSim$treat_n<-ifelse(IPDSim$result!=0, IPDSIim$TCC+IPDSim$treat_n, IPDSim$treat_n)
IPDSim$ctrl_n<-ifelse(IPDSim$result!=0, IPDSim$CCC+IPDSim$ctrl_n, IPDSim$ctrl_n)
IPDSim$nontreat_n<-ifelse(IPDSim$result!'=0, IPDSim$TCC+IPDSim$nontreat_n, IPDSim$nontreat_n)
IPDSim$nonctrl_n<-ifelse(IPDSim$result!=0,IPDSIim$CCC+IPDSim$nonctrl_n, IPDSim$nonctrl_n)
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# Calculation facilitating implementation of a cloglog model
cloglogfun<-function(dat)
{dat$proptreat<-dat$treat_n/(dat$Streat_n+dat$nontreat_n)

dat$propctri<-dat$ctrl_n/(dat$ctrl_n+dat$nonctrl_n)
dat$logHRcloglog<-(log(-log(1-dat$proptreat)))-log(-log(1-dat$propctrl))
dat$derivTreat<-1/((log(1-dat$proptreat))*(dat$proptreat-1))
dat$derivCtri<-1/((log(1-dat$propctrl))*(dat$propctrl-1))
dat$varTreat<-(dat$derivTreat"2)*((dat$proptreat*(1-dat$proptreat))/dat$treat_total)
dat$varCtrl<-(dat$derivCtri*2)*((dat$propctri*(1-dat$propctrl))/datSctrl_total)
dat$varHRcloglog<-dat$varTreat+dat$varCtrl
dat$logOR<-log((dat$treat_n*dat$nonctrl_n)/(dat$ctrl_n*dat$nontreat_n))
dat$varOR<-(1/dat$treat_n)+(1/dat$nontreat_n)+(1/dat$Sctrl_n)+(1/dat$nonctrl_n)
dat$O_ElogHR<-dat$O_E/dat$var_O_E

dat$O_EvarHR<-1/dat$var O E

dat$within_prec<-1/dat$varHRcloglog
dat$within_prec2<-(1/dat$varHRcloglog)"2

dat_table <- data.frame(dat)

dat_table}
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IPDSim<-cloglogfun(IPDSim)
# Run two-stage MA models and compare.
IPDsimRes=data.frame(matrix(NA, 4, 6))
colnames(IPDsimRes)<-c("logestimates”,"SE", "LowerClI", "UpperCI","Tau", "Isq")
try.fitl<- tryCatch(rma.uni(ai = treat_n, bi = nontreat_n, ci = ctrl_n, di = nonctrl_n,
data = IPDSim, measure = "OR",method="REML", slab=paste(TriallD),
control=list(maxiter=500, verbose=TRUE, stepadj=0.5), verbose=TRUE), error = function(e) NULL)
try.fit2<- tryCatch(rma.uni(yi = logHRcloglog, vi = varHRcloglog, data = IPDSim, slab=paste(TriallD),
method="REML",control=list(maxiter=10e9, verbose=TRUE, stepadj=0.2), verbose=TRUE), error = function(e) NULL)
try.fit3<- tryCatch(rma.uni(yi = O_ElogHR, vi = O_EvarHR, data = IPDSim, slab=paste(TriallD),
method="REML",control=list(maxiter=10e9, verbose=TRUE, stepadj=0.2), verbose=TRUE), error = function(e) NULL)
try.fit4<- tryCatch(rma.uni(yi = logHR, sei = logHR _se, data = IPDSim, slab=paste(TriallD),
method="REML",control=list(maxiter=10e9, verbose=TRUE, stepadj=0.2), verbose=TRUE), error = function(e) NULL)
try.fit<-list(try.fit1,try.fit2,try.fit3,try.fit4)
#Extract results from models
for (iin 1:4) {
cat(i,"\n")

if(lis.null(try fit[i])) {
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IPDsimResJi,1]<-as.numeric(try.fit[[i]][["b"]])
IPDsimResJi,2]<-as.numeric(try.fit[[i]][['se"]])
IPDsimResJi,3]<-as.numeric(try.fit[[i]][["ci.lb"]])
IPDsimResJi,4]<-as.numeric(try.fit[[i]][["ci.ub"]])
IPDsimResJi,5]<-as.numeric(try.fit[[i]][["tau2"]])
IPDsimResJi,6]<-as.numeric(try.fit[[i]][["12"]])
} else {
IPDsimRes[i,1]<-NA
IPDsimResJi,2]<-NA
IPDsimRes[i,3]<-NA
IPDsimResJi,4]<-NA
IPDsimResJi,5]<-NA
IPDsimRes[i,6]<-NA
}
}
remove(try.fitl, try.fit2, try.fit3, try.fit4)
#Indicate the model applied

modelfun<-function(dat)
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{ dat$Model<-c("OR REML (2-stage)","HR cloglog (2-stage)","HR O-E & V (2-stage)",
"HR CoxPH (2-stage)")
dat_table <- data.frame(dat)
dat_table }
IPDsimRes<-modelfun(IPDsimRes)
out <- data.frame( k = k, dgm = dgm,
IPDsimRes = IPDsimRes)
return(out) }
#Run Simulation 1000 times
B <- 1000
dgm<-1:1
set.seed(2109990)
datares<-foreach (k = 1:B, .combine=rbind, .packages= "foreach") %do%
{
simdata(j=k, dgm = 1)}
results <- foreach (k = 1:B, .combine=rbind, .packages= "foreach™) %do% {
simfit(k = k, dgm=1, simuldata=datares[datares$SimID==k,])
}
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E.2- Information obtained from the literature facilitating the decision of simulation scenarios and exact tables containing the

results from the simulation scenarios

No. of Study _ .
. Censoring Survival
Source studies Sample Follow-up T2 I? Log HR _
. Rate times/other
per MA Size
MRC CTU <1 month-
5-19 491-8447 - - 40%-70% (-0.43,-0.19) -
18 IPD MA* (approx. 10 y)
Bowden et 4,8,10, _
50, 100, 150 - 10% 0.1 42%-69% (0, 0.4, 0.8) Exponential
al.1>® 16,25
Simmonds et _
21 - 100-1000 5or 10 years 0%-20% - - (0-1) Weibull
al.
_ Exponential/
Hirooka et 100, 300 1, 0.9, 0.8,
- 5 years 0%, 30% - - Surv rate: 20%,
al.10® per group 0.7,0.6
50%, 80%
Katsahian et 3,5,10, 240, 600, 30 studies only for
- - 0,0.15,0.6 - 0, -0.223 o
al.108 20,30 2400 2400 participants
_ 0,0.01, 14%, 25%,
Tudur-Smith et 100 per 0, 0.1, 0.5, '
- - 0.03,0.07, 43%, 62%, Exponential
al.to7 group 0.9
0.1 70%
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IPD MA -0.147, - Overall survival
9 96-976 1-5years 15%-51% 0-0.017 0%-37%
(Chapter 5) 0.052 outcome
72,116, 0%, 0%, 0.68, 0.82,
‘OEV”data 3, 6, 10, 0, 0, 0.01,
160, 279, - - 21%, 46%, 0.93, 1.03, -
(Chapter 3) 14, 32 0.04, 0.13
739, 985 75% 1.35
*Based on Bowden et al.»*® paper & research papers from the literature review chapter.
Table 6.3: Information obtained from the literature facilitating the decision of parameters for the simulation scenarios.
Participants  Log Follow- . . PE P(C<
Run  pertial HR 2 up(M, ¥ A, A, p(E>FU) p(C>FU) Fc)ngnF(LEJ) Fc)ngnF(LEJ) << E<
(Mean, SD) (M) sd)y ~ Ye FU) FU)
5 trial per MA
Scenario 0* (2000, 100) 0 0 (5,1) 2 01 0 0.08 1.00 0.08 0.92 0.92 0.00
Base Case** (400,40) -0.3 0.05 (3,0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 049 0.25
Short F-up (400,40) -0.3 0.05 (1,0.2 2 01 0 0.90 1.00 0.90 0.10 0.10 0.00
Long F-up (400,40) -0.3 0.05 (5,1) 2 0.1 0.07 0.08 0.17 0.01 0.99 0.58 0.41
Large . (400,40) -03 0.1 (3,03) 2 0.1 0.05 0.41 0.64 0.26 074 049  0.25
heterogeneity
Small (400,40) -0.3 0.001 (3,0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 049 0.25

heterogeneity
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Large effect

o (400,40) -0.8 005 (3,0.3) 2 0.1 0.05 0.41 0.64 0.26 074 049  0.25
No effect size (400, 40) 0 005 (3,03) 2 01 005 0.41 0.64 0.26 074 049  0.25
firznea"samp'e (100,15) -0.3 005 (3,0.3) 2 0.1 0.5 0.41 0.64 0.26 074 049  0.25
'S-i"i’('egesamp'e (1000,100) -0.3 005 (3,0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 049  0.25
Small (400,40) -0.3 005 (3,0.3) 2 005 0.04 0.64 0.70 0.44 056 031  0.25
P(Event)

Large %

R cens+Small  (400,40) -0.3 005 (5,1) 2 005 0.04 0.29 0.37 0.11 089 050  0.40
P(Event)

80% Power (400, 40) -0.3 0.027 (3,0.3) 2 0.1 0.05 0.41 0.64 0.26 074 049  0.25
Long Follow-

up+0% (400,40) -0.3 005 (51) 2 0.5 0 0.29 1.00 0.29 071 071  0.00
R cens

20 trial per MA

Scenario 0* (1000, 100) 0 o (,1) 2 01 0 0.08 1.00 0.08 092 092  0.00
Base Case** (400,40) -0.3 005 (3,0.3) 2 0.1 0.05 0.41 0.64 0.26 0.74 049  0.25
Short F-up (400,40) -0.3 005 (1,02) 2 0.1 0 0.90 1.00 0.90 0.10 0.10  0.00
Long F-up (400,40) -0.3 005 (51 2 01 0.07 0.08 0.17 0.01 099 058 041
Large (400,40) -0.3 0.1 (3,0.3) 2 01 0.05 0.41 0.64 0.26 0.74  0.49 0.25

heterogeneity

235



Small
heterogeneity

Large effect
size

No effect size
Small sample
size

Large sample
size

Small
P(Event)
Large %
R_cens+Small
P(Event)

80% Power
Long Follow-

up+0%
R cens

(400, 40)

(400, 40)
(400, 40)
(100, 15)

(1000, 100)

(400, 40)

(400, 40)

(400, 40)

(400, 40)

-0.3 0.001
-0.8 0.05

0 0.05
-0.3 0.05
-0.3 0.05
-0.3 0.05
-0.3 0.05
-0.3 0.2
-0.3 0.05

(3, 0.3)

(3,0.3)
(3,0.3)
(3,0.3)

(3, 0.3)

(3,0.3)

(5, 1)

(3, 0.3)

(5, 1)

2 01
2 01
2 01
2 01
2 01
2 0.05
2 0.05
2 01
2 0.05

0.05

0.05
0.05
0.05

0.05

0.04

0.04

0.05

0

0.41

0.41
0.41

0.41

0.41

0.64

0.29

0.41

0.29

0.64

0.64
0.64
0.64

0.64

0.70

0.37

0.64

1.00

0.26

0.26
0.26
0.26

0.26

0.44

0.11

0.26

0.29

0.74

0.74
0.74

0.74

0.74

0.56

0.89

0.74

0.71

0.49

0.49
0.49
0.49

0.49

0.31

0.50

0.49

0.71

0.25

0.25
0.25
0.25

0.25

0.25

0.40

0.25

0.00

Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size, medium
heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event)

Table 6.4: Presentation of simulation scenarios and event, censoring probabilities for the different simulation scenarios applied.
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Simulation Scenarios

Methods

No. of
o ) Two-stage  Two-stage  Two-stage  Two-stage
participants Mean Follow-up time o
Run _ T Cox PH (“O-E” & V) clog-log Logit link
per trial Log HR (Mean, SD)
Model (HR) (HR) (HR) (OR)
(Mean, SD)
5 trials per MA
Scenario 0* (1000, 100) 0 0 (5,1) -0.0006 -0.0006 -0.0003 -0.0005
Base Case** (400, 40) -0.3 0.05 (3,0.3) 0.0072 0.005 0.0822 0.01
Short F-up (400, 40) -0.3  0.05 (1,0.2) 0.0096 0.0081 0.0092 -0.0062
Long F-up (400, 40) -0.3 0.05 (5,1) 0.0043 -0.0026 0.2321 0.2009
Large heterogeneity (400, 40) -0.3 0.1 (3,0.3) 0.0085 0.0062 0.0764 0.0058
Small heterogeneity (400, 40) -0.3 0.001 (3,0.3) 0.0025 0.0009 0.0855 0.0124
Large effect size (400, 40) -0.8  0.05 (3,0.3) 0.0082 0.0012 0.1739 0.0017
No effect size (400, 40) 0 0.05 (3,0.3) 0.006 0.0063 -0.006 -0.007
Small sample size (100, 15) -0.3 0.05 (3,0.3) 0.0057 0.0013 0.0807 0.0048
Large sample size (1000, 100) -0.3 0.05 (3,0.3) 0.0048 0.0031 0.0795 0.0088
Small P(Event) (400, 40) -0.3  0.05 (3,0.3) 0.0094 0.0092 0.0599 0.0181
Large % R_cens+Small
(400, 40) -0.3  0.05 (5,1) 0.005 0.0004 0.1566 0.1077

P(Event)
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Long Follow-up+0%
R_cens
80% Power

20 trials per MA

Scenario 0*

Base Case**

Short F-up

Long F-up

Large heterogeneity
Small heterogeneity
Large effect size

No effect size

Small sample size
Large sample size
Small P(Event)
Large % R_cens+Small
P(Event)

Long Follow-up+0%
R_cens

80% Power

(400, 40)

(400, 40)

(1000, 100)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(100, 15)

(1000, 100)
(400, 40)

(400, 40)

(400, 40)

(400, 40)

0.05

0.027

0.05
0.05
0.05
0.1
0.001
0.05
0.05
0.05
0.05
0.05

0.05

0.05

0.2

(5, 1)

(3,0.3)

6. 1)
(3,0.3)
(1,0.2)

6. 1)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)

6. 1)

(5, 1)

(3, 0.3)

0.0048

0.0061

-0.0006
0.006
0.0242
0.0027
0.0075
0.0006
0.0093
0.0048
0.0123
0.0037
0.0117

0.0042

0.0042

0.0092

0.0028

0.0041

-0.0006
0.0036
0.0176

-0.004
0.0049

-0.0012
0.0013
0.0049
0.0067
0.0018
0.0107

-0.0005

0.002

0.0075

0.0027

0.0844

-0.0006
0.0818
0.0235
0.2327
0.0763
0.0838
0.1758

-0.0057
0.0845
0.0793
0.0634

0.1586

0.0019

0.064

-0.187

0.0117

-0.0019
0.0082
0.0079
0.2002
0.0044
0.0095
0.0025

-0.0078
0.0065
0.0079
0.0209

0.1086

-0.1901

-0.0048
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Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size,
medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event)

Table 6.5: Bias observed per simulation scenario across different meta-analysis models.

Simulation Scenarios Methods
No. of
o _ Two-stage  Two-stage  Two-stage  Two-stage
participants Mean Follow-up time o
Run ) T Cox PH ("O-E” & V) clog-log Logit link
per trial Log HR (Mean, SD)
Model (HR) (HR) (HR) (OR)
(Mean, SD)
5 trials per MA
Scenario 0* (1000, 100) 0 0 (5,1) 10% 10% 9% 10%
Base Case** (400, 40) -0.3 0.05 (3,0.3) -4% -4% -2% -2%
Short F-up (400, 40) -0.3 0.05 (1, 0.2) 6% 4% 6% 6%
Long F-up (400, 40) -0.3 0.05 (5,1) -3% -3% 9% 9%
Large heterogeneity (400, 40) -0.3 0.1 (3,0.3) -3% -3% -3% -2%
Small heterogeneity (400, 40) -0.3 0.001 (3,0.3) 7% 6% 9% 10%
Large effect size (400, 40) -0.8 0.05 (3,0.3) -3% -3% -1% -1%
No effect size (400, 40) 0 0.05 (3,0.3) -3% -3% 0% 0%
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Small sample size
Large sample size
Small P(Event)

Large % R_cens+Small
P(Event)

Long Follow-up+0%
R_cens

80% Power

20 trials per MA

Scenario 0*

Base Case**

Short F-up

Long F-up

Large heterogeneity
Small heterogeneity
Large effect size

No effect size

Small sample size
Large sample size
Small P(Event)

(100, 15)
(1000, 100)
(400, 40)

(400, 40)

(400, 40)

(400, 40)

(1000, 100)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(100, 15)

(1000, 100)
(400, 40)

-0.3
-0.3
-0.3

0.05
0.05
0.05

0.05

0.05

0.027

0.05
0.05
0.05
0.1
0.001
0.05
0.05
0.05
0.05
0.05

(3,0.3)
(3,0.3)
(3,0.3)

(5, 1)

(5, 1)

(3, 0.3)

6.1
(3,0.3)
(1,0.2)

G, 1)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)

0%
0%
-1%

-2%

-1%

-3%

8%
-1%
2%
0%
0%
5%
-1%
0%
1%
-1%
0%

-1%
0%
-1%

-2%

-1%

-3%

8%
-1%
2%
0%
0%
5%
-1%
0%
0%
-1%
0%

4%
1%
0%

4%

-1%

0%

7%
-2%
2%
1%
-2%
5%
-3%
-1%
1%
-1%
-1%

5%
1%
0%

4%

1%

0%

7%
-2%
2%
1%
-1%
5%
-3%
-1%
1%
-1%
-1%
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Large % R_cens+Small

(400, 40) -0.3

P(Event)

Long Follow-up+0%
(400, 40) -0.3

R_cens
80% Power (400, 40) -0.3

0.05 (5, 1) -1% -1% -5%
0.05 (5, 1) 2% 2% 3%
0.2 (3, 0.3) 0% 0% -1%

0%

4%

-1%

Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size,
medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event)

Table 6.6: Percent difference between the modelled and empirical standard errors per simulation scenario across different meta-

analysis models

Simulation Scenarios Methods
No. of
. ) Two-stage  Two-stage  Two-stage  Two-stage
participants Mean Follow-up time o
Run ] T Cox PH ("O-E” & V) clog-log Logit link
per trial Log HR (Mean, SD)
Model (HR) (HR) (HR) (OR)
(Mean, SD)
5 trials per MA
Scenario 0* (1000, 100) 0 0 (5,1) 0% 0% -44% -91%
Base Case** (400, 40) -0.3 0.05 (3,0.3) 0% -2% 38% -20%
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Short F-up

Long F-up

Large heterogeneity
Small heterogeneity
Large effect size

No effect size

Small sample size
Large sample size
Small P(Event)
Large % R_cens+Small
P(Event)

Long Follow-up+0%
R_cens

80% Power

20 trials per MA

Scenario 0*
Base Case**
Short F-up
Long F-up

Large heterogeneity

(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(100, 15)
(1000, 100)
(400, 40)

(400, 40)

(400, 40)

(400, 40)

(1000, 100)
(400, 40)
(400, 40)
(400, 40)
(400, 40)

-0.3
-0.3
-0.3
-0.3
-0.8

-0.3
-0.3
-0.3

0.05
0.05
0.1
0.001
0.05
0.05
0.05
0.05
0.05

0.05

0.05

0.027

0.05
0.05
0.05

0.1

(1,0.2)

5, 1)
(3, 0.3)
(3, 0.3)
(3, 0.3)
(3, 0.3)
(3, 0.3)
(3, 0.3)
(3, 0.3)

(5, 1)

(5, 1)

(3, 0.3)

1)
(3,0.3)
(1,0.2)

6. 1)
(3,0.3)

0%
0%
0%
0%
0%
0%
0%
0%
0%

0%

0%

0%

0%
0%
0%
0%
0%

2%
-71%
-2%
-2%
-1%
-2%
-3%
-2%

1%

-4%

-2%

-2%

0%
-2%
0%
-7%
-2%

0%
182%
51%
2%
17%
64%
18%
53%
20%

90%

-4%

28%

-44%
33%
0%
151%
48%

-9%
35%
-11%
-42%
-21%
-13%
-33%
-9%
-11%

9%

-64%

-27%

-90%
-22%
-10%

18%
-13%
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Small heterogeneity
Large effect size

No effect size

Small sample size
Large sample size
Small P(Event)
Large % R_cens+Small
P(Event)

Long Follow-up+0%
R_cens

80% Power

(400, 40)
(400, 40)
(400, 40)
(100, 15)
(1000, 100)
(400, 40)

(400, 40)

(400, 40)

(400, 40)

-0.3
-0.8

0
-0.3
-0.3
-0.3

-0.3

-0.3

-0.3

0.001
0.05
0.05
0.05
0.05
0.05

0.05

0.05

0.2

(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)

(5, 1)

(5, 1)

(3,0.3)

0%
0%
0%
0%
0%
0%

0%

0%

0%

-2%
0%
-2%
-4%
-2%
0%

-5%

-2%

-2%

-5%
12%
57%
13%
50%
18%

71%

-2%

61%

-46%
-24%
-17%
-37%
-11%

13%

-2%

-62%

-3%

Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size,

medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event)

Table 6.7: Relative (%) increase (or decrease) in precision per simulation scenario across different meta-analysis models.
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Simulation Scenarios

Methods

No. of
o ) Two-stage  Two-stage  Two-stage  Two-stage
participants Mean Follow-up time o
Run _ T Cox PH (“O-E” & V) clog-log Logit link
per trial Log HR (Mean, SD)
Model (HR) (HR) (HR) (OR)
(Mean, SD)
5 trials per MA
Scenario 0* (1000, 100) 0 0 (5,1) 0.001 0.001 0.0017 0.0112
Base Case** (400, 40) -0.3 0.05 (3,0.3) 0.0161 0.0163 0.0184 0.0201
Short F-up (400, 40) -0.3  0.05 (1, 0.2) 0.0351 0.0344 0.0352 0.0386
Long F-up (400, 40) -0.3 0.05 (5,1) 0.0148 0.0159 0.0591 0.0514
Large heterogeneity (400, 40) -0.3 0.1 (3,0.3) 0.0264 0.0269 0.0233 0.0296
Small heterogeneity (400, 40) -0.3 0.001 (3,0.3) 0.0052 0.0052 0.0124 0.0091
Large effect size (400, 40) -0.8  0.05 (3,0.3) 0.017 0.017 0.0447 0.0215
No effect size (400, 40) 0 0.05 (3,0.3) 0.0154 0.0157 0.0094 0.0178
Small sample size (100, 15) -0.3 0.05 (3,0.3) 0.031 0.0319 0.0328 0.0465
Large sample size (1000, 100) -0.3 0.05 (3,0.3) 0.0119 0.0121 0.0141 0.0133
Small P(Event) (400, 40) -0.3  0.05 (3,0.3) 0.0184 0.0182 0.0188 0.021
Large % R_cens+Small
(400, 40) -0.3  0.05 (5,1) 0.0155 0.0162 0.0326 0.0257
P(Event)
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Long Follow-up+0%
R_cens
80% Power

20 trials per MA

Scenario 0*

Base Case**

Short F-up

Long F-up

Large heterogeneity
Small heterogeneity
Large effect size

No effect size

Small sample size
Large sample size
Small P(Event)
Large % R_cens+Small
P(Event)

Long Follow-up+0%
R_cens

80% Power

(400, 40)

(400, 40)

(1000, 100)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(100, 15)

(1000, 100)
(400, 40)

(400, 40)

(400, 40)

(400, 40)

0.05

0.027

0.05
0.05
0.05
0.1
0.001
0.05
0.05
0.05
0.05
0.05

0.05

0.05

0.2

(5, 1)

(3,0.3)

6. 1)
(3,0.3)
(1,0.2)

6. 1)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)

6. 1)

(5, 1)

(3, 0.3)

0.0138

0.0111

0.0002
0.0037
0.0088
0.0034
0.0061
0.0012

0.004
0.0035
0.0072

0.003
0.0043

0.0037

0.0032

0.0111

0.0140

0.0113

0.0002
0.0037
0.0086
0.0037
0.0062
0.0012
0.0039
0.0036
0.0074

0.003
0.0043

0.0039

0.0033

0.0113

0.0143

0.0158

0.0004
0.0094
0.0089
0.0555

0.01
0.0082
0.0344
0.0023
0.0134
0.0083
0.0076

0.0273

0.0033

0.0109

0.0734

0.0152

0.0022
0.0047
0.0092

0.043

0.007
0.0022
0.0052
0.0043
0.0112
0.0034
0.0053

0.0156

0.0448

0.0114
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Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size,
medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event)

Table 6.8: Mean squared error obtained per simulation scenario across different meta-analysis models.

Simulation Scenarios Methods
No. of
o ) Two-stage  Two-stage  Two-stage  Two-stage
participants Mean Follow-up time o
Run _ T Cox PH (“O-E” & V) clog-log Logit link
pertrial  Log HR (Mean, SD)
Model (HR) (HR) (HR) (OR)
(Mean, SD)
5 trials per MA
Scenario 0* (1000, 100) 0 0 (5,1) 96% 96% 95% 96%
Base Case** (400, 40) -0.3 0.05 (3,0.3) 88% 88% 82% 89%
Short F-up (400, 40) -0.3  0.05 (1, 0.2) 95% 94% 94% 95%
Long F-up (400, 40) -0.3 0.05 (5,1) 89% 88% 16% 54%
Large heterogeneity (400, 40) -0.3 0.1 (3,0.3) 87% 87% 82% 87%
Small heterogeneity (400, 40) -0.3 0.001 (3,0.3) 95% 94% 81% 94%
Large effect size (400, 40) -0.8  0.05 (3,0.3) 89% 60% 88% 90%
No effect size (400, 40) 0 0.05 (3,0.3) 88% 88% 91% 91%
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Small sample size
Large sample size
Small P(Event)

Large % R_cens+Small
P(Event)

Long Follow-up+0%
R_cens

80% Power

20 trials per MA

Scenario 0*

Base Case**

Short F-up

Long F-up

Large heterogeneity
Small heterogeneity
Large effect size

No effect size

Small sample size
Large sample size
Small P(Event)

(100, 15)
(1000, 100)
(400, 40)

(400, 40)

(400, 40)

(400, 40)

(1000, 100)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(100, 15)

(1000, 100)
(400, 40)

-0.3
-0.3
-0.3

-0.3
-0.8

-0.3
-0.3
-0.3

0.05
0.05
0.05

0.05

0.05

0.027

0.05
0.05
0.05
0.1
0.001
0.05
0.05
0.05
0.05
0.05

(3,0.3)
(3,0.3)
(3,0.3)

(5, 1)

(5, 1)

(3, 0.3)

6.1
(3,0.3)
(1,0.2)

G, 1)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)

92%
88%
90%

89%

87%

89%

97%
92%
93%
93%
93%
96%
92%
93%
95%
93%
94%

91%
88%
90%

89%

87%

89%

97%
93%
93%
93%
93%
96%
93%
93%
95%
93%
94%

91%
7%
88%

53%

88%

80%

96%
61%
93%

0%
73%
35%
15%
93%
78%
54%
79%

93%
88%
92%

79%

7%

91%

96%
94%
94%

6%
93%
95%
94%
93%
95%
93%
94%
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Large % R_cens+Small

(400, 40) -0.3  0.05 (5,1) 93% 94% 9% 53%

P(Event)

Long Follow-up+0%
(400, 40) -0.3 0.05 (5,1) 93% 94% 94% 48%

R_cens
80% Power (400, 40) -0.3 0.2 (3,0.3) 94% 94% 84% 93%

Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size,
medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event)

Table 6.9: Coverage obtained per simulation scenario across different meta-analysis models.

Simulation Scenarios Methods
No. of
o ) Two-stage  Two-stage  Two-stage  Two-stage
participants Mean Follow-up time o
Run ] T Cox PH ("O-E” & V) clog-log Logit link
per trial Log HR (Mean, SD)
Model (HR) (HR) (HR) (OR)
(Mean, SD)
5 trials per MA
Scenario 0* (1000, 100) 0 0 (5,1) 5% 5% 5% 4%
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Base Case**

Short F-up

Long F-up

Large heterogeneity
Small heterogeneity
Large effect size

No effect size

Small sample size
Large sample size
Small P(Event)
Large % R_cens+Small
P(Event)

Long Follow-up+0%
R_cens

80% Power

20 trials per MA

Scenario 0*
Base Case**
Short F-up
Long F-up

(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(400, 40)
(100, 15)
(1000, 100)
(400, 40)

(400, 40)

(400, 40)

(400, 40)

(1000, 100)
(400, 40)
(400, 40)
(400, 40)

-0.3
-0.3
-0.3
-0.3
-0.3
-0.8

-0.3
-0.3
-0.3

0.05
0.05
0.05
0.1
0.001
0.05
0.05
0.05
0.05
0.05

0.05

0.05

0.027

0.05
0.05
0.05

(3, 0.3)
(1,0.2)

6.1
(3,0.3)
(3, 0.3)
(3, 0.3)
(3,0.3)
(3,0.3)
(3, 0.3)
(3, 0.3)

(5, 1)

(5, 1)

(3,0.3)

1)
(3,0.3)
(1,0.2)

1)

68%
34%
70%
51%
97%
100%
12%
43%
76%
62%

69%

72%

80%

3%
100%
86%
100%

68%
36%
70%
51%
97%
100%
12%
43%
76%
62%

69%

73%

80%

3%
100%
87%
100%

58%
33%
13%
47%
80%
100%
9%
28%
71%
52%

36%

2%

66%

4%
99%
87%
46%

58%
34%
14%
48%
81%
100%
10%
29%
2%
53%

37%

2%

67%

4%
99%
87%
48%
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Large heterogeneity
Small heterogeneity
Large effect size

No effect size

Small sample size
Large sample size
Small P(Event)
Large % R_cens+Small
P(Event)

Long Follow-up+0%
R_cens

80% Power

(400, 40)
(400, 40)
(400, 40)
(400, 40)
(100, 15)
(1000, 100)
(400, 40)

(400, 40)

(400, 40)

(400, 40)

-0.3
-0.3
-0.8

0
-0.3
-0.3
-0.3

-0.3

-0.3

-0.3

0.1
0.001
0.05
0.05
0.05
0.05
0.05

0.05

0.05

0.2

(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)
(3,0.3)

(5, 1)

(5, 1)

(3, 0.3)

96%
100%
100%

7%

93%
100%

99%

100%

100%

80%

96%
100%
100%

7%

93%
100%

99%

100%

100%

80%

95%
100%
100%

7%

76%
100%

97%

88%

100%

84%

95%
100%
100%

8%

7%
100%

97%

88%

100%

83%

Scenario 0*: Large sample size, No effect size, No heterogeneity, Long F-Up; Base Case**: Medium sample size, medium effect size,

medium heterogeneity, medium follow up; Other scenarios change from base case; R_cens=Random censoring; P(E)=P(Event)

Table 6.10: Power obtained per simulation scenario across different meta-analysis models.
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Abstract

Background: Systamatic reviews and meta-analysis of time-to-event cutcomes are frequently published within

the Cochrane Database of Systematic Reviews (CDSR). However, these outcomes are handled differently across
meta-analyses. They can be analysed on the hazard ratio (HR) scale or can be dichotomized and analysed as binary
ourcomes wsing effect measuras sudh as odds ratios (OR) or risk ratios (RR). We investigated the impact of reanalysing
meta-analyses from the COSR that used these differant effect measures.

Methods: We extracted two types of meta-analysis data from the CDSR; either recorded in a binary form only
("binary”), or in binary form together with observed minus expacted and variance statistics ("OEV). We axplored how
resuilts for time-to-event outcomes originally analysed as "binary”change when analysed using the complementary
leg-log {clog-log) link on a HR scale. For the data originally analysed as HRs ("OEV"), wa compared these results to
analysing them as binary on a HR scale using the clog-log link or using a logit link on an OR scale.

Results: The pooled HR estimates were doser to 1 than the O estimates in the majority of meta-analyses. Important
differences in between-study heterogeneity between the HR and OR analyses were also cbserved. These changes led
to discrepant conclusions between the OR and HR scales in some mata-analyses. Situations under which the dog-log
link performed better than logit link and vice versa were apparent, indicating that the comect choice of the method
does matter. Differences between scales arise mainly when event probability is high and may occur via differencas in
between-study haterogeneity or via increased within-study standard error in the OR relative to the HR analyses.
Condluslons: We identified that dichotomising time-to-event outcomes may be adequate for low event probabilities
but nat for high event probabilities. In meta-analyses where only binary data are available, the complementary log-
log link may be a useful alternative when analysing time-to-event outcomes as binary, however the exact conditions
nead further exploration. These findings provide guidancea on the 2pproprizte methodology that should be used
when conducting such meta-analyses.

Keywords: Time-to-event, Meta-analysis, Methodalogy, Survival data, Clinical trials, Cochrane database of systematic
reviews

Background

Systematic reviews and meta-analyses of time-to-event
*Cormspondence: thaadasiasafka 1B@uclacu outcomes {e.g. time to death, recurrence of symptoms,
MRC Clinical Triaks Unit, institute of Chnical Trials and Methodolagy, relief of pa'm etr_'.:l are frequemljr carried out in areas such
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as cancer, respiratory and cardiovascular diseases, since
event timings are crucial to assessing the impact of an
intervention [1]. The decision on how time-to-event out-
comes are handled in a particular meta-analysis largely
depends on how eligible studies are reported, and is
usually out of the control of the meta-analyst except if
individual participant data (IPD) are available. The infor-
mation extracted by systematic reviewers may include
the total number of participants and events per arm, and/
or the hazard ratio alongside its confidence interval, and/
or the log-rank observed minus expected statistic ("(-E”)
and its variance {*V") (which are useful alternative statis-
tics if a hazard ratio is not directly reported [1]). Time-
to-event data can be analysed using the effect measure of
hazard ratio (HR), or can be dichotomised and analysed
as binary using effect measures such as the odds ratio
{OR) or risk ratio (RE) [2]. Although HR is considered the
maost appropriate scale for analysis of ime-to-event data,
in practice OR and RR are frequently used instead due to
the following reasons: unavailability of individual partici-
pant data {IP[}); limitations on how these outcomes are
reported in individual trial reports; lack of familiarity in
handling time-to-event cutcomes for meta-analysis; dif-
ficulties in understanding the methods of analysing such
data without a statistician; limited available training for
the majority of systematic reviewers and meta-analysts
who perform such analyses [3].

In the past, research was conducted comparing the dif-
ferences between the OR using logistic regression mod-
els and the HR using proportional hazard (PH} models
within individual studies. Green and Symons [4] showed
that logistic and Cox PH models produce similar results
when the event is rare and for shorter follow-up times
under a constant hazard rate. Ingram and Kleinman [5]
added that important differences among the methods
occur in the presence of varying censoring rates and
length of follow-up. However, it has not been estab-
lished yet how such results transfer to the context of an
aggregate data meta-analysis for which summary data
is extracted from trial reports. Further, in this context
it is of interest to examine potential alternatives such as
the use of the complementary log—log link, which may
reduce the difference in the results between the two
effect measures used. The overall meta-analytic estimate
can be affected due to changes to the weighting allo-
cated to each study, and therefore changes to the results
can be unpredictable. We aimed to carry out an empiri-
cal “meta-epidemiological” study using survival meta-
analysis data from the Cochrane Database of Systematic
Reviews {CDSR) (Issue 1, 2008) to explore the implica-
tions of analysing time-to-event outcomes as binary in
meta-analysis. We assessed the importance of extracting
suitable data such as the "0-E" and “V" statistics rather
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than binary summaries to perform such analyses: in the
occasion where binary data were available we examined
whether the use of alternative methedology such as the
complementary log-log link (clog-log), proven to facili-
tate interpretation of the results on a HR scale [6, 7] can
minimise the error we may observe in the results. We
assess only the differences between the OR and the HE,
a5 the RR, according to the literature [8-11], is placed in
between these measures and therefore, we expect to cap-
ture any bias within these extremes. We perform these
analyses under both two- and one-stage models.

The rest of the paper is set out as follows. In the meth-
ods section, we describe the dataset we used and the sta-
tistical models that we applied. In the results, we present
descriptive statistics of the database and then we describe
the results obtained from reanalysing the data onginally
analysed as binary on an HE scale and from reanalysing
the data originally analysed using "0-E” and *V” data on
an OR scale. These results are followed by a discussion
exploring the strengths and limitations of our findings,
together with conclusions and implications.

Methods

Diata

The Nordic Cochrane Centre provided the content of the
first issue from 2008 of the CDSR. The database includes
meta-analyses within reviews which have been classi-
fied previously by outcome type, medical specialty and
types of interventions included in the pairwise compari-
sons [12]. The database did not record whether data type
was time-to-event; however, based on the outcome clas-
sification we were able to identify (using words such as
“survival, “death’ “fatality”) three sets of time-to-event
meta-analyses:

+ “binary™ Those with outcome classification “all-
cause mortality” where the information recorded was
based only on the number of events and participants
per arm;

+ "OEV": Those with outcome classifications “over-
all survival” and “progressicn/disease free survival®
where the information recorded was based on
“binary” data in addition to log-rank “0-E" and *V"
statistics”; these were originally analysed as HEs in
the RevMan software;

+ Those with estimated log HE and its standard error.
These were removed from further analyses since
there was no available information on the number
of events and participants per arm and therefore no
binary data meta-analysis could be conducted.

Therefore, we identified two subsets of time-to-event
meta-analyses: those with binary summaries, and those
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with binary summaries in addition to OEV data; we
analysed each outcome per dataset separately to assess
whether differences exist due to different characteristics
of the outcomes. We also examined whether the infor-
mation obtained from "OEV" data was based on aggre-
gate data or IPD by examining the individual Cochrane
reviews.

Eligibility Criteria

RMT {for "binary” data) and TS (for "OEV™ data) initially
extracted these data and conducted cleaning including
examination of the outcome classification; TS repeated
the “binary” data extraction to confirm the information
obtained were accurate and RMT confirmed the choice
of included meta-analyses obtained from “0OEV™ data
extraction. Both datasets could contribute more than
one meta-analysis per Cochrane review. BMT and TS
identified 46 misclassifications due to disagreement with
the original outcome classification as listed in the data-
sets, conflicting information in the database or unavail-
ability of the correct version of the Cochrane review.
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We excluded 1,284 studies including double zero events,
since they do not contribute to the meta-analysis results
[12, 12]. We removed another 359 meta-analyses includ-
ing fewer than 3 studies because some of the models
applied below (ie. generalised linear mixed models) will
be affected by estimation issues and inevitable failures
using small numbers of studies [14]; hence we wanted to
miake fair comparisons between the models applied. Der-
vation of the analysis sample is provided in Fig. 1.

Descriptive statistics

We describe the number of studies per meta-analysis,
number of events and study size by the median and inter-
quartile range. We also identify the number of medical
specialities, and median number of events (and inter-
quartile range) per medical specialty.

Madel description for “binary” data

We used the following meta-analysis models to analyse
the data on the OR or HR scale. The first was a model pro-
posed for "binary” data {assuming a binomial likelihood

30 MAs (126 shudees)

removed due o
1 misclassicaton
1,102 Meta-analyses
6,746 studies
1,252 studies remaved

wilh double zere evenls

|
|

1,067 Meta-analyses
5,496 studies

352 MAS (625 sludies)
remowed dus o falures
N one-skase models

157 Meta-analyses
1,628 studies

removed due o

16 MAs (216 studies)
isckassihcanon

k.

141 Meta-analyses
1,410 shudies

-

o ],
32 MAs (158 studies)
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108 Meta-analyses |
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32 studies removed due o
double 2ero events

1,206 shudies
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T MAs (13 studies) removed
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with a logit link) which is based only on the number of
patients and number of events which occurred. Interpre-
tation for the treatment effect is conducted in terms of
the logarithm of an OR.

In the second approach, we modelled the binary data
using a normal approximation to binomial likelihood
with a complementary log—log link (clog-log), where
treatment effect interpretation was based on the loga-
rithm of a HR. This method is also based only on the
number of patients and events which occurred, and
ignores censoring and the time element; however it is
closely related to continuous-time models, has a built-
in proportional hazards assumption, and therefore has
important application in survival analysis [&].

Fitting two-stage random-effects models for “binary” data
Prior to fitting the two-stage random-effects mod-
els, study arms with zero events were identified for the
“binary” data. For 771 studies, a “treatment arm” con-
tinuity correction was applied as proposed by Sweet-
ing et al. [15] and was constrained to sum to one as this
ensures that the same amount of information is added to
each study.

Leti=1.2,...,n denote the study. The estimated log
odds and log harard ratios were given by:

log i‘}— log ':—I;*}fncﬂﬂs

" { log - bog (1~ P} — log [ log (1 — Py for s

where Aj, G represented number of events, B, L) rep-
resented number of non-events in the treatment and
control groups respectively, Pri ﬁ - was the propor-
tion of events on the treatment arm of the # study, and
Pr = t%"l_'v? was the proportion of events on the control
arm of the :'I"*smd}'.

The corresponding variances were given by:

mn
[Fi]
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:E-!

P

where ¥ denotes the variance of the underlying true
effects across studies and o2 the typical within-study
variance,

To avoid downward bias in the variance components
estimates, we used the REML estimator for model imple-
mentation [16]. The models were implemented via the
“rma.uni” command from “metafor” package in B, We
also fitted one-stage random-effects models for “binary”
data. The methods related to one-stage meta-analysis
models and code is available in Additional file 1.

Model description for “0EV~ data

For “0OEV" data, the “0-E” and "V~ statistics were avail-
able in the Cochrane database alongside the number of
patients and events. These data came either from pub-
lished reports or from IPIX TS examined the individual
reviews from the Cochrane database and assessed the
data origin. Since there were more available information
for these data the following three models were applied,
using only two-stage meta-analysis models.

Similarly to “binary” data, we initially analysed
the “0OEV" data as "binary” and modelled them as
described in detail in the preceding section. We also
used the log-rank Observed—Expected events ((J-E)
and the log-rank Variance (V) statistics calculated pre-
viously from the number of events and the individual
times to event on each research arm of the trial; we
used the log-rank approach [17] in order to obtain
another type of HR estimate. We used random-effects
models to analyse the data throughout, including
between-study heterogeneity to account for variation
across studies.

{rrﬁ
[ 1

) ¢ () for ks

(3)
4)

Equations 2 and 4 provided a HR estimate via the use
of the complementary log-log link considered as a useful
link function for the discrete-time hazards models as rec-
ommended by Hedeker et al. [7] and Singer et al. [&]. We
estimated the study-specific log odds ratios or log hazard
ratios, % and their within-study variances srl as shown
above and fitted a standard two-stage random-effects
model to these. Additionally, we obtained the I? statistic
from the fitted models as follows:

Fitting two-stage random-effects models for "OEV~ data
Similarly to the “binary” data, the estimated log odds
and log hazard ratios were given by Egs. 1 and 2 for the
binary summaries while the "0-E” and *V" statistics
were used as follows:

_ logrank Observed — Expecied events (0 — E)
fi= lngrank: Variance (V) for His

(5)
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The corresponding variances were given by Eqs. 3 and
4 for binary summaries while for “(-E” and "V" statistics
as follows:

2 1

=— _ fwHRk
Y logrank Variance iVJﬁW

]

where V denotes the variance of the logrank statistic.
We used the REML estimator for model implementation
[16] and the models were implemented via the “rma.uni™
command from “metafor” package in I

Model comparison for “binary” data

The following model comparisons were performed. For
the “binary” data set, we examined whether the results
from analysing survival data as binary on an OR scale are
similar to results from analysing on the HR scale using
the clog-log link, both under two-stage and one-stage
maodels. For presentation purposes, we present only com-
parisons of the results under two-stage models in the
main paper (and for one-stage models in the Additional
file 1) in order to assess the discrepancies between the
model using the logit link and the model using the com-
plementary log-log link.

First, we examined the proportion of significant and
non-significant meta-analvtic pooled effect estimates
under the different scales used (OR vs HR scale); we iden-
tified the number of meta-analyses which were signifi-
cant under cne scale and non-significant under the other
at a two-sided 5% level of significance.

Bland-Altman plots with associated 95% limits of
agreement were constructed, with the aim of facilitat-
ing interpretation of results and producing fair compari-
sons between the two scales [18]. In order to create these
plots, results were standardised by dividing the logarithm
of the estimate by its standard error. Plots were produced
for the standardised treatment effect estimates and for
the 7 statistics. I* represents the percentage of variabil-
ity that is due to between-study heterogeneity rather than
chance; I values range from 0 to 100%. This measure was
chosen for model comparison as it enables us to compare
results directly between the two scales used. The variance
of underlying true effects across studies {17} was not used
as it does not allow direct comparison between different
outcome measures,

We identified “outliers” as meta-analyses outside the
95% limits of agreement, and we examined their charac-
teristics. The meta-analysis characteristics we examined
were the following:

+ between-scale differences in the magnitude of the
pooled treatment effect estimate and its 95% confi-
dence intervals
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+ the levels of within-study standard error and
between-study heterogeneity and study weights in
the meta-analysis

+ study-specific event probabilities and baseline risk

We summarised these differences by meta-analysis and
reported those characteristics which were mostly asso-
ciated with substantial differences between OR pooled
effect estimates and corresponding HR pooled effect
estimates.

Model comparison for “0EV” data

For the “0OEY" data set. companisons on overall and pro-
gression disease free survival outcomes were conducted
separately; this was because differences between these
outcomes might be observed in the presence of differ-
ent disease severities, and therefore this would be asso-
ciated with different length of follow-up and risk of the
outcome.

For both oatcomes, we performed comparisons by
examining the differences between analysing the data
a5 binary on an OR scale, analysing the data as binary
using the clog-log link on a HR seale, or analysing the
data using the "0-E” and "V" statistics on a HR scale, We
assessed whether the differences observed from analys-
ing the data as binary on an O scale could be reduced
by the use of the clog-log link. We present only compari-
sons of the results under two-stage models since there
were no available [PD to perform comparisons under
one-stage models.

Similarly to “binary” data, we examined the propor-
tion of significant and non-significant meta-analytic
pooled effect estimates under the different scales used
and identified the number of meta-analyses which were
significant under one scale and non-significant under the
other. We created Bland- Altman plots for the standard-
ised treatment effect estimates and for the 17 statistics
to explore the agreement among the methods producing
fair comparisons between the two scales [18]. Meta-anal-
yses outside the 95% limits of agreement were examined
for their characteristics.

Results
Results for “hinary ™ data
For the outcome of “all-cause mortality”, 1,132 meta-
analyses within the Cochrane database were onginally
analysed as binary. The median number of meta-analyses
per review was 1 with IQR (1,2). The median number of
studies and the median number of events are provided in
Table 1, indicating that these numbers were a lot smaller
than those obtained for the “OEV” data.

The distribution of medical specialities of the meta-
analyses is presented in Table 2. For the "binary” data,
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Table 1 Descriptive statistics for“binary” and "0EV data from the COSR
Binany”
Outcome All-cause Mortality
Total Mumber of Ma 715
Nurmiber of studies per Ma: Median (0R) 53,8
Mumibsar of evants par MA: Madizn (0F) 13 (4, 404
Median Study Slze (I0R) 124460, 312}
e

Durtcomie overall Survival Progression/

Disease Free

Survival
Total Mumber of MA 2] 31
Mumibear of studias per MA: Median (0F) 10105, 14 10(7,14)
Murmiber of evenits per MA: Madian (0R) 108 (58, 254} 104 (70, 197)
Median Study Stre (0R) 182 (33, 363) 185 (90,317
Table 2 Distribution of medical specialties for the “binary” and "0EV" data meta-analyses in the CO5R

“binary”
Medical Specialty ACME Events per Ma:
Number (%) of MAs Median (I1QR)
cancer o5 {139) 45007, 1200
Cardiovascular 168 [23%) 144, 43}
Central nervous systermdmusculaskeletal 44 {5} 125, 33}
Digestivesendooing, nuisttional and metsbolic 71008 703,18
Gynaecology, pregnancy and birth BT (129) 7,32
Infectious disaases ELT 1E(B 47}
Mental health and behaviowal conditions 21 (30} 20,5
Fathological conditions, symptoms and signs 5 (15 9(2,158)
Raspiratory disaases B7 120 11 [, 34}
Lioganital 300 {498} 402,17
Othar® 61 {00} 9{3,2n
SOEWT
medical specialty 05" Events per MA: POFS®: Number (%)  Events per
Mumnber (%) of MAs Median (I1QR) of MAs MA: Median
[Le 4]

cancer B0 (BT 104 (45, 221) 31 (100%) 116 (56, 243)
Digestivasendooing, nuirttional and metabolic 11{1%) 53 (35, 64) - -
Infectious disaases B {1350} ABZ (160, 1105

¥ Oithgar: Blood and i'nmunur!m(ﬂwﬂ hszanti, Injurice, Mowthi and dantal, and E:,lrslicr'i:rnu?.

EACM All-causa mortality;
* 0 Cverall Survival
& POFS: Prograssion/Dissasa foa sursival

“Cardiovascular” (23%) is the most frequently occurring
category, followed by “Cancer” (13%), “Gynaecology,
pregnancy and birth” {12%) and “respiratory diseases”™
(12%). The median number of events in cancer substan-
tially exceeded the median number of events in other
medical areas.

Uince the models were applied, we compared results
between OR and HE analyses. Table 3 provides the

percentages of significant and non-significant meta-anal-
yses at a two-sided 5% level of significance indicating that
there are few discrepancies present for both "binary” and
“OEV" datasets under two-stage models.

According to the Bland—Altman plot (Fig. 2), the aver-
age difference between the two methods for the stand-
ardised pooled effect estimates was -0.004 units (-0.222
units, 0.214 units) and -0.1% (-10.6%, 10.3%) for the
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Table 3 Number (%) of [naon-Jsignificant meta-analyses under different scales for two-stage models ("binary”and "0OEV data)

Outcome OR HR {O-E &V)
“Bnary”
Significant Mon-significant Significant Nor-Significant
HR All-cuse mortality Significant 106 (1559} 2 (0.1}
iclog-lag) Momsgrficant 4 {06%) 603 (B4
“DEV™
Significant Mon-significant Significant Nor-Significant
HR Creerall suraval Signficant 200(29%) 1 (029} 18 (269) 10(14%}
iclog-log) Morsgnficant 1402 47 (6E%) 3[4 38 (550%)
Prograssion  Disaase frea Surval significant 9{29%) 0 {109 8 [26%) & (19%)
Mon-sigrificant 1{3%) 21 (58%) 13% 16 (529}
HR Overall Survival significant 13 [26%) 10 (14%)
to-£&Y] Nomsigréficant 3 (4% 38 (55%)
Frograssion £ Disaase frea Surdval significant o (o) 5155
Mon-sigrificant 1 (3%} 16 (5396)

estimation of I* for two-stage models; this indicates a
relatively small percentage difference between the two
methods in the estimation of the measure of impact of
heterogeneity 1%, The width of the 95% limits of agree-
ment is small, indicating acceptable agreement between
the two methods except in specific circumstances men-
tioned below. The corresponding results for one-stage
models are presented in Additional file 1.

Based on Bland-Altman plots, 6% {(n=47) of the
meta-analyses were considered as outliers. In 21% of
the “binary” outlying meta-analyses (eg. MA 327; out-
lier obtained from I* estimates) a high event probabil-
ity (defined here as probability greater than 0.7 for the
majority of the individual studies) was observed. For
example, meta-analysis 327 consists of 7 studies for
which the event probability was greater than 0.7 for 5
out of 7 studies; consequently, high event probability
affected substantially the differences in the individual
study estimates between the OR and HR analyses, lead-
ing to different allocated relative weights for the stud-
ies, and discrepancies in the pooled effect estimates as
shown in Fig. 3.

The pooled HR estimates were closer to 1 than the
OR estimates in the majority of meta-analyses (Addi-
tional file 1: outlier obtained from standardised and /2
estimates) with the exception of MA 574 for “binary”
data where, even though most of the individual study
HE estimates are closer to 1 than the individual OR
estimates, the pooled HE estimate is further from 1
than the pooled OR estimate. Increased within-study
variability on the OR scale relative to the HR scale may
affect the weighting more than the actual estimates in
the studies, for example within “binary” data meta-
analysis 7 {Additional file 1; outlier obtained from

standardised estimates), producing some differences
in the pooled effect estimates between the two scales.
Important differences in between-study heterogeneity
between the HR and OR analyses were also observed.
For example, meta-analysis 330 (outlier obtained from
1? estimates) consists of 8 studies of which & are smaller
studies which received increased weight in the HE anal-
ysis compared to the OR analysis while the two larger
studies received smaller weights; this affected both the
individual HR estimates that have moved closer to each
other and the relevant weights of the studies as pre-
sented in Fig. 4.

In 34% of the outlying meta-analyses, the individual
study estimates and the corresponding weights were
affected by a combination of differing event probabil-
ity across study arms, differences in between-study het-
erogeneity or increased within-study variability on the
OR relative to the HR scale. In the presence of a limited
amount of studies in the meta-analyses this was even
more evident. Additional examples of forest plots indi-
cating the discrepancies among the results are shown in

Additional file 1.

Results for "0EV" data
In the Cochrane database, 157 meta-analyses were origi-
nally analysed using the *0-E" and *V™ statistics on a HR
scale. The median number of meta-analvses per review
was 2 with IQR (2, 3). We observed that analysing time-
to-event outcomes as HEs is restricted to very few medi-
cal specialties {Tables 2). For the "OEV” data, “Cancer”
was still the most frequent medical specialty for both
outcomes as observed in “binary” data (Table Z).

Table 3 provides the percentages of significant and
non-significant meta-analyses for each outcome for
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two-stage models, indicating that discrepancies are more
prevalent in the “OEV" data compared to the “binary”
data; additionally the amount of discrepancies observed
in statistical significance from the comparison of OR and
HR obtained from the clog-log link was smaller than the
amount of discrepancies observed between the OR and
HR analyses.

Bland—Altman plots produced for "OEV™ data indi-
cated that the average difference between each pair of

methods is larger than those obtained from the “binary”
data (Figs. 5 and 6). For example, for overall survival,
the average difference between the two methods for the
standardised pooled effect estimates was 0.2 units (-1.8
units, 2.1 units) for OR versus HR and 0.2 units (-2.2
units, 2.5 units) for HR using clog-log versus HR; how-
ever, for OR vs HR clog-log differences the average bias
was 0 units (-2.6 units, 2.7 units) indicating that clog-log
is a closer approximation to OR rather than HR analyses
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{Fig. 5). For the estimation of I, the average difference
between the methods is -6% (-41%, 29%) for OR versus
HER, -6% (-42%, 31%) for HR using clog-log versus HE,
and 0% (-21%, 21%) for OR vs HR clog-log differences:
similarly the clog-log seems a closer approximation to
OR analyses rather than HR analyses (Fig. 6). The corre-
sponding results for the outcome of progression/disease
free survival are shown in Additional file 1.

Outliers were considered 28% of the "OEV”™ meta-
analyses. Of these, 57% were from [PD rather than non-
IPT) and 54% of them were for the outcome of overall
survival. In 50% of the outliers a high event probabil-
ity {defined here as probability greater than 0.7) was
observed, suggesting that this may be an important fac-
tor associated with differences among the scales used.
For example, meta-analysis 45 {outlier obtained from
standardised estimates) consists of 7 studies for which
the event probability was greater than 0.7 for all the
studies; consequently high event probability affected
substantially the differences in the individual study
estimates between the OR and HR analyses, leading to
different allocated relative weights for the studies, and
discrepancies in the pooled effect estimates as shown in
Fig. 7. Even though the individual HE clog-log estimates
were closer to the individual OR estimates the final
pooled effect estimate was closer to the pooled HR esti-
mate; this was not though the case for all meta-analyses.

Increased within-study variability on the OR scale
relative to the HR scale may affect the weighting more
than the actual estimates in the studies, for example for
meta-analysis 17 (Additional file 1; cutlier obtained from
standardised estimates), producing differences in the
pocled effect estimates between the two scales, Similarly,

even though the individual study estimates and weights
of OR and HR clog-log were closer to each other, the HR
clog-log pooled effect estimate was closer to the pooled
HE estimate; however, this was not the case for all meta-
analyses. Important differences in between-study hetero-
geneity between the HR and OR analyses were observed
in meta-analyses such as 42, %0, For example, meta-anal-
ysis 90 (outlier obtained from I? estimates) consists of 11
studies out of which & are smaller studies and 3 are larger
studies. Smaller studies received increased weight in the
HE analysis compared to the OR analysis, while larger
studies received smaller weights in the HR scale com-
pared to OR scale. However, this was not the case on the
HE clog-log scale as presented in Fig. 8.

In 46% of the outlying meta-analyses, the individual
study estimates, and the corresponding weights were
affected by a combination of differing event prob-
ability across study arms, differences in between-study
heterogeneity or increased within-study variability on
the OR relative to the HR scale. In the presence of a
limited amount of studies in the meta-analyses this
was even more evident. Additional forest plots indicat-
ing the discrepancies among the results are shown in
Additional file 1.

(verall, using the "0OEV" data, a mixed pattern was
observed. In 39% (n=11) of outlying meta-analyses
the OR pooled effect estimate was closer to HR pooled
effect estimate; however in 4 out of 11 cutlying meta-
analyses the individual study estimates obtained from
the HE clog-log link were a closer approximation to the
individual study HE estimates. Similarly, even though
in 61% (n=17) of the outlying meta-analyses the HR
clog-log pooled effect estimate was closer to the pooled
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HRE estimate, 3 of outlying meta-analyses provided Discussion

individual study OR estimates closer to individual Using meta-analysis data from the CDSE of 2008, we
study HR estimates, and another 3 individual study HR  investigated how time-to-event outcomes are treated
clog-log estimates were closer to individual study OR  within meta-analysis; we explored the differences that
estimates. occur when data are analysed as binary as opposed to
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analysing the data using the complementary log-log link
or using the “0-E" and *V” statistics where interpreta-
tion is conducted on a HR scale. For both datasets, we
identified important reasons associated with discord-
ance among the results, indicating that the correct choice
of the method does matter and may affect the interpre-
tation and conclisions drawn from the results. Our
analyses highlighted that high event probability was an
important factor associated with discordant effect esti-
mates; changes to between and within-study varation

were important mechanisms producing differences in
the results as well. However, there were occasions where
there was no clear single factor driving the differences,
since there was a combination of reasons affecting the
individual study estimates and corresponding weights.
Regarding method selection, based on the "OEV™ data we
identified that a mixed pattern was observed and there
was no clear indication under which exact conditions the
clog-log link outperforms logit link on an OR scale and

vice versa.
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While most of the meta-analyses within the database
were analysed originally as binary, with an outcome
classification of all-cause mortality it is worth mention-
ing that these meta-analyses could include the outcome
of short-term mortality (e.g. 30 days) or longer-term
mortality {e.g. 5 vears); therefore some of these meta-
analyses with short follow-up may have been appro-
priately analysed as binary. The outcome classification
of all-cause mortality was considered a representative
sample of survival meta-analysis up to 2008, how-
ever results might be different for other cutcomes and
results might have changed in later reviews where more
information on methodology was available. The data
used for the comparison of OR/HR scale in the *OEV”
data were slightly different; we used the number of
events and non-events for the OR and HR clog-log cal-
culation (as in “binary” data) and caleulated a HE based
on “(-E” and V statistics. Therefore, there is a possi-
bility for some cases that the two data sets entered by
Cochrane reviewers may not completely correspond to
each other.

We did not assess other reasons for differences
between the results due to lack of information on cen-
soring and follow-up times. Interpretation of the results
was condocted with caution as we are interpreting the
results based on known factors, without excluding other
unknown factors that may have affected the results. We
were not able to examine whether current practice of
analysing time-to-event data has changed and whether
methodological choices have improved since 2008, Fur-
ther work examining the differences observed between
analyses on the OR and HE scales in the presence of [PD
15 NECessary.

The model used to analyse time-to-event data as binary
is the conventional approach widely used by many sys-
tematic reviewers and meta-analysts [19). It s quick,
inexpensive and study results are obtained from appro-
priately synthesized study publications or by contacting
study authors [20]. This approach to analysis ignores cen-
sored observations [21] and treats them as missing and
has also been criticised for the within-study normality
assumpticons required [20].

The use of a dog-log link function, facilitating the
results’ interpretation in a HRE scale for both “binary”
and “OEV” data, was the best alternative approach ena-
bling us to make comparisons between the scales used
if only binary summaries are available. In the past, the
clog-log link has been proven to provide a close approx-
imation to Cox regression invoking a proportional
hazards assumption, rather than a proportional odds
assumption |&]. However, due to lack on information
on “0-E" and “V" statistics for “binary” data only, we
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were not able to assess whether the HR obtained from
the clog-log link is a close approximation to the true
HE; therefore this magnifies the importance of extract-
ing appropriate information when conducting time-to-
event meta-analysis. For the "0OEV”™ data, "0-E and ¥V~
data provide the best method to analyse apggregate data
and facilitate results’ interpretation on the HR scale
but in the absence of IPD important biases may occur
when large treatment effects and unbalanced data are
present [22]. Additionally, we were not able to identify
a clear pattern under which the complementary log-log
link could be employed since there were circumstances
under which it performed better or worse than an OR
analysis; therefore we were not able to identify whether
the clog-log approach is useful when a MA includes
binary summaries alongside OEY or HE summaries. [PD
and simulation studies are required to assess in more
detail the conditions determining where this method
would be acceptable.

For the “binary” data, we also used a one-stage ran-
dom-effects model with fixed study-specific effects
describing the baseline risk probability of the event in
each study. These models use exact binomial likelihoods
and may therefore be more accurate, espedally with
sparse data [14]. The fixed study-specific effects cause
difficulties in estimation since the number of parame-
ters increases with the number of studies, but maximum
likelihood theory requires the number of parameters to
remain stable as the sample size increases. A random-
effects model with random study-specific effects could be
applied, however based on simulation studies this model
performed better than others without any serious biases
present [14]. We were not able to make comparisons
using one-stage models in the “OEV” data. We would be
able to apply cne-stage models when the data were ana-
lysed as binary, but we did not have the IPD required to
fit one-stage models on the HR scale.

To our knowledge, no research has been conducted
using such a large database assessing the differences
between a) analysing the data as binary and interpreting
the results in an OR scale and b} analysing the data either
using the clog-log link or log-rank “0-E” and V statistics
facilitating interpretation on the HR scale.

We have demonstrated the impact of reanalysing
meta-analyses (“binary” or “OEV" datasets) within
the Cochrane Database on a different scale, identify-
ing the main dovers influencing discrepancies between
the meta-analytic results. Our findings provide useful
insights into changes to meta-analytical results and indi-
cate that choice of method used in meta-analysis of sur-
vival data does matter, especially in the presence of high
event probabilities.
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Conclusions

In conclusion, our findings indicate that time-to-event
data should be ideally analysed accounting for their
natural properties, as it is possible for important dis-
crepancies to be observed and conclusions from the
meta-analysis to be altered. We identified that dichoto-
mising time-to-event outcomes may be adequate for low
event probabilities but not for high event probabilities.
In meta-analyses where only binary data are available,
the complementary log-log link may be a useful alterna-
tive when analysing time-to-event outcomes as binary,
however the exact conditions need further exploration.
These findings provide guidance on the appropriate
methodology that should be used when conducting such
meta-analyses.

Abbrevistions

CD&R: Cochrane Database of Systematic Reviess; HA(: Hamrd Ratio(s); 108
Ingzrquartile Range; PD: Individual Particizant Data; MASs) Meta-analysisfes)
CEN: Dbsarved minus Expected and Vanance statistios ORjs): Odds Raticfsk
FEML: Restricted Maximum Likelihood; RRsk Risk Raticls) ar Relative Riskisk
SHls} Systrmiatic Review(s).

Supplementary Information
The online version contains supplementany material available 2t hitpsdoi.
oeg/1001 1861 2E74-022-01541-8.

Additional file 1: Section 1. Fitting one-stage mndom-=ffects modeds for
“binary” datz. Section - Mumber (¥ of (non-jsignificant metz-analyses
urder different scales for one-stage models {binary” data) Bgni 2.
Bland-Altman plots comparing standardised pooled effect and

stimates for one-stage modeks ("binary”" data). Section 4. Forest plats for
mample MAs corsidered 2 outfiers in our arehyses (Minany” data). Sec-
tiom 5. Bland-Altman Plot comparing standamdissd OR vs. HA estimates for
two-stage modek in“0EV" data. Section 6. Forest piot for mamiple Méas
considered as outliers in our analyses (OB data). Section TR Code

Acknowledgements

W are grabeful to the Nardic Cochrane Cemtre and the Cochrane Collbore-
tion Stemving Group for praviding us with acosss to the Cochrane Databass of
Systematic Reviews. We would lke to thank James Capenter for the valuable
suggestions and disoussions we had during the preparetion of this project. We
would also ke to thank Larysa Rydeewska for prosiding us with results obtained
from the MRC Clinical Trizls Unit's Survey of Collaborative Review Groups.

Authars’ contributions

FMT proposed the study. T5 periomied the statstical anafyses and drafied the
manusorigt. TS, BT, DF, JFT and IRW jointy comributed ta interpesting the
resufts and ba revising the manusoript. All authors approved the final marusoipt.

Funding

TS recsived 2 Dactoral Training Grant from the: UK Medical Reszarch Coundll
FMT, DF JFT and BW wese supporied by the Medical Research Council Pra-
gramme MC_UL_ 0000406, The funders had no dirsct nole in the writing of
the manuscript or decision to submit it for publication.

#vailability of data and materials
Diata ar= availabl e upon reasoreble request, if permission is obtined from
Cochrane.

Page 130f 14

Declarations

Ethics approval and conssnt to participate
Mot applcable.

Consent for publication
Al authors have appeoved the manuscript for publication.

Competing interests
The authors declae that they hase no competing infemests.

Received: 17 June 2031 hmmled:]?hnmymll
Published online: 20 March 2022

References

1. Tiemey JF, Stewart LA, Ghersi O, Burdett 5, Sydes MR Practical methods
far incorparabing summary Bme-to-event data into meta-analysis, Trials
Electronic Resource]. 2007.8:16.

2. Higgire B Thamas J, Chandler |, Curmnpston M, Li T, Page M), et al
Cochrane handbook for systematic reviews of interventions: John Wiley &
Sons; W19,

1. Tiemey | Bydmewska L Improving the quality of the analysis of time-to-
event cutcomes in Cochrane reviews. [Unputlished). In press 3008

4. Grean ME Symons MU A companison of the logistic risk function and
the propertional hamrds modsl in peospective epidemiclogic studies.
Cheonic Dis. 19833610071 5-23.

5. Ingram DO, Kl=inman JC. Empirical comparisons of proportional hazards
ard logistic reqression madels. Stat Med. 1983,8(51525-36,

& Singer I0, Willett 18, Willett JB. Appled longitudinal data analysis:
Modeling change and event oocurence Oford university press; 2003,

7. Hedeker [}, Sadiqui 0, Hu FB. Random-effects regeession anafysis
af corebted grouped-time sursival data. Stat Methods Med Bes.
AO0EEET-T0

8. Pedurzi P, Holford T, Detree K, Chan & Comparizon of the logistic and
Croe regemssion models when outcome is determined in all patisnts after
afived period af time. J Chronic Dis. 1987ANE)-T61-7.

9. Annesi | Moreau T, Lellouch . Efciency of the logistic regression and
Co ional hezzeds models in longitudinal studies. Stat Med.

1983 B{1 211 515-21.

10, Staee ), Maucoet-Boulch D Odds mbio, hamrd rabo and relative risk.
Metodalaski rvesdd. 201613(1)155.

11. Callas PW, Pastidess H, Hosmer DW. Empirical comipansans of propartional
hazards, pokmon, and logistic regression modeling of cccupational
cohort data. Am J Ind Med. 1996,33(1}:33-47.

13, Davey ) Turner BM, Clarke MU, Higgins JPT. Charactenstics of meta-araly-
=e= and their companent studies in the Cochrane Datzbase of Systematic
Beviews: 2 cross-sectional, descriptive analysis. BMC Mad Res Methodol.
ATIEEDL

13, ‘Whitehed A Whitehead 1. A genenl parametric aporoach to the metz-
archysis of mndomized dinical trials, Skat Med. 1991;10{1 1k 1665-77.

14. Jackson D), Law M, S6jnen T, Viechtbaver W, White B A comgparison of
seven randam-effects modeks for metz-analyses that estimate the sum-
mary odds ratic. Stat Med. J01E, 377 1050-85.

15 Sweeting JM, Sutton AC, Lamibert P What to add bo nothing? Use= and
avoidance of conbinuity comections in meta-anelysis of sparse data
Statistics in medicne. 2004730} 1351-75.

1E. Veroriki AA, Jackson D, Viechtbauer W, Bender B, Bowden |, Knapp G,
et al. Methods o estimate the bebwesn-shudy varisnce and its unoes-
tainty in metz-anafysis. Reseanch syrthesis methods. J0167{1:55-79.

17. Band IM, Altman DG. The logrank test. BMIL 2004 336744711072

1E. Bland M, Altman D Statistical methads for assessing agree-
ment between two methods of clinical mezsueement. The nost.
1985178476207 10

18, Smimands MC, Higgins IR A general frrmework for the use of
Iogistic regeession modelds in meta-arehysis. Stat Methods Med Res
WNEIS(ELESE-T7.

263



Sallka et @l BMC Medical Research Methodology  (2023) 2273

0. Burke DL, Ensor J, Riley RD. Meta-anafysis using individuzl participant
data one-stage and two-stage approaches, and why they may differ. Stat
Med. 2071736(5855-75.

21, Holzhauer B Metz-analysis of aggregate data an medical events. Stat
Med 201736572337,

31 Greenland 5, Salvan A Bias in the one-step method far pooling study
resuts. Stat Med. 19909324 7-52.

Publisher's Note
Springar Nature remaine neutral with regaed to jurisdictional daime in pub-
lished maps and institutional afilations.

Page 140f 14

Raacky b walenl poos reskaschi’ Choos BMC aed besell ko

fasr, conwaniant ol e SUDmisE on

» TONTLEN e Meviaw Dy GeDer ancad Meseancars in your fidd
rajpic] i 2 2 O A O AN

» SLONT for rasaanch data, Incuding e and Comipie dala pes
gl Oy Ao ans winich fosme wivkr ¢ dlalboratlan andinceasad dEalons

® R T vy AT 0w e crer DO waDci 06 W G faT e

B BMC

At BMC, research is alwaysin progress.

Leam meore Domedoesral omSuhmsions

264



