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Abstract 

Fluid protein biomarkers are important tools in clinical research and health care to support diagnosis and to monitor 
patients. Especially within the field of dementia, novel biomarkers could address the current challenges of providing 
an early diagnosis and of selecting trial participants. While the great potential of fluid biomarkers is recognized, their 
implementation in routine clinical use has been slow. One major obstacle is the often unsuccessful translation of 
biomarker candidates from explorative high-throughput techniques to sensitive antibody-based immunoassays. In 
this review, we propose the incorporation of bioinformatics into the workflow of novel immunoassay development to 
overcome this bottleneck and thus facilitate the development of novel biomarkers towards clinical laboratory prac-
tice. Due to the rapid progress within the field of bioinformatics many freely available and easy-to-use tools and data 
resources exist which can aid the researcher at various stages. Current prediction methods and databases can support 
the selection of suitable biomarker candidates, as well as the choice of appropriate commercial affinity reagents. 
Additionally, we examine methods that can determine or predict the epitope - an antibody’s binding region on its 
antigen - and can help to make an informed choice on the immunogenic peptide used for novel antibody produc-
tion. Selected use cases for biomarker candidates help illustrate the application and interpretation of the introduced 
tools.
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Introduction
Biomarkers comprise biological measurements that can 
give an indication about a person’s medical state, dis-
ease progression or response to intervention [1]. Thus, 
biomarkers can be critical for prognosis, diagnosis, dis-
ease sub-typing and monitoring of disease advancement 
or treatment response [1]. Fluid biomarkers specifi-
cally are biomolecules that can be detected and quanti-
fied in one of the bodily fluids, such as blood plasma or 
cerebrospinal fluid (CSF). Their inexpensive and often 

minimally invasive sample collection renders fluid bio-
markers suitable for a broad clinical use and is therefore 
the focus of many medical research fields [2, 3]. Biologi-
cal fluids often provide the only viable option to exam-
ine the protein profile of the tissue of interest [4]. For 
instance, because of its close proximity to the brain, CSF 
is especially pertinent for neurological disorders such as 
dementias [4]. However, with the ongoing advancement 
of ultra-sensitive measurement technology the transla-
tion of CSF- to blood-based biomarkers is also actively 
pursued [2, 5]. The potential of fluid protein biomarkers 
is immense, especially to tackle current major challenges 
within the dementia field [6]. Novel and robust biomark-
ers are needed to allow an early and correct diagnosis, 
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as identification based on clinical manifestation alone is 
still a challenging and lengthy process and often inaccu-
rate, since dementia can develop due to multiple causes 
[7–9]. The complexity of dementia pathology suggest that 
a combination of protein biomarkers may be necessary 
for accurate conclusions and thus the use of biomarker 
panels is increasingly explored [10, 11]. Additionally, it 
has become clear that the pathological processes in neu-
rodegenerative diseases may start decades before clinical 
symptoms manifests. Therefore, in clinical trials that tar-
get the early stages of the diseases, fluid biomarkers are 
required to enable an improved pathology-based partici-
pant selection. Moreover, biomarkers allow the monitor-
ing of adverse events and endpoints for trials [12]; this 
is key to increase the success of dementia drug trials. 
Despite the promise of fluid biomarkers, the implemen-
tation in clinical use has been slow and their potential 
is still largely untapped [13–15]. As biological fluids are 
complex matrices, reliable biomarker detection is only 
possible with highly sensitive and specific assays.

In this review we will consider how the development of 
fluid protein biomarker assay methods can be supported, 
using bioinformatics tools and data resources. While we 
will focus on the domain of dementia biomarker devel-
opment, the recommendations given here can be used in 
the setting of any protein biomarker or biomarker panel.

The development of novel biomarkers
Novel biomarker development is a long and multidiscipli-
nary process that consists of biomarker discovery, qualifi-
cation, verification and clinical validation [16, 17].

Biomarker discovery has the aim to identify novel pro-
teins that are most suitable to differentiate between two 
states of interest (e.g., disease vs. non-disease) by means 
of their expression levels [18]. There are two principal 
approaches to biomarker discovery. One depends on 
knowledge of the underlying disease process and targeted 
selection and development of biomarker candidates. 
The other, which is relevant to this review, is explora-
tive. An explorative approach typically uses hypothesis-
free experimental techniques allowing the simultaneous 
detection of many proteins to increase the success of can-
didate identification. While untargeted mass spectrom-
etry is the customary method of choice for biomarker 
discovery [19], novel multiplexed antibody- or aptamer-
based proteomics methods are increasingly utilized as 
well [20–22]. We outline the advantages and disadvan-
tages of these three approaches in Table 1 [20]. Because 
of their complementary nature, integration of these 
methods has recently been suggested [23, 24].

Because of its widespread prominence and use, we 
focus on MS as a biomarker discovery tool in depth 
hereinafter. The relative protein quantification using MS 

is facilitated through the ionization of the present bio-
molecules, followed by their separation and detection 
based on their mass-to-charge ratio. Importantly, preced-
ing sample preparation usually involves the depletion of 
highly abundant proteins and protein digestion by a pro-
tease [25] (Fig.  1). Thus, instead of full-length proteins 
MS detects peptide fragments which need to be mapped 
to the corresponding protein afterwards [19]. As a result 
of the digestion step any protein folding and interaction 
is eliminated from the MS samples before their detection.

One of the major drawback of MS is the low achiev-
able sample throughput because of the intensive sample 
preparation and the high associated costs of this tech-
nology [27]. The limited number of samples can lead to 
a high false positive rate for biomarker candidates; con-
sequently, a following verification using an increased 
number of samples is essential [28]. While the qualifica-
tion and verification of a continuously funneled set of 
biomarker candidates might still be performed by tar-
geted MS technologies, clinically used biomarker assays 
eventually require a more widely accessible, cost-effec-
tive and high sample throughput technology that still 
offers high sensitivity [13]. The most established method 
for validation and routine clinical use is the antibody-
based immunoassay, most commonly in the format of 
an enzyme-linked immunosorbent assay (ELISA) [13, 
17]. Note that many alternative immunoassay technolo-
gies with higher sensitivity and associated costs exist that 
have been summarized elsewhere and are not further 
considered here [29].

ELISA is a targeted immunodetection approach that 
is customarily implemented as a “sandwich” assay. These 
immunoassays allow the detection of protein biomarkers 
by capturing and immobilizing the protein target with a 
first capture antibody, while producing a read-out signal 
through the second detection antibody binding to the 
target [30] (Fig.  1). The strength of the signal correlates 
with the amount of the target bound, and thus allows the 
absolute quantification of the protein in the sample [30]. 
The application of antibodies allows high flexibility and 
sensitivity, two of the main advantages of immunoassays. 
Antibodies can be raised against virtually any kind of 
biomolecule and will detect their target at extremely low 
concentration even in complex samples such as plasma 
[31]. The identification of a favorable pair of a capture 
and a detection antibody for a specific biological matrix 
and concentration range is a crucial part of the develop-
ment of novel biomarker assays. If the assay has been val-
idated and optimized, its performance can be validated 
in a large patient cohort, before being commercially pur-
sued and brought to the market [18].

Owing to their prominence and prevalent use, here 
we described an MS-to-ELISA-centered biomarker 
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development pipeline. Note that the arguments made 
in the following are applicable to any workflows with 
the aim of establishing clinical immunoassays based on 
explorative biomarker studies such as mass spectrometry, 
proximity extension assays or aptamer-based proteomics 
[19, 21, 22].

The cross‑technology translation gap
Methods for biomarker discovery and clinical valida-
tion exhibit benefits and weaknesses that make them 
suitable for one step but inadequate for the other [27]. 
They should thus be considered complementary. While 

there is an ongoing effort to hybridize and improve bio-
marker detection methods [21, 32, 33], the translation 
of results from exploratory to targeted approaches is 
still an important process to arrive at biomarkers for 
clinical practice. Herein lies one of the major challenges 
of the current pipeline: the cross-technology transla-
tion gap [13]. Biomarker discovery, e.g., the analysis 
of samples by MS, often leads to the identification of 
many proteins showing differing levels and thereby to 
a lengthy list of biomarker candidates. But those meas-
urement differences in protein levels can often not 
be replicated on the immunoassay platform, thereby 

Fig. 1  Difference in sample preparation between MS and immunoassay technologies. MS is an unbiased detection method; the sample fluid 
is depleted of highly abundant proteins and proteolytically digested before measurement. Immunoassays allows targeted protein detection by 
antibodies; the protein target is in its native fold during measurement

Table 1  Commonly used technologies for biomarker discovery. Multiple approaches exist that allow multiplexed protein 
measurements in human body fluid samples. While mass spectrometry is still the customary method, novel affinity-based proteomics 
methods are also increasingly utilized

Technology Advantages Disadvantages Availability Relevant 
references

Untargeted mass spectrometry Unbiased approach, widely established 
and used in laboratories, proteoform-
specific information

False positive rate, limited sensitivity and 
dynamic range

No restriction [26]

Proximity extension assay High dynamic range, sensitivity and 
specificity

Not available for all proteins, no assay 
adaptation

>3000 proteins [21]

Aptamer-based proteomics High dynamic range, sensitivity and 
specificity

Not available for all proteins, no assay 
adaptation

>7000 proteins [22]
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halting the development pipeline. This issue might 
often be caused by the differences in sample prepara-
tion and protein detection between the technologies, 
e.g., between MS and ELISA (Fig. 1).

Several other difficulties and gaps arise in the pipe-
line of biomarker development which have been the 
subject of previous reviews [13, 18, 19, 34] and are not 
considered here further. Instead, we concentrate on the 
bottleneck of cross-technology translation and aim to 
present the specific stages at which bioinformatics tools 
might be incorporated into novel assay design to bridge 
this gap. Due to the rapid progress within the field of 
bioinformatics, many resources are nowadays avail-
able that can aid this challenging process. To the best of 
our knowledge, this work is the first to provide recom-
mendations on how to apply these tools specifically for 
biomarker assay development to identify and overcome 
potential obstacles. Specific examples of current pre-
diction methods and databases are provided with the 
hope that this review offers a resourceful starting point 
for the interested researcher.

Bioinformatics workflow for biomarker assay 
development
Based on the typical approach for the immunoassay 
development of a novel biomarker target, we wish to 
highlight several stages at which bioinformatics tools 
could enhance the process and increase the chances of 
successful assay design. A proposed workflow of novel 
immunoassay development is shown in Fig. 2 with steps 
to incorporate bioinformatics highlighted. This work-
flow does not include detailed steps for the actual vali-
dation experiments; instead, we focus on the preceding 
decisions regarding biomarker candidate, antibody and 
immunogenic peptide selection. In this section, we aim to 
illustrate the relevance and benefit of those steps within 
the complete workflow and to define which properties 
are of interest at which point. The subsequent section 
will contain the detailed description of bioinformatics 
resources considered to be helpful, and specifically how 
those tools can be utilized to identify possible obstacles 
and solve arising difficulties. Furthermore, the areas of 
interest highlighted in bold in this section can be found 
in Table  2 to find the associated tools and resources; 

Fig. 2  Workflow for novel immunoassay development. A flowchart of typical steps to follow for optimal assay development of biomarker 
candidates identified by explorative approaches. I-VI: boxes highlighted in blue indicate stages at which bioinformatics might be incorporated. The 
associated areas of interest are given in section 2. For detailed information on specific methods and databases associated with each named step in 
the workflow see section 3 and Table 2
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Table 2  Bioinformatics resources for immunoassay development. All described bioinformatics tools are categorized by the area of 
interest and further by the specific property that can be examined. Information is provided on the resource type, the required input, 
and the associated step(s) of the bioinformatics workflow (see Fig. 2). Abbreviations: AB-Seq - antibody sequence in FASTA format, C 
- calculation, DA - database of annotations, DP - database of predictions, N - protein name, P - prediction method, PDB - PDB ID, Seq - 
protein sequence in FASTA format, Str - protein structure in PDB format, UP - UniProt ID, VS - visualization. Workflow steps: I - Biomarker 
suitability survey, III - Epitope localization, IV - Epitope-specific antibody survey, V - Immunogenic peptide selection, VI - Error analysis. 
*These tools can only be utilized if a PDB entry, i.e., a protein structure, for the target exists. ** EpiPred requires the antibody structure. 
However, the antibody sequence is sufficient if homology modeling is used to derive a structure model from it

Area of interest Specific property Bioinformatic tool Label Input Step References

Biological context Protein function UniProtKB DA N, UP I, VI [47]

QuickGO DA N, UP [48]

NetGO 2.0 P Seq [49]

Interaction partners STRING DA, DP N, UP, Seq [50]

Disease involvement OMIM DA N [51]

DisGeNET DA N, UP [52]

Protein origin and location Tissue-specific expression Expression Atlas DA N, UP I, VI [53]

Human Protein Atlas DA N, UP [54]

Human Body Fluid Proteome DA N, UP, Seq [55]

Subcellular location UniProtKB DA N, UP [47]

DeepLoc-2.0 P Seq [56]

Extracellular vesicle localization Vesiclepedia DA N [57]

Protein structure Molecular weight Compute pI/MW C UP, Seq I, IV, V, VI [58]

Solved protein structure Protein Data Bank* DA N, UP, Seq, PDB [59, 60]

Homology modeling SWISS-MODEL (Repository) P, DP UP, Seq [61, 62]

Predicted protein structure AlphaFold Protein Structure 
Database

DP N, UP [63, 64]

Structure viewer Mol* (Mol star)* VS PDB, Str [65]

Structural protein features PredictProtein P Seq [66]

NetSurfP-2.0 P Seq [67]

DescribePROT DP UP, Seq [68]

Disorder DisProt DA N, UP [69]

MobiDB DA, DP N, UP [70]

IUPred3 P UP, Seq [71]

Proteoform complexity Isoforms and cleavage products UniProtKB DA N, UP I, IV, V, VI [47]

Post-translational modifications PhosphoSitePlus DA N, UP [72]

iPTMnet DA N, UP [73]

MusiteDeep P Seq [74]

Protein interactions Interacting residues PredictProtein P Seq IV, V, VI [66]

DescribePROT DP UP, Seq [68]

HybridPBRpred P Seq [75]

ANCHOR2 P UP, Seq [76]

InterPro DA N, UP, Seq [77]

MobiDB DA, DP N, UP [70]

Aggregation Aggrescan3D 2.0* P PDB, Str [78]

PASTA 2.0 P Seq [79]

AmyPro DA N, UP, Seq [80]

Epitopes Epitope prediction BepiPred-2.0 P Seq III, IV, V,VI [81]

SeRenDIP-CE P Seq [82]

ElliPro* P PDB, Str [83]

epitope3D* P PDB, Str [84]

Antibody-specific epitope predic-
tion

EpiPred* P PDB, Str, AB-Seq** [85, 86]

Known epitopes IEDB DA N, UP [87]
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immunoreagent databases were separately collected in 
Table 3.

Biomarker suitability survey
Following the discovery of biomarker candidates by 
exploratory proteomics studies or other approaches such 
as genetic studies or biological pathway analyses [19, 35, 
36], the first step of assay development should be a thor-
ough and critical evaluation of those proteins. A selec-
tion of a limited number of proteins is often necessary, 
as the efforts and costs associated with assay validation 
are too great for a multitude of proteins [17]. It is there-
fore important to be able to single out the most promis-
ing candidates. The difference in protein levels between 
groups is still the principal consideration for the prior-
itization of biomarker candidates and different strategies 
to select biomarker candidates from proteomics results 
have been compared elsewhere [37]. However, this selec-
tion can be augmented by additional information about 
the proteins’ suitability as biomarkers and as immunoas-
say targets. Attaining more knowledge about biological 
context, protein origin and location, structural pro-
tein features, and proteoform complexity is vital to 
reveal obvious reasons to include or exclude biomarker 
candidates.

Even if a prioritization of biomarker candidates is 
not required, e.g., if only a single protein biomarker 
will be investigated, its characterization can still be 
advantageous.

Immunoreagent survey
Available immunoreagents should be surveyed for the 
chosen protein targets. Commercial immunoassay kits 
offer the advantage of an antibody pair determined by 
the manufacturer and are often preferred. However, if the 
assay is not performing successfully or no kit is available, 
purchase and validation of commercial, or generation of 
novel antibodies is needed. It is advantageous to browse 
available immunoreagent databases to consider which 
antibodies will fit the researcher’s requirements, e.g., 
regarding validation experiments, specificity and modifi-
cations. Experimental validation of the chosen antibodies 
at this point is recommended if no sufficient data is pro-
vided by the supplier [38].

Epitope localization
In the case that a novel antibody pairing needs to be 
established for an assay, the choice and combination of 
tested antibodies is often done arbitrarily and based on 
a trial-and-error approach [39]. This is especially diffi-
cult if no trustworthy validation data for the antibodies 
is available yet. The application of bioinformatics enables 
to rationalize that process to a greater extend. One way 
bioinformatics can support assay development at this 
stage is through the localization of the distinct area on 
the protein target, also referred to as the antigen, that the 
antibody will bind to. This area is called the epitope and 
can either be a single stretch of amino acids (i.e., a lin-
ear epitope) or a patch of amino acids brought together 
closely by the fold of the protein (i.e., a conformational 
epitope) [40].

While manufacturers often disclose the immunogen, 
i.e., the protein or peptide fragment against which  the 
antibody was raised, this information is not necessar-
ily enlightening. For methods such as ELISA, that are 
based on the recognition of the native protein, antibodies 
raised against the full-length natively folded protein are 
preferred [41, 42]. Thus, as the immunogen contains the 
majority of the protein sequence, many areas on the pro-
tein surface might constitute the epitope. On the other 
hand, it might also occur that only antibodies raised 
against peptide fragments are available as these com-
prise most commercially available immunoreagents [43]. 
While exact epitopes can be experimentally identified by 
epitope mapping, the process is effortful and costly [44]. 
Bioinformatics provides an easy and fast approach to 
approximate and study potential epitope locations which 
might then be evaluated regarding their suitability for the 
immunoassay. However, the use of computational tools is 
still limited and cannot be seen as a substitute of experi-
mental epitope determination.

Epitope‑specific antibody survey
Approximating the epitopes of considered antibodies 
in more detail allows to investigate those areas more 
thoroughly. Bioinformatics tools can support to iden-
tify potential obstacles of antigen-antibody-interaction 
which would hinder the protein detection in the assay. 
Specifically investigating the epitope-containing region 
of the protein target, it can be helpful to examine 

Table 2  (continued)

Area of interest Specific property Bioinformatic tool Label Input Step References

SAbDab* DA N, PDB [88]

Epitope specificity BLAST C Seq [89]
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structural protein features, proteoform complex-
ity and protein interactions. Moreover, the epitope 
regions should be investigated regarding their speci-
ficity and overlap with each other. Thus, bioinformat-
ics resources can facilitate the selection of an antibody 
pair with favorable epitopes that are distant from each 
other. Less combinations of antibodies might need to 
be tested to identify a suitable pairing. Additionally 
to computational approaches, experimental study of 
antibody characteristics might also be advantageous. 
Screening for antibody affinity can usually be added 
early in the selection process; an example is the use of 
off-rate screening [45].

Immunogenic peptide selection
If no commercial antibodies exist or perform accept-
ably, production of novel antibodies might be consid-
ered for a strong biomarker candidate; it is however a 
long and costly endeavor [46]. Antibody production may 
be undertaken by research groups themselves or can be 
outsourced to specialized companies. Here, several deci-
sions regarding the antibody specifics have to be made at 
the beginning regarding clonality (monoclonal vs. poly-
clonal) and immunogen (full-length protein vs. immu-
nogenic peptide). The use of immunogenic peptides can 
be advantageous and cost-saving when the full-length 
protein antigen is difficult to purify and handle [43]. 
Working with a peptide can give a higher control over 
the antibody recognition site, but at the same time car-
ries the risk of choosing an epitope shared by other pro-
teins, thus reducing specificity. Therefore, identifying 
the regions that would be most and least suitable as an 
epitope in the native protein, can support the production 
of well functioning antibodies. Similarly to antibody pair 
selection, it is important to consider structural protein 
features, proteoform complexity, protein interactions, 
and epitopes to facilitate the production of adequate 
antibodies.

Error analysis
If the assay development failed, an option is to revisit 
the list of potential biomarker candidates to make a 
novel selection. Beforehand, an error analysis should be 
performed on previously tested assays by applying any 
omitted bioinformatics tools regarding biological con-
text, protein origin and location, structural protein 
features, proteoform complexity, protein interactions 
and epitope to understand the potential reasons of fail-
ure. An error analysis could reveal the unsuitability of 
the target protein or the chosen antibody pairing. This 

in turn might lead to an adapted experiment set-up that 
produces the desired results.

Bioinformatics tools for biomarker assay 
development
In the previous section various areas of interest dur-
ing assay development were highlighted. Here, we 
wish to detail for each area which specific properties 
can be investigated, how bioinformatics can be uti-
lized for these tasks at hand, and to introduce specific 
tools. Only freely available, easy-to-use and web-based 
methods and databases are considered in this review. 
We provide at least one state-of-the-art example while 
also considering reliability. Note that the pace at which 
new tools are released differs strongly between research 
fields. This is by no means an exhaustive or complete 
list. Where possible, more expansive literature on a cer-
tain bioinformatics topic is referenced. A summary of 
all mentioned resources as well as a reference to their 
associated steps within the workflow of novel immu-
noassay development (Fig.  2) can be found in Table  2 
to allow easy cross-referencing between the workflow 
(section  2) and the tools (section  3). Additionally, use 
cases for three Alzheimer’s Disease (AD) biomarker 
candidates in the following section provide an illustra-
tive application for many of the introduced tools.

Biomarker candidate ID
As an initial step, every potential biomarker’s associ-
ated UniProt entry should be identified. The UniProt 
Knowledgebase [47] provides an expansive collection 
of protein entries that contain their sequence, existing 
annotations and cross-references to other databases 
and thereby offers an immense collection of valuable 
knowledge in itself. UniProt also contains the UniProt 
ID (or accession number) and canonical amino acid 
sequence that are often required as input for other bio-
informatics tools and databases and enable the unique 
and stable identification of each protein.

Biological context
Protein function can elucidate if alteration to the pro-
tein expression could be associated with the pathol-
ogy of interest. Function can be well characterized by 
the Gene Ontology (GO) annotations. GO is a defined 
and consistent vocabulary that assigns to every protein 
associated terms of three major categories: biological 
processes, molecular functions, and cellular compo-
nents [90, 91]. A protein’s GO terms can be viewed in 
UniProt entries or more thoroughly via specific online 
tools, e.g., QuickGO [48]. Prediction of protein 
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function is available for proteins that lack (a complete) 
functional annotation albeit it is a difficult prediction 
problem: NetGO 2.0 is currently the state-of-the-art 
predictor and only requires the protein sequence as 
input on its webserver [49].

Knowledge about disease associated interaction part-
ners can also increase the confidence in a biomarker can-
didate. STRING is a protein-protein-interaction database 
collecting information from a vast number of sources 
such as text mining, databases, experimental evidence 
and computational predictions [50]. The interaction net-
work for a given protein is presented in a graph-based 
manner and analysis of functional enrichment within the 
network is included as well.

If involvement in disease can be identified, it notice-
ably increases the confidence in a candidate’s capacity 
as a biomarker. Furthermore, it might be important to 
establish the protein’s “specificity” as a biomarker for the 
intended use. One example of an “unspecific” diagnos-
tic biomarker is neurofilament light; it reliably indicates 
axonal damage and is thus considered a cross-disease 
biomarker for axonal damage in neurological disorders 
[92]. This however limits its suitability for the differen-
tial diagnosis of a specific brain pathology as the protein 
shows increased levels in various conditions. Curated 
disease-association databases give insight if the protein 
of interest has been implicated in a pathological state. 
The Online Mendelian Inheritance in Man (OMIM) is a 
database focused on inheritable diseases and provides a 
comprehensive overview of available literature and evi-
dence for its gene-phenotype relationships [51]. The 
DisGeNET database integrates information from multi-
ple sources about human gene-disease associations and 
ranks the associations by relevance [52].

Protein origin and location
Especially for fluid biomarkers, it is worthwhile to deter-
mine a protein’s likely origin by examining its tissue-
specific expression. Body fluids can contain proteins 
secreted from various organs and tissues; the detection in 
a fluid is therefore not providing much certainty yet on a 
protein’s origin. For instance, only approximately 20% of 
proteins found in CSF are brain-derived [93]. If a CSF-
detected protein is predominantly expressed in the brain, 
it would strongly increases its promise as a biomarker for 
neuropathologies.

Two major protein expression resources are the 
Expression Atlas and the Human Protein Atlas (HPA). 
Both atlases provide trustworthy data on the tissues 
in which a protein has been detected. The Expression 
Atlas is a curated collection of gene expression results 
providing information on the tissues in which a protein 
is expressed and how it changes during disease [53]. 

Similarly, the HPA intents to map the entire human pro-
teome to their respective tissues and organs and offers in 
addition to a comprehensive Tissue Atlas, also more spe-
cialized collections, e.g., the Blood Atlas and the Brain 
Atlas [54]. The HPA also provides knowledge about the 
human secretome which is of high interest for biomarker 
candidates, especially if pathological processes are linked 
to the secretion of these proteins [94]. A further resource 
especially relevant for fluid biomarker research is the 
Human Body Fluid Proteome [55]. It is a collection of 17 
types of body fluid proteomes (including blood and CSF) 
which offers a confidence score for each human protein 
to be detected in a specific fluid based on previously pub-
lished studies.

The protein’s subcellular localization can show its 
potential as a fluid biomarker as its presence in the extra-
cellular region might corroborate its subsequent pres-
ence in body fluids. Furthermore, location can provide 
additional context on the protein’s function [95]. UniProt 
will contain annotations about the associated cell orga-
nelles. As often these annotations will not be complete, 
subcellular localization predictors are available for fur-
ther exploration. For instance, DeepLoc-2.0 is a novel 
method able to predict in which compartment(s) a pro-
tein is likely localized [56].

A more specific, but relevant, circumstance is the pres-
ence of the biomarker in an extracellular vesicle (EV) 
within the body fluid (Fig. 3A). EVs are secreted by vir-
tually all cell types and are thought to facilitate cell-to-
cell communication [96]. Their cargo proteins are often 
considered strong biomarker candidates as they provide 
insight into the state of the originating cells and have 
been detected in many fluids [97]. Moreover, they have 
been implicated in the propagation of pathologies such as 
cancer and neurodegenerative diseases [98, 99]. Interest-
ingly, brain-derived EVs are able to cross the blood-brain-
barrier and have previously been isolated from CSF and 
plasma [98, 100]. However, the protein cargo can only 
be accessed by assay antibodies if those vesicles are iso-
lated and disrupted beforehand [101, 102]. As appropri-
ate steps, e.g., ultracentrifugation, are not included in the 
ELISA workflow, one should be aware of a biomarker’s 
association with EVs. The EV cargo database Vesiclepe-
dia [57] asserts if a protein of interest has been found in 
those vesicles in previous studies.

Structural protein features
Structural protein features might be utilized to explore 
the protein’s suitability as an immunoassay target con-
sidering the amount of accessible surface area (ASA) that 
antibodies can bind to. Information on protein structure 
is also vital to determine the localization of epitopes or 
potential immunogenic peptides within the full protein. 
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An epitope needs to lie at the surface of the protein target 
to allow antibody binding (Fig. 4A). If not the full-length 
protein, but a subsequence, is used for antibody produc-
tion [43], the epitope might not actually be located on the 
surface but buried inside the core (Fig. 4B). Moreover, for 
a sandwich assay approach the position of the epitopes 
of capture and detection antibody to each other needs 
to be verified to ensure no spatial hindrance (Fig.  4C). 
Identical, overlapping or adjacent epitopes would lead to 

competitive binding between capture and detection anti-
body and hence the signal detected would be negatively 
affected. Those same considerations are also necessary 
for adequate immunogenic peptide selection to ensure its 
accessibility in the native protein.

Molecular weight is a basic indication of protein 
size. A simple tool for its computation is provided on 
the ExPASy Server [58]. It uses UniProt ID or protein 
sequence as input and can also be used for domain-, 

Fig. 3  Potential matrix-dependent obstacles of successful antibody binding to fluid protein biomarkers. Several circumstances can arise within 
an immunoassay that hide the epitope (blue) from its corresponding antibody. (A) Fluid biomarkers that are located inside EVs are not accessible 
for antibodies. (B) A PTM (red) that lies on or close to the epitope might mask it from the antibody. (C) If the interface of a protein interaction with 
another present molecule (green) is close or on the epitope, the antibody cannot recognize its binding region. (D) If a protein is accumulating, its 
altered structure might hide the epitope within the aggregate

Fig. 4  Structural considerations of accessible and inaccessible epitopes in a sandwich immunoassay. (A) Two antibodies can simultaneously bind 
to the same antigen by interacting with their respective linear (blue) or conformational (red) epitope at the surface of the protein structure. (B) The 
antibody cannot recognize its epitope (green) as it is buried inside the protein structure, binding to the antigen is unsuccessful. (C) Two epitopes are 
close together within the native protein fold and one antibody cannot bind its epitope (teal) as it is blocked by the already bound antibody (blue); 
simultaneous binding to the antigen is unsuccessful
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region-, or fragment-specific calculation of molecu-
lar weight. If a protein is very small, it might simply not 
have a sufficiently large ASA to bind two antibodies 
simultaneously. Thus, it has been suggested in literature 
that a molecular weight of at least 6 kilodaltons (kDa) 
is required to use a protein as the antigen in a sandwich 
ELISA [30]. However, assays have been established for 
smaller molecules, e.g., the AD-implicated amyloid-β 42 
has a weight of only 4.52 kDa [103]. Molecular weight is 
thus a limited measurement of a protein’s suitability as an 
assay target as it is not providing complete information 
on the available surface for binding.

Ideally, the researcher has access to the experimen-
tally solved protein structure to investigate its overall 
arrangement: a globular protein will contain many bur-
ied residues inside its core, while a more extended pro-
tein shape allows a larger portion of the residues to be 
potentially involved in antibody binding. The solved pro-
tein structure can also be used to map the epitope or a 
potential immunogen onto it to infer its location within 
the 3D structure and thus its accessibility for the binding 
antibody.

Experimentally solved structures of proteins and pro-
tein complexes are collected and curated in the Protein 
Data Bank (PDB) [59, 60]. Entries from the database are 
assigned a unique ID and can be downloaded in a stand-
ardized format as a PDB file. Structure-based methods 
usually require either a PDB ID or file as input. While 
novel solved structures are continuously deposited to 
the PDB, currently not even 18% of the residues of the 
human proteome are covered by experimental structure 
determination [104]. A protein will therefore very often 
have only a partially solved structure or might be entirely 
unresolved. Nevertheless, protein structures can also be 
generated using homology modeling. This approach uses 
a template structure with a similar sequence to infer the 
structure of the protein of interest [105]. One widely used 
method that offers this service as a webserver is SWISS-
MODEL [61] which also provides a linked database of 
predicted structure models [62]. SWISS-MODEL homol-
ogy models have expanded the residue coverage of the 
human proteome towards 50% [104].

Recently, a major advance has been made within 
protein structure determination due to the release of 
AlphaFold, a protein structure predictor that frequently 
achieves accuracies at the level of experimental methods 
[63]. Alongside the predictor, a database of structure pre-
dictions, the AlphaFold Protein Structure Database, has 
been published which offers almost full coverage of the 
human proteome [64]. These prediction models can be 
downloaded in PDB format and used as input for struc-
ture-based prediction tools. Similarly to homology mod-
els, the accuracy of the predicted protein structures has 

to be evaluated, which is specified by the model’s confi-
dence. Further, the accuracy of AlphaFold’s surface acces-
sibility prediction has not been benchmarked yet. An 
in-depth perspective for biologists on the application of 
the database as well as its limitations is available [106].

While the mentioned protein structure databases 
(PDB, SWISS-MODEL repository and AlphaFold Protein 
Structure Database) include incorporated 3D structure 
visualization tools, dedicated web-based structure view-
ers exist offering further functionalities. For instance, 
Mol* (“Mol star”) is the standard viewer incorporated 
into the PDB and is also available as a stand-alone tool 
[65]. It takes either a PDB ID or PDB file as input.

To evaluate local (secondary) protein structure and 
surface accessibility, informative structural properties 
can also be simply predicted from the protein sequence. 
These predictions are often less accurate but are avail-
able for any protein or peptide for which the sequence 
is known. Commonly predicted characteristics include 
ASA, secondary structure and disorder, which can offer 
valuable insight into the actual surface area that would 
be available for antibody binding in the immunoassay. 
A comprehensive collection of structural protein fea-
tures can be most efficiently acquired from services such 
as PredictProtein or NetSurfP-2.0. PredictProtein is a 
broad prediction service with over 30 tools of different 
structural and functional protein features incorporated 
[66]. NetSurfP-2.0 predicts ASA, secondary structure 
and structural disorder from protein sequence and has 
reported accuracies of 80% and 85% for ASA and sec-
ondary structure prediction, respectively [67]. Describe-
PROT is a database containing over 1.3 million protein 
entries for which 13 different properties were predicted 
[68]. All three resources offer easy-to-use web servers, 
output predictions per residue, and display results as 
informative plots.

Intrinsically disordered regions, i.e., regions in the pro-
tein lacking a defined folding, are an important property 
to consider. These regions can take various configura-
tions in solution, and do not fold into a unique structure 
that can be determined experimentally. Such regions 
have also been shown to highly overlap with the low 
confidence prediction regions of AlphaFold [107]. As 
most residues in disordered regions will not fold into a 
compact structure, most residues will be exposed to the 
solvent, and can provide a large surface for specific bind-
ing, i.e., they make suitable epitopes. Indeed, a study by 
MacRaild et al. showed epitopes in disordered regions to 
be smaller and more efficient in their antibody binding 
compared to structured region epitopes [108]. Informa-
tion specifically on protein disorder has been collected 
and made available in several databases. DisProt contains 
curated annotations of disordered protein regions [69]. 
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All entries have been confirmed experimentally and were 
collected from scientific literature. MobiDB collects both 
curated and derived annotations and predictions from 
various sources and provides a disorder consensus for a 
protein of interest [70]. Many sequence-based disorder 
predictors have been developed and their performance 
has been reviewed elsewhere [109]. Several methods 
achieve an area under the curve (AUC) above 0.9, dem-
onstrating the reliability of some of these sequence-based 
disorder predictors [109]. One recent example is IUPred3 
[71].

Proteoform complexity
While it is now established that the human proteome is 
made up of approximately 20.000 proteins, this does not 
capture the full extend of the proteome diversity as splic-
ing, protein cleavage and post-translational modifications 
(PTMs) create various protein variants that stem from 
the same gene [110].

Researchers need to be aware of the complexity in 
which the biomarker candidates exist in the human body 
and establish which proteoforms are of interest for the 
specific research question.

It should be established if the aim is to develop an 
immunoassay capable of detecting all variants of the pro-
tein target or a specific subset, e.g., one splice variant. 
Additionally, the knowledge available on existing pro-
teoforms is important to facilitate optimal antibody and 
immunogenic peptide choice as potential obstacles, e.g., 
a PTM located in the epitope region, can strongly affect 
the binding of an antibody.

About 95% of mammalian genes are affected by alter-
native splicing after the transcription to mRNA, result-
ing in multiple protein products derived from the same 
gene [111]. The use of specific isoforms or their ratios as 
protein biomarkers is gathering increasing attention [111, 
112]. This is especially relevant for the biomarker tau pro-
tein associated with several diseases termed tauopathies. 
Six different isoforms of tau exist in the human brain and 
the relative abundance of these isoforms has been shown 
to be altered in disease indicating that tau isoform ratios 
are suitable biomarker candidates [113]. Isoform-specific 
antibodies and immunoassays have been developed for 
tau [114] as well as other proteins [115, 116]. Other work 
has focused on developing assays that explicitly detect all 
known isoforms of a protein target [117]. Isoform speci-
ficity is often not reported for commercial antibodies and 
is difficult to determine [118]. While additional bands in 
western blotting might confirm the existence of splicing 
isoforms, the absence of bands may be explained either 
by the absence of the isoform from the sample or by the 
inability of the antibody to recognize the isoform. Note 

that the exact location of the epitope with respect to the 
canonical reference sequence may strongly affect the 
ability of an antibody to recognize a specific isoform.

UniProt provides besides the canonical reference 
sequence of each protein also the isoforms arising from 
alternative splicing.

Similarly, many proteins undergo proteolytic cleav-
age. Often only the cleaved fragment might serve as a 
biomarker; examples include the AD biomarkers amy-
loid-β and neurogranin [103, 119]. If a fragment is to be 
detected by an assay, the location of associated cleav-
age sites is thus essential. Information about a protein’s 
proteolytic processes, any known cleavage sites and the 
resultant cleavage products of proteins can be found in 
UniProt.

PTMs are receiving increased attention because of 
their possible involvement in various diseases [120–122]. 
Antibodies capable of recognizing modification-spe-
cific proteoforms are therefore of high interest within 
biomarker assay research. A well-established example 
is the tau protein on which numerous PTM sites, most 
importantly phosphorylation sites, haven been identified. 
Tau’s hyperphosphorylation is regarded as a hallmark 
process in AD pathogenesis [26]. The use of ELISA to 
quantify the concentration of total tau and its phospho-
rylated forms has been established firmly [5] and shows 
that antibody-based assays can be used for the differen-
tiation of modified and unmodified protein forms. The 
specificity of PTM-specific antibodies however has been 
questioned [123, 124] and validation is highly necessary. 
If unaware of an existing PTM within or close to a bio-
marker’s epitope, antibody-binding could be negatively 
affected (Fig.  3B) [125–127]. Therefore, awareness of 
the potential modification of residues is needed when 
examining epitopes or choosing immunogenic peptides 
to either allow precise recognition of the modified pro-
tein form or limit the chance that PTMs negatively affect 
the assay. Known PTMs of a protein can be examined 
in depth through database searches. UniProt contains 
many annotations for modified residues but PTM-spe-
cific resources are available as well. PhophoSitePlus is a 
curated database of experimentally confirmed modifi-
cation sites [72]. It provides a graphical overview of the 
type, position, and amount of evidence for each modifica-
tion. iPTMnet collects isoform-specific annotations from 
multiple sources and assigns scores to each PTM based 
on the available evidence [73]. Various PTM prediction 
methods have also been developed; most are focused 
on one specific type of modification. In contrast, Mus-
iteDeep is an online tool that allows prediction of many 
PTM types given a protein sequence as input [74]. The 
predictor achieves AUC values between 0.732 and 0.993 
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depending on the PTM type. Further PTM resources 
and modification-specific predictors have been reviewed 
elsewhere [128].

Protein interactions
Proteomics studies have identified over 3000 proteins 
in CSF [129] and over 6000 proteins in the plasma pro-
teome [130]. Hence, it is very likely that proteins inter-
act with other molecules present in the sampled body 
fluid (e.g., protein, nucleotides or metabolites). Potential 
interactions need to be considered to eliminate the pos-
sibility that binding molecules will hinder the biomarker 
detection in immunoassays. An investigation of the sur-
face regions affected by intermolecular interactions and 
aggregation propensities can help exclude antibodies 
with an unfavorable epitope or decide on an immuno-
genic peptide unaffected by those interactions to ensure 
successful antibody-binding.

The formation of protein complexes is vital for most 
biological functions. If the interface of a protein inter-
action site is identical or overlapping with an epitope or 
immunogenic peptide, the antibody binding might be 
hindered (Fig. 3C). Many studies have been performed to 
analyze and predict the binding of proteins to other pro-
teins, nucleic acids or ligands [131]. The previously men-
tioned tools PredictProtein [66] and DescribePROT [68] 
also incorporate predictors of interacting residues. Addi-
tionally, DescribePROT includes the molecular recogni-
tion feature (MoRF) predictor MoRFchibi [132]. MoRFs 
are protein-binding regions within intrinsically disor-
dered regions which are often capable of binding more 
than one partner [133, 134]. Several other sequence-
based predictors have been developed for this particular 
task and a wide selection has been reviewed by Katu-
wawala et  al. [134]. Stand-alone tools also exist in this 
field: HybridPBRpred is a recent web-based predictor of 
protein-binding residues [75]; ANCHOR2 is available for 
the prediction of protein binding regions specifically in 
disordered proteins [76].

Databases also provide useful information. InterPro 
[77] is a well curated domain database that supports iden-
tification of known binding domains. The disorder data-
base MobiDB [70] is also an excellent resource to identify 
and examine binding sites in disordered regions: it links 
knowledge about interactions from PDB complexes to 
the protein sequence, it provides information on the 
conformational transitions occurring within disordered 
binding sites, and it also includes curated annotations 
from the disordered binding site (DIBS) and eukaryotic 
linear motifs (ELM) databases [135, 136].

Protein aggregation and oligomerization have high 
importance within the pathogenesis of several neurode-
generative diseases [137]. The accumulation of proteins 

as well as the prior formation of oligomeric species is one 
of the hallmarks of various neurodegenerative diseases 
[138–140] and a strong research effort exists to analyze 
these protein aggregates by antibody-based detection 
methods [141]. Many conformation-specific antibod-
ies and immunoassays have been developed [141–143]. 
Lu et  al. used a process of solubilizing neurofilament 
aggregates before measurement by ELISA [144]. Inde-
pendent of the desired approach to handle accumulated 
proteins, researchers need to be aware that oligomeri-
zation and aggregation of a protein can easily cover 
epitopes (Fig.  3D). This could lead to the protein con-
centration being grossly underestimated [145]. Solubil-
ity and aggregation are closely and inversely related; both 
properties can be predicted by Aggrescan3D 2.0 given a 
3D protein structure [78]. To predict solely aggregation 
propensity, PASTA 2.0 is a sequence-based alternative 
that can highlight the aggregation prone regions within 
an amino acid sequence [79]. It might also be advisable 
to browse if a protein is included in the amyloid database 
AmyPro [80] which collects confirmed amyloidogenic 
protein fragments and regions.

Epitopes
Epitope localization and characterization may support a 
researcher’s epitope-specific antibody survey and selec-
tion if information from the manufacturer is insufficient. 
Likely epitope residues can be predicted and thus a more 
focused examination of the probable binding region (and 
its potential issues regarding antibody access) can be per-
formed. As often at least a broad immunogenic region is 
provided for commercial antibodies, it might be helpful 
to compare that knowledge with the results derived from 
the bioinformatic prediction tools. Additionally, epitope 
related tools can be a convenient way to support immu-
nogenic peptide selection as residue stretches predicted 
as epitopes will most likely constitute a suitable peptide 
for immunization as well.

Figure  5 illustrates the different approaches available 
to characterize the epitope or epitopes of an antigen. 
While, compared to epitope mapping, computational 
approaches offer a more time- and resource-saving strat-
egy to learn about an antigen’s potential epitope regions, 
they are less reliable. Various tools exist that differ in the 
required input and the accuracy of their prediction.

The most widely applicable tools are sequence-based 
epitope predictors as only the protein sequence is 
required and many methods have been published with 
slightly differing outputs. BepiPred-2.0 is a widely cited 
sequence-based predictor for linear epitopes of differ-
ent length [81]. The tool calculates a probability score for 
each residue and displays the residue stretches meeting 
an adjustable threshold. For prediction of conformational 
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epitopes from sequence SeRenDIP-CE reported an AUC 
of above 0.7 [82]. Structure-based epitope predictors 
usually outperform sequence-based approaches in accu-
racy but are limited in their capacity as a protein struc-
ture needs to exist [146]. Two examples are ElliPro [83] 
and epitope3D [84].

The aim of the applications mentioned hitherto is the 
identification of surface residues that have the potential 
to be recognized by antibodies. It might be difficult to 
determine which amino acids would ultimately comprise 
the epitope for the antibody of interest if many residues 
are predicted as epitopes [147]. A proposed solution 
for this concern is antibody-specific epitope prediction. 
Such methods attempt to predict one distinct epitope on 
an antigen given additional information about the anti-
body to bind [147]. One such tool is EpiPred, part of the 
antibody prediction toolbox SAbPred [85, 86]. EpiPred 
requires both antigen and antibody structure but has also 
shown that its performance is not significantly affected 
when using antibody homology models instead of solved 
3D structures [85]. SAbPred also provides an antibody-
specific homology modeler, ABodyBuilder [148]; it 

requires the antibody sequence as input and the output-
ted model can then directly be used for EpiPred.

Other epitope resources to be aware of are the Immune 
Epitope Database (IEDB) [87] and the Structural Anti-
body Database (SAbDab) [88]. The IEDB collects con-
firmed epitopes from experimental data and allows to 
search the database for specific organisms, antigen, 
host and epitope type. The IEDB also offers the Immu-
nome Browser: epitope data is mapped onto the protein 
sequence to allow easy identification of regions tested as 
epitopes. SAbDab collects all solved antibody structures 
in the PDB and provides coherent and consistent annota-
tions for them.

The uniqueness of an epitope or potential immu-
nogenic peptide is an important characteristic to be 
assessed. If an antibody can bind a structure other than 
the intended biomarker candidate, a false positive signal 
would be the result. Non-specific binding by commer-
cially available antibodies leading to erroneous immuno-
assays has been reported in many scientific publications 
[149–151]. Off-target binding is thus still an active source 
for concern when working with commercial antibod-
ies. Epitope specificity can most easily be predicted if 

Fig. 5  Available computational and experimental approaches for epitope characterization. Next to epitope mapping, several bioinformatics 
tools exist for epitope prediction. Bioinformatics information sources (blue) give access to different types of information (red). Sequence-based, 
structure-based and antibody-specific epitope predictors exist that differ regarding the required input data; methods that require more effort 
usually offer more accurate results
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the immunization was carried out with a small pep-
tide, as the resulting epitope will most likely be a linear 
sequence. Basic Local Alignment Search Tool (BLAST) 
searches extensive sequence databases for regions with 
high sequence similarity to an input sequence [89]. This 
tool is therefore ideally suited to identify regions in the 
proteome that are highly identical to the epitope region 
of the antigen and might result in off-target antibody 
binding. If BLAST indicates several highly aligned pro-
tein sequences to the linear epitope, the corresponding 
antibody might not be suited to dependably bind only the 
antigen of interest. If the full-length protein was used for 
immunization, the epitope may be conformational. There 
is currently no good method to predict the specificity of 
conformational epitopes.

Immunoreagent databases
The challenge to search for the most advantageous com-
mercial immunoassay kits or antibodies is a daunting 
task. A widely used approach of purchasing many anti-
bodies and kits and testing them in parallel is expensive 
and time consuming with no guarantee for success [39]. 
Frequently, one particular antibody is offered under mul-
tiple catalog numbers by different vendors. Antibodies 
are often not validated for the desired application or sam-
ple type, or the validation has not been performed rig-
orously enough [38, 46]. This leads to many commercial 
antibodies not performing adequately, and their unreli-
ability has been recognized as one of the major contribu-
tor to the reproducibility crisis of research [39, 46, 152]. 
For instance, as part of the HPA project 20.000 commer-
cially available antibodies have been tested for their use 
in immunohistochemistry, with less than half of them 
performing acceptably [153].

The most convenient and thorough way to survey avail-
able and find trustworthy immunoreagents is the use of 
antibody validation databases. These collections contain 
more objective and reliable antibody and immunoassay 

evaluation data. The product range from multiple sup-
pliers is gathered to be easily compared and the criteria 
for validation data are often more stringent. Several of 
those databases are described below and summarized in 
Table 3.

Antibodypedia [154] provides a catalog of antibod-
ies against human proteins and their available valida-
tion data. Submission of antibodies and their associated 
validation is open to everyone but must meet the por-
tal’s criteria and is reviewed before publishing. Further-
more, validation data is always application specific and 
the search for antibodies can be filtered according to 
the desired experiment setup. Antibodypedia assigns 
application-specific scores to each antibody based on the 
available data, thereby providing a trustworthy and thor-
ough assessment for researchers. A different approach 
of antibody evaluation is offered by CiteAb [155]. This 
database ranks antibodies according to the number of 
peer-reviewed publications that have cited it. This allows 
the identification of the antibodies most trusted in the 
research community as well as a cross-reference to pub-
lished validation information. The Antibody Registry 
is part of an effort within research reproducibility, the 
Resource Identification Initiative [156]. The aim of this 
initiative is to provide all used material with a Research 
Resource Identifier that can be used to improve reporting 
in scientific publications and thereby increase reproduc-
ibility of experiments. The Antibody Registry assigns this 
permanent identifier (Antibody ID) to every antibody, 
allowing researchers to find the associated publications 
for every specific antibody based on its ID. It also pro-
vides the proper citation style for each antibody. Further 
guides include antibodies-online which provides stand-
ardized product information and also ranks their range 
based on available validation data, and Biocompare which 
allows easy filtering and comparison across suppliers.

With this multitude of information sources available a 
more exhaustive survey of antibodies and immunoassay 

Table 3  Immunoreagent databases. Selection of online databases and catalogs of affinity reagents such as antibodies and 
immunoassay kits. Information on the provided filter options, number of antibodies and companies presented on each website, and 
website link are specified

Database Filter options Antibodies Companies Website

Antibodypedia Antibody type, application, conjugate, host, reactivity, validation 
method

>4.5 million 98 https://​www.​antib​odype​dia.​com/

CiteAb Antibody type, application, clonality, conjugate, host, modifica-
tion, mutation, reactivity, validation method

>5.7 million 280 https://​www.​citeab.​com/

Antibody Registry Clonality, clone ID, host >2.5 million >500 https://​www.​antib​odyre​gistry.​org/

antibodies-online Antibody type, application, binding specificity, clonality, conju-
gate, host, isotype, reactivity

>4 million >250 https://​www.​antib​odies-​online.​com/

Biocompare Antibody type, application, clonality, conjugate, host, isotype 
modification, reactivity

>3.7 million 142 https://​www.​bioco​mpare.​com/

https://www.antibodypedia.com/
https://www.citeab.com/
https://www.antibodyregistry.org/
https://www.antibodies-online.com/
https://www.biocompare.com/
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kits can be performed. By letting researchers more eas-
ily identify trustworthy immunoreagents (and avoid 
unreliable ones) for their specific application, antibody 
databases can help manage the unreliability problems of 
research antibodies. Still, rigorous antibody validation 
by the researchers themselves is indispensable [38], and 
several excellent guidelines for the best suited antibody 
validation process exist [157, 158].

Use cases
To illustrate the use and interpretation of the bioinfor-
matics tools and data resources introduced in this review, 
we present use cases for three proteins that are either 
established biomarkers or promising candidates for 
AD: neurogranin, tau and TREM2. These proteins were 
selected to cover a wide range of possible outcomes of the 
bioinformatics analysis. As this is a retrospective study of 
known or potential biomarkers, there is obvious bias; the 
analysis leading to the conclusion that these proteins are 
interesting candidates for AD is thus unsurprising. Nev-
ertheless, we still expect that these use cases will serve as 
helpful examples how to interpret predictions from bio-
informatics tools and annotations from data resources. 
The complete use cases are provided as an appendix to 
this review (see Additional file 1). Here, we shortly high-
light the results we considered most interesting consid-
ering the established knowledge about these proteins, 
specifically as immunoassay targets.

Neurogranin
Based on predictions of bioinformatics tools and anno-
tation in data resource neurogranin appears to be an 
optimal biomarker candidate. The analysis of its biologi-
cal context shows a strong association with the brain and 
AD. A detailed analysis of the protein’s structure reveals 
that the protein is generally stretched-out and shows 
a mostly natively disordered protein structure. Hence, 
there is a relatively large surface area available for anti-
body binding despite the low molecular weight of the 
protein. Many potential obstacles for successful immu-
noassay development do not seem to be relevant for 
neurogranin, e.g., prediction shows a low probability 
to aggregate and there are no known isoforms. During 
the computational analysis the C-terminus emerges as 
the most suitable site for antibody binding. The assess-
ment of neurogranin by bioinformatics tools agrees with 
research findings. Indeed, three successful neurogranin 
immunoassay have been developed with the majority of 
the antibody epitopes being located in the C-terminal 
region [119, 159, 160]. All three assays have been com-
pared by Willemse et  al. establishing high correlation 
of the assays between each other [161]. One identified 
cause for concern is the high sequence similarity between 

neurogranin and neuromodulin within the IQ domain 
both proteins contain. Interestingly, the expected cross-
reactivity with neuromodulin of antibodies binding the 
IQ domain has been confirmed in a recent study [119]. 
Retrospectively, the information collected through bio-
informatics resources and tools could have guided 
researchers towards the development of antibodies with 
favorable epitopes.

Tau
Examination of predictions and annotations for tau 
exposes various obstacles to the successful immunobased 
detection. Tau has been found in EVs and it is predicted 
to contain several aggregation hot spots. In addition, tau 
has a variety of proteoforms because of its many differ-
ent splice variants and PTM sites. In terms of structure, 
the predictions may be more difficult to interpret. The 
AlphaFold model of tau has a generally stretched out 
structure, with very little inter-residue contacts; there is 
only one helical region. This agrees with previous studies 
aiming to characterize the structure of tau [162], where 
it is indeed found that tau in its soluble form is not com-
pactly folded, but an ensemble of different configurations 
with transient secondary structures. In its native form, 
tau forms a molten-globule like state; it is therefore more 
difficult to predict which residues are available as a bind-
ing surface for an antibody. Nevertheless, tau is well-
established and extensively studied as an immunoassay 
target. Tau as a biomarker affirms that identified points of 
caution can be taken into account during immunoassay 
implementation. The existence of phosphorylation sites 
and alternative splicing isoforms of tau is firmly verified 
and proven to be tightly associated with the pathogenesis 
of various tauopathies [26, 113]. This has indeed been 
successfully exploited to develop tau proteoform specific 
assays that are used for clinical diagnosis [5]. Measuring 
tau in EVs as a biomarker is also actively pursued [163]. 
The computational analysis identified tau as a protein 
prone to aggregation. Aggregation of tau is indeed known 
to be one of the hallmarks of AD pathogenesis [164].

TREM2
TREM2, or more specifically its soluble form (sTREM2) 
which is comprised of its extracellular region, is com-
paratively less well established as an AD biomarker. It is 
much less specifically expressed in the brain, however, 
annotations show a clear connection to the brain, to CSF, 
and to AD. Much of the sequence of sTREM2 is part of 
the Ig-like domain. As this domain might be involved in 
binding an interaction partner and is not unique to the 
TREM2 protein, it does not constitute a good epitope 
for a TREM2-specific antibody. The C-terminal region of 
sTREM2 seems to be a more suitable region for antibody 
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binding. Several predictions for TREM2 have to be 
considered carefully. The AlphaFold model of TREM2 
highlights the limited accuracy for inter-domain posi-
tions considering the relative positions between the 
transmembrane helix and the extracellular domain. The 
aggregation prediction by Aggrescan3D 2.0 relies heavily 
on the hydrophobicity of surface residues. The region of 
highest aggregation propensity thus corresponds to the 
highly hydrophobic transmembrane region; however, this 
region is not present in the soluble form. The bioinfor-
matics analysis of TREM2 exemplifies that it is impor-
tant to consider if the predicted annotations actually fall 
within the matrix-specific protein product.

Conclusions
The cross-technology translation gap between MS and 
antibody-based assays continues to be a major bot-
tleneck within the biomarker development and thus a 
major factor limiting the successful clinical implemen-
tation of fluid biomarkers. Therefore, optimization and 
rationalization of biomarker assay design should receive 
increased attention. In this review, we examined the 
typical workflow of novel immunoassay development to 
identify steps that can benefit from the incorporation of 
bioinformatics tools. We determined areas of interest 
during the selection of appropriate biomarker candidates, 
antibodies and immunogenic peptides. For each area of 
interest we established which specific properties could be 
investigated with the aid of online databases, prediction 
and visualization tools. For each property of interest we 
discussed at least one specific tool and illustrated how 
the gained knowledge can enhance or accelerate the assay 
development process.

Recent progress within bioinformatics has led to the 
release of a vast number of resources useful for fluid pro-
tein biomarker research. The value of these tools is con-
stantly increasing as new entries are added to databases, 
the performance of prediction tools is improved, and 
the integration across different databases is promoted. 
Especially the release of AlphaFold and its corresponding 
database is expected to strongly increase the prediction 
accuracy of methods dependent on protein structures, 
e.g., epitope predictors. Note that while the AlphaFold 
Structure Database provides researchers with a protein 
structure model for every human protein, the use of these 
structure models in structure-based predictors should be 
gauged for proteins with a high disorder content. As dis-
ordered regions are defined by the absence of a definite 
structure, prediction on structures of highly disordered 
proteins are not meaningful and the use of sequence-
based prediction tools is advisable for such regions.

Much effort has been put into making these tools user-
friendly for the general researcher. However, incomplete 

knowledge about which types of resources exist and 
which would be most suitable for the matter at hand 
might discourage many researchers from implement-
ing computational methods in a meaningful way. Hence, 
with this review, we aim to present the scope of current 
available bioinformatics tools and provide explicit ideas 
on how to utilize them for biomarker assay development. 
Especially the included use cases on AD biomarker can-
didates offer an easy demonstration of how to use the 
presented tools and resources and critically evaluate the 
findings.

While bioinformatics have the potential to save time, 
resources and money, the limitations of these computa-
tional resources should be contemplated, especially when 
basing decisions about the prioritization or exclusion of 
biomarker candidates and antibodies on them. The accu-
racy of the results can vary greatly between prediction 
tasks. For instance, while an independent benchmark 
study of sequence-based disorder predictors reported 
AUC scores up to 0.957 [109], current sequence-based 
epitope predictors report lower performance measures 
between 0.62 and 0.704 [81, 82]. The difficulty of the pre-
diction task should therefore always be considered when 
examining results. Additionally, databases can contain 
bias towards well-studied proteins. Proteins that have 
been investigated thoroughly have extensive annotations, 
while the so far less significant part of the proteome 
might be missing many observations. It is important to 
remember that the absence of annotations might not pre-
sent the actual state of a protein, e.g., missing PTM anno-
tations in a database give no guarantee of this protein not 
being modified.

In conclusion, we expect this review to provide a valu-
able introduction into bioinformatics solutions for the 
current challenges within the biomarker assay develop-
ment pipeline. The collection of suitable tools compiled 
and categorized here provides a starting point to incor-
porate the methods and can save time and resources.
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