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In materials science and many other application domains, 3D information can often only be 
obtained by extrapolating from 2D slices. In topological data analysis, persistence vineyards 
have emerged as a powerful tool to take into account topological features stretching over 
several slices. It is illustrated how persistence vineyards can be used to design rigorous 
statistical hypothesis tests for 3D microstructure models based on data from 2D slices. 
More precisely, by establishing the asymptotic normality of suitable longitudinal and cross-
sectional summary statistics, goodness-of-fit tests that become asymptotically exact in 
large sampling windows are devised. The testing methodology is illustrated through a 
detailed simulation study and a prototypical example from materials science is provided.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Topological data analysis (TDA) is an emerging branch within the domain of data science that holds the promise to 
unearth subtle properties of data by extracting shape-related characteristics. While TDA has its root in algebraic topology, 
which is often considered to be of the most theoretical fields of mathematical research, it is now applied in a variety of 
domains such as astronomy, biology and materials science (Wasserman, 2018).

While extracting refined topological information is already highly non-trivial, this task becomes even more difficult 
when the data varies over time. To address this challenge, the notion of persistence vineyards was developed, which makes 
it possible to track the evolution of topological features over time (Cohen-Steiner et al., 2006). These time-varying features 
are also known as vines. While the initial motivation for vineyards arose in a problem of protein folding, this method has 
now been successfully used in a variety of other contexts such as brain activity data gained via electroencephalography 
and functional magnetic resonance imaging (Salch et al., 2021; Yoo et al., 2016). In essence, vineyards allow a researcher 
to synthesize the information inherent in different time slices into a global summary. In fact, persistence vineyards can be 
considered a tool from the theory of multi-parameter persistence, which deals with the challenge of extending the success 
of TDA to settings where the topology depends on multiple parameters. For a recent overview of this active field of research, 
we refer the reader to the survey paper (Botnan and Lesnick, 2022).
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In this manuscript, we argue that the concept of vineyards is not by any means restricted to time-varying data but ex-
tends to far more general situations involving sliced data. As a prototypical example, we highlight a data set from materials 
science where the 3D microstructure of an extra low carbon strip steel is measured via 2D slices. Developing statistical 
tests to determine whether a given stochastic-geometry model provides a good fit to the given sample is an important task 
since the properties and performance of metals are intimately linked to their microstructure. In fact, unraveling the relation 
between microstructure features and mechanical properties can lead to the design of new materials with desired properties 
(Redenbach et al., 2012).

The first step in the investigation is material characterization. The most common way to observe microstructures is by 
2D characterization techniques such as light microscopy, scanning electron microscopy, and electron backscatter diffraction. 
For opaque materials, serial slicing can be used for direct quantitative characterizations of 3D microstructures (Tewari and 
Gokhale, 2001). Conventional serial slicing involves photographing (or digitally recording) a microstructural field-of-view, 
polishing the specimen to remove small thickness and, in the second metallographic plane, photographing the field-of-view 
exactly below the first one. This procedure (i.e., photograph-polish-etch-photograph) is then repeated to generate a stack of 
aligned serial slices from which 3D microstructure information can be obtained.

However, this process causes material disruption and is time-consuming especially under misalignment problems (Pirgazi, 
2019). Finding a stochastic model for microstructures is thus critical in the study of the relation between microstructure 
features and mechanical properties. There are also important conceptual contributions towards the reconstruction of 3D 
structures from 2D slices such as (Amini et al., 2013). However, in practice, it is difficult to assess to what extent the 
proposed density and transversality constraints are satisfied for a given dataset. Moreover, implementing the suggested 
method is not straightforward. Due to these difficulties, the current testing approaches for 3D data focus almost exclusively 
on test statistics computed from isolated 2D slices (Hahn and Lorz, 1993; Vittorietti et al., 2020). Therefore, we urgently 
need tests that can detect deviations of a model from the actual 3D topology without going through the process of a 
fully-fledged reconstruction.

Motivated by this example, we present a flexible testing framework for statistics derived from persistence vineyards. In 
its general form, this framework encompasses averages over certain scores associated with the individual vines. However, 
large spacing between slices may cause uncertainties when identifying the vines. Therefore, we also propose a simpler class 
of cross-sectional test statistics that can be computed entirely from aggregations over single slices. Our goodness-of-fit-
tests are based on the asymptotic normality of these test statistics in large domains under suitable stabilization conditions. 
This asymptotic normality is the main conceptual contribution of our work. Our framework takes into account that when 
working with data from materials science, it is quite common to find samples in a highly imbalanced sampling window 
whose extension in the x-y-directions is far larger than in the z-direction. We stress that the asymptotic normality of the 
test statistics in large windows offers two decisive advantages. First, since a Gaussian random variable is determined by 
its first two moments, the computation of confidence intervals only requires the mean and variance under the null model. 
Second, it suffices to compute these quantities for moderately large sampling windows; the values obtained in this manner 
can then be used for data coming from arbitrarily large sampling windows.

After having established our testing framework, we illustrate the method in a simulation study of 2D slices taken from 
a 3D Voronoi tessellation. This setup illustrates that the asymptotic normality is already clearly visible for moderately large 
sampling windows. Moreover, by considering tessellations induced by different classes of point processes as generators, 
we provide indications of the statistical power of the testing framework. Finally, we apply the proposed method to the 
highlighted example of a 3D metallic microstructure. In that part, we also elucidate which practical obstacles need to be 
addressed when working with real datasets.

The rest of the manuscript is organized as follows. In Section 2, we define precisely our stochastic-geometry model 
and the considered test statistics. We also state our results on the asymptotic normality of the test statistics in large 
domains and explain the sufficient conditions. Among all the possible models used for representing materials microstructure, 
Voronoi tessellations stand out since this basic model has proven its power in approximating single-phase microstructures. 
Materials which contain only one phase consist of a single chemical compound. Thus, such materials are characterized by 
homogeneity from the morphological, chemical, and also mechanical viewpoints. The attractive mathematical properties and 
the availability of a wide range of sub-models make Voronoi tessellations the state of art for modeling also more complex 
microstructures (Madej, 2017). Therefore, we verify in Section 3 that the conditions of our main results are satisfied for the 
key example of 2D sections from a 3D Poisson-Voronoi tessellation. In Section 4, to make the presentation self-contained, 
we briefly review the most fundamental concepts related to persistence diagrams and vineyards. Next, in Section 5, we 
illustrate the proposed testing methodology on several simulated data sets. In Section 6, we analyze 2D sections taken from 
a sample of an extra low carbon strip steel. The proofs for the asymptotic normality of the test statistics are presented in 
the supplementary material. Finally, Section 7 summarizes the findings and provides an outlook for future research.

2. Methodology and main results

In this section, we explain the general testing methodology and present the main results. First, in Section 2.1, we de-
scribe the model assumption of a point cloud varying between sections. Second, in Section 2.2, we present the M-bounded 
persistence diagram as the main tool to extract topology-related information from data. Next, Section 2.3 describes a class 
of specific test statistics derived from the persistence diagram. Finally, Section 2.5 contains the precise statement of the 
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Fig. 1. Point process of trajectories within the window Q n , p′ = 1 (top) and p′ = 2 (bottom).

results on the asymptotic normality of these test statistics provided that a crucial set of stabilization conditions, which are 
described in detail in Section 2.4, is satisfied.

2.1. Model

We consider statistical testing problems for data describing some geometric structure in the p-dimensional Euclidean 
space, which is measured along p′-dimensional slices with p′ < p. In the example from materials science presented in 
Section 6, we consider a 3D structure measured via 2D slices, i.e., we assume that p = 3. However, for clarity of exposition, 
we present the overall framework in general dimensions.

We now describe more precisely the general purpose behind introducing a stochastic model. First, we note that one 
important research stream is to develop methods designed to extract 3D information from 2D slices. However, as mentioned 
in Section 1, reconstructing the 3D structure from 2D slices without distorting the topology is highly challenging. The 
conceptual approach described in Amini et al. (2013) is difficult to implement, and it is also not clear how to assess 
whether the set of conditions is satisfied for a given dataset. Hence, our motivation for introducing a stochastic model is 
not the 3D reconstruction of a dataset from 2D slices but rather to provide a statistically rigorous tool to decide whether a 
given dataset is in accordance with a null hypothesis. For instance, if the dataset is a 3D structure from materials science 
that is given as a collection of cells, we might suspect that these cells are not placed entirely at random but that there is 
some subtle interaction. To confirm this suspicion, we may start from a simple Poisson-Voronoi tessellation as null model 
and then test whether the hypothesis that the data stems from this model can be rejected at a 5% significance level. If 
the null hypothesis is indeed rejected, then we have achieved a statistically rigorous justification of our suspicion that the 
dataset exhibits nontrivial interactions between the cells. We will elaborate on this example in Section 6.

More precisely, in the null model, we let Xn = {Xi,n(·)}i�1 be a process of trajectories, which are observed (but not 
necessarily entirely contained) in a sampling window Q n := Q ′

n × [0, 1], where Q ′
n := [−n/2, n/2]p′

is the p′-dimensional 
cube of side length n. Hence, we always think of the last coordinate as the one along which slices are taken. In the data 
example discussed in Section 6, the material is represented as a 3D tessellation, and the trajectories are formed by the 
centroids of the 2D cells in the slices. We now explain more precisely the reason for introducing the trajectory model. As 
mentioned in Section 1, persistence vineyards allow to track topological features over several slices. In order to achieve this 
goal, we crucially rely on a trajectory model which introduces an indexing of points so that we can follow individual points 
over several slices.

On the modeling side, the ith trajectory is determined by an offset J i,n ∈ [0, 1], a length Li,n ∈ [0, 1] and a shape �i,n , 
where the latter is an element of C([0, 1], Rp), the space of continuous curves from [0, 1] to Rp . More precisely, for 
{( J i,n, Li,n, �i,n)}i�1 ⊆ [0, 1] × [0, 1]×C([0, 1], Rp) we set

Xi,n(h) := {(
�i,n((h − J i,n)/Li,n),h

) : J i,n � h � J i,n + Li,n
}
.

Fig. 1 illustrates these definitions in 2D and 3D. More precisely, it shows a collection of fibers in the window Q n , and 
illustrates for one of these fibers the definition of J i,n , Li,n , and �i,n . We point out that when working with datasets 
stemming from a finite number of slices, the trajectories need to be reconstructed. We will discuss this issue in greater 
detail in Section 6.
3
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Fig. 2. a. M-bounded clusters, b. M-bounded loops.

2.2. Method: M-bounded persistence diagrams

Having set up the model, we rely on the tools of persistent homology in order to quantify the most striking topological 
aspects of the slices. For a superbly-written overview of this methodology intended for an audience with a background in 
statistics, we suggest (Wasserman, 2018) for further reading. However, for the presentation of the main results we do not 
need this abstract setting since we focus on the case p = 3 from now on. The restriction to the case of 2D slices of a 3D 
structure has the following reasons:

1. The data example in Section 6, which provides the motivation for the development of our goodness-of-fit tests, pertains 
precisely to the scenario of 2D slices of a 3D material.

2. When working with 2D slices, then persistent homology captures two types of topological features, zero-dimensional and 
one-dimensional homology generators in the Čech complex. In order to make the presentation more accessible for readers 
that are new to TDA, we will henceforth refer to them as connected components and loops. As we will elaborate further 
below, both of these features admit a concrete topological description not relying on the abstract toolkit of simplicial 
homology.

3. Long-range correlations coming from percolation theory render it difficult to keep track of features of an arbitrary size. 
Therefore, we proceed as in Biscio et al. (2020) and restrict our attention to features whose size admits a deterministic 
upper bound. Again, while in general it is not at all immediate how to measure the size of features represented in 
simplicial homology, the 2D setting has already been worked out in detail in Biscio et al. (2020).

Topologically, connected components correspond to zero-dimensional homology generators in the Čech, and loops corre-
spond to one-dimensional homology generators. However, from the statistical perspective, one issue with these traditional 
notions is that these homology generators could potentially extend over large regions of the sampling window, thereby in-
ducing long-range correlations, which make it difficult to establish asymptotic normality rigorously. To deal with this issue, 
we rely on the concepts of M-bounded clusters and M-bounded loops introduced in Biscio et al. (2020), and which will be 
explained in further detail below. The difference to the homology generators from the Čech complex is that the M-bounded 
variants do not induce long-range correlations, and are therefore more amenable to a rigorous asymptotic statistical analysis.

Let M > 0 and ϕ ⊆ R2 be a finite set of points. In order to make the manuscript self-contained, we now briefly recall 
the concepts of M-bounded clusters and M-bounded loops, and refer the reader to Biscio et al. (2020, Section 2) for the full 
technical details.

2.2.1. M-bounded clusters
To describe the M-bounded clusters at a level r > 0, we consider the connected components of the union set 

⋃
x∈ϕ Br(x), 

where Br(x) denotes the Euclidean disk of radius r > 0 centered at x ∈ ϕ . Note that at level r = 0 each x ∈ ϕ forms its own 
connected component. We say that all of these components are born at r = 0. Each of these components disappears at a 
unique level r, which is called the death time of the component. This may occur for one of two reasons: i) at the level r the 
spatial diameter of the component exceeds M or ii) at the level r two growing components merge into a single one. Here, 
we stress that in case ii) only one of the two components “dies”. For instance, we may proceed as in Biscio et al. (2020, 
Section 2.1) and decide this according to the lexicographic ordering of the two disks from the components that collide at 
level r. See Fig. 2 for an illustration (adapted from Biscio et al., 2020).

The collection of death times {Di}i�1 defines the M-bounded persistence diagram in degree 0, which gives a summary of 
the M-bounded 0-features, i.e., of the merging pattern of M-clusters. To be consistent with the persistence diagram of M-
bounded features to be introduced below, sometimes an additional first coordinate is added, which is identical to 0. We 
then write {(0, Di)}i�1.

2.2.2. M-bounded loops
To describe the M-bounded loops, we proceed along similar lines with the difference that now we do not consider the 

connected components of 
⋃

x∈ϕ Br(x) but rather the connected components of the complement R2 \ ⋃
x∈ϕ Br(x) that are of 

size at most M . To any such component H we may assign the center p(H) to be the point which is covered last, i.e., which 
4
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has the largest distance to ϕ . If that point is covered at a level r > 0, then we refer to that level as the death time of that 
component. In contrast to the situation of the clusters, there are no M-bounded loops at level r = 0. A new M-bounded loop 
may arise at a level r > 0 if an existing (bounded or unbounded) component of R2 \ ⋃

x∈ϕ Br(x) is split up into two. Next, 
we expound on how to measure the size of loops. More precisely, Br(x1), . . . , Br(xk) are the disks defining the boundary of 
a bounded connected component of R2 \ ⋃

x∈ϕ Br(x), then we define the size of that component as the metric diameter of 
the set {x1, . . . , xk}. An M-bounded loop is a connected component of size at most M . Finally, we define the birth time of a 
loop H to be the smallest level r > 0 for which there exists an M-bounded loop H ′ with p(H ′) = p(H).

Similarly to the setting of M-bounded clusters, the collection of M-bounded birth times and death times {(Bi , Di)}i�1 is 
a fingerprint for the appearance and disappearance of M-bounded 1-features. Hence, {(Bi , Di)}i�1 is called the M-bounded 
persistence diagram in degree 1. In particular, both the birth time and the death time of M-bounded features admit a deter-
ministic upper bound, and we may therefore assume that the persistence diagram is contained in [0, τ ]2 for some τ > 0.

2.3. Test statistics

The core of our testing methodology may be summarized in two key steps. First, in Section 2.2, we leveraged persistence 
diagrams to extract topological information from each of the slices. Now, we describe how to combine the information from 
individual slices into more powerful global test statistics.

To that end, in each slice h ∈ [0, 1], we compute the M-bounded persistence diagram induced by points {X j,n(h)} j�1, 
tacitly discarding trajectories with h /∈ [ J j,n, J j,n + L j,n]. The persistence diagram in dimension q tracks the appearance and 
disappearance of q-dimensional features. Thus, it is represented as a collection {(Bi(h), Di(h))}i = {(Bq

i,n(h), Dq
i,n(h))}i of 

birth and death times in a fixed time interval [0, τ ].
Since the persistence diagrams in different slices are intimately related through the trajectories of the underlying point 

pattern, it is attractive to move beyond considering the respective persistence diagrams in isolation. As indicated in Sec-
tion 1, persistence vineyards or time-varying persistence diagrams are introduced in Cohen-Steiner et al. (2006) as a tool 
to study the persistence of dynamic point clouds. Although the vines as described in the previous paragraph are similar in 
spirit to this classical concept, our setting deviates from the time-varying vines in a few technical characteristics, on which 
we now elaborate in further detail. First, Cohen-Steiner et al. (2006, Section 4) computes the simplicial complex based on 
the lower-star filtration of an embedding of an abstract vertex set. Examples considered in the literature comprise distances 
resulting from the embedding a pair of points as single vertex, or the marking of 1-simplices through the negative correla-
tion of two time series. In contrast, the vertices in our vines are already embedded in Euclidean space so that we may rely 
on the classical Čech filtration. Even though with a sufficiently fine spacing between the slices, we are in principle able to 
track the vertices over the slices, we still observe switches as in Edelsbrunner and Harer (2010, Chapter VIII). That is, when 
the filtration values of certain simplices swap their ordering, then the simplices causing the births and deaths of features 
may change from one slice to another.

After stacking the persistence diagrams along the h-axis, we now explain how to define a vine (Bi(h), Di(h)), h ∈ [0, 1]
associated with a fixed feature i. Each point in the diagrams traces out a path called a vine, i.e., a line among points of the 
persistence diagrams. We start with the case of 0-features, i.e., M-bounded clusters, where features are in 1-1 correspon-
dence with the original trajectories. That is, for i � 1 and h ∈ [ J i, J i + Li], we define Di(h) to be the death time of the point 
Xi,n(h) on {X j,n(h)} j�1.

The case of 1-features is more involved since this one-to-one correspondence breaks down. In this case, we associate the 
ith feature with the simplex leading to the birth of that feature. That is, we mean the simplex appearing at the same time 
as the feature appears in the persistence diagram. If all simplices appear at different times, then this is uniquely determined. 
Here, we identify the simplices in different slices by their indices. That is, if {Xi0,n(h), . . . , Xiq,n(h)} is a q-simplex in the 
slice h, then the corresponding q-simplex in another slice h′ is given by {Xi0,n(h′), . . . , Xiq,n(h′)}. Moreover, as observed in 
Biscio et al. (2020, Section 8), when working with M-bounded loops, it is possible that a single 1-simplex leads to the birth 
of two M-bounded loops. To retain the uniqueness of the identification we may associate one of the features with a “-”, 
and the other with a “+” sign. However, as soon as M is chosen reasonably large, the simultaneous birth of two M-bounded 
loops is very rare, and therefore does not cause any concerns when evaluating simulated and real data in Sections 5 and 6, 
respectively. Note that whether or not a certain collection of centers defines a feature may change from one slice to another. 
We stress that this convention only leads to a certain approximation of the actual vines. Moreover, it may often be very 
natural to consider a loop as being associated with the same feature even if a different simplex causes the birth of this loop. 
Finding useful heuristics for carrying out these more subtle identifications is an instance of the problem of cycle registration
and is an active research field (Reani and Bobrowski, 2021).

To test whether data gathered from slices comply with a null hypothesis on the distribution on the underlying full-
dimensional geometric structure, we propose the following general class of longitudinal test statistics. In analogy to the vines 
from Cohen-Steiner et al. (2006), for each fixed H � 1, we can consider the discretized trajectory {(Bi(h), Di(h))}h∈�H of the 
ith feature, where �H := {0, 1/H, . . . , (H − 1)/H} describes a subdivision into slices of length 1/H .

Now, we associate with each vine some statistic ξ
({(Bi(h), Di(h))}h∈�H

)
and form a global test statistic by aggregating 

over all features in the window Q n:

Tn = T (Xn) :=
∑

ξ
({(Bi(h), Di(h))}h

)
. (1)
i

5
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For instance, the score ξ could be the average number of slices in �H where the feature is present, or the life time averaged 
over those features. In Section 5.1.3, we define precisely test statistics of this flavor.

Example 2.1 (Cross-sectional statistics). Longitudinal statistics have the appeal of capturing the evolution of individual features 
over time. In practice, however, the trajectories might be observed only over a very limited number of slices so that vines 
may extend only of a handful of slices. Hence, computing general longitudinal statistics could be challenging. Nevertheless, 
by carefully choosing the score function ξ , we construct cross-sectional test statistics that can still be evaluated seamlessly in 
such cases.

More precisely, for any measurable function ξ ′ : [0, τ ]2 → [0, ∞), we consider

ξ
({(Bi(h), Di(h))}h∈�H

) := 1

H

∑
h∈�H

ξ ′(Bi(h), Di(h)),

implicitly setting ξ ′(Bi(h), Di(h)) = 0 if the ith feature is not present at height h. Then, forming the test statistic Tn as in 
(1), and exchanging sums, we arrive at

Tn = 1

H

∑
h∈�H

∑
i

ξ ′(Bi(h), Di(h)). (2)

Here, we stress that to evaluate Tn it is not necessary to track features, since the inner sum depends only on the persistence 
diagram at time h. In fact, we can consider this estimator also as an integration with respect to the empirical measure 
associated with the persistence diagrams in the individual slices.

To make this precise, we may think of the persistence diagrams in a window as an empirical measure on [0, τ ]2 averaged 
over the slices, i.e.,

PDq
n(db,dd) := 1

H

∑
h∈�H

∑
i�1

δ(Bq
i (h),Dq

i (h))(b,d).

Then, the test statistic (2) becomes

Tn := 〈ξ ′,PDq
n〉 = 1

H

∑
h∈�H

∑
i�1

ξ ′(Bi(h), Di(h)). (3)

For instance, taking ξ ′(b, d) := d − b yields the total persistence averaged over the slices. As another example, taking the 
indicator ξ ′(b′, d′) := 1[0,b]×[d,τ ](b′, d′) yields the slice-averaged M-bounded persistent Betti numbers β

b,d
n := PDq

n([0, b], [d, τ ]).

2.4. Stabilization conditions

To develop goodness-of-fit tests based on the longitudinal test statistics described above, we show that they are asymp-
totically normal in large domains. On a very general level, proofs of asymptotic normality are typically based on certain 
dependence assumptions, and we now elaborate on what form these assumptions take in the present setting.

Although we fix p = 3, we keep the abstract notation, writing Rp , Rp′
instead of R3 and R2. This makes the arguments 

more transparent, and simultaneously opens the door towards future generalizations.
We assume that Xn emerges from a homogeneous Poisson point process P = {Pi} on Rp with intensity λ > 0 in the 

background through a construction rule that is stabilizing in the spirit of Penrose and Yukich (2001). This means that 
changing Pn :=P ∩ Q n far away from a position x ∈ Q n does not change the trajectories in the vicinity of x. More precisely, 
we assume that the family Xn of trajectories is expressed as

Xn = {T (Pi,Pn)}Pi∈Pn−√
n

(4)

for some measurable transformation T : Rp × N → C([0, 1], Rp), where N denotes the family of all locally finite sets in Rp . 
We assume that T is translation-covariant, in the sense that T (x + y, ϕ + y) = T (x, ϕ) + y for every y ∈Rp , locally finite 
ϕ ⊆ Rp , and x ∈ ϕ . In Section 3 below, we present a detailed example for T based on the Voronoi tessellation. Here, to 
control edge effects, we restrict to trajectories associated with Poisson points in the slightly eroded window Q n−√

n . We 
also note that in practice, the trajectories are not observed, whereas definition (4) relies on the index. Hence, when working 
with actual datasets, we need an additional preprocessing step that extracts trajectories from individual points in the slices. 
We will elaborate on this issue in detail in Section 5.4.3 below.

Moreover, we assume exponential stabilization in the vein of Błaszczyszyn et al. (2019); Penrose and Yukich (2001). This 
involves studying the effects of changing a point pattern ϕ close to a given location x ∈ Q ′

n . More precisely, for any r > 0
we put Q r(x) := (x + Q ′

r) × [0, 1], Q (x) := Q 1(x) and for any finite A ⊆ Q n \ Q r(x), r < n, we let

ϕr,A := A∪ (
ϕ ∩ Q r(x)

)

6
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be the configuration obtained from ϕ by placing A outside of Q r(x), and for B ⊆ Q (x) we let

ϕr,A,B := A∪ B ∪ (
ϕ ∩ (Q r(x) \ Q (x))

)
be the configuration where additionally B is placed in Q (x). Moreover, for two trajectories f , g ∈ C([0, 1], Rp), we define 
their distance through dist( f , g) := infh�1 ‖ f (h) − g(h)‖.

Definition 2.2 (Stabilization). A finite ϕ ⊆ Q n stabilizes for x ∈Rp′
at r � 1 relative to Q n if

(S1) We have

T (P ,ϕr,A,B) = T (P ,ϕr,A,∅)

for any finite A ⊆ Q n \ Q r(x), B ⊆ Q (x) and P ∈ ϕr,A \ Q r(x). Loosely speaking, for the configuration outside Q r(x), 
what happens inside Q (x) is not relevant.

(S2) We have

dist
(
T (P ,ϕ2r,A,B),T (P ′,ϕ2r,A,B)

)
> M

for any finite A ⊆ Q n \ Q 2r(x), B ⊆ Q (x), P ∈A and P ′ ∈ ϕ2r,A,B ∩ Q r(x). Loosely speaking, M-bounded features with 
points P ∈A cannot contain points inside Q r(x).

(S3) We have T (P , ϕ4r,A) = T (P , ϕ4r,∅) for any finite A ⊆ Q n \ Q 4r(x), and P ∈ ϕ ∩ Q 2r(x). Loosely speaking, trajectories 
in Q 2r(x) will not be affected by the change to the configuration A. Here, we changed from 2r to 4r in order to 
harmonize well with condition (S2).

Formally, we also set Q ∞ := Rp′ × [0, 1], and impose in this case additionally that the entire trajectories from (S3) be 
contained in Q 4r(x). That is,

(S3′) We have T (P , ϕ4r,A) ⊆ Q 4r(x) for any finite A ⊆Rp \ Q 4r(x), and P ∈ ϕ ∩ Q 2r(x).

Then, we let R ′(x, n; ϕ) denote the smallest integer r � 1 for which ϕ stabilizes at x relative to Q n , and R ′(x, ∞; ϕ) the 
smallest integer r � 1 for which ϕ stabilizes relative to Rp . We define the stabilization radius R(x, n; ϕ) := R ′(x, n; ϕ) ∨
R ′(x, ∞; ϕ). Note that while R ′(x, n; ϕ) � 2n, it may happen that R ′(x, ∞; ϕ) = ∞. In particular, we write R(x, n) :=
R(x, n; P) for the stabilization radius associated with the input point process. Finally, we need the notion of exponential 
stabilization.

Definition 2.3 (Exponential stabilization). T is exponentially stabilizing if for some c > 0 one has

lim sup
r→∞

sup
n�1
x∈Q n

log(P (R(x,n) > r))

rc
< 0.

2.5. Asymptotic normality

After having specified the conditions, we now state the asymptotic normality of scalar test statistics.

Theorem 2.4 (Asymptotic normality; scalar level). Let P = {Pi} be a Poisson point process with intensity λ > 0. Furthermore, let 
Xn = {T (Pi, Pn)}Pi∈Pn−√

n
, where T is a translation-covariant transformation. Assume that T is exponentially stabilizing as defined 

in (2.3) and that the score function ξ is bounded. Then, the test statistic

Tn −E[Tn]
np′/2

converges in distribution to a normal random variable.

Since it will be used in the proof of Theorem 2.5 below, we mention that Theorem 2.4 applies for M-bounded persistent 
Betti numbers.

When dealing with cross-sectional statistics, previous work from Biscio et al. (2020) already suggests that it should not 
only be possible to derive asymptotic normality separately for each scalar statistics F but obtain a functional statement. This 
is the content of our second main result, Theorem 2.5. The advantage of functional asymptotic normality of the persistent 
Betti numbers is that one can consider Kolmogorov-Smirnov-type statistics depending on a continuous range of birth/death-
parameters. Moreover, in situations where the information loss of a simple Kolmogorov-Smirnov-type statistics is a concern, 
one can also consider combining them with other options such as Cramér-von Mises-type statistics.
7
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To prove the functional CLT, we need to impose further moment conditions. More precisely, we assume that the factorial 
moment densities ρh,q,n(x0, . . . , xq) of the points {Xi,n(h)}i�1 in the slice h ∈ �H are bounded in the sense that for every 
q � 1,

sup
h∈�H
n�1

sup
x0,...,xq∈Rp

ρh,q,n(x0, . . . , xq) � Cρ,q (M)

for some Cρ,q > 0. Here, the factorial moment densities are determined by the disintegration property

E
[ ∑

Xi0,n,...,Xiq ,n∈Xn

f (Xi0,n(h), . . . , Xiq,n(h))
]

=
∫

Rdq

f (x0, . . . , xq)ρh,q,n(x0, . . . , xq)d(x0, . . . , xq) (5)

where Xi0,n, . . . , Xiq,n must be pairwise distinct, see Last and Penrose (2016, Section 4.2).

Theorem 2.5 (Asymptotic normality of M-bounded persistent Betti numbers; functional level). Assume that T is exponentially stabi-
lizing and that condition (M) holds. Then, as a function on [0, τ ]2 , in the Skorohod topology, the recentered and rescaled M-bounded 
persistent Betti numbers

β
M,b,d
n −E[βM,b,d

n ]
np′/2

converge in distribution to a centered Gaussian process.

We note that the asymptotic normality M-bounded persistent Betti numbers is also the core theme of Biscio et al. (2020). 
However, this work deals with the setting where the data stems from a single planar point pattern. In contrast, Theorem 2.5
starts from the case where we have a 3D dataset that is observed in several slices that can potentially exhibit complex 
correlations.

We also note that by relying on the techniques from Błaszczyszyn et al. (2019), it is plausible that Theorems 2.4 and 
2.5 can be established even in cases where P is not a Poisson point process. However, this generalization would come at 
the expense of introducing even further technical assumptions and making the proofs far less accessible. Since at the same 
time, the Poisson point process is the most fundamental model, we decided to present our theory in that setting.

3. Example

In this section, we present a specific model for the trajectories Xn = {Xi,n}i�1, namely as perturbed centroids of the 
2D slices of a 3D Poisson-Voronoi tessellation. We will present a detailed proof of the conditions from Theorem 2.5. This 
model will also form the basis for the simulation study in Section 5 below. The motivation for considering this model comes 
from materials science, where a 3D Poisson-Voronoi tessellation represents one of the most basic models for single-phase 
microstructures.

More precisely, let Pn = {Pi,n} ⊆ Q n be a homogeneous Poisson point process and consider the associated 3D Voronoi 
tessellation {Ci,n}i on Pn . Then, for each h ∈ [0, 1] and each bounded cell Ci,n , we let Gi,n(h) be the centroid of the section 
Ci,n ∩ ({h} ×R2) provided that the latter is non-empty. We denote the entire collection of centroids at level h as Gn(h). To 
cast this example in the framework described in Section 2.1, we note that here the trajectories {�i}i�1 correspond to the 
perturbed trajectories of the centroids through the slices.

We assume that, from the data, we only extract a slight perturbation of Gi,n . This added randomness is justified from 
measurement errors and is also technically useful in the proofs. Hence, we set

Xi,n(h) := Gi,n(h) + Ni,n(h),

where the {Ni,n(h)}i,h are assumed to be noise variables that are independent for different i but may be correlated in h. For 
instance, we take Ni,n(h) ∼ U(B(o, η0)) to be uniformly distributed in a ball of a small radius η0 < 1/4. Here, we use the 
notation B(x, m) ⊂Rd for the Euclidean ball around x ∈Rp of radius m > 0. We now verify condition (M) and exponential 
stabilization. Henceforth, to ease notation, |A| denotes either the cardinality of a discrete set A or the Lebesgue measure of 
A if A is a measurable subset of the Euclidean space.

Condition (M). Let A0, . . . , Aq ⊆ Q n be Borel sets whose diameter and volume we may assume to be at most 1. Then, we 
claim that

E
[∣∣∣{i0, . . . , iq � 1 pairwise distinct : Xi0,n(h) ∈ A0, . . . , Xiq,n(h) ∈ Aq

}∣∣∣
]

� Cq

∏
j�k

|A j|, (6)

with the constant Cq depending neither on h nor n.
8
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To prove this claim, we observe that since the support of the noise variables is of diameter at most η0 � 1/4, we can 
have Xi j ,n(h) ∈ A j only if Gi j ,n(h) is contained in the 1-neighborhood

A+
j := {

x + y : x ∈ A j, y ∈ Q 1/2
}
,

of A j . Since the noise variables are uniformly distributed, there exists some c0 > 0 such that conditioned on the locations 
{Pi}i�1,

P
(

Xi0,n(h) ∈ A1, . . . , Xiq,n(h) ∈ Aq
∣∣ {Pi}i

)
� ck

01{Gi1,n(h)∈A+
1 ,...,Giq ,n(h)∈A+

q }
∏
j�q

|A j|.

Hence, setting A+ := A+
1 × · · · × A+

q and plugging in the right-hand side back into (6), it suffices to show that 
suph∈[0,1]E

[|Gn(h)q+1 ∩ A+|] < ∞. Moreover, by the Hölder inequality, this further reduces to sup j�k,h�1 E
[|Gn(h) ∩

A+
j |k] < ∞. To prove this claim, fix some point x ∈ A j and h ∈ [0, 1], and note that if A j is hit by � � 1 Voronoi cells, 

then there exists some 2 � m � 3n such that i) there are no points in B(x, (m − 4)+) and ii) there are at least � Poisson 
points in B(x, m) \ B(x, m − 2) (Lemma C.1). Thus, for any � � 28,

P
(|Gn(h) ∩ A+

j | = �
)
�

∑
2�m�3n

P
(
Pn

(
B(x, m) \ B(x, m − 2)

)
� �,Pn ∩ B(x, (m − 4)+) = ∅

)

�
∑

m��1/4

P
(
Pn

(
B(x, m) \ B(x, m − 2)

)
� �

)

+ 1{3n � �1/4}
∑

�1/4<m�3n

P
(
Pn ∩ B(x, m − 4) =∅

)
,

where Pn(A) := |Pn ∩ A| denotes the number of points in a set A. Now, we bound the two summands separately. Since �
exceeds the expected number of Poisson points in B(x, m) \ B(x, m −2), the first summand decays exponentially fast in � by 
the Poisson concentration inequality. The probability in the second sum is at most exp(−c1m3) for some universal constant 
c1 > 0, so that the sum decays exponentially fast in �3/4.

Exponential stabilization. We argue that exponential stabilization holds for the centroids, noting that a minor modification 
also gives the property after the perturbation. To achieve this goal, let

Er,x,n :=
{

Q √
r(

√
rz) ∩P �= ∅ : for all

√
rz ∈ √

rZp−1 ∩ Q n ∩ Q r(x) \ Q r−8
√

r(x)
}

denote the event that for each point 
√

rz ∈ √
rZp−1 ∩ Q n ∩ Q r(x) \ Q r−8

√
r(x) the 

√
r-box Q √

r(
√

rz) contains at least one 
point from P . The intuition for the event Er,x,n is the following. If each of the boxes contains at least one point from P , 
then these boxes prevent the existence of large regions of void space so that they can be considered as barriers that prevent 
individual Voronoi cells from becoming very large. We claim that{

Er/2,x,n ∩ Er,x,n ∩ E3r/2,x,n ∩ E5r/2,x,n
} ⊆ {

R ′(x,n;P) � r
}
, (7)

and similarly with n replaced by ∞. Once we have proven this claim, the desired exponential stabilization will follow from 
a union bound in (7) and Lemma C.2 which gives, for two positive constants c1, c2

P (Ec
r, x, s) � c1r p′/2 exp

( − c2r p′/2).
To prove (7), we proceed in two steps: for all s > 0

(1) under the event Es,x,n , every cell centered in Q s−8
√

s(x) is contained in Q s−2
√

s(x);
(2) under the event Es,x,n , every cell centered outside Q s+2

√
s(x) does not intersect Q s−2

√
s(x).

In particular, for sufficiently large s > 0, under the event Es/2,x,n every cell centered in Q 1(x) is contained in Q s/2−√
2s(x), 

and every cell centered outside Q s/2+√
2s(x) does not intersect Q s/2−√

2s(x) by (2). Moreover, for sufficiently large s > 0, 
by (1) the event Es,x,n forces every cell centered inside Q s/2+√

2s(x) to be contained in Q s−2
√

s(x). Therefore, under the event 
Es/2,x,n ∩ Es,x,n , no cell centered in Q 1(x) can intersect a cell with a point outside Q s(x), thereby establishing property (S1). 
Similar arguments show properties (S2), (S3) and (S3′).

We now provide the detailed derivations for claims (1) and (2). For claim (1), let C be a cell centered at P ∈ Q s−8
√

s(x), 
let P ′ be an arbitrary point outside Q s−2

√
s(x) and let P ′′ be its closest point on the boundary of Q s−2

√
s(x). In particular, 

|P ′ − P | � |P ′ − P ′′| + 3
√

s. On the other hand, under the event Es,x,n the distance from P ′ to one of the centers guaranteed 
by Es,x,n is at most |P ′ − P ′′| + √

3s < |P ′ − P |, so that P ′ /∈ C . The situation is sketched in Fig. 3.
For claim (2), let C be a cell centered at P ∈Rp \ Q s+2

√
s(x), let P ′ be an arbitrary point inside Q s−2

√
s(x) and let P ′′ be 

its closest point on the boundary of Q s−2
√

s(x). Then, as before, |P ′ − P | � |P ′ − P ′′| + 2
√

s. On the other hand, under the 
event Es,x,n , again the distance from P ′ to one of the centers guaranteed by Es,x,n is at most |P ′ − P ′′| + √

3s < |P ′ − P |.
9
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Fig. 3. Sketch for the proof of claim (1).

4. Preliminaries on persistence diagrams and vineyards

The use of topological data analysis in computational statistics has only recently become more widespread. Hence, to 
make our work accessible to researchers who have not worked in this domain so far, we now explain the key ideas behind 
persistence diagrams and vineyards. We refer the readers to Edelsbrunner and Harer (2010) for a more detailed exposition 
including formal definitions.

Some of the most qualitative topological features of data are encoded in the homology groups. Homology groups and their 
dimensions, called Betti numbers, are inherently global properties of a topological space that are insensitive to continuous 
geometric deformations. Such deformations may include shrinks, twists, etc. but they do not include tearing or gluing, which 
change the overall topology. In this paper, the focus is on:

H0: homology group 0, the vector space encoding information about connected components;
H1: homology group 1, the vector space encoding information about loops.

For illustrative reasons let us consider the 2D case, stressing that all arguments can be generalized to higher dimensions. 
The data often takes the form of a point cloud X. Based on that, we build a simplicial complex, which is a special struc-
ture encoding information about the qualitative features discussed above. Here, a simplicial complex can be thought of a 
collection of geometric k-simplices, i.e., convex hulls of k + 1 affinely independent points v0, v1, . . . , vk . More precisely the 
0-simplex identifies vertices, the 1-simplex line segments and the 2-simplex triangles. Many choices of simplicial complexes 
are available in the literature, and we focus on the Čech complex as one of the most prominent ones. The Čech complex 
Cechr(X) at a radius r > 0 consists of the following simplices:

1. a vertex set equal to X;
2. simplices σ ⊆ X if and only if ∩x∈σ B(x, r) �=∅.

One way for building the Čech complex starts off with X. Then, disks are grown with increasing radius r, centered at the 
points in X. For very small r, the Čech complex boils down to the set X of the generator points. Then, r grows and once 
two disks intersect, an edge between the two disk centers is added to Cechr (X).

The key idea in persistent homology is that rather than considering this structure for some fixed value of r, its evolution 
for growing r > 0 is registered. In particular, we keep track of the birth time b and a death time d of connected components 
and loops, where the ‘time’ is given by the radius of the disks corresponding to those events. One can think of the disks 
radii growing at constant rate. At time zero, the Čech complex equals X. Hence, all individual points are separate connected 
components and are born at time zero. After some time, when the first two points get connected because their disks touch, 
one can say two connected components merge or one connected component ‘dies’. Note that in a more general setting, 
where some of the birth times are non-zero, the edge that causes two components to merge is paired with the component 
that was born most recently, i.e. the one with the later birth ‘time’. Increasing r further, more connected components will 
‘die’ until only a single one remains.

During this growth process, also loops appear. This happens when a polygon appears that is not covered entirely by the 
r-disks around its vertices. At this time a loop is ‘born’, yielding a birth time b for this feature. It will also ‘die’ again, when 
r is further increased and the disks centered at the corners cover the entire polygon. Note that not all polygons that appear 
correspond to the birth of a loop. For instance, in the case of triangles, acute triangles always generate a loop while obtuse 
triangles do not. The resulting collection points {(bi, di)}i can be used as coordinates and plotted in the plane, thereby 
giving rise to the persistence diagram. Since the topological features (connected components, loops) can only die ‘after’ they 
are born (d � b), necessarily each appears above the diagonal line in the first quadrant.

While the persistence diagram gives a concise representation for the topology of a single data set, in applications, we 
often deal with multiple measurements. Then, it is no longer sufficient to compute several persistence diagrams and study 
them in isolation since we have to understand the evolution over the course of the multiple measurements. This need was 
the key motivation leading to the concept of the persistence vineyards introduced in Cohen-Steiner et al. (2006). In Munch 
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Table 1
Parameter choices for the alternatives.

HC1 HC2 CL1 CL2 CL3

R 5.25 5.95 42.5 42.5 42.5
ncl / / 10 5 4
λcl / / 10 20 25

(2013, Corollary 13), it is shown that if the persistence vineyard originates from a point cloud that varies continuously, then 
also the persistence vineyard evolves continuously in the bottleneck distance, which is one of the most widely used metrics 
for persistence diagrams.

In many applications, it is desirable to not only describe the evolution of the persistence diagrams in the persistence 
vineyard but also to track the motion of individual topological features in these diagrams. These evolving features are 
known as vines. However, in general, there is no universally applicable formal method to extract the individual vines from 
the vineyard. Although the conceptual idea of a vine is shared among all applications, the technical implementation may 
differ slightly depending on the context (Cohen-Steiner et al., 2006; Yoo et al., 2016; Salch et al., 2021). In Section 2.3, we 
describe our approach to computing vines for 0-features and 1-features.

5. Simulation study

In this section, we elucidate through a simulation study how to design a goodness-of-fit test based on the test statistics 
from Section 2.3. To that end, in Section 5.1, we first describe the general set-up of this study including the considered 
null model, alternatives and test statistics. Then, Section 5.2 provides an exploratory analysis illustrating the distribution 
of the proposed test statistics under the null model and the alternatives. Finally, Section 5.3 contains a more detailed and 
structured investigation concerning the test power.

5.1. Simulation set-up

First, we describe the general set-up of the simulation study. That is, we present the null model, the alternatives as well 
as specific choices for test statistics.

5.1.1. Null model
Recalling the setting of Section 3, we study a null model for the trajectories traced by the centroids of the 2D-slices of a 

3D-Poisson Voronoi tessellation. For this simulation study, the null model is a Poisson Voronoi tessellation with cell centers 
given by a Poisson process with intensity λ = 2.18 · 10−4 in a 170 × 170 × 85-sampling window. The window height and the 
intensity of the point process are chosen to mimic the data set in Section 6. Due to the asymptotic normality, it suffices to 
compute mean and variances under the null model in the chosen sampling window, whose extent in the x-y-directions is 
far smaller than that found in the real data set. After constructing the tessellation, we take 9 slices parallel to the x-y-plane 
with a fixed spacing of 4 between them. The choice of the number of slices and of the spacing among them is guided by 
the exigency of mimicking a real serial slicing procedure, explained in more details in Section 6.

5.1.2. Alternatives
In order to design a set of alternatives to the null model, we retain the basic assumption of taking multiple 2D slices 

of a 3D Voronoi tessellation but vary the set of cell generators. More precisely, we deviate from the Poisson model by 
considering two classes of point processes with interactions, namely a more regular and a more clustered point pattern. We 
refer the reader to Chiu et al. (2013) for an overview of repulsive and clustered point processes.

As alternative to the null hypothesis of the Poisson process, we consider:

� A Matérn hard-core process, which is based on a Poisson point process where any two points at distance smaller than a 
threshold R > 0 are removed.� A Matérn cluster process, where we first distribute a certain number ncl of cluster centers in the window. Each cluster 
center generates offspring points according to a Poisson point process with intensity λcl inside a ball of radius R .

We work with two different parameter sets for the Matérn hard-core and three different parameter sets for the Matérn 
cluster point process, see Table 1. The parameters of the different point processes are chosen so as to lead to the same 
expected number of points in the sampling window.

Fig. 4 illustrates the effects of varying the cell generators on a single 2D slice of the 3D Voronoi tessellation. We see that 
this variation induces rather subtle changes in the sliced cells, which look fairly similar under the different alternatives.

Furthermore, we compute the persistence diagrams of the different 2D slices using the centroids of the different slices 
(shown in Fig. 5) as input point cloud. This illustrates that although typically the center locations are rather close between 
the different slices, occasionally larger movements can be noted.
A. Cipriani, C. Hirsch and M. Vittorietti Computational Statistics and Data Analysis 179 (2023) 107655
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Fig. 4. 2D slices of Voronoi tessellations generated from different point processes for the generator points.

Fig. 5. x-y coordinates of the centroids of the 2D sliced grains of the 3D Voronoi tessellations on the considered point processes. Different colors represent 
the different slices.
12
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Fig. 6. Samples of vines in dimension 0. Lines indicating the same persistence point observed in more than one slice. The x-axis denotes the slice in which 
the diagram is computed. The y-axis denotes the death time of the considered feature.

5.1.3. Test statistics
To test deviations of data from the null model, we rely on three different test statistics.

1. Cross-sectional total persistence. To begin with, we present an example of a cross-sectional statistic in the sense of 
Example 2.1. In words, we extract global information from each of the persistence diagrams computed for every slice and 
then aggregate these quantities into a single characteristic for the dataset. More specifically, we put

T q
TP := 1

H

∑
h�H

1

|W |
∑
i�nh

(
Dq

i (h) − Bq
i (h)

)
,

where H is the total number of slices and nh the total number of features in slice h. That is, in the definition (2), we 
take ξ ′(b, d) := d − b and then normalize the resulting statistic by the volume of the sampling window.

2. Vine-based persistence. Next, we discuss an example of a general longitudinal vine-statistic in the form of (1). Here, we 
average the life times of the features represented by the vine in the different slices over all slices where this vine is 
present. More precisely, we put

T q
M := 1

|W |
∑

i�Nq

1

nq
h(i)

∑
h�H

(Dq
i (h) − Bq

i (h)),

where Nq is the total number of unique features of dimension q observed in all the slices H and nq
h(i) is the number 

of slices in which the ith q-feature is visible. In order to represent T q
M in the general form of (1), we may choose 

ξ
({(Bq

i (h), Dq
i (h))}h

) := 1
nq

h(i)

∑
h�H (Dq

i (h) − Bq
i (h)).

3. Ripley K -function. Finally, in order to compare TDA-based test statistics to classical test statistics from spatial statistics, 
we discuss an example derived from Ripley’s K -function. More precisely, we let

TRip :=
rRip∫

0

K̂pool(r)dr,

where, K̂pool(r) is the pooled Ripley’s K -function that takes the average of the estimates of the Ripley’s K -function in 
each considered slice.

5.2. Exploratory analysis

Now, we consider the setup of Example 3. First, Figs. 6 and 7 respectively illustrate the 0-vines and 1-vines extracted 
from the persistence vineyard, obtained combining the persistence diagrams of each slice computed using the centroids 
13
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Fig. 7. Samples of vines in dimension 1. Lines indicating the same persistence point observed in more than one slice. The x-axis denotes the slice in which 
the diagram is computed. The y-axis denotes the birth time of the considered feature. The z-axis denotes the death time of the considered feature.

Table 2
Left: Mean (std. dev.) of the vine length for the different Voronoi tessellations (values based on 
5,000 diagrams); Right: Mean (std. dev.) of the different test statistics in the Poisson-Voronoi model.

dim = 0 dim = 1

PV 2.771 (1.836) 0.636 (0.878)
HC1 2.768 (1.824) 0.643 (0.877)
HC2 2.764 (1.821) 0.643 (0.876)
CL1 2.785 (1.851) 0.635 (0.886)
CL2 2.775 (1.854) 0.633 (0.888)
CL3 2.771 (1.856) 0.630 (0.891)

170 × 170 × 85 140 × 140 × 140

T 0
TP 1.618 (0.016) 1.629(0.021)

T 1
TP 0.899 (0.016) 0.844(0.020)

T 0
M 0.397 (0.008) 0.401(0.010)

T 1
M 0.503 (0.017) 0.474(0.020)

TRip 355.507 (6.137) 331.654(7.277)

shown in Fig. 5. We see that both in the null model and in the alternatives the 0-vines occur in a variety of different 
lengths and present different trends. On the other hand, 1-vines are much shorter.

This impression is also reinforced in Table 2, which shows the mean and the standard deviation of the vine length (Lv ) 
for the different Voronoi models. The lengths are rather similar between the alternatives but the average length of 0-vines 
exceeds that of 1-vines.

5.2.1. Mean and standard deviation under the null model
The mean and variance of T q

TP and T q
M under the null model are computed using a simulation based on 5,000 Poisson-

Voronoi tessellation for which 9 different slices with a spacing of 4 are considered.
By Theorem 2.4, the statistics T q

TP and T q
M are asymptotically normal so that knowing the mean and variance allows us 

to construct a deviation test whose nominal confidence level is asymptotically exact. Results on the asymptotic normality 
related to Ripley’s K -function in the single section case are obtained in Heinrich (2015). We stress that our results on 
the asymptotic normality can be applied to a window of any fixed height as long as the size in the x- and y-directions 
are sufficiently large. On the other hand, it is also attractive to understand to what extent test statistics for windows of a 
given height generalize to other windows. This is not automatic since for fixed heights, the statistics may still be subject 
to finite-size effects. In Table 2 (right), we compare the test statistics in the original 170 × 170 × 85-window to the one 
computed in a cube of side length 140. We see that when moving to the cubical window, the mean-values for the statistics 
corresponding to features deviate by around 7% or less from the values obtained in the original window.

As a conclusion, we note that the approximation resulting from ignoring effects coming from a finite height is already 
accurate for moderately large sampling windows. We also note that in a different context, edge effects and the dependence 
on the number of observed cells in 2D was observed in the analysis in Hahn and Lorz (1993); Vittorietti et al. (2020). There, 
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Fig. 8. Probability densities of the test statistics for the null model (blue) and the alternatives based on 5,000 realizations under the null model and the 
alternatives. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 3
Rejection rates for the multi-slice test statistics under the null model and the alternatives.

T PV HC1 HC2 CL1 CL2 CL3

T 0
TP 5.08% 11.96% 15.94% 10.70% 16.58% 24.50%

T 1
TP 5.30% 5.10% 5.64% 18.24% 28.77% 38.01%

T 0
M 5.00% 8.30% 9.46% 18.84% 27.47% 34.85%

T 1
M 4.74% 5.10% 5.02% 19.92% 27.83% 37.15%

TRip 4.94% 7.82% 9.76% 52.01% 70.17% 79.50%

this dependency is stated and the quantiles of the test statistics for different sample sizes (e.g. 50, 100, 150 visible cells in 
2D) are reported.

Fig. 8 compares the probability density functions of the test statistics computed under the null and the alternative 
models. For all of the considered test statistics, the distributions of the Matérn cluster patterns differ clearly from the one 
of the Poisson null model. On the other hand, the situation for the Matérn hard-core patterns is more subtle. While we can 
observe differences for features in degree 0, there is very little difference when considering features in degree 1.

5.3. Power analysis

Before presenting the results, we explain in detail how to run the test. First, we choose a significance level of α = 0.05. 
Second, we generate 5,000 realizations from the null model and from the alternatives. The Voronoi tessellations under the 
alternatives are the ones described at the beginning of the section. To analyze the type I and II errors, we draw Table 3 that 
contains the rejection rates of this test setup.

Under the null model the rejection rates are close to the nominal 5%-level thereby illustrating that already for moderately 
large point patterns, the approximation by the Gaussian limit is accurate. For the Matérn hard-core point pattern, we see 
that the rejection rates for T 0

TP are higher than those for T 1
TP , whereas for the Matérn cluster point patterns, the situation 

is reversed. Moreover, the rejection rates for the TTP-statistics are slightly higher than those for the TM-statistics. We also 
observe that the pooled Ripley-statistics TRip is very powerful for detecting the clustered point patterns. On the other hand 
for the hard-core point patterns, the test statistic T 0

TP has a bit higher rejection rate.

5.4. Extensions and variations

In this section, we discuss three possible extensions and variations of the testing methodology described above.

5.4.1. Single-slice testing
To highlight the difference between testing based on multiple slices and testing based just on one slice, in Table 4 the 

rejection rates obtained using just one slice are reported: the test based on multiple slices presents higher rejection rates 
and is not too conservative.
15
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Table 4
Rejection rates for the single-slice test statistics under the null model and the alternatives.

T PV HC1 HC2 CL1 CL2 CL3

T 0
TP 4.70% 5.54% 6.88% 6.58% 7.94% 9.92%

T 1
TP 4.96% 5.02% 5.62% 9.20% 12.90% 17.16%

TRip 5.38% 5.10% 5.10% 25.55% 40.79% 52.77%

Table 5
Reconstruction error ErrRec for the actual vines under the reconstruction algorithm. Rejection 
rates for the test statistics based on the reconstructions the null model and the alternatives.

PV HC1 HC2 CL1 CL2 CL3

ErrRec 21.4% 20.6% 20.4% 21.6% 21.8% 21.9%
T 0

M 5.14% 5.04% 5.04% 8.08% 9.52% 12.96%

T 1
M 4.64% 4.12% 4.66% 14.36% 19.96% 27.07%

5.4.2. Cell vertices instead of centroids
Moreover, in the present simulation study, we constructed the persistence diagrams based on the centroid of the cell 

slices. A concern of this methodology is that subtle differences between point patterns could be lost when moving from 
the sliced Voronoi cells to the centroids. Therefore, we also experimented with computing the test statistics T i

TP when 
computing the persistence diagram on the basis of the cell vertices instead of the cell centroids. However, we found that 
this modification did not improve the testing power. We hypothesize that this is due to subtle dependencies induced by the 
slicing procedure. Even if for 3D cells the centroid may not be highly informative, this situation changes when working with 
the sequence of centroids obtained from the multiple 2D slices.

5.4.3. Labeling algorithm
In real data we have to deal with the problem of identifying to which grain the centroid belongs. Often, additional 

information on the orientation of the grains helps reconstructing the inner grain structures of the slices. Alternatively, we 
propose a simple algorithm for the labels assignment. We start by computing the pairwise distance matrix between the 
set of centroids that belong to adjacent slices. We then assign the label of the points of the first slice to the points of the 
second slice if and only if the distance between two points does not exceed a specific threshold and it is minimum with 
respect to all the other points.

To assess the effectiveness of this algorithm, in Table 5, we present the reconstruction error of the vines for the different 
models under consideration. Although the simple algorithm does not lead to a perfect reconstruction, it still succeeds in 
recovering a substantial proportion of the vines across the models. Moreover, in Table 5 we also note a decrease in the 
testing power of T 0

M and T 1
M when using the reconstructed labels instead of the ground truth. This illustrates that the test 

statistics T 0
M and T 1

M are more useful in settings featuring a relatively densely arranged set of slices. Their power may 
deteriorate if the slices are so far apart that a precise vine reconstruction may no longer be feasible. Note that T 0

TP , T 1
TP and 

TRip instead are not affected by the reconstruction algorithm.

6. Analysis of material data

In this section, the use of Poisson-Voronoi diagrams for representing the microstructure of extra low carbon strip steel 
is tested. By relying on sequential slicing via automated mechanical polishing, 3D electron backscatter diffraction (EBSD) 
measurements of this material are carried out.

In this technique, consecutive steps of sample preparation and EBSD scanning are employed to obtain 2D EBSD slices. 
More details about the material and the technique can be found in Galán López and Kestens (2021).

6.1. Exploratory analysis

The left panel in Fig. 9 (taken by J. G. López (Galán López and Kestens, 2021)) illustrates a sample of the steel data 
consisting of 20 EBSD scans with a spacing of 4 μm. On average ≈ 2, 700 grains (sd ≈ 120) are observed in each 2D EBSD 
scan. In order to reduce edge effects, we proceed as in Section 5 and restrict the computation to nine 2D EBSD scans 
taken in the middle of the surface block. In Fig. 9 (right) the cell centroids of the grains visible in nine 2D EBSD scans are 
plotted (a reduced area is considered for visualization purposes). Each set of centroids is then used for building a persistence 
diagram (Fig. 10).

In total 24, 008 distinct features are observed in dimension 0 and 31, 474 in dimension 1. The mean “vine” length is 
0.021243 and 0.0004, highlighting that only few features are actually observed in more than one slice.
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Fig. 9. Experimental EBSD data (left), and x–y coordinates of centroids of the 2D sliced cells of nine 2D EBSD scan (right). Different colors represent the 
different slices.

Fig. 10. Persistence diagrams corresponding to three different 2D EBSD slices based on the point clouds of centroids of the 2D sectional cells.

Table 6
z-scores associated with the different test statistics when the 2D EBSD 
slices are tested against a Poisson-Voronoi null model.

T 0
TP T 1

TP T 0
M T 1

M TRip

z-score 23.00 5.40 94.75 30.05 81.8

6.2. Poisson-Voronoi testing

With the previous visualizations in mind, we now test the Poisson Voronoi hypothesis for the EBSD data. As in the 
previous section, we use the asymptotic normality of the test statistics under the null model. The test statistics are reported 
in Table 6.

First, we note that all considered test statistics suggest a highly significant deviation of the data from the 3D null model 
of a Poisson-Voronoi tessellation. Second, we see that the test statistics T 0

M and T 1
M lead to z-scores that exceed by far the 

test scores corresponding to T 0
TP and T 1

TP . This effect points to the potential that lies in the longitudinal statistics. Indeed, as 
observed at the beginning of the present section, on average, the vines in the data set are far shorter than the ones observed 
in the null model. Thus, the deviations from the null model are far more pronounced in the longitudinal test statistics T 0

M

and T 1
M than they are in the cross-sectional test statistics T 0

TP and T 1
TP .

7. Conclusion and perspective

In this work, we applied the concept of persistence vineyards to develop goodness-of-fit tests for data given in the 
form of 2D slices of a 3D data set. These tests rely on the asymptotic normality of the considered test statistics, which we 
establish under suitable moment and stabilization conditions. The potential of the new methodology is illustrated through 
a simulation study and a dataset describing the microstructure of extra low carbon strip steel. We stress that the present 
work is to be considered only as the first step towards using the tools from TDA to develop statistical tests for slice-based 
datasets. We discuss now possible avenues for further research.

In this work, we have focused on the asymptotic normality of persistent homology information in the form of persistence 
vineyards. We remark that recently various new persistent functions have been developed that can capture geometric, 
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topological and spectral properties of the underlying dataset. Two of the most prominent examples are the Ollivier persistent 
Ricci curvature and the persistent spectral graph (Wee and Xia, 2021; Wang et al., 2020). We now expound on the prospects 
and possible first steps to extend our methodology to these examples.

In classical differential geometry, the concept of Ricci curvature encodes how far the neighborhood of a point on a 
manifold differs from a flat Euclidean space. This idea was extended to the setting of graphs through the concept of Ollivier 
Ricci curvature (ORC) (Ollivier, 2009), and has been successfully applied in the structural analysis of internet networks (Ni 
et al., 2015). Loosely speaking, the ORC evaluated at an edge provides an indication of whether this edge acts as a bridge 
connecting different clusters of a network. Since the ORC only relies on neighborhood information of the edge, it is amenable 
to stabilization methods, and therefore to asymptotic normality on a scalar level. However, the question of whether the 
normality holds on the functional level requires a more refined analysis of the probability of observing small perturbations.

The idea of studying refined properties of the graph Laplacian has developed into an extremely fruitful research direction, 
commonly referred to as spectral graph theory (Chung, 1997). Since higher-order interactions cannot be adequately captured 
in the setting of graphs, simplicial complexes and the associated q-combinatorial Laplacian have recently gained substantial 
attention in the research community (Horak and Jost, 2013). The observation that the qth Betti number can be recovered 
as the dimension of the kernel of the q-combinatorial Laplacian illustrates the intimate relation between this Laplacian and 
the topology of the underlying complex. This connection has motivated the introduction of p-persistent combinatorial Lapla-
cians, which extend the aforementioned recovery of Betti numbers to persistent Betti numbers. In general, it is challenging 
to analyze the persistent spectral graph statistically because large components in the complex could induce long-range cor-
relations. A starting point could be to work in a sparse setting, where the simplicial complex decomposes into a collection 
of small components so that it can be statistically analyzed by stabilization methods. While this heuristic makes it plausible 
that proving asymptotic normality is in reach on a scalar level, a functional version would again require a more detailed 
perturbation analysis.

Moreover, due to the generality of our method, we envision further applications to other sliced data. For example, in 
materials science, it could be used to study the appearance and development of defects occurring in materials during me-
chanical tests. In Hidalgo et al. (2020), 2D pictures of material’s slices are observed at different levels of tensile deformation 
to study the development of necessary geometrical dislocations. Moreover, our methods could be used to study microstruc-
tural banding, which is a key phenomenon in steel manufacturing. Bands in a material can cause the mechanical properties 
to be anisotropic, that is, to be different in different material’s regions. In particular, band connectivity plays an important 
role in the mechanical properties of steel. Information about connectivity is completely lost when only a 2D image is con-
sidered. Our method could be used to study the connectivity of the bands in the direction of slicing and to quantify and 
compare the band connectivity of different materials (McGarrity et al., 2012).

Motivated by the shape of the specific dataset, we established the asymptotic normality for domains that are large in the 
x- and y-direction but are fixed in the z-direction. For other datasets, it may be that all three dimensions are large, and it 
would be of interest to extend the proof of asymptotic normality for such settings. This would have the additional benefit 
that under a Poisson-Voronoi null model, it suffices to compute the mean and variance of the test statistics in Section 5 for 
a fixed point-process intensity. The values for other intensities can then be obtained through a suitable scaling by a power 
of the intensity. It is also interesting to extend the results to higher dimensions, power-law correlations and other stochastic 
models for representing microstructures.

Also our decision to choose the centroids of the sliced cells as a basis for the persistence computation is motivated 
from the constraints found in the considered dataset. As illustrated in Fig. 9, the cells in the material data can be shaped 
rather irregularly. Since the cell centroids are fairly robust with respect to small misspecifications of the cell shapes, they 
are attractive candidates for the data at hand. In Section 5, we also pointed out that computing the persistence diagram 
via the tessellation vertices did not improve the testing power – at least for the models considered in the simulation study. 
However, in other scenarios, the tests based on the centroids could be outperformed when replacing the cell centroids with 
other point clouds extracted from the slices.

Moreover, as pointed out in Section 1, instead of computing test statistics related to topological characteristics of 2D 
slices, one may also attempt to reconstruct faithfully certain topological characteristics of the 3D data set. However, this 
construction relies on potentially delicate density and transversality conditions. It is interesting to investigate whether the 
longitudinal and cross-sectional tests from our framework also become more powerful under such conditions.

Finally, it would be exciting to generalize to higher-dimensional situations such as snapshots of 3D data evolving in time. 
The main challenge here lies in generalizing the concept of M-bounded features which currently relies on the duality in 
two dimensions.
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