Understanding keyhole induced-porosities in laser powder bed fusion of aluminum and elimination strategy

Liping Guo^{1,2}, Hongze Wang^{1,2,3,*}, Hanjie Liu^{1,2}, Yuze Huang⁴, Qianglong Wei^{1,2}, Chu Lun Alex Leung^{5,6}, Yi Wu^{1,2,3,*}, Haowei Wang^{1,2,3}

1 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China

2 School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

3 Institute of Alumics Materials, Shanghai Jiao Tong University (Anhui), Huaibei, 235000, China

4 Institute for Advanced Manufacturing and Engineering, Coventry University, CV6 5LZ, UK

5 Department of Mechanical Engineering, University College London, London WC1E 7JE, UK

6 Research Complex at Harwell, Harwell Campus, Oxfordshire OX11 0FA, UK *Email: Hongze Wang, <u>hz.wang@sjtu.edu.cn</u>; Yi Wu, <u>eagle51@sjtu.edu.cn</u>

The parameters for mesh dependence and time-step dependence analysis are displayed in **table s1** and the corresponding melt pool profile in the cross-section perpendicular to the laser moving direction is shown in **Fig. s1**. Case1 (5 μ m) and case 2 (6 μ m) are used for mesh analysis. The melt pool depth is close while the calculation time of case1 is twice that of the case 2. Therefore, the mesh size of 6 μ m is chosen. Cases 2 and case 3 are the time-step dependence analysis. The time step for case 2 is controlled by stability and convergence (around 0.068 μ s). Similar melt pool size is obtained while the CPU time for case 3 (0.025 μ s) is doubled. Therefore, the mesh size of 6 μ m and time-step controlled by stability and convergence are adopted in the simulation.

Table s1 Details of the models and the melt pool dimensions for the mesh-independency and timestep-independency analysis. Laser power 500 W, scanning speed 600 mm.s-1 and laser beam diameter 50 μ m.

No.	<mark>Mesh size</mark> (µm)	<mark>Time step</mark> (μs)	Cell count	<mark>CPU time</mark> (h)	Melt pool dimension	
					<mark>Depth (μm)</mark>	Deviation (%)
Case 1	<mark>5</mark>	0.068	6592320	92.5	443	5.48
Case 2	<mark>6</mark>	0.068	3988213	<mark>48</mark>	420	I
Case 3	<mark>6</mark>	0.025	3988213	<mark>95</mark>	402	4.29

Fig. s1 Melt pool profile for sensitivity analysis: (a) case 1, (b) case 2, (c) case 3. Laser power 500 W, scanning speed 600 mm \cdot s⁻¹ and laser beam diameter 50 μ m.

Number	Power, P(W)	Scanning speed, V(mm/s)	Laser diameter spot, d (µm)	Powder bed	
1		600	40		
2			50		
3			80		
4			140		
5	500	1000	50		
6			80		
7			140		
8		1400	50		
9			80	without	
10			50	without	
11		600	80		
12			140		
13	400	1000	50		
14			80		
15			50		
16		1400	80		
17	300	600	80		
18	500	1000	80		
19	500	600	50	with	

 Table s2 Laser parameters used in the simulation

Video1

Dynamics of keyhole and keyhole pore formation during laser melting with bare aluminum plate. Laser power is 500W, scanning speed is 600mm/s, and laser spot diameter is 50µm.

Video2

Dynamics of keyhole and keyhole pore formation during laser power bed fusion with 30µm thick pure aluminum powder layer. Laser power is 500W, scanning speed is 600mm/s, and laser spot diameter is 50µm.

Video3

Dynamics of keyhole and keyhole pore formation during laser melting with bare aluminum plate. Laser power is 500W, scanning speed is 1400mm/s, and laser spot diameter is 50µm.

Video4

Dynamics of keyhole and keyhole pore formation during laser melting with bare aluminum plate. Laser power is 500W, scanning speed is 1400mm/s, and laser spot diameter is 80µm.

Video5

Dynamics of keyhole and keyhole pore formation during laser melting with bare aluminum plate. Laser power is 500W, scanning speed is 600mm/s, and laser spot diameter is 140µm.

Video6

Dynamics of keyhole and keyhole pore formation during laser melting with bare aluminum plate. Laser power is 500W, scanning speed is 1000mm/s, and laser spot diameter is 140µm.

Video7

Dynamics of keyhole and keyhole pore formation during laser melting with bare aluminum plate. Laser power is 400W, scanning speed is 1400mm/s, and laser spot diameter is 50µm.

Video8

Dynamics of keyhole and keyhole pore formation during laser melting with bare aluminum plate. Laser power is 400W, scanning speed is 600mm/s, and laser spot diameter is 80µm.

Video9

Dynamics of keyhole and keyhole pore formation during laser melting with bare aluminum plate. Laser power is 400W, scanning speed is 1000mm/s, and laser spot diameter is 80µm.

Video10

Dynamics of keyhole and keyhole pore formation during laser melting with bare aluminum plate. Laser power 400is W, scanning speed is 600mm/s, and laser spot diameter is 140µm.

Video11

Dynamics of keyhole and keyhole pore formation during laser melting with bare aluminum plate. Laser power is 300W, scanning speed is 600mm/s, and laser spot diameter is 80µm.