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Abstract
cityseer-api is a Python package consisting of computational tools for fine-grained street-network
and land-use analysis, helpful in assessing the morphological precursors to vibrant neighbourhoods.
It is underpinned by network-based methods developed specifically for urban analysis at the
pedestrian scale. cityseer-api computes a variety of node and segment-based network centrality
methods, land-use accessibility and mixed-use measures, and statistical aggregations. Accessibilities
and aggregations are computed dynamically over the street-network while taking walking distance
thresholds and the direction of approach into account, and can optionally incorporate spatial
impedances and network decomposition to increase spatial precision. The use of Python facilitates
compatibility with popular computational tools for network manipulation (NetworkX), geospatial
topology (shapely), geospatial data state management (GeoPandas), and the NumPy stack of sci-
entific packages. The provision of robust network cleaning tools aids the use of OpenStreetMap
data for network analysis. Underlying loop-intensive algorithms are implemented in Numba JIT
compiled code so that the methods scale efficiently to larger cities and regions. Online docu-
mentation is available from cityseer.benchmarkurbanism.com, and the Github repository is available
at github.com/benchmark-urbanism/cityseer. Example notebooks are available at cityseer.
benchmarkurbanism.com/examples/
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Overview

cityseer-api is a street-network based spatial analysis package for pedestrian-scale urban mor-
phological analysis. It combines street-network decomposition, distance-weighted implementations
of network centrality and mixed-use measures, and contextually sensitive distance and aggrega-
tional methods to generate observations with a high degree of spatial precision. The synthesis of
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these techniques enables cityseer-api to describe variances in morphological metrics at regular
intervals along streetfronts in a manner facilitating comparative analysis of walkability, mixed-uses,
and land-use accessibilities for urban planning scenarios.

Centrality and land-use analysis methods rely extensively on shortest-path algorithms, pre-
senting substantial computational complexity due to nested computational loops. Pure Python
network-based measures, such as those implemented in NetworkX (Hagberg et al., 2008) are
consequently prohibitively slow if applied to analysis for larger towns and cities. Performance
improvements can be attained through use of packages such as Graph-Tool (Peixoto, 2014), igraph
(Csardi and Nepuszm, 2006), depthmapX (depthmapX development team, 2017), or pandana (Foti
et al., 2012), which wrap underlying optimised C or C++ code. However, reliance on packages
underpinned by lower-level programming languages presents a challenge for explorative research
because it becomes difficult to manipulate underlying algorithms without incurring complexity or a
loss of computational efficiency. This conundrum prompted the development of the codebase
formalised as cityseer-api, which has adopted an approach leveraging pure Python and NumPy
(Harris et al., 2020), but with computationally intensive loops optimised through use of Numba JIT
(just-in-time) compilation (Lam et al., 2015). This approach has allowed for wide-ranging ex-
perimentation while permitting a set of pertinent issues to be addressed:

1. cityseer-api employs a ‘moving-window’ form of spatial analysis: each node in the network
is visited in turn, with the network then isolated at a range of specified walking distance
thresholds from the currently selected node. Centrality, land-use, and aggregational methods
can then be computed for the locally windowed context. This is similar to radial forms of
analysis used in Space Syntax (in the context of street-network centralities) and the notion of
‘overlapping buffer queries’ used in pandana (within the context of land-use accessibilities
and data aggregations). Such forms of windowed distance thresholds can be based on either
crow-flies euclidean distances or true network distances (Cooper, 2015); cityseer-api takes
the position that true network distances are most representative when working at smaller
pedestrian distance thresholds, particularly when applied to land-use accessibilities and
mixed-use calculations. Moving window analysis is advantageous because it clearly and
consistently defines the network boundary in relation to the current point of analysis, therefor
sidestepping issues such as the robust definition of town or city boundaries, prevention of
edge rolloff effects, and difficulties regarding normalisation of measures for comparisons
between locations on differently sized networks.

2. It is common to use either shortest-distance or simplest-path (least angular ‘distance’)
impedance heuristics when computing network centralities. When using simplest-path
heuristics, it is necessary to modify the underlying shortest-path algorithms to prevent
side-stepping of sharp angular turns; otherwise, two smaller side-steps can be combined to
‘short-cut’ sharp corners (Turner, 2007). This safeguard is not available in off-the-shelf
network analysis packages. It is common for centrality methods to be applied to either primal
network representations, generally used with shortest-path methods such as those applied by
multiple centrality assessment analysis (Porta et al., 2006), or dual network representations,
typically used with simplest-path methods in the tradition of space syntax (Hillier and
Hanson, 1984). cityseer-api incorporates both forms of analysis while also allowing for
angular centralities to be calculated on primal networks so that topological divergences
between primal and dual networks do not skew observations comparing shortest and simplest
path heuristics.

3. A range of centrality and mixed-use methods is available for urban analysis; cityseer-api
incorporates specialised forms of these methods including distance-weighted versions
greatly accentuating spatial precision. Some conventional methods, even if widely used, can
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be problematic for urban analysis workflows: specifically, conventional formulations of
closeness centrality do not behave as anticipated for windowed networks, and mixed-use
analysis methods derived from larger-scale zoned or gridded aggregations become prob-
lematic if interpreted within the context of streets. cityseer-api incorporates implementations
of these methods that are not susceptible to these issues. These methods and their impli-
cations are developed and explored at length in the accompanying papers on network
centrality methods [Simons, n.d.a] and mixed-use methods [Simons, n.d.b];

4. Centrality methods are susceptible to topological distortions arising from ‘messy’ network
representations as well as due to the conflation of topological and geometrical properties of
street-networks, which has a detrimental impact on the calculation of network centralities.
cityseer-api addresses these through the inclusion of robust network cleaning functions with
substantial effort directed towards procedures for splitting geometrical properties from
topological representations; the removal of parallel roadways; and the inclusion of seg-
mentised forms of centrality measures, which are less susceptible to distortions introduced by
varying intensities of nodes;

5. Pedestrian-scale analysis requires approaches facilitating the evaluation of respective
measures at finely-spaced intervals along street fronts. Further, granular evaluation of land-
use accessibilities and mixed-uses requires that land-uses be assigned to the street-network in
a contextually precise manner. These are addressed in cityseer-api through the application of
a network decomposition technique. Instead of assigning data-points to the nearest node,
cityseer-api searches for the closest adjacent street edge and then uses a bidirectional as-
signment method. This allows for distances in relation to aggregations or accessibilities to be
computed dynamically, while taking into account the direction of approach from the cur-
rently windowed node.

cityseer-api is intended to be data source agnostic and includes convenience methods for the
general preparation of networks and their conversion into (and out of) the lower-level data
structures used by the underlying algorithms. These network utility methods are designed to work
with NetworkX to facilitate ease of use, and to enable workflows incorporating data from sources
such as PostGIS or OpenStreetMap data, whether from API queries or from OSMnx (Boeing,
2017). Data state is managed with GeoPandas (Jordahl et al., 2020) to facilitate downstream
analysis and modelling and for bridging to GeoPandas based workflows, such as used by momepy
(Fleischmann, 2019).

Detailed package documentation is available at cityseer.benchmarkurbanism.com (Figures 1
and 2), including a guide and a growing collection of examples. Discussion and examples relating
to use with other packages is provided in the documentation guide

A complement of code formatters, linters, type-checkers, and unit tests maintains the integrity
of the code-base through general package maintenance and upgrade cycles. Where feasible,
centrality methods are checked against NetworkX or against manually checked testing scenarios.
Extensive mock data and test plots have been used to visually confirm the intended behaviour for
divergent simplest and shortest-path heuristics and for confirming the assignment and aggregation
of data-points.

Nuances of spatial aggregation

Computational tools have dramatically increased the range and depth of scientific analysis.
Likewise, methods applied to spatial analysis have been revolutionised and hold tremendous
potential for rigorous and scalable forms of urban analysis, which may prove helpful as bench-
marking tools for principles espoused in urban theory and policy. Nevertheless, computational
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constraints and coarse data sources have historically favoured the use of larger areal units of spatial
aggregation, such as spatial grids or areal zones, and these have typically been combined with
simplified proximity methods such as crow-flies instead of network-based distance measures
(Araldi and Fusco, 2016; Logan et al., 2017).

The use of crude spatial aggregations presents a dilemma from the perspective of urban design.
The averaging of variables to overarching spatial units causes the loss of higher resolution in-
formation along streetfronts while obscuring relationships between observed variables for indi-
vidual data-points, buildings, or plots. Statistical forms of analysis consequently encounter the
Ecological Fallacy: correlations which may have been valid for a larger unit of analysis can become

Figure 1. cityseer-api documentation homepage.

Figure 2. Getting started guide from the cityseer-api documentation website.
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misleading if interpreted within the disaggregated context (Robinson, 2009); expressed differently,
the context of a local street corner may be significantly removed from larger-scale statistical
averages for a given neighbourhood, city, or region. More generally, aggregations can mask
confounding variables (Simpson’s Paradox) and the loss of information across ‘geography’ (space)
and ‘history’ (time) may similarly confound spatially aggregated data (Cressie, 1998). This segues
into the Modifiable Areal Unit Problem (MAUP) where statistical observations derived from
spatially aggregated data is sensitive to the scale of aggregation; the arrangement of the data in
relation to zonal extents; and spatial autocorrelation in the variables. As a rule-of-thumb, larger
aggregations increase sensitivity to MAUP because of a smoothing effect in the distribution of the
data due to decreasing levels of variance, with the implication that correlation coefficients will
strengthen as the unit of aggregation increases (Fotheringham and Wong, 1991). Variance is
likewise affected by spatial autocorrelation of variables or by the movement of boundaries relative
to the geographic locations of data-points. Different spatial aggregations therefor trigger fluctuating
and, sometimes, questionable statistical inferences if applied or interpreted across different scales of
analysis or between varied zonal configurations (Robinson, 1956; Thomas and Anderson, 1965).
These forms of problem are inherent to the use of spatially aggregated data and no simple solutions
exist, with the issue proving particularly intractable for multivariate analysis. Nevertheless, attempts
persist at better defining and managing the issue (Duque et al., 2018; Reynolds, 1998).

The expanding availability of spatially granular data sources combined with growing access to
computational resources has begun to tip the scales in favour of higher resolution workflows capable
of more contextually precise forms of spatial analysis (Yamada and Thill, 2010) that are less
susceptible to aggregational artefacts. Further, rich data sources synthesised with street-network-
based strategies heralds a paradigm shift from the aerial vantage point of the plan— traditionally the
frame of reference for morphological analysis — to that of localised pedestrian-centric methods
applied directly over the street-network (Araldi and Fusco, 2019): the pedestrian’s vantage point
can, in a literal sense, become the anchor and point of departure for spatial analysis.

Localised methods

‘Moving-window’ forms of a localised spatial analysis (also called ‘radial’ or ‘buffered’ methods)
differ from gridded or zonal aggregations frequently used in Geographical Information Systems
more widely. Calculations and aggregations are unfurled directly over the street-network at a set of
selected distance thresholds: an algorithm visits each node in the network in turn; isolates the
surrounding nodes at the specified distance thresholds; then centrality, land-use, or other aggre-
gational or statistical measures can be computed for the currently selected location. The process
subsequently repeats for every other node in the network, making it a ‘localised’method because the
calculations are repeated on an individual basis relative to each node (Figure 3). The full resolution
of the data thus remains available to each sampled point: data remains spatially anchored and the
distance from each point of analysis to each surrounding data-point is knowable (Figure 4).
Contextually specific relationships between variables are therefor not sacrificed and it becomes
possible to use spatial impedances to further accentuate locality relative to pedestrian walking
tolerances. The dynamic nature of localised moving-window methods ameliorates the zonal aspect
of the Modifiable Areal Unit Problem (MAUP) because the extents are defined consistently and
methodically relative to the origin of each point of analysis and the scale of aggregation. Nev-
ertheless, as with MAUP effects more generally, statistical variances tend to decrease for aggre-
gations at increasingly large network distances, with the implication that correlations cannot be
directly compared between smaller and larger distance thresholds.

Whereas aggregations at increasingly small distance thresholds become more locally focussed,
there is a point at which distance cutoffs can become too small in relation to the topological
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Figure 3. Moving-window’ localised network analysis: metrics are calculated for each node in the network
using a ‘moving-window’, taking into account all other nodes or data-points within a specified distance
threshold.

Figure 4. Overarching spatial analysis methods, where variables are aggregated to encompassing grids or
zones (left), do not work well for purposes of urban analysis from the perspective of architecture and
urbanism. This is because overarching methods collapse spatial information into larger-scale aggregations with
the implication that data is no longer contextually relevant to a pedestrian’s perception of space as defined by
streetfronts. Unlike overarching aggregations, locally windowed methods (right) do not collapse data-points
and do not discard relationships between variables relative to a selected location on the street-network.
Locations and distances remain anchored relative to street-networks and walking tolerances from a given point
in space.
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structure of the network, potentially causing calculations or aggregations to become haphazard
because longer street segments increasingly intersect or ‘overshoot’ smaller distance thresholds.
These scenarios can cause a spatial ‘vacuum’ of information at the periphery of the moving-
window and may consequently exacerbate variances in spatial aggregations, with ensuing ar-
tefacts in the distributions and a weakening of correlations. Another problem with longer street
segments is that observations are not always sufficiently granular to provide intervening in-
formation between widely-spaced nodes on either side of longer street segments. Yamada and
Thill (2010) applied a decompositional technique to street-networks such that no network edge is
longer than a set maximum distance, thereby increasing the resolution of observations (Figure 5).
A similar technique is exposed by the cityseer-api package: network edges can be ‘decomposed’
so that no edge is longer than a specified distance. The effect is that topological artefacts at smaller
distance thresholds can be forestalled while permitting increasingly precise assignment of data-
points (e.g. land-uses or spatially embedded information) to adjacent street edges, thus encap-
sulating particularities at more finely spaced intervals along street-fronts. The overlapping nature
of moving-window analysis means that the resolution of data sampling can be increased through
decomposition without changing the spatial units of analysis. Decomposition is further discussed
in the next section.

In cityseer-api, data aggregation is routed via the two street-network nodes on either side of the
closest adjacent street edge, thus facilitating dynamic selection of the direction and distance of
aggregation appropriate to the location of the currently windowed node. The assignment of data-
points to adjacent streets is achieved with the use of a winding algorithm (Figure 6), which first
selects the closest adjacent node, then attempts to circle the street-network around the point of
interest to identify the closest adjacent edge. If encountering a dead-end, the algorithm will
backtrack and continue exploring. If exceeding the maximum search distance, it will then explore in
the opposite winding direction to confirm whether any other closer edges exist.

Figure 5. Varying levels of street network decomposition: Increasing the level of decomposition permits a
higher resolution of analysis showing the variability of measures along street-fronts, allows for more precise
assignments of land-uses to adjacent street segments, and reduces the potential loss of information where
longer street segments might otherwise be discarded if intersecting a distance threshold.
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Since data-points remain located precisely in space, and distances are known from each win-
dowed node to each data-point’s location relative to the street-network and the direction of ap-
proach, the contribution of any such data-point can be weighted on an individual basis when
calculating land-use accessibilities or other aggregative or statistical measures. Pedestrian walking-
distance weighted aggregation methods applied over decomposed networks can, thus, yield a
particularly localised emphasis while allowing for the use of equivalently larger distance thresholds
that are less likely to incur topological artefacts otherwise encountered by small distance thresholds.
Similar to spatial interaction models, cityseer-api models spatial impedances (distance decays) using
the negative exponential decay function

w ¼ expð�β � dÞ (1)

which reflects a decreasing willingness for pedestrians to walk correspondingly farther distances.
Accordingly, the contribution of a data-point is weighted by weight w as a function of the distance d.
The rate at which this willingness to walk decreases is reflected in the strength of the specified β
parameter (Figure 7). By default, cityseer -api anchors the strength of β relative to the selected
maximum distance threshold of dmax using

β ¼ 4=dmax (2)

This conversion can be manually specified where greater control is required over the relationship
between β and dmax; further information is provided in the documentation.

Figure 6. Datapoints representing land-uses are assigned to the two network nodes on either side of the
nearest adjacent street edge. Therefore, accurate distances can be determined from each point of analysis to
each datapoint via the closest adjacent node on the street-network while taking the direction of the approach
into account. The algorithm ‘winds’ around the street-network to encircle the datapoint of interest to identify
the closest adjacent street edge. The assignment increases in accuracy with increasing levels of network
decomposition. In cityseer-api, the distance from the windowed node to a selected data-point includes the
distance from the primary /secondary nodes to the datapoint’s actual location in space.
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Design decisions

Numba

cityseer-api makes use of Python and NumPy (Harris et al., 2020), with computationally intensive
algorithms optimised through use of Numba JIT compilation (Lam et al., 2015). Python is a
widespread programming language offering access to an extensive ecosystem of high-quality
network (networkX, Hagberg et al., 2008), geospatial (shapely, Gillies, 2007), OpenStreetMap
conversion (OSMnx, Boeing 2017), and data manipulation packages (pandas, McKinney, 2010).
This facilitates general purpose workflows spanning from data munging and database I/O to in-
teraction with an assortment of powerful data science and machine-learning packages such as
sklearn (Pedregosa et al., 2011) and keras (Chollet, 2015).

The ease of use and flexibility of Python also entails a drawback: it offers slower performance
when compared to lower-level languages such as C. For this reason, performance-critical Python
packages are typically wrappers of code developed in more performant languages, with a prevalent
example being the NumPy stack underpinning array-dependent operations central to a wide variety
of Python’s scientific computing packages. Network-based methods, which depend on loop-
intensive low-level algorithms such as Dijkstra’s shortest path remain a challenge, and it is for
these purposes that the Numba package proves useful. Numba translates Python code into machine
code using ‘Just In Time’ (JIT) compilation, offering performance similar to that of compiled lower-
level languages such as C. Use of Numba thus infers convenient access to the Python ecosystem
while facilitating experimentation with computationally complex algorithms.

Package composition

The cityseer-api package consists of three sub-packages: algos, consisting of the Numba optimised
functions; metrics, consisting of higher-level Python code accessed by the end-user; and tools, a

Figure 7. Spatial impedance curves for different β parameters. Nearer locations can be weighted more heavily
than farther locations through use of the negative exponential decay (distance decay) function. The rate of
the fall-off is controlled by the strength of β, where β is by default selected as 4/dmax. The mapping from β to
dmax (or vice-versa) can be customised and is explained more comprehensively in the package documentation.
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collection of utility modules for purposes such as network preparation using the cityseer.tools.
graphs module and the generation and visualisation of mock data used by the unit tests.

The data structures and algorithms utilised by the algos sub-package’s modules can be accessed
directly; however, it is simpler to interact through the higher-level wrappers in the metrics sub-
package. This contains the networks module for building street-networks and calculating street-
network centralities as documented at cityseer.benchmarkurbanism.com/metrics/networks/.
cityseer-api also broaches themes on land-use accessibilities, the mix of land-uses, and statisti-
cal aggregations, with these measures computed using the layers module as documented at cityseer.
benchmarkurbanism.com/metrics/layers/. Whereas crude forms of these measures could be cal-
culated using crow-flies distance aggregation methods, these become problematic when working at
smaller pedestrian distance thresholds because the network structure can substantially affect
distances to surrounding locations. The layers module is consequently underpinned by the same
network structures and moving-window workflows utilised by the networks module. When
functions contained in the layers module are invoked, data-points will be assigned to the specified
street-network by invoking an algorithm that assigns each data-point to the closest adjacent street
edge (see Figure 6). Metrics computed by the networks and layers modules are computed relative to
the same network structure, with calculations saved to a GeoPandas DataFrame where they can be
used for downstream statistical or machine learning analysis.

An important advantage to network-based distance methods and the bidirectional assignment of
data-points to network nodes is that comparatively accurate distances are known from any selected
network node to any accessible data-point, thus allowing distance-weighted methods to be applied.
These techniques are explored in more detail in the accompanying papers on network centrality
methods [Simons, n.d.a] and mixed-use methods [Simons, n.d.b].

Decomposition

A conundrum presents when calculating metrics on either a primal or dual network: architects,
urban designers, and urbanists are interested in fine-scaled properties of the urban environment
and how these properties can vary along street lengths. For example, characteristics at either street
corner of a street segment may be notably different from that of the midpoint. One strategy may
involve the interpolation of metrics to intervening locations, but this can be problematic for
similar reasons; for example, if either end of a street segment has higher mixed-uses than the
midpoint, interpolation will still give misleading results. The cityseer-api package therefor in-
corporates the optional use of network decomposition (Yamada and Thill, 2010). Each segment
(edge) can be decomposed to a set maximum length (Figure 5) so that longer street segments are
broken down into smaller sections. This strategy confers some advantages when working at small
distance thresholds: measurement can be performed at a higher-resolution of analysis and be-
comes more contextual; data-points can be assigned to the network more precisely; and longer
street segments are no longer problematic if intersecting a distance threshold. Whereas the
decomposed version entails additional computational demands, the benefit is a greater number of
sampled points at a finer resolution.

From the perspective of classic forms of network analysis— such as social networks, economic
networks, web URL links, or citation networks— the idea of decomposition may seem nonsensical.
However, this works for urban analysis because the nodes and edges are not being used as fun-
damentally discrete units of analysis in the same sense of individual persons, businesses, URLs, or
publications. These are, instead, used in a murkier sense as proxies mapping to the adjacently
accessible street-network. As such, these forms of urban analysis are not, per se, about ‘inter-
sections’ as discrete points in space, but are instead about the availability of street frontages to
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pedestrians in a more continuous sense, and the resultant potential for social and economic activities
as a function of the configuration of the street-network. This intuition is borne out in a conceptual
sense by Space Syntax’s (Hillier and Hanson, 1984) use of the dual instead of the primal network
representation, and in a practical sense by the use of street-length weighted (Turner, 2007) or
building weighted analysis (Sevtsuk and Mekonnen, 2012). In short, longer streets or more granular
street-front typologies represent larger generators of activity.

When applying network decomposition within the context of urban analysis, measures such as
land-use accessibilities and mixed-uses increase in resolution and become more accurate but are not
otherwise substantially affected because these are simple distance-weighted aggregations from a
selected point on the street-network. The benefit of decomposition is that distance calculations and
land-use assignments become increasingly precise, and the number of intervening nodes otherwise
does not affect the calculations. Topological network centrality measures, such as network cycles,
are likewise not greatly affected, though are now sampled at more frequent intervals on the street-
network. On the other hand, aggregative node-based network centrality measures, such as closeness
centrality and betweenness centrality, do behave differently on decomposed networks but not
necessarily in a problematic sense:

1. Additional nodes result in additional summations, with the implication that the measures are
not comparable across different levels of decomposition;

2. Decomposition behaves as an implicit form of length-normalisation akin to weighting by
street lengths because longer segments will yield a greater number of decomposed nodes, and
therefor a greater number of summations. This effect is beneficial because nodes will be
spread more evenly across the network, thereby tempering distortions introduced by varying
concentrations of nodes on messier network representations;

3. Decomposition introduces degree = 2 nodes, and this can result in changes in the output
distributions for aggregative centrality measures when calculated for small distance
thresholds less than 200m. See [Simons, n.d.a] for further discussion.

An alternative to node-based centrality measures is segmentised (continuous) forms of centrality
adapted from their node-based equivalents. These are explored in [Simons, n.d.a]. Segmentised
measures explicitly acknowledge street-networks as a continuous rather than discretised form of
analysis and remain stable when the network is decomposed; however, as with node-based
measures, the distributions of the measures are affected by the introduction of degree = 2 no-
des for small distance thresholds.

Example workflows

Example workflows are provided and maintained on the examples page of the documentation, with
links to Jupyter notebooks.

Current examples include:

1. A getting started guide.
2. An example workflow for cleaning and preparing OpenStreetMap data for analysis.
3. An example for how OpenStreetMap data can be imported and converted from OSMnx.
4. A demonstration showing how to compute network centralities for London (OpenStreetMap

and OS Open Roads data).
5. A demonstration showing how to compute pub accessibility for London.
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Graph cleaning and preparation

The tools.graphs module contains a collection of convenience functions for the preparation and
conversion of networkXMultiGraphs, i.e., undirected networks allowing for multiple edges in cases
where divergent street segments connect the same nodes.

These functions are designed to work with raw shapely Linestring geometries assigned to edges
as geom attributes. The benefit of this approach is that the geometry of the network remains
decoupled from the topology: the topology is consequently free from distortions in node intensities
which would otherwise confound centrality measures.

When creating a street-networks for analysis, two common scenarios might include:

1. Source datasets that keep the topology of the network separate from a street’s geometry. This
is the ideal case and the network can be constructed directly from the topology while
assigning the roadway geometries to the respective edges spanning the nodes. Ordnance
SurveyOpen Roads is an example of this type of dataset. Assigning the geometries to an edge
involves firstly casting the geometry to a shapely Linestring, then assigning this geometry to
the respective edge as a ‘geom’ attribute. i.e., G[start_node][end_node][edge_idx][’geom’] =
linestring_geom.

2. Data sources that represent roadway geometries by adding additional nodes to the topo-
logical network. This is not desirable because this technique introduces topological
distortions. In these cases, the Graph Cleaning guide should be followed: the graph-
s.nx_simple_geoms function can be used to generate street geometries and then several
functions can be applied to further clean and prepare the network for analysis, including
nx_wgs_to_utm for WGS to UTM coordinate conversions; nx_remove_dangling_nodes to
remove roadway stubs and disconnected portions of the network, nx_remove_filler_nodes to
strip out unnecessary filler nodes, and nx_consolidate_nodes to consolidate nodes.

Related examples are provided in the documentation examples, with example images shown in
Figure 8.

Computationally efficient analysis

After network preparation and cleaning is completed, the networkX network can be transformed
into the data structures used by the networks and layers modules for efficiently computing cen-
tralities, land-use measures, and statistical aggregations. This is done by calling the graph-
s.network_structure_from_nx function to convert a networkX network into a GeoPandas
GeoDataFrame representing the data state for each node, and a structures.NetworkStructure
containing detailed information of the network for use by underlying algorithms.

The networks.node_centrality and networks.segment_centrality methods wrap underlying
Numba optimised functions for computing a range of available centrality methods. Specified
measures and distance thresholds are computed simultaneously to reduce the time required for
multi-variable and multi-scalar workflows. The results of the computations are written to the nodes
GeoDataFrame for downstream analysis.

Land-use and statistical measures require a GeoPandas GeoDataFrame representing data-points.
cityseer-api automatically routes the location of each data-point through the two closest network
nodes, one in either direction, as determined from the closest adjacent street edge. This permits
cityseer-api to use dynamic spatial aggregation methods that more accurately describe distances
from the perspective of pedestrians travelling over the network, and relative to the direction of
approach.
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The layers.compute_accessibilities and layers.compute_mixed_uses functions are used for the
calculation of land-use accessibility and mixed-use measures. In these cases, GeoDataFrame
columns are used to represent categorical land-use information (e.g. ‘pub’, ‘shop’, ‘school’). As
with the centrality methods, land-use measures are computed simultaneously for all selected
forms of analysis. Stand-alone methods are also available for some of the more commonly used
mixed-use methods.

The layers.compute_stats function is used for statistical aggregations. In this case, Geo-
DataFrame columns are used to represent numerical information.

Land-use metrics and statistical aggregations are computed over the street-network relative to the
network, with results written to each node. The mixed-use, landuse accessibility, and statistical

Figure 8. Examples from typical network cleaning and preparation workflows. See the documentation
examples for links to Jupyter notebooks. (a) Raw network data as downloaded from OpenStreetMap prior
to cleaning. (b) Graph data after removal of redundant ‘filler’ and ‘dangling’ nodes (c) After an initial pass of
network consolidation showing simplified intersections. (d) After a second pass of consolidation with parallel
roadways removed.
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Figure 9. See the documentation examples for links to Jupyter notebooks. (a) A mock network for
demonstration. (b) The network after decomposition (c) The network after primal to dual conversion. (d)
Bi-directional assignment of data-points to adjacent edges. (e) 800 m harmonic centrality (f ) 400 m distance-
weighted mixed-uses.

14 EPB: Urban Analytics and City Science 0(0)



aggregations can therefor be compared directly to centrality computations performed from the same
locations, which can then be fed to downstream statistical or machine-learning analysis. Data
derived from the cityseer.metrics package can be converted back into a NetworkX network using the
graphs.nx_from_network_structure function, which can also overlay computed metrics onto the
original network if provided as a nx_multigraph parameter to the function.

Related examples are provided in the documentation examples, with example images from the
getting started guide shown in Figure 9.

Summary

cityseer-api contributes a synthesis of computational techniques to support granular forms of
network-based spatial analysis from the perspective of pedestrians:

1. High-resolution workflows using localised moving-window analysis with strict network-
based walking distance thresholds; spatially precise assignment of landuses or other data-
points to adjacent street-fronts for improved contextual sensitivity; dynamic aggregation
workflows which aggregate data-points and compute distances on-the-fly from any selected
point on the network to any accessible land-use or data-point within a selected distance
threshold; facilitation of workflows eschewing intervening steps of aggregation and asso-
ciated issues such as ecological correlations; and the optional use of network decomposition
to increase the resolution of the analysis.

2. Computation of network centralities using either shortest or simplest path heuristics on either
primal or dual networks, including tailored methods such as harmonic closeness centrality,
which behaves more suitably than traditional variants of closeness, and segmentised versions
of centrality, which convert centrality methods from a discretised to an explicitly continuous
form, see [Simons, n.d.a].

3. Land-use accessibilities and mixed-use calculations incorporate dynamic and directional
aggregation workflows with the optional use of spatial-impedance weighted forms. These
can likewise be applied with either shortest or simplest path heuristics and on either primal or
dual networks, see [Simons, n.d.b].

4. Network centralities dovetailed with land-use accessibilities, mixed-uses, and general
statistical aggregations from the same points of analysis to generate multi-scalar and multi-
variable datasets facilitating downstream data science and machine-learning workflows, see
[Simons, n.d.c] and [Simons, n.d.d].

5. The inclusion of network cleaning methods reducing topological distortions for high quality
network analysis and aggregation workflows while accommodating workflows bridging the
wider Numpy and GeoPandas ecosystem of scientific and geospatial packages.

6. Numba JIT compilation of underlying loop-intensive algorithms allows for these methods to
be applied to large and, optionally, decomposed networks, which have greater computational
demands.
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