A single-center, observational study of 607 children & young people presenting with Differences in Sex Development (DSD)

Elim Man1,2,3, Imran Mushtaq4, Angela Barnicoat5, Polly Carmichael6,7, Claire R. Hughes8,9, Kate Davies2,9, Helen Aitkenhead10, Rakesh Amin2, Charles R. Buchanan11, Abraham Cherian4, Nikola J. Costa10, Sarah M. Creighton12, Patrick G. Duffy4, Emma Hewson6, Peter C. Hindmarsh2,13, Louisa C. Monzani6, Catherine J. Peters2, Philip G. Ransley4, Naima Smeulders4, Helen A. Spoudeas1,2, Dan Wood4,14,15, Ieuan A. Hughes16, Harshini Katugampola2, Caroline E. Brain2, Mehul T. Dattani1,2*, and John C. Achermann1,3*

• 1Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; 2Department of Endocrinology, Great Ormond Street Hospital for Children Foundation Trust, London, UK; 3Department of Paediatrics & Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong SAR, PRC; 4Department of Urology, Great Ormond Street Hospital for Children, London, UK; 5Department of Clinical Genetics, Great Ormond Street Hospital for Children Foundation Trust, London, UK; 6Department of Clinical Psychology, Great Ormond Street Hospital for Children Foundation Trust, London, UK; 7Gender Identity Development Service, Tavistock and Portman NHS Foundation Trust, London, UK; 8Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK; 9Institute of Health and Social Care, London South Bank University, London, UK; 10Department of Chemical Pathology, Great Ormond Street Hospital for Children Foundation Trust, London, UK; 11Department of Child Health, King’s College Hospital NHS Foundation Trust, London, UK; 12Institute for Women’s Health, University College London Hospitals NHS Foundation Trust, London, UK; 13Department of Paediatrics, University College London Hospitals NHS Foundation Trust, London, UK; 14Department of Urology, University College London Hospitals NHS Foundation Trust, London, UK; 15Department of Urology, Children’s Hospital Colorado and University of Colorado, Denver, CO, USA; 16Department of Paediatrics, University of Cambridge, Cambridge, UK.

* denotes equal contribution

ORCiD numbers: 0000-0003-1549-2450 (E. Man); 0000-0002-7930-0342 (I. Mushtaq); 0000-0003-1434-1773 (C. R. Hughes); 0000-0003-4640-533X (K. Davies); 0000-0002-1787-9467 (H. Aitkenhead); 0000-0003-0929-8467 (R. Amin); 0000-0002-9885-3698 (C. R. Buchanan); 0000-0003-2490-8518 (P. C. Hindmarsh); 0000-0003-1423-3529 (C. J. Peters); 0000-0002-2656-6593 (N. Smeulders); 0000-0002-0774-6601 (H. A. Spoudeas); 0000-0002-5195-5515 (D. Wood); 0000-0002-8787-1575 (I. A. Hughes); 0000-0003-3426-2511 (H. Katugampola); 0000-0002-0630-6532 (C. E. Brain); 0000-0002-0365-5809 (M. T. Dattani); 0000-0001-8787-6272 (J. C. Achermann).

© The Author(s) 2022. Published by Oxford University Press on behalf of the Endocrine Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Short title: Presentation of DSD over 25 years

Keywords: DSD, sex development, ambiguous genitalia, hypospadias, androgen insensitivity, testicular dysgenesis, congenital adrenal hyperplasia

Correspondence:
John C. Achermann, MB MD PhD, Genetics & Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK. E-mail: j.achermann@ucl.ac.uk

This research was funded in whole, or in part, by the Wellcome Trust (J.C.A. 209328/Z/17/Z). For the purpose of Open Access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission. J.C.A. also has research support from Great Ormond Street Hospital Children’s Charity (grant V2518) and the National Institute for Health Research, Great Ormond Street Hospital Biomedical Research Centre (grant IS-BRC-1215-20012). MTD receives funding from the Great Ormond Street Hospital Children’s Charity. Research at GOSH benefits from funding received from the NIHR Biomedical Research Centre. The views expressed are those of the authors and not necessarily those of the National Health Service, National Institute for Health Research, or Department of Health.

Disclosure Summary
The authors have nothing to disclose.

Role of the Funding Sources
None
ABSTRACT

Context: Differences in sex development (DSD) represent a wide range of conditions presenting at different ages to various health professionals. Establishing a diagnosis, supporting the family and developing a management plan are important.

Objective: We aimed to better understand the presentation and prevalence of pediatric DSD.

Design: A retrospective, observational cohort study was undertaken of all children and young people (CYP) referred to a DSD multi-disciplinary team over 25 years (1995-2019).

Setting: A single tertiary paediatric center.

Participants: In total, 607 CYP (520 regional referrals) were included.

Main Outcome Measures: Data were analyzed for diagnosis, sex-assignment, age and mode of presentation, additional phenotypic features, mortality, and approximate point prevalence.

Results: Amongst the three major DSD categories, sex chromosome DSD was diagnosed in 11.2% (68/607) (most commonly 45,X/46,XY mosaicism), 46,XY DSD in 61.1% (371/607) (multiple diagnoses often with associated features), while 46,XX DSD occurred in 27.7% (168/607) (often 21-hydroxylase deficiency). Most children (80.1%) presented as neonates, usually with atypical genitalia, adrenal insufficiency, undescended testes or herniae. Those presenting later had diverse features. Rarely, the diagnosis was made antenatally (3.8%, n=23) or following incidental karyotyping/family history (n=14). Mortality was surprisingly high in 46,XY children, usually due to complex associated features (46,XY girls, 8.3%; 46,XY boys, 2.7%). The approximate point prevalence of neonatal referrals for investigation of DSD was 1 in 6,347 births, and 1 in 5,101 overall throughout childhood.

Conclusions: DSD represent a diverse range of conditions that can present at different ages. Pathways for expert diagnosis and management are important to optimize care.
Introduction

Differences in Sex Development (DSD) (also known as disorders of sex development, variations in sex characteristics, or sometimes intersex) represent a wide range of conditions that can be diagnosed at several different stages of life and that can first present to health professionals in diverse disciplines (1-3).

The most common presentation is in the neonatal period, when a baby is born with atypical (“ambiguous”) genitalia and it is not immediately clear whether the child is a boy or a girl. In other situations, DSD can be diagnosed due to a mismatch between prenatal karyotype and phenotype; due to associated features in childhood (e.g., renal, herniae); during adolescence with absent puberty, virilization, estrogenization or primary amenorrhea; or sometimes in adulthood with infertility or as an incidental finding.

DSD was originally defined as situations where “chromosomal, gonadal or anatomical sex is atypical” (4). Three major categories are usually considered: sex chromosome DSD (SCDSD, where there is an imbalance in sex chromosome complement), 46,XY DSD, and 46,XX DSD. However, these are only general categories and many specific conditions exist within them. Reaching a specific diagnosis is crucial for initial management, support and education, as well as for planning long-term care through adolescence and into adulthood (3, 5, 6).

Despite progress at many levels, the debate about what constitutes “DSD” continues and the incidence of different DSD diagnoses and their relative prevalence is not well established. More common genital variations such as distal hypospadias may affect up to 1 in 250-300 boys (7), whereas the prevalence of “DSD” requiring further investigation is often cited as approximately 1 in 5,000 children, but robust data are limited (8-10). One of the most important DSD-related conditions, classic congenital adrenal hyperplasia (CAH) (mostly 21-hydroxylase deficiency), affects approximately 1:13,000-18,000 of all children in most countries, and approximately 1 in 30,000-45,000 of all newborns will be a 46,XX infant with atypical genitalia due to CAH (11). In contrast, 46,XY gonadal
dysgenesis (sometimes called “Swyer syndrome”) and complete androgen insensitivity syndrome (CAIS) are less common, and often present in teenage years (12). Important global differences in the incidence of different conditions also exist.

In order to address some of these questions and to obtain a better understanding of DSD demographics, we present an overview of 25 years’ experience of DSD from a single-center pediatric multidisciplinary team (MDT). We provide insight into the referral patterns, range of presentations and diagnoses, associated features and approximate prevalence of conditions.

MATERIALS AND METHODS

Cohort & setting

The study included all children and young people (CYP) discussed at the monthly DSD MDT meeting at Great Ormond Street Hospital (GOSH) NHS Foundation Trust between 1st January 1995 and 31st December 2019. This forum brings together pediatric specialists in psychology, urology, endocrinology and allied disciplines (including clinical genetics, biochemistry, gynecology, nursing) to review new referrals, and also provides input at times when follow-up discussions are required. Services for young people first presenting in mid-teenage years (>13 years) are generally provided by University College London Hospitals and these data are not included here.

A total of 758 case records were reviewed (Fig. 1). Children were excluded if their initial presentation was before 1995 but they were under long-term follow up (n=119), as this subgroup was biased because it included children with more complex diagnoses rather than reflecting the relative proportion of new presentations accurately. Children with cloacal anomalies or bladder extrophy (n=32) were also excluded as an independent specialist service for these conditions was established during the study period (Fig. 1). Therefore, the final study cohort included 607 CYP who first presented to health professionals between 1995-2019. Of these, 520 CYP were “regional” referrals from
London and the South-East of England, 49 were from the rest of the United Kingdom (UK), and 38 were international referrals or children/young people whose families relocated to the UK after the initial diagnosis had been made (Fig. 1, see also Supplemental Fig. 1) (13).

Data acquired

Individual records were retrospectively evaluated by two observers (E.M, J.C.A., with input also from C.R.H and K.D). A diagnostic category was assigned to each child based on available data and the template of the Chicago Consensus Meeting (4).

Key data obtained from records included karyotype, biochemical and molecular genetic diagnosis, sex assignment, age and mode of first presentation, additional clinical features or syndromes, and mortality.

Ethical Review

This study was approved as a clinical service evaluation by the GOSH Audit office (1706: Evaluation of clinical pathways for children with disorders of sex development) under NHS Research Guidelines.

Statistical analysis

Data trends over time were analyzed using 3-point moving averages and categorical variables were compared using Chi-Square analysis (IBM SPSS Statistics27, IBM Corp., Armonk, New York, USA). Two-tailed P values of less than 0.05 are considered statistically significant.

Reporting principles
As this is a retrospective, cross-sectional observational study, data are presented using STROBE principles.

RESULTS

Overview of the cohort

The median number of new children presenting to the MDT each year was 23 (range 15-40) (total n=607) (Fig. 2A). There were no significant changes over time (R=0.20, p=0.33). Sex chromosome DSD (SCDSD) accounted for 11.2% (68/607) of subjects, 46,XY DSD was found in 61.1% (371/607), and 46,XX DSD occurred in 27.7% (168/607) (Fig. 2B). Overall there was discordance between karyotype and sex in 14.8% of subjects for the study cohort as a whole (13.3% 46,XY children brought up as girls, hereafter termed “46,XY girls”; 1.5% 46,XX children brought up as boys, hereafter termed “46,XX boys”) (Fig. 2B). The percentage of 46,XY girls was slightly lower (11.5%, 60/520) when regional referrals from just London and the South-East of England were considered (Fig. 2B). Of note, many children had a phenotype consistent with the sex they were brought up in and presented for other reasons (e.g. a phenotypic girl with complete androgen insensitivity syndrome and 46,XY karyotype presenting with an inguinal hernia). Less frequently, a child had atypical genitalia and a decision was made by the parents together with the MDT to bring them up in a sex different to their karyotype (see “46,XY girls” below).

Categories of DSD

An overview of the diagnoses in each major category of DSD is shown in Table 1 and Supplemental Figures 2-4 (13).

Sex Chromosome DSD (SCDSD)
Most children presenting with SCDSD had 45,X/46,XY mosaicism or variations of this karyotype (56/68, 82.4%) (Table 1, Supplemental Fig. 2) (13). Within this 45,X/46,XY group, 70% (39/56) of children were brought up as boys and 30% (17/56) were brought up as girls. True 46,XX/46,XY chimerism was very rare, being found in only four children in 25 years (5.9% of SCDSD, and 0.7% (4/607) of the total cohort overall).

Although some studies consider Turner syndrome/monosomy X within a DSD classification, the vast majority of girls with classic Turner syndrome do not present with DSD and did not get referred through a DSD MDT pathway.

46,XY DSD

The largest and most diagnostically-diverse category was 46,XY DSD (Table 1, Supplemental Fig. 3) (13). Whilst there were many specific diagnoses affecting testis development, androgen synthesis and androgen action, a large number of this cohort were boys with penoscrotal hypospadias without a specific diagnosis (125/371, 33.7%) (Table 1). Many children in this group had fetal growth restriction (FGR) (sometimes called intra-uterine growth restriction) (63/125, 50.4%), additional/complex features (18.4%), or isolated cardiac (2.4%) or renal anomalies (2.4%) (Supplemental Fig. 3B) (13). Indeed, in the 46,XY cohort as a whole, 57/371 (15.4%) children had a defined genetic syndrome (35 different conditions) and a further 78/371 (21.0%) had non-specific complex phenotypes (which may represent as yet undiagnosed conditions), giving a total of 135/371 (36.4%) children with significant additional features (Supplemental Table 1) (13).

46,XX DSD

The most common diagnosis within the 46,XX group was CAH (100/168, 59.5%). Within the CAH group, 21-hydroxylase deficiency (21OHD) was by far the most prevalent condition (92/100, 92.0%) (Table 1, Supplementary Fig. 4) (13). Clitoromegaly associated with prematurity was seen in 10.1% (17/168) children, whereas a small but important group of girls who were referred had variations of anatomy considered to be
within the “normal” range (11/168, 6.5%). Ovotesticular or testicular DSD (OTDSD/TDSD) was present in 7.7% children (13/168; eight raised female, five raised male). Of note, OTDSD was more common in 46,XX children from an African/Black British background (5/16 [31.3%]) compared to children from a White background (2/79 [2.5%]; Chi Sq=16.08, p<0.0001). Indeed, OTDSD was at least as common as CAH (21OHD) in 46,XX children of African or Black British background (OTDSD, 5/16 [31.3%] versus 21OHD 3/16 [18.8%]; Chi Sq=0.67, p=0.41). In contrast, CAH (21OHD) was 24-fold more common than OTDSD in 46,XX children of a White background (21OHD 52/79 [65.8%] versus OTDSD 2/79 [2.5%]; Chi sq=70.33, p<0.0001). Only 11 children with 46,XX DSD had syndromic associations, most often Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome, a form of uterine agenesis (n=8) (Supplemental Table 1) (13). MRKH syndrome does not present with atypical genitalia and is usually diagnosed in teenage years, but some girls were referred in childhood with herniae containing descended gonads (ovaries), or because of incidental findings of an absent uterus.

Presentation of DSD

Within the entire cohort, most children (486/607, 80.1%) presented during the neonatal period (< 28 days of age), usually due to isolated atypical genital appearances (371/486, 76.3% of neonatal referrals), but sometimes also because of undescended testes and hernia(e) (36/486, 7.4%), or adrenal insufficiency (53/486, 10.9%; 48 with atypical genitalia) (Fig. 3A, left panel). An antenatal diagnosis had been made in 3.8% of children in the entire cohort (23/607), 11 of whom had atypical genitalia at birth. Within the London and South-East region, 352/520 (67%) patients presented with atypical genitalia. Those children presenting after the first month (121/607, 19.9%) showed a range of different features (Fig. 3A, right panel). Genital anomalies were still a surprisingly common reason for presentation, often due to delayed presentation/referral of children with clitoromegaly or a small penis (51/121, 42.1%). Bilateral undescended testes (BUDT)/inguinal herniae were the presenting features in 16/121 (13.2%) of children, of
whom five had CAIS (46,XY), one had 17β-hydroxysteroid dehydrogenase deficiency type 3 (HSD17B3) (46,XY), one had a WT1-associated condition (46,XY), five had persistent Müllerian Duct Syndrome (PMDS) (46,XY) and four had Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome (46,XX, inguinal herniae). A diagnosis of DSD after the neonatal period was made in 14 (11.6%) children by karyotyping, either as an incidental finding during genetic testing for other features or because of a known family history of DSD. Other modes of presentation are shown in Fig. 3A.

Presentation with atypical genitalia in the newborn period was the most common presentation in all major subgroups of DSD except 46,XY girls, who were almost as likely to present later in infancy or childhood as in the first month, or who often presented with BUDT/inguinal herniae rather than atypical genitalia (Fig. 3B & C).

46,XY girls (Girls with a Y)

Available data for 46,XY girls were analyzed in more detail, as one of the more challenging situations is when a 46,XY child presents in the newborn period with atypical genitalia and discussions are held with parents whether to bring the child up as a girl or boy. We therefore focused on children referred from London and the South East Region of England to obtain a better reflection of UK practice (Fig. 1, Supplemental Fig. 1) (13). Within this group, 46,XY girls represented 11.5% (60/520) of all children (Fig. 2B).

Although around half of all 46,XY girls presented early in life (29/60, 48.3%, with three additional children diagnosed prenatally), only 16 of them (16/60, 26.7%) presented with virilized atypical genitalia (i.e. clitoral enlargement, partial labioscrotal fusion) in the newborn period, as opposed to palpable inguinoscrotal or labioscrotal testes but no signs of androgenization (Fig. 4A). This represents 4.5% (16/352 of all “regional” children presenting with atypical genitalia in the newborn period (Fig.4B) and 3.1% (16/520) of “regional” DSD referrals overall, so this is not a common scenario. Of note, no 46,XY child with partially androgenized genitalia was raised female in the last 5 years of the study.
Genetic testing was offered and a specific genetic diagnosis was available in most children (43/60, 71.7%), with the range of conditions shown in Fig. 4C. A prior family history of DSD was present in 9/29 (31.0%) of 46,XY girls who presented in the newborn period and a genetic diagnosis was reached in eight of them.

46,XX boys

Five children from London/South-East England with a 46,XX karyotype and atypical genitalia in the newborn period were brought up as boys (5/352, 1.4% of all newborns with atypical genitalia; 5/520, 0.96% of all “regional” DSD referrals) (Fig. 4B). Most of these children had OTDSD. An additional two 46,XX boys presented after the first month of life.

Mortality

Seventeen children died within the follow up period when records were available (SCDSD, n=1; 46,XY DSD, n=16). Median age of death was 5 months (range: 1 month - 9 years). All children had established syndromes (e.g. X-linked lissencephaly, ATRX, campomelic dysplasia/SOX9, Scimitar syndrome), chromosomal deletions or complex multisystem involvement, often associated with fetal growth restriction. Mortality was sometimes linked to neurological/brain anomalies (n=5), cardiac defects (n=3), or immune dysfunction and sepsis (n=3), although children often had complex multiorgan dysfunction. Mortality in the first year of life was higher in 46,XY girls (5/60, 8.3%), compared to 46,XY boys (7/256, 2.7%; Chi-Sq 4.46, p<0.05), usually linked to the specific syndromes above which were associated with significant gonadal dysgenesis. Mortality was substantially higher than national rates of mortality for children within these age ranges (Infant Mortality rate, 0.37%; Child Mortality rate (1-15 years), 0.008%; 2019 ONS E&W).
Incidence of DSD

Based on Office for National Statistics (ONS) data for birth rates in England & Wales between 1995-2019, and assuming that the “regional” catchment area (London/South-East, Supplemental Figure 1) (13) represents one-seventh of this population, the number of live births “captured” averaged approximately 106,000 per annum (2,653,000 total births over the study period) (14). Based on these data, the estimated point prevalence of DSD referrals in the neonatal period (first 28 days) was 1 in 6,347 overall (418/2,653,000; 15.8/100,000); 1 in 32,753 for 21-hydroxylase deficiency (81/2,653,000; 3.1/100,000); 1 in 85,906 for 46,XY girls overall (32/2,653,000; 1.16/100,000) and 1 in 165,812 for 46,XY girls with virilised genitalia (16/2,653,000; 0.6/100,000) (Supplemental Table 2) (13). The overall prevalence of DSD referrals over the study period was 1 in 5101.
DISCUSSION

Here, we present a large, single-center study of the demographics of DSD, involving more than 600 children over a 25-year period between 1995-2019. We used the framework of the Chicago Consensus Meeting to divide children into the three broad categories of sex chromosome DSD (SCDSD), 46,XY DSD and 46,XX DSD, and used available phenotypic, biochemical and genetic data to make a more specific diagnosis wherever possible.

With this approach, we found that most children referred to specialist services had variations of 46,XY DSD (61.1%), with smaller proportions having 46,XX,DS DSD diagnoses (27.7%) or SCDSD (11.1%). Referral patterns were remarkably stable over this 25-year period, with some year-on-year fluctuations given the small numbers of some categories considered. The predominance of 46,XY DSD has been seen in most other smaller single center studies to date (Table 2) (15-19). In contrast, a recent multi-centre registry study from the USA has described a higher proportion of children with 46,XX CAH (57%), but this finding may reflect differences in referral pathways and a higher threshold for referring some forms of penoscrotal hypospadias to specialist DSD services (20).

Children with sex chromosome variations (SCDSD) were the smallest group within the cohort (11.1%). Here, the diagnosis can usually be made on karyotype alone. Most of these children had 45,X/46,XY mosaicism, or related variations and 70% were brought up as boys. In fact, based on published antenatal data, more than 90% of children with a 45,X/46,XY karyotype are boys who would not present to health professionals, at least in the early years, so those children with atypical genitalia represent a relatively small subgroup of all children with this karyotype (21, 22). Given the phenotypic variability and asymmetry of internal and external anatomy often seen in these children, an individualized approach to management is needed (21, 23, 24), taking into account the degree of gonadal compromise, the likelihood of gonadal tumours, and the use of growth hormone to promote growth. Long-term surveillance is also required for potential
features associated with Turner syndrome (25). A similar individualized approach is also required for the small group of children with 46,XX/46,XY chimerism, who can have both ovarian and testicular tissue and who also have variable and often asymmetrical features, although in our series all four children with this karyotype were brought up as girls.

The largest and most diverse group was 46,XY DSD (61%). Some of these children had specific diagnoses but many were classified with “penoscrotal hypospadias (PSH)”. A large subset of these boys had FGR/IUGR and were born preterm. The association of PSH and FGR is well established and can even occur in the smaller of two 46,XY dizygotic twins (26, 27). Established genetic diagnoses (such as partial androgen insensitivity) are rarely found, but can occur coincidentally (27). The link between FGR and PSH may reflect an epigenetic phenomenon, a shared placental/genital gene, or a hypothesised interplay between placental insufficiency and fetal androgen synthesis. Furthermore, FGR is a key feature of specific conditions such as MIRAGE syndrome (SAMD9) and IMAGe syndrome (CDKN1C) (28). Our study clearly demonstrated that many children (36.4%) with 46,XY DSD phenotypes had complex additional features or a range of defined syndromes; this finding is becoming well-established (19, 29). Indeed, mortality was especially high in the 46,XY children with complex features, especially in the first year of life (more than 20 times higher than current national data), reflecting often complex neurodevelopmental issues, cardiac defects or immune dysfunction. Thus, MDT support, including specialist clinical genetics input, is important for families. Increased availability of clinical genetic testing using whole genome CGH arrays, targeted gene panels or exome sequencing may play a role in defining these associations further in coming years, leading hopefully to more focused management plans (30, 31). Even in those children without associated features, making a specific diagnosis early on, such as 5α-reductase deficiency, can have significant implications for management, and genetic analysis has an increasing role to play in this situation as biochemical analysis is unreliable in early life (6).
One important sub-group of 46,XY DSD is those children with a 46,XY karyotype who are brought up as girls. These children represented 11.5% of the entire “regional” cohort, but only 4.5% of newborn babies presenting with virilised atypical genitalia. Of note, some babies with CAIS had atypical appearing genitalia due to the presence of descended labial testes causing swelling, but without evidence of genuine androgenisation/virilisation. Recent studies have suggested that there may be changes in approaches to sex assignment over time, so that 46,XY children with virilized atypical genitalia are less likely to be brought up as girls than in previous decades (32). The numbers of children in our study are likely to be too small to draw firm conclusions, although a similar trend was seen. Moreover, a specific genetic diagnosis was reached in most 46,XY girls (73.3%), and higher in those with a family history, which has important implications for targeting support, and planning short- and long-term management (30, 31).

Within the 46,XX category (27.7%) the most important and most common diagnosis is CAH, and the most prevalent form of CAH was 21-OHD. CAH should be considered as the diagnosis until proven otherwise in any newborn baby with atypical genitalia and non-palpable testes, as the child is at risk of adrenal insufficiency and a progressive potentially life-threatening salt-losing state that can develop during the first week of life (33). Other rare forms of CAH were diagnosed, often in children whose families originate from regions where there are known geographical hotspots (e.g. 11-hydroxylase deficiency in Turkey). Of note was the observation that OTDSD was especially common in 46,XX newborn of African or Black British ancestry. Although rare overall, OTDSD was at least as common as 21-OHD in children from this background, in keeping with recent data from several centres in Africa (Table 2) (16, 34-36). As the management of OTDSD is markedly different to CAH, this is an important diagnosis to consider. Measuring anti-Müllerian hormone (AMH) can be useful to investigate for the presence of testicular tissue, although CAH should always be the working diagnosis until proven otherwise, as it can be life-threatening if not detected and treated appropriately.
Several 46,XX newborns were diagnosed with persistent clitoromegaly associated with prematurity. In some children, the clitoromegaly can persist or is associated with excess clitoral skin, but other signs of early *in utero* androgen exposure (e.g., labial fusion, common urogenital sinus) are not present (37). The etiology of this condition is not well understood (38). Furthermore, a small but important group of 46,XX children referred had labial adhesions, excess clitoral skin or genital anatomy within “normal” limits. Labial swelling can occur in some situations (e.g. breech deliveries) and there can be individual variability in genital appearances and ancestral differences in clitoral size in different populations (39-42). Giving reassurance in such situations, after any simple investigations the clinical team feel are necessary, is important.

Establishing the incidence of DSD is challenging, as there are a diverse range of conditions and a spectrum of severity for each of them, and there is ongoing debate about what constitutes “DSD”. Two recent population-based studies in Turkey and Ghana have reported an incidence of atypical genitalia or “DSD” in newborn populations as 1 in 821 (18/14,777) and 1 in 356 (26/9,255), respectively (43, 44). However, these studies included all forms of hypospadias (Turkey) or children with variations of their genitalia outside typical ranges (Ghana). Other studies have taken a national registry approach to look at specific subgroups of DSD. In Denmark, where there is a national cytogenetic registry, publications suggest a peak prevalence of women with a 46,XY karyotype (women with a Y) as 1 in 15,625 women (so potentially 1 in 31,000 of the population overall); CAIS as 1 in 24,390 women; and complete gonadal dysgenesis as 1 in 66,667 women (12). The peak prevalence of 46,XX men has been reported in Denmark as 1 in 28,571 men (so potentially 1 in 57,000 of the population overall) (45). In these studies the median age of presentation for CAIS was 7.5 years, that for complete gonadal dysgenesis was 17.0 years, for 46,XX males 17.0 years and for 46,XX males with testicular DSD 25.4 years. These findings highlight the need for long term follow up studies. Only a subgroup of children with these conditions present before teenage years, which explains the lower prevalence in our data (Supplemental Table 2) (13), but, as previously stressed, these are extremely important diagnoses to make so that long-term support and management can be appropriately planned.
By considering sequential referrals in a single centre over a long time period we have been able to generate approximate prevalence data for childhood DSD overall (approximately 1 in 5,100) and for referrals for further investigation and management in the newborn period (approximately 1 in 6,347). These calculations assume that our centre captures one-seventh of the population in England and Wales; this, however, may be an underestimate as there are inevitable regional biases in referral patterns. Our centre often deals with complex, tertiary referrals, but other centres in the region may see children with DSD and other associated conditions (e.g. hypospadias), in which case the true prevalence of DSD would be higher. Previously, Thyen et al. have suggested a birth prevalence of 1:5000 in Germany, which is similar to our data (9). In contrast, Rodie et al. have recently reported a birth prevalence of children requiring specialist assessment for atypical genitalia of 1:3318 in Scotland, although 68% of these children were assigned at birth before the results of more detailed investigations, so more complex DSD may have a similar prevalence to in our study (10). Specifically focusing on CAH, national registry data from the British Paediatric Surveillance unit (August 2007-August 2009) suggested an overall CAH incidence of 1 in 18,000 children (1 in 13,000-15,000 in many countries), and that three-quarters of girls present in the newborn period with genital changes (11). That would lead to an estimated newborn incidence of virilising CAH in 46,XX children of around 1 in 48,000 of all children. Our data suggest a CAH prevalence of 1 in 32,753 children overall, similar to the calculated birth prevalence of CAH of 1 in 35,757 in Scotland (10). Of note, the United Kingdom does not have a newborn screening programme for CAH.

As with most single center studies, this study has limitations in relation to referral biases and the demographic mix of referral sources. London is a large city with families from diverse backgrounds, so our data inevitably reflect that. Referrals of children from outside the UK or who have relocated here generally involved more “complex” diagnoses, and so we excluded these children for analysis of 46,XY girls and in prevalence estimates, as discussed above. Other limitations are the somewhat restricted use of genetics to investigate the potential etiology of conditions such as isolated
penoscrotal hypospadias, and we have not systematically included long-term outcome
data, such as gender identity (6). Alternative approaches to studying rare diseases include
national and international registry studies (such as iDSD and iCAH) (46, 47).

This study does also highlight the many different ways that children with DSD can
present and the central role the MDT has to play (2, 48). Educating a range of allied
professionals in the early approaches to a newborn or child with potential DSD is
important, including midwives and nurses, fetal medicine specialists and general
surgeons. Increasing emphasis now focuses on early psychological support for families
and children and the key value that support groups play in long-term management
throughout childhood, transition in teenage years and into long-term adult management
pathways (49, 50).

In summary, we present, to our knowledge, the largest single-center observational study
of DSD in newborns, children and young people reported over a 25-year period. These
data highlight the range of presentations, associated features and approximate prevalence
of these diverse conditions. This work should help in planning management strategies
and policy going forward.
Contributors

EM, MTD and JCA conceptualized the study. EM, CRH, KD and JCA undertook data curation. EM and JCA undertook formal data analysis. MTD and JCA were involved in funding acquisition. EM, IM, AB, PC, IAH, HK, CEB, MTD and JCA undertook investigation, diagnosis and management, with the considerable support of other authors (HA, RA, CRB, AC, NC, SMC, PGD, EH, PCH, LM, CJP, PGR, NS, HAS, DW). MTD and JCA oversaw project administration and supervision. EM and JCA undertook validation. EM and JCA were responsible for data visualization. EM and JCA wrote the original draft with input from MTD. All authors and members of the GOSH DSD MDT were involved in reviewing and editing the manuscript from an early stage. EM and JCA had full access to all data in the study and had final responsibility for the decision to submit for publication.

Acknowledgments

We are grateful to the young people and families, and to the many additional clinicians, allied health professionals and trainees for their contributions to the multidisciplinary team over these years. We are grateful to Les Perry and others for support with Chemical Pathology. We also recognise the key role that David Grant played in establishing this MDT.

Data availability

Most quantitative data generated are presented as in the accompanying tables, figures and supplementary datasets (13). Restrictions apply to the availability of some data generated or analyzed during this study to preserve patient confidentiality or because they were used under license. The corresponding author will on request detail the restrictions and any conditions under which access to some data may be provided.
1.4 REFERENCES

children in KwaZulu-Natal Durban South Africa: 20-year experience in a tertiary
phenotype and genotype in 286 patients with a disorder of sex development from
genetic characteristics: 6 novel mutations in known genes. *Eur J Med Genet.* 2021; 64:
104154.
19. Heeley JM, Hollander AS, Austin PF, Merritt DF, Wesevich VG, Amarillo IE. Risk
association of congenital anomalies in patients with ambiguous genitalia: A 22-year
atypical genital development: Phenotypes, diagnoses, and sex of rearing. *J Endocr
21. Johansen ML, Hagen CP, Rajpert-De Meyts E, et al. 45,X/46,XY mosaicism:
Phenotypic characteristics, growth, and reproductive function - A retrospective
22. Chang HJ, Clark RD, Bachman H. The phenotype of 45,X/46,XY mosaicism: An
23. Farrugia MK, Sebire NJ, Achermann JC, Eisawi A, Duffy PG, Mushtaq I. Clinical and
gonadal features and early surgical management of 45,X/46,XY and 45,X/47,XYY
chromosomal mosaicism presenting with genital anomalies. *J Pediatr Urol.* 2013; 9:
139-144.
males with 45,X/46,XY mosaicism vary depending on reason for diagnosis. *J Clin
Endocrinol Metabol.* 2019; 104: 4366-4381.
care of girls and women with Turner syndrome: Proceedings from the 2016 Cincinnati
27. Lek N, Miles H, Bunch T, et al. Low frequency of androgen receptor gene mutations
monosomy modify SAMD9-related phenotypes in humans. *J Clin Invest.* 2017; 127:
1700-1713.
approaches for diagnosing 209 index cases with 46,XY differences of sex
adults with disorders of sex development (DSD): A European multicenter study.

evaluation study about quality of life in adults with disorders/differences of sex
development (DSD) compared to country specific reference populations (dsd-LIFE).
FIGURE LEGENDS

Figure 1. Overview of the study cohort.

Figure 2. A. Number of children and young people (CYP) presenting to health professionals and being referred to the multi-disciplinary team each year over 25 years (3-point moving average shown by dashed line). B. Major DSD category and sex assignment for the total cohort (n= 607) (left panel) and for regional referrals from London and the South-East of England (n=520) (right panel). SCDSD, sex chromosome DSD.

Figure 3. Initial presentation of DSD. A. Overview of presentation for the total cohort (n=607) (left panel) and for children presenting outside the neonatal period (n=121) (right panel). B. Mode of presentation for major DSD categories (n=607). C. Age at presentation for different major DSD categories (n=607). "Adrenal insufficiency" includes 46,XX children with adrenal insufficiency due to congenital adrenal hyperplasia (with atypical genitalia), and two 46,XY girls with congenital lipoid adrenal hyperplasia (STAR). BUDT, bilateral undescended testes; SCDSD, sex chromosome DSD.

Figure 4. Presentation of 46,XY girls referred from London/South-East England. A. Mode of presentation for 46,XY girls (n=60). B. Major DSD categories and sex assignment for children presenting with atypical genitalia at birth or in the neonatal period (n=352). C. Range of genetic diagnoses for 46,XY girls (n=60). Those children with complete or partial gonadal dysgenesis and additional features are grouped under “GD syndrome” and PGD syndrome”, respectively. “PAIS-like” represents children with clinical/biochemical features of PAIS but where no AR or other pathogenic variant was found yet. BUDT, bilateral undescended testes; CAIS, complete androgen insensitivity
syndrome; CYP17A1, combined 17α-hydroxylase/17,20-lyase deficiency; GATA4, GATA-binding protein 4; GD, gonadal dysgenesis; HSD17B3, 17β-hydroxysteroid dehydrogenase type 3 deficiency; PAIS, partial androgen insensitivity syndrome; PGD, partial gonadal dysgenesis; POR, P450 oxidoreductase deficiency; SLO, Smith–Lemli–Opitz syndrome; SRD5A2, 5α-reductase type 2 deficiency; STAR, steroidogenic acute regulatory protein/congenital lipoid adrenal hyperplasia; WT1, Wilms’ tumor 1.
Table 1. Overview of study cohort of children referred

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>n</th>
<th>% of cohort (n=607)</th>
<th>Diagnosis</th>
<th>n</th>
<th>% of cohort (n=607)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex Chromosome DSD (SCDSD)</td>
<td>68</td>
<td>11.2</td>
<td>46,XY DSD</td>
<td>371</td>
<td>61.1</td>
</tr>
<tr>
<td>45,X and variants</td>
<td>2</td>
<td>0.3</td>
<td>Hypothalamic-pituitary disorders</td>
<td>15</td>
<td>2.4</td>
</tr>
<tr>
<td>45,X/46,XY and variants</td>
<td>56</td>
<td>9.2</td>
<td>HH with hypopituitarism</td>
<td>6</td>
<td>1.0</td>
</tr>
<tr>
<td>47,XXY</td>
<td>5</td>
<td>0.8</td>
<td>HH - isolated</td>
<td>9</td>
<td>1.4</td>
</tr>
<tr>
<td>46,XX/46,XY chimerism</td>
<td>4</td>
<td>0.7</td>
<td>Disorders of gonad development</td>
<td>85</td>
<td>14.0</td>
</tr>
<tr>
<td>Other (47,XXX)</td>
<td>1</td>
<td>0.2</td>
<td>GD - unknown cause</td>
<td>9</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GD - syndrome</td>
<td>5</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Partial GD - unknown cause</td>
<td>20</td>
<td>3.3</td>
</tr>
<tr>
<td>46,XX DSD</td>
<td>168</td>
<td>27.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disorders of gonad development</td>
<td>13</td>
<td>2.2</td>
<td>SRY</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>[Ovo]testicular DSD</td>
<td>13</td>
<td>2.2</td>
<td>SRY</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>Disorders of androgen excess</td>
<td>102</td>
<td>16.8</td>
<td>NR5A1 (SF-1)</td>
<td>8</td>
<td>1.3</td>
</tr>
<tr>
<td>CAH - 3β-HSD type 2 deficiency</td>
<td>3</td>
<td>0.5</td>
<td>WTI</td>
<td>12</td>
<td>2.0</td>
</tr>
<tr>
<td>CAH - 21-hydroxylase deficiency</td>
<td>92</td>
<td>15.2</td>
<td>GATA4</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>CAH - 11β-hydroxylase deficiency</td>
<td>5</td>
<td>0.8</td>
<td>Testis regression/anorchia</td>
<td>21</td>
<td>3.5</td>
</tr>
<tr>
<td>Aromatase deficiency</td>
<td>1</td>
<td>0.2</td>
<td>Disorders of androgen synthesis</td>
<td>43</td>
<td>7.08</td>
</tr>
<tr>
<td>Adrenocortical tumor</td>
<td>4</td>
<td>0.6</td>
<td>Smith-Lemli-Opitz syndrome</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>Other conditions</td>
<td>42</td>
<td>6.9</td>
<td>Leydig cell hypoplasia</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>MRKH syndrome</td>
<td>8</td>
<td>1.3</td>
<td>STAR</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>Syndromes with genital anomalies</td>
<td>3</td>
<td>0.5</td>
<td>CAH - 3β-HSD type 2 deficiency</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>Ovarian anomaly - isolated</td>
<td>5</td>
<td>0.8</td>
<td>CAH - 17β-hydroxylase/17,20-lyase def</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>Vaginal/labial anomaly - isolated</td>
<td>2</td>
<td>0.3</td>
<td>CAH - P450 oxidoreductase def.</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>Clitoral anomaly - isolated</td>
<td>7</td>
<td>1.2</td>
<td>17β-HSD type 3 deficiency</td>
<td>16</td>
<td>2.5</td>
</tr>
<tr>
<td>Clitoromegaly with prematurity</td>
<td>17</td>
<td>2.8</td>
<td>5α-reductase type 2 deficiency</td>
<td>16</td>
<td>2.5</td>
</tr>
<tr>
<td>Within “normal” limits</td>
<td>1</td>
<td>1.8</td>
<td>Disorders of androgen action</td>
<td>31</td>
<td>5.1</td>
</tr>
<tr>
<td>Complete AIS</td>
<td>17</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial AIS</td>
<td>8</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial AIS-like</td>
<td>6</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent Mullerian ducts syndrome</td>
<td>7</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penoscrotal hypospadias</td>
<td>125</td>
<td>20.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penoscrotal hypospadias - isolated</td>
<td>33</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penoscrotal hypospadias - FGR</td>
<td>63</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penoscrotal hypospadias - cardiac</td>
<td>3</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penoscrotal hypospadias - renal</td>
<td>3</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penoscrotal hypospadias - complex</td>
<td>23</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other disorders</td>
<td>64</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penile anomaly - complex</td>
<td>23</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undescended testes - isolated</td>
<td>6</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testicular anomaly - isolated</td>
<td>1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testicular anomaly - syndrome</td>
<td>4</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syndromes with genital anomalies</td>
<td>30</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within “normal” limits</td>
<td>1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AIS, androgen insensitivity syndrome; CAH, congenital adrenal hyperplasia; DSD, difference (disorder) in sex development; FGR, fetal growth restriction (also known as IUGR, intra-uterine growth restriction); GD, gonadal dysgenesis; HH, hypogonadotropic hypogonadism; HSD, hydroxysteroid dehydrogenase; MRKH, Meyer-Rokitansky-Küster-Hauser syndrome; PMDS, persistent Müllerian duct syndrome; SF-1/NR5A1, steroidogenic factor-1; STAR, steroidogenic acute regulatory protein/congenital lipoid adrenal hyperplasia; WT1, Wilms’ tumor 1. Other conditions are shown by gene name. For further information on syndromic associations see Supplemental Table 1 and Supplemental Figure 3C (13).
“Within “normal” limits” most often included 46,XX girls referred for assessment who had labial adhesions, perineal edema or excess clitoral skin.
<table>
<thead>
<tr>
<th>Study author</th>
<th>Study period</th>
<th>Country</th>
<th>Study design</th>
<th>Total number</th>
<th>Inclusion</th>
<th>SCDSD (%)</th>
<th>46,XY DSD (%)</th>
<th>46,XX DSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>1995-2019</td>
<td>UK</td>
<td>Single centre</td>
<td>607</td>
<td>DSD MDT forum</td>
<td>11.2</td>
<td>61.1</td>
<td>27.7</td>
</tr>
<tr>
<td>Ganie et al. (16)</td>
<td>1995-2014</td>
<td>South Africa</td>
<td>Single centre</td>
<td>416</td>
<td>DSD diagnosis in an endocrine clinic</td>
<td>9.5</td>
<td>57.5</td>
<td>33.0</td>
</tr>
<tr>
<td>De Paula et al. (15)</td>
<td>1989-2011</td>
<td>Brazil</td>
<td>Single centre</td>
<td>408</td>
<td>Atypical genitalia</td>
<td>8.3</td>
<td>61.3</td>
<td>30.4</td>
</tr>
<tr>
<td>Ata et al. (18)</td>
<td>2002-2018</td>
<td>Turkey</td>
<td>Single centre</td>
<td>289</td>
<td>DSD diagnosis in an endocrine clinic</td>
<td>29</td>
<td>49.5</td>
<td>21.5</td>
</tr>
<tr>
<td>Juniarto et al. (17)</td>
<td>2004-2010</td>
<td>Indonesia</td>
<td>Single centre</td>
<td>286</td>
<td>DSD diagnosis in an endocrine clinic</td>
<td>8.4</td>
<td>68.2</td>
<td>23.4</td>
</tr>
<tr>
<td>Heeley et al. (19)</td>
<td>1995-2016</td>
<td>USA</td>
<td>Single centre</td>
<td>128</td>
<td>Atypical genitalia</td>
<td>11.7</td>
<td>53.1</td>
<td>35.2</td>
</tr>
<tr>
<td>Finlayson et al. (20)</td>
<td>2013-2017</td>
<td>USA</td>
<td>Multicentre (12 centres)</td>
<td>99</td>
<td>Atypical genitalia (moderate-severe)</td>
<td>9</td>
<td>34</td>
<td>57</td>
</tr>
<tr>
<td>Rodie et al. (10)</td>
<td>2013-2019</td>
<td>Scotland</td>
<td>Multicentre</td>
<td>92</td>
<td>DSD referral at birth</td>
<td>8</td>
<td>70</td>
<td>22</td>
</tr>
</tbody>
</table>

SCDSD, sex chromosome DSD; MDT, multidisciplinary team. *Studies were included where karyotype data were available for all three diagnostic categories and where the number of individuals reported was >90; *within 46,XX DSD, 60.5% of children had OTDSD; *within 46,XX DSD, 91% of children had 21-hydroxylase deficiency.
Figure 1

758 children and young people discussed by the MDT between 1995-2019

119 presented initially before 1995

32 cloacal anomalies/bladder extrophy

607 first presented to health professionals between 1995-2019
 520 London/South-East England
 49 rest of United Kingdom
 38 international/moved to UK
Figure 2

A

No. of referrals

Year of first presentation

SCDS
46,XY boys
46,XY girls
46,XX girls
46,XX boys

B

Full cohort
(n=687)

London/South-East England
(n=529)

<table>
<thead>
<tr>
<th>CATEGORY NAME</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CATEGORY NAME]</td>
<td>11.5%</td>
</tr>
<tr>
<td>[CATEGORY NAME]</td>
<td>47.8%</td>
</tr>
<tr>
<td>[CATEGORY NAME]</td>
<td>27.3%</td>
</tr>
<tr>
<td>[CATEGORY NAME]</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

146x195 mm (.63 x DPI)
Figure 3

146x195 mm (.63 x DPI)
Figure 4

A

B

C

Figure 4
146x195 mm (.63 x DPI)