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Fig. 1. Diagram of the proposed reinforcement learning framework.

one-shot manner with unlabelled datasets, which means the
episode length of the state-action pairs isT = 1. Each task
sample consists ofN waypoints having a feature dimension
of F , which represents the dimension of the workspace. The
task samples are fed to the deep neural network (DNN) model
parameterised with� . The DNN then returns the stochastic
policy for action sampling,� � (�js), where s denotes the
observed task sample. The allocation action is sampled from
the stochastic categorical distribution as (1).

a � � � (�js) (1)

Then the task planning module determines a detailed plan
based on the allocation action. The detailed plan guides the
agents to visit the assigned task waypoints in a speci�c order.
The outcomes are formed into closed-loop paths for the agents.
The reward of the reinforcement learning framework is set
to be the negative value of the total distance of the planned
paths, which is fed back to the agent for model optimisation
following policy gradient paradigm shown in (2), whereM is
a batch of training data, andR(s; a) is the reward.

ĝ =
1

jMj

X

s2M

r � log � � (a j s)R(s; a) (2)

III. E XPERIMENTS AND RESULTS

This section presents a set of experiments to demonstrate
the performance of the proposed framework with randomly
generated task sets. The task set represents a set of task
sampless, each of which containsN waypoints.

The work space is normalised as a1 � 1 square, which
consists of 50, 100, 150 generated waypoints. The number
of agents deployed for the simulated mission are set to be
3 and 4. The reinforcement learning framework features the
adaptability to the number of tasks waypointsN , which can
be regarded as a hyper-parameter. Due to the adaptability of
the designed framework, training only need to consider two
datasets: (1) 100-waypoint task assigned to 3 robots, (2) 100-
waypoint task assigned to 4 robots, with inference to be carried
out for other cases with different waypoints. Both training sets

N = 100, K = 4N = 150, K = 3N = 50, K = 3

Fig. 2. Three task sets and their corresponding inference results. The left
two task sets are inferred by a model withN = 100 andK = 3 as training
parameters, and the right one is inferred by a model withN = 100 and
K = 4 .

contain 1,000,000 task samples and are loaded with the batch
size of 32. Both RL loss and reward valus converged.

For the inference cases with 3 robots to allocate, two
different scenarios withN = 50 and N = 150 are tested.
For the case with 4 robots, the test scenario remains identical
to the training set, i.e.N = 100. Based upon allocation results,
the task planning can output paths representing sequences to
visit each waypoint as shown in Fig. 2.

IV. CONCLUSION

We proposed an end-to-end reinforcement learning frame-
work for multi-agent autonomous systems. The novel structure
coupled the task allocation and task planning stages within the
framework using a feedback mechanism. This feedback can
agilely adapt to the optimisation goals in different scenarios.
We also presented several simulation results revealing the
adaptability of the proposed framework.
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