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Fig. 1. Diagram of the proposed reinforcement learning framework. . o
Fig. 2. Three task sets and their corresponding inference results. The left

two task sets are inferred by a model wth= 100 andK =3 as training
. ) parameters, and the right one is inferred by a model With= 100 and
one-shot manner with unlabelled datasets, which means the 4.

episode length of the state-action pairsTis= 1. Each task
sample consists dll waypoints having a feature dimension
of F, which represents the dimension of the workspace. TR
task samples are fed to the deep neural network (DNN) modé or the inference cases with 3 robots to allocate, two
i ith. The DNN th h hastic . ) . :
parameterised wit © then returns the stoc aStICd|fferent scenarios witiN = 50 and N = 150 are tested.

olicy for action sampling, is), where s denotes the . ) L .
policy pling,  (js) ({ r the case with 4 robots, the test scenario remains identical
0

8ntain 1,000,000 task samples and are loaded with the batch
e of 32. Both RL loss and reward valus converged.

observed task sample. The allocation action is sampled fr M o . N .
the stochastic categorical distribution as (1). the training set, i.d\ = 100. Based upon allocation results,

the task planning can output paths representing sequences to
a (is) (1) Visit each waypoint as shown in Fig. 2.

Then the task planning module determines a detailed plan IV. CONCLUSION

based on the allocation action. The detailed plan guides thé/Ve proposed an end-to-end reinforcement learning frame-
agents to visit the assigned task waypoints in a speci ¢ ord&vork for multi-agent autonomous systems. The novel structure
The outcomes are formed into closed-loop paths for the agermgupled the task allocation and task planning stages within the
The reward of the reinforcement learning framework is s#tamework using a feedback mechanism. This feedback can
to be the negative value of the total distance of the plannedilely adapt to the optimisation goals in different scenarios.
paths, which is fed back to the agent for model optimisatidi¥e also presented several simulation results revealing the
following policy gradient paradigm shown in (2), whevk is adaptability of the proposed framework.

a batch of training data, ard(s; a) is the reward.
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