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In 2017 the first field-based map of the central Congo Basin peatlands revealed
them to be the world’s largest tropical peatland complex. However, peat was
only sampled in largely rain-fed interfluvial basins in northern Republic of the
Congo. Here we present the first extensive field surveys of peat in the
Democratic Republic of the Congo, which contains two-thirds of the estimated
peatland area, including from previously undocumented river-influenced
settings. We use data from both countries to compute the first spatial models of
peat thickness (mean 1.7 + 0.9 m) and peat carbon density (mean 1,712 + 634 Mg
C ha') for the central Congo Basin peatlands. We show that the peatland
complex covers 167,600 km2, 15% more than previously estimated; and that 29.0
Pg C is stored belowground in peat across the region (95% confidence interval,
26.3-32.2 Pg C). This is similar to the 2017 estimate, but with the lower
confidence interval having increased from just 6 Pg C, our analysis gives high
confidence of globally significant carbon stocks — approximately one-third of
the world’s tropical peat carbon - in the central Congo Basin. Only 8% of this
peat carbon lies within nationally protected areas, suggesting vulnerability to

future land-use change.

Peatlands cover just 3% of Earth’s land surface', yet store an estimated 600 Pg of
carbon (C)?3, approximately one-third of Earth’s soil carbon*. While most peatlands
are located in the temperate and boreal zones', recent research is revealing the
existence of tropical peatlands with high carbon densities’-%>%¢. Tropical peatlands are
vulnerable to drainage and drying, with subsequent fires resulting in large carbon

emissions from degraded peatlands, particularly in Southeast Asia®6-2.
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In the central depression of the Congo basin (the ‘Cuvette Centrale’) the only field-
verified peatland map to date reported that peat underlies 145,500 km? of swamp
forests, making this the world’s largest tropical peatland complex®. The field data used
in this estimate are from northern Republic of the Congo (ROC), yet two-thirds of the
central Congo Basin peatlands are predicted to be found in neighbouring Democratic
Republic of the Congo (DRC)®, sometimes hundreds of kilometres from existing field
data (Fig. 1a). Similarly, peat carbon stocks are estimated to be 30.6 Pg C, but the
lower confidence interval is just 6 Pg C (ref. 9). Thus, it is unclear if the central Congo
peatlands are truly as extensive or deep as suggested, and it is unclear whether they

store globally significant quantities of carbon.

Uncertainties are further compounded by a limited understanding of the processes
that determine peat formation in central Congo, particularly hydrology®'. Peat has
only been systematically documented in interfluvial basins in ROC®'!, where an
absence of annual flood waves®, modest domes'?, and remotely-sensed water-table
depths'? all suggest peatlands are largely rain-fed and receive little river water input.
However, peat is also predicted in other hydro-geomorphological settings?, including
what appear to be river-influenced regions close to the Congo River mainstem and
dendritic-patterned valley-floors along some of its left-bank tributaries® (Fig. 1a). These
areas of swamp forest are likely seasonally inundated' to depths up to 1.5 m during
the main wet season'®, suggesting seasonal river flooding and/or upland runoff as key
sources of water. Whether peat accumulates under these river-influenced conditions

is currently unknown.
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Here, we present the first in situ data on peat presence, thickness, and carbon density
(mass per unit area) from the central Congo Basin in DRC. We specifically investigated
the river-influenced swamp forests along the Congo River and its Ruki, Busira and
lkelemba tributaries that contrast with previous data collection from interfluvial basins?®
(Fig. 1a). Every 250 m along 18 transects, we recorded vegetation characteristics,
peat presence and thickness. We targeted a first group of ten transects in locations
highly likely to contain peat, to help test hypotheses (detailed in Supplementary Table
1) about the role of vegetation, surface wetness, nutrient status, and topography in
peat accumulation. To improve mapping capabilities, we sampled a second group of
eight transects specifically to test preliminary maps that gave conflicting results or
suspected false predictions of peat presence (detailed in Supplementary Table 1). We
combine these new field measurements from DRC with previous transect records in
ROC using the same protocols® and other ground-truth data (Supplementary Table 2)
to produce (i) a second-generation map of peatland extent, (ii) a first-generation map
of peat thickness, and (iii) a first-generation map of belowground peat carbon density
for the central Congo Basin. These maps enable us to compute the first well-
constrained estimate of total belowground peat carbon stocks in the world’s largest

tropical peatland complex.

Mapping peatland extent

We found peat along all ten hypothesis—testing transects in DRC that were predicted
to be peatlands®. Our new field data shows that extensive carbon-rich peatlands are
present in the forested wetlands of the DRC’s Cuvette Centrale, including in
geomorphologically distinct river-influenced regions predicted as peatlands by Dargie

et al.®.
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The best-performing algorithm (Maximum Likelihood classifier, based on its ability to
most accurately predict in regions with no training data; see Methods) was run 1,000
times on nine remotely-sensed datasets, using a random two-thirds of 1,736 ground-
truth datapoints each time (ED Fig. 1), giving a median total peatland area for the
central Congo Basin of 167,600 km? (95% ClI, 159,400-175,100 km?). This is 15%
higher than the previous estimate®. We found that 90% of all pixels that are predicted
as peat in the median map result were predicted as peat in at least 950 out of 1,000
runs (i.e., with = 95% probability, either as hardwood- or palm-dominated peat swamp
forest; Fig. 1b), showing that peat predictions are consistent across model runs and
thus are robust. Overall model performance, using the Matthews correlation coefficient

is 78.0% (95% Cl, 74.2-81.6%).

Comparing our field results with the original first-generation map® shows that of the
382 locations assessed across DRC, 77.7% were correctly classified as either being
peat swamp or not by the first-generation map®. Comparing our new map with the first-
generation map® shows large areas of agreement (white in Fig. 1c). However, we
predict areas of peat which were previously not mapped®, particularly around Lake
Mai-Ndombe and the Ngiri and upper Congo/Lulonga Rivers in DRC (red in Fig. 1c).
In addition, small areas of previously predicted peat deposits® are no longer predicted
by our new model, particularly along the Sangha and Likouala-Mossaka Rivers in ROC
(blue in Fig. 1c). These areas of difference are likely areas of high uncertainty and

should therefore be priorities for future fieldwork.

More formally, we compare our new second-generation map with the original map®

using balanced accuracy (BA), which is similar to Matthews correlation coefficient but
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better suited for comparison across different datasets'®. For our new map, median BA
is 91.9% (95% ClI, 90.2-93.6%), compared with 89.8% (86.0-93.4%) for the first-
generation map®. The substantially smaller BA interval indicates improved confidence
in our new peatland map, despite only a small increase in median BA. This is likely
due to the effect of our larger sample size being partly offset by an increase in its
spatial extent and ecological diversity, particularly data from the Congo River region,
where all algorithms that we tested are underperforming (Supplementary Table 3).
Overall, our in situ data from DRC, including from river-influenced settings that are
being reported for the first time, confirm the central Congo Basin peatlands as the
world’s largest tropical peatland complex, and that DRC and ROC are the second and
third most important countries in the tropics for peatland area after Indonesia®,

respectively (ED Table 1).

Mapping peat thickness and carbon density

We measured peat thickness at 238 locations in DRC, finding a mean (+ s.d.)
thickness of 2.4 (+ 1.6) m and a maximum of 6.4 m, showing that river-influenced
peatlands can attain similar peat thickness as rain-fed interfluvial basins reported in
ROC? (Table 1). There is no uniform increase in peat thickness with distance from the
peatland margin (ED Fig. 3), with linear regression being only a modest fit (R2= 41.0%;
RMSE = 1.21 m). Thus, we developed a Random Forest (RF) regression to estimate
peat thickness, using 463 thickness measurements across both countries. Our final
RF model includes four predictors after variable selection (see Methods): distance
from the peatland margin, precipitation seasonality, climatic water balance
(precipitation minus potential evapotranspiration), and distance from the nearest

drainage point (R? = 93.4%; RMSE = 0.42 m). The RF model outperforms multiple
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linear regression with interactions using the same four variables (adj-R? = 73.6%,

RMSE = 0.80 m; ED Fig. 4).

Spatially, we predict thick peat deposits in the centres of the largest interfluvial basins
(far from peatland margins), and in smaller, river-influenced valley-floor peatlands
along the Ruki/Busira Rivers (Fig. 2a). The river valley’s thick deposits are most likely
driven by greater climatic water balance and lower precipitation seasonality in the
eastern part of the Cuvette Centrale region (ED Fig. 5), plus potentially greater water
inputs from nearby higher ground, which offsets the shorter distances from peatland
margins. Our modelled results are consistent with our field data, as the two deepest
peat cores are from the interfluvial Centre transect in ROC (5.9 m), and the river-
influenced Bondamba transect on the Busira River in DRC (6.4 m). Overall, mean (
s.d.) modelled peat thickness (1.7 £ 0.9 m) is lower than our field measurements (2.4
+ 1.5 m; Table 1), as expected given our linear transects, which oversample deeper
peat at the centre relative to the periphery in approximately ovoid peatlands. Areas of
high uncertainty in peat thickness occur where distance from the margin is uncertain
(Fig. 2b). Our results contrast strongly with an “expert system approach” that assigned
peat thickness values based on hydrological terrain relief alone and estimated a
thickness of 6.5 + 3.5 m for the central Congo Basin peatlands'’, compared to our

field-derived estimate of 1.7 £ 0.9 m (Fig. 2a).
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After distance from the margin, precipitation seasonality and climatic water balance
are the most important predictors of peat thickness in the RF model, reflecting the
relative importance of rainfall inputs in peat accumulation in central Congo. This
appears to differ from smaller-scale assessments in temperate'® or other tropical
peatlands'®, where surface topography (elevation and slope) are primary predictors of
peat thickness. However, this is potentially merely an artefact of the spatial scale of
the studies, as climate only varies over large scales. Alternatively, the relatively low
rainfall in the central Congo Basin (~1700 mm yr'), compared to other tropical
peatland regions (e.g., ~2,500-3,000 mm yr' in Northwest Amazonia and Southeast
Asia)®2%, may mean that peat thickness is more strongly related to climate in central
Congo, as it implies greater exposure to (seasonal) drought conditions that may cross

thresholds that negatively impact peat accumulation rates.

Peat bulk density measured across the central Congo Basin is 0.17 + 0.06 g cm™
(mean £ s.d.; n = 80 cores), and mean carbon concentration is 55.7 + 3.2 % (n = 80;
56.6 [+ 4.5] % for the 22 well-sampled cores). While peat bulk density is significantly
lower in largely river-influenced sites than in rain-fed interfluvial basins (P < 0.01), no
significant difference between these peatland types is found for either peat carbon

concentration or carbon density (mass per unit area; Table 1).

We used the peat thickness, bulk density, and carbon concentration measurements to
construct a linear peat thickness-carbon density regression (ED Fig. 6). We applied
this regression model to our peat thickness map to spatially model carbon stocks per
unit area (Fig. 3a). Modelled belowground peat carbon density for the central Congo

Basin is 1,712 + 634 Mg C ha™', similar to the field-measured mean of 1,741 + 1,186

11
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Mg C ha' (mean + s.d., n = 80; Table 1). This carbon density is approximately nine
times the mean carbon stored in aboveground live tree biomass of African tropical
moist forests (~198 Mg C ha")?'. Spatial patterns of peat carbon density (Fig. 3a) and

uncertainty (Fig. 3b) follow similar patterns as peat thickness (Figs. 2a and 2b).

Estimating basin-wide peat carbon stocks

Median estimated total peat carbon stock in the central Congo Basin is 29.0 Pg (95%
Cl, 26.3-32.2; ED Fig. 7a), based on bootstrapping the area estimate and peat
thickness-carbon density regression. This is similar to the median 30.6 Pg C reported
by Dargie et al.%, but their lower 95% confidence interval was 6.3 Pg, which our study
increases to 26.3 Pg, because our larger dataset allows a spatial modelling approach
so that we can sum carbon density across all peat pixels. Therefore, the possibility of
low values of carbon storage in the central Congo peatlands can now confidently be

discarded.

Our new results show that the central Congo Basin peatlands are a globally important
carbon stock, harbouring approximately one-third of all the carbon stored in the world’s
tropical peatlands®®. About two-thirds of this peat carbon is in DRC (19.6 Pg C; 95%
Cl, 17.9-21.9), and one-third in ROC (9.3 Pg C; 95% Cl, 8.4-10.2; ED Table 1), which
is equivalent to approximately 82% and 238% of each country’s aboveground forest
carbon stock, respectively??. The high peat carbon stocks are found across several
administrative regions in both countries, with the largest stocks in DRC’s Equateur
province (ED Table 1). Sensitivity analysis shows that uncertainty in total peat carbon

stock is now mostly driven by uncertainty in peatland area (ED Fig. 7b).

12
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Because the central Congo peatlands are relatively undisturbed?324, our new maps of
peatland extent, thickness and carbon density form a baseline description for the
decade 2000-2010, given the remotely-sensed data used. Today, the peatlands of the
central Congo Basin are threatened by hydrocarbon exploration, logging, palm oil
plantations, hydroelectric dams and climate change?325. While the peatlands are
largely within a UN Ramsar Convention transboundary wetland designation, we
estimate that only 2.4 Pg C in peat, just 8% of total stocks, currently lies within formal
national-level protected areas (ED Fig. 8; ED Table 2). Meanwhile, logging, mining, or
palm oil concessions together overlie 7.4 Pg C in peat, or 26% of total stocks (ED Fig.
8; ED Table 2), while hydrocarbon concessions cover almost the entire peatland

complex?3:25,

Keeping the central Congo Basin peatlands wet is vital to prevent peat carbon being
released to the atmosphere. The identification of extensive river-influenced peatlands
suggests that there is more than one geomorphological setting where peat is found in
the central Congo Basin. Further work is required to understand both the sources and
flows of water in these river-influenced peatlands, specifically the relative contributions
of water from precipitation, riverbank overflow, and run-off from higher ground to peat
formation and maintenance. Given the current areas of formal protection of peatlands
are largely centred around interfluvial basins, we suggest that additional protective
measures will be needed to safeguard the newly identified river-influenced peatlands
of the central Congo Basin. Keeping the central Congo peatlands free from
disturbance would also help protect the rich biodiversity, including forest elephants,
lowland gorillas, chimpanzees and bonobos?32627 that form part of this globally

important, but threatened ecosystem.

14
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METHODS

Field data collection

Fieldwork was conducted in DRC between January 2018 and March 2020. Ten
transects (4-11 km long) were installed, identical to Dargie et al.’s approach?®, in
locations that were highly likely to be peatland. These were selected to help test
hypotheses about the role of vegetation, surface wetness, nutrient status, and
topography in peat accumulation (Fig. 1a; Supplementary Table 1). A further eight
transects (0.5-3 km long) were installed to assess our peat mapping capabilities (Fig.

1a; Supplementary Table 1).

Every 250 m along each transect, landcover was classified as one of six classes:
water, savanna, terra firme forest, non-peat forming seasonally inundated forest,
hardwood-dominated peat swamp forests, or palm-dominated peat swamp forests.
Peat swamp forest was classified as palm-dominated when > 50% of the canopy,
estimated by eye, were palms (commonly Raphia laurentiior Raphia sese). In addition,
several ground-truth points were collected at locations in the vicinity of each transect

from the clearly identifiable landcover classes water, savanna, or terra firme forest.

Peat presence/absence was recorded every 250 m along all transects, and peat
thickness (if present) was measured by inserting metal poles into the ground until the
poles were prevented from going any further by the underlying mineral, identical to
Dargie et al.’s pole-method®. Additionally, a core of the full peat profile was extracted

every kilometre along the ten hypothesis-testing transects, if peat was present, with a
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Russian-type corer (52-mm stainless steel Eijkelkamp model); these 64 cores were

sealed in plastic for laboratory analysis.

Peat thickness laboratory measurements

Peat was defined as having an organic matter (OM) content of = 65% and a thickness
of 2 0.3 m (sensu Dargie et al.®). Therefore, down-core OM content of all 64 cores was
analysed to measure peat thickness. The organic matter content of each 0.1-m thick
peat sample was estimated via Loss-On-Ignition (LOI), whereby samples were heated
at 550°C for 4h. The mass fraction lost after heating was used as an estimate of total
OM content (% of mass). Peat thickness was defined as the deepest 0.1-m with OM
= 65%, after which there is a transition to mineral soil. Samples below this depth were
excluded from further analysis. Rare mineral intrusions into the peat layer above this
depth, where OM < 65% for a sample within the peat column, were retained for further

analysis. In total, 60 out of 64 collected cores had LOI-verified peat thickness = 0.3 m.

The pole-method used to estimate peat thickness in the field was calibrated against
LOl-verified measurements, by fitting a linear regression model between all LOI-
verified and pole-method peat thickness measurements sampled at the same location
(93 sites across ROC and DRC, including 37 from ref. °). Three measurements from
DRC with a Cook’s distance > 4x the mean Cook’s distance were excluded as
influential outliers. Mean pole-method offset was significantly higher along the DRC
transects (0.94 m) than along those in ROC (0.48 m; P < 0.001), due to the presence
of softer alluvium substrate in river-influenced sites in DRC. We therefore added this
grouping as a categorical variable to the regression. The resulting model (adj-R? =

0.95, P <0.001; ED Fig. 2) was used to correct all pole-method measurements in each
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group for which no LOIl-verified thickness was available: corrected peat thickness = -
0.1760 + 0.8626 x (pole-method thickness) — 0.3284 x (country), with country dummy

coded as: ROC (0) and DRC (1).

Carbon density estimates

To calculate carbon density (mass per unit area), estimates of carbon storage in each
0.1-m thick peat sample (thickness x bulk density x carbon concentration) were
summed to provide an estimate of total carbon density per core (in Mg C ha™),
identical to Dargie et al.®. We estimated carbon density for 80 peat cores (OM = 65%,
thickness = 0.3 m), located every other kilometre along 18 transects, including 37
cores from the ten transects used for hypothesis testing in DRC, and 43 cores from

transects in ROC?.

Peat thickness of the 80 cores was obtained by laboratory LOI. To estimate peat bulk
density, every other 0.1-m down-core, samples of a known peat volume were weighed
after being dried for 24h at 105°C (n = 906). Bulk density (in g cm™) was then
calculated by dividing the dry sample mass (in g) by the volume of the sample taken
from the peat corer dimensions (in cm3). Within each core, linear interpolation was
used to estimate bulk density for the alternate 0.1m-thick samples of the core that were

not measured.

For total carbon concentration (%), only the deepest core per transect, plus additional
deep cores from the Lokolama transect (1) in DRC and Ekolongouma transect (3) in
ROC (22 in total, 11 from DRC and 11 from ROC?®) were sampled down-core. Every

other 0.1-m thick sample was measured using an elemental analyser (Elementar Vario
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MICRO Cube with thermal conductivity detection for all cores, except those from
Boboka, Lobaka and Ipombo transects, which were analysed using Sercon ANCA
GSL with isotope-ratio mass spectrometer detection, due to COVID-19 disruption). All
samples (n = 422) were pre-dried for 48h at 40°C and ground to < 100 um using a
MM301 mixer mill. Again, linear interpolation was used within each core for the

alternate samples that were not measured.

The remaining 58 cores had less-intensive carbon concentration sampling. We
therefore interpolated the carbon concentration for each 0.1-m thick sample, because
well-sampled cores show a consistent pattern with depth: an increase to a depth of
about 0.5 m, followed by a long, very weak decline, and finally a strong decline over
the deepest approximately 0.5 m of the core®. We used segmented regression on the
22 well-sampled cores (segmented package in R, version 1.3-1) to parameterize the
three sections of the core, using the means of these relationships to interpolate carbon

concentrations for the remaining 58 cores, following Dargie et al.®.

To estimate carbon density from modelled peat thickness across the basin, we
developed a regression model between peat thickness and per-unit-area carbon
density using the 80 sampled cores. We compared linear regressions for normal,
logarithmic-, and square root-transformed peat thickness, selecting the model with
lowest AICc and highest R2. A linear model with square root-transformed peat
thickness was found to provide the best fit (R? = 0.86; P < 0.001; ED Fig. 6).
Bootstrapping was applied (boot package in R, version 1.3-25) to assess uncertainty

around the regression.
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Modelling peatland extent

Satellites cannot detect peat directly. We therefore mapped vegetation and used field-
based associations between peat and vegetation to infer peat presence®?®. Five
landcover classes were used for the purpose of peatland mapping: water, savanna,
palm-dominated peat swamp forest, hardwood-dominated peat swamp forest, and
non-peat forming forest. In this classification, field recordings of non-peat forming
seasonally inundated forest (< 30 cm thickness of = 65% OM) were grouped together
with field recordings of terra firme forest, which also does not form peat, to form the
non-peat forming forest class. Our field recordings of hardwood- or palm-dominated
peat swamp forest, by definition, consist of all forest sites that form peat, including any

seasonally inundated forest that forms peat (= 30 cm of = 65% OM).

A total of 1,736 ground-truth datapoints was used: 172 in water, 476 in savanna, 632
in non-peat forming forest (97 non-peat forming seasonally inundated forest, and 535
terra firme forest), 188 in palm-dominated peat swamp forest, and 268 in hardwood-
dominated peat swamp forest (ED Fig. 1). This data comes from eight sources
(Supplementary Table 2). First, ground-truth locations collected for this study using a
GPS (Garmin GPSMAP 64s) at all transect sites in DRC for which a landcover class
was determined (382 points). Second, published ground-truth data from nine transects
in ROC (292 points)®. Third, 299 GPS locations of known savanna and terra firme
forest landcover classes from archaeological research databases across the
basin?®30. Fourth, 191 GPS locations from permanent long-term forest inventory plots
of the African Tropical Rainforest Observation Network (AfriTRON), mostly from terra
firme forest®!, retrieved from the ForestPlots database3233, Fifth, 229 GPS datapoints

from terra firme forest or savanna locations in and around Lomami National Park (pers.
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comm., R.B., G.I. and A. C-S.). Sixth, 24 published savanna datapoints in and around
Lomami NP34, Seventh, 23 published locations of savanna, terra firme forest, palm- or
hardwood-dominated peat swamp forest in DRC''. Eighth, 296 datapoints from
Google Earth for unambiguous savanna and water sites (middle of lakes or rivers),

distributed across the region.

We used nine remote sensing products to map peat-associated vegetation
(Supplementary Figure 1). Eight of these are identical to those used by Dargie et al.®:
three optical products (Landsat 7 ETM+ bands 5 [SWIR 1], 4 [NIR], and 3 [Red]); three
L-band Synthetic Aperture Radar products (ALOS PALSAR HV, HH, and HV/HH); and
two topographic products (SRTM DEM [Digital Elevation Model] void-filled with ASTER
GDEM v2 data, and slope; acquisition date 2000). To this, we added a HAND-index
(Height Above Nearest Drainage point), which significantly improved model
performances (median Matthews correlation coefficient [MCC]: 79.7%, compared with

77.8% or 75.6% for just DEM or HAND alone, respectively; P < 0.001).

HAND was derived from the SRTM DEM with Clubb et al.’s algorigthm?3, using the
HydroSHEDS global river network at 15s resolution as reference product®®. Alternative
NASADEM- or MERIT DEM-derived3’-3° combinations of DEM, HAND and slope were
tested with an initial subset of data in R, while keeping all other remote sensing
products the same (median MCC: 79.0% and 75.1%, respectively), but did not
significantly improve model performance compared with  SRTM-derived products

(80.9% median MCC; P < 0.001).

27



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

The Landsat bands are pre-processed, seamless cloud-free mosaics for ROC
(composite of three years, 2000, 2005, 2010) and DRC (composite of six years, 2005-
2010)#°. These mosaics performed better than more recent basin-wide automated
cloud-free Sentinel-2 mosaics that we developed (bands 5, 8A, 11; composite of five
years, 2016-2020), likely because they contain less directional reflectance artefacts
(the median MCC of 80.9% for the pre-processed Landsat mosaics is significantly

higher than the 78.1% for our Sentinel-2 mosaics, P < 0.005).

The ALOS PALSAR radar bands are mosaics of mean values of annual JAXA
composites for the years 2007-2010 (ref. °). More recent radar data (ALOS 2-PALSAR
2 HV, HH, HV/HH; 2015-2017) did not significantly improve model performances
(median MCC 80.9% and 80.6%, respectively; P < 0.01). All remote sensing products

were resized to a common 50 m grid, using a cubic convolution resampling method.

We then tested which classification algorithm to use, as more sophisticated algorithms
might improve overall accuracy against our training dataset, but might also reduce
regional accuracy of the map in areas far from test data, critical in this case given large

areas of the central Congo peatland region are unsampled.

Three supervised classification algorithms were tested in order of increasing
complexity: Maximum Likelihood (ML), Support Vector Machine (SVM) and Random
Forest (RF). We assessed each classifier using both a random and spatial cross-
validation (CV) approach*'-*3, Random CV was implemented using stratified two-

thirds Monte Carlo selection, whereby we 1,000 times randomly selected two-thirds of
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all datapoints per class as training data, to be evaluated against the remaining one-

third per class as testing data.

Spatial CV was implemented by grouping all transects datapoints in four distinct hydro-
geomorphological regions: (i) transects perpendicular to the blackwater Likouala-aux-
Herbes River (n = 179 datapoints); (ii) transects perpendicular to the white-water
Ubangi River (n = 113); (iii) transects perpendicular to the Congo River, intermediate
between black and white-water (n = 123); and (iv) transects perpendicular to the
blackwater Ruki, Busira and lkelemba Rivers, plus other nearby transects (collectively
named the Ruki group; n = 258). To each group we added ground-truth datapoints
from other non-transect data sources (Supplementary Table 2) that belonged to the
same map regions (n = 82, 27, 20, 113, respectively). We then tested 1,000 times how
well each classifier performs in each of the four regions, when trained only on a
stratified two-thirds Monte Carlo selection of the remaining datapoints (i.e., datapoints
from the three other regional transect groups, plus ground-truth datapoints not
associated with or near any transect group (n = 821). For example, the savanna and
terra firme forest datapoints in Lomami National Park in DRC which are far (> 300 km)

from any transect group.

Model performance was based on Matthews correlation coefficient (MCC) for binary
peat/non-peat predictions (hardwood- and palm-dominated peat swamp forest classes
combined into one peat class; water, savanna and non-peat forming forest combined
into one non-peat class). We compared MCC, rather than popular metrics such as
Cohen’s kappa, F1-score or accuracy, because it is thought to be the most reliable

evaluation metric for binary classifications*44°. We also computed balanced accuracy
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(BA) from random cross-validation to compare with the first-generation map. While
less robust than MCC, BA is independent of imbalances in the prevalence of
positives/negatives in the data, thus allowing better comparison between classifiers
trained on different datasets'®. The best estimate of each accuracy metric or area
estimate per model or region is the median value of 1,000 runs, alongside a 95%

confidence interval.

In the case of SVM and RF, random CV models were implemented in Google Earth
Engine (GEE)*® using all nine remote sensing products. However, because ML is
currently not supported by GEE, random CV with this algorithm was implemented in
IDL-ENVI software (version 8.7-5.5), using a principal component analysis (PCA) to
reduce the nine remote sensing products to six uncorrelated principal components to
reduce computation time. All spatial CV models were implemented in R (superClass
function from the RStoolbox package, version 0.2.6), with PCA also applied in the case
of ML only. All RF models were trained using 500 trees, with three input products used
at each split in the forest (the default, the square root of the number of variables). All
SVM model were implemented with a radial basis function kernel, with all other

parameters set to default values.

Comparison of the ML, SVM and RF models with Dargie et al.’s model performance®,
using balanced accuracy from random cross-validation, shows improved results only
in the case of the ML classifier (Supplementary Table 3). Comparing MCC using the
spatial CV approach, we found that the ML algorithm is also most transferable to
regions for which we lack training data. While RF gives slightly better MCC with

random CV, when no regions are omitted, spatial CV shows particularly poor predictive

30



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

performance of this algorithm for the Congo and Ruki regions, when trained on data
from the other regions. SVM has lowest MCC of all three classifiers with random CV,

and also performs worst of all three in the Congo region with spatial CV.

Additionally, applying spatial CV to the largely interfluvial basin region (ROC transects;
n = 401), and the largely river-influenced region (DRC transects; n = 540), also shows
RF performs poorly (Supplementary Table 3). This further supports selecting the ML
algorithm to produce our second-generation peat extent map of the central Congo
peatlands. The final peatland extent estimate is then obtained as the median value
(alongside 95% confidence interval) out of the combined hardwood- and palm-
dominated peat swamp forest extent from 1,000 ML runs, each time trained with two-

thirds of the ground-truth data.

Modelling peat thickness

A map of distance from the peatland margins was developed in GEE using the median
ML peat probability map, i.e. the ML map with a 50% peat probability threshold (> 500
hardwood- or palm-dominated peat swamp predictions out of 1,000 runs). For each
peat pixel in this binary classification, a cost function was used to calculate the
Euclidean distance to the nearest non-peat pixel, after speckle and noise were
removed using a 5x5 squared-kernel majority filter. Using this distance map, transects
were found to have markedly different relationships between peat thickness and
distance from the peatland margin, i.e. different slopes (n = 18, P < 0.001, ED Fig. 3).
The modest linear fit (R = 41.0%; RMSE = 1.21 m) cautions against a uniform

regression between peat thickness and distance from the margin across the basin.
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Instead, we developed a spatially-explicit Random Forest regression model to predict
peat thickness, derived from 14 remotely-sensed potential covariates that may explain
variation in peat thickness. These 14 variables included the nine optical, radar and
topographic products used in the peatland extent analysis, as well as distance from
the peatland margin, distance from the nearest drainage point (same reference
network as for HAND)3®, precipitation seasonality*’, climatic water balance (mean
annual precipitation*” minus mean annual potential evapotranspiration*®), and live
woody aboveground biomass*. Ten of these variables were found to be significantly
correlated with peat thickness (Kendall's 1, P < 0.01): all three optical bands, all three
radar bands, distance from the peatland margin, distance from the nearest drainage
point, precipitation seasonality, and climatic water balance. Applying stepwise
backward selection, we tested combinations of these ten predictors by each time
dropping one predictor out of the model in order from low to high variable importance,
selecting as the best model the one with highest median R? and lowest median root
mean square error (RMSE) obtained from 100 random (two-thirds) cross-validations.
The importance of each variable was assessed by calculating Mean Decrease Impurity
(MDI), the total decrease in the residual sum of squares of the regression after splitting
on that variable, averaged over all decision trees in the random forest. Median MDI
was calculated for each variable based on 100 random (two-thirds) cross-validations

of the overall model containing all ten significant predictors.

The best model contained four predictors: distance from the peatland margin, distance

to the nearest drainage point, climatic water balance (all positively correlated with peat

thickness; Kendall's 1 coefficient = 0.49, 0.15 and 0.13, respectively; P < 0.001 for all),
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and precipitation seasonality (negatively correlated with thickness; Kendall's 1=-0.11,

P < 0.01), see ED Figure 5 for their spatial variability.

The RF regression was implemented in GEE with 500 trees and all other parameters
set to default values. Predictor variables were resampled to 50 m resolution. As
training data, we included all LOl-verified and corrected pole-method thickness
measurements that fell within the masked map of > 50% peat probability (n = 463),
including thickness > 0 and < 0.3 m from non-peat sites that could improve predictions

of shallow peat deposits near the margins (n = 12).

Our final RF model (R? = 93.4%, RMSE = 0.42 m) had consistently smaller residuals
compared to a multiple linear regression model containing the same four predictors
with interaction effects (adj-R? = 73.6%, RMSE = 0.80 m; ED Fig. 4). It also performed
better when testing out-of-sample performance, using 100 random two-thirds cross-
validations of training data (median R? = 82.2%, RMSE = 0.68 m; and median adj-R?

= 73.6%, RMSE = 0.85 m; for RF model and multiple linear regression, respectively).

For uncertainty on our thickness predictions, we first estimated area uncertainty by
creating 100 different maps of distance from the peat margin, by randomly selecting
(with replacement) a minimum peat probability threshold > 0% and < 100%, removing
speckle and noise, and re-calculating the closest distance to the nearest non-peat
pixel. We then combined the 100 distance maps each time with the three other
selected predictors (precipitation seasonality, climatic water balance, distance from
nearest drainage point) as input in a RF model to develop 100 different peat thickness

maps. For these model runs, we included all available thickness measurements (> 0
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m) that fell within each specific distance map. Each output map was masked to an
area = 0.3 m thickness, consistent with our peat definition. A map of median peat
thickness (Fig. 3a) and relative uncertainty (+ half the width of the 95% CI as
percentage of the median; Fig. 3b) was then calculated for each pixel based on the

100 available thickness estimates.

Carbon stock estimates

We mapped carbon density across the central Congo Basin in GEE, by applying 20
bootstrapped thickness-carbon regressions that were normally distributed around the
best fit (ED Fig. 6) to the 100 peat thickness maps from the RF regression model,
generating a map of median carbon density out of 2,000 estimates (Fig. 3a), together
with relative uncertainty (z half the width of the 95% CI as percentage of the median;

Fig. 3b).

Total peat carbon stocks were computed in GEE by summing carbon density (in Mg
ha') over all 50 m grid squares defined as peat. To assess uncertainty around this
estimate, we again combined the 100 peat thickness maps (i.e., uncertainty from area
and thickness), with 20 bootstrapped thickness-carbon regressions (i.e., uncertainty
from carbon density, including bulk density and carbon concentration). We thus
obtained 2,000 peat carbon stock estimates for the total central Congo Basin peatland

complex, which were used to estimate the mean, median and 95% CI (ED Fig. 7a).

Regional carbon stock estimates were similarly obtained for each sub-national
administrative region (departments in ROC and provinces in DRC; ED Table 1), as

well as national-level protected areas (national parks and nature/biosphere/community
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reserves)® and logging®'-%2, mining%3%* and palm oil®>-%” concessions (ED Fig. 8; ED
Table 2). As hydrocarbon concessions cover almost the whole peatlands area®325,

they cover almost 100% of the central Congo peat carbon stocks.

Sensitivity analysis was performed by bootstrapping either the area, thickness, or
carbon density component, whilst keeping the others constant (ED Fig. 7b). For area,
we bootstrapped 100 randomly selected peatland area estimates; for thickness, 100
randomly selected two-thirds subsets of all thickness measurements; for carbon
density, 20 normally distributed regression equations from the bootstrapped thickness-

carbon relationship.

DATA AVAILABILITY
All map results from this study are available for download as raster files from

https://congopeat.net/maps/. The supporting ground-truth data, peat thickness

measurements, and carbon density measurements are available from

https:/figshare.com/s/babdc132882901883812. The remote sensing datasets used

are available for download from https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf e.htm

(ALOS PALSAR and ALOS-2 PALSAR-2 25 m HV and HH data), http://osfac.net/

(OSFAC ROC and DRC 60 m Landsat ETM+ bands 5, 4 and 3 mosaics), and

http://earthexplorer.usgs.gov/ (SRTM DEM 1-arc second and ASTER GDEM v2 1-arc

second data).
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CODE AVAILABILITY

The IDL-ENVI script to run the Maximum Likelihood classification model is available

from hiips://figshare.com/s/alb26aa7f31bd8bb93f7. The scripts to run the peat

thickness model and carbon stock calculations are available on Google Earth Engine:

https://code.earthengine.google.com/?accept repo=users/qybijc/Central Congo Pea

tlands 2022.
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Extended Data Figure 1 | Spatial overview of ground-truth datapoints (n = 1,736)
across the central Congo basin study area, grouped by six landcover classes
(a.-f.). Only the palm-dominated and hardwood-dominated peat swamp forest classes
(e., £) are associated with the presence of peat. Terra firme forest (€.) and non-peat
forming seasonally inundated forest (d.) are combined into a single non-peat forming
forest class when running classification models. The RGB baselayer of Landsat ETM+
(SWIR 1, NIR and Red bands) reflects different forest types (shades of green), open

savanna (pink), agricultural land (yellow) and open water (blue).
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Extended Data Figure 2 | Relationship between peat thickness estimated using
the pole-method (in m) and laboratory-verified peat thickness using Loss-On-
Ignition (LOI; in m) across four regional transect groups. Mean pole-method offset
is significantly higher in the largely river-influenced transects in DRC (0.94 m, blue
line) than in mostly interfluvial basin transects in ROC (0.48 m, red line; P < 0.001).
No significant differences were found between either the Likouala-aux-Herbes and
Ubangi transects in ROC, or between the Congo and Ruki transects in DRC. Best-
fitting line: Corrected peat thickness = -0.1760 + 0.8626 x (pole-method thickness) —
0.3284 x (country); n = 93, adj-R?= 0.95; P < 0.001. Country is dummy coded as: ROC
(0) and DRC (1). Shaded grey shows 95% confidence intervals. Outliers (n = 3) with

> 4x the mean Cook’s distance are excluded from the analysis.
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Extended Data Figure 3 | Relationship between field-measured peat thickness
(LOI + corrected pole-method measurements; in m) and distance from the
peatland margin (km). Distance from the peatland margin is calculated as the
shortest distance to a non-peat pixel in any direction, based on the median Maximum
Likelihood map of peatland extent (> 50% probability threshold). Transects are
ordered by increasing regression slope (in m km'; upper left corner of each panel),
with colours indicating the four transect regions. Note that the horizontal axes are
different for each panel. Shaded grey shows 95% confidence intervals for each

regression.
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Extended Data Figure 4 | Relationship between observed and predicted peat
thickness (in m). a. Multiple linear regression model with interaction effects (adj-R? =
73.6%, RMSE = 0.80 m). b. Random Forest regression model (R? = 93.4%, RMSE =
0.42 m). Both models are trained and validated against 463 datapoints and include the
same four predictor variables: distance from the peatland margin, precipitation
seasonality, climatic water balance, and distance from the nearest drainage point.
Both panels show 277 aggregated means only to account for duplicates in observed

values. The black lines indicate the 1:1 relationship.
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Extended Data Figure 5 | Spatial variability of the four predictor variables
retained in the final Random Forest regression model of peat thickness. a.
Distance from the peatland margin (km). b. Precipitation seasonality (coefficient of
variation). ¢. Climatic water balance (mm). d. Distance from the nearest drainage point
(km). All maps have been masked to the smoothed median Maximum Likelihood
peatland extent (> 50% peat probability). Black lines represent national boundaries;

grey lines represent sub-national administrative boundaries.
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Extended Data Figure 6 | Relationship between peat thickness (in m) and carbon
density (in Mg C ha'). Dots are coloured by transect region. Best-fitting line: Carbon
density = -942.4 + 2088.4 x SgRt (peat thickness); n = 80, R? = 0.86; P < 0.001.
Shaded grey shows 95% confidence interval. 20 bootstrapped regressions, normally
distributed around the best-fitting line, were used to include this uncertainty when

scaling peat thickness to carbon estimates.
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Extended Data Figure 7 | Distribution and sensitivity of peat carbon stock
estimates in the central Congo Basin peatland complex. a. Distribution of 2,000
peat carbon stock estimates, obtained by combining 100 random peat probability
thresholds in the peatland extent model and computing the associated RF peat
thickness map, with 20 normally-distributed equations from the bootstrapped peat
thickness-carbon density regression. Median, 29.0 Pg C; mean, 29.1 Pg C; 95% Cl,
26.3-32.2 Pg C. b. Sensitivity analysis by in turn bootstrapping peat area estimates
(n = 100), peat thickness measurements (n = 100), or carbon density regressions (n =
20), whilst keeping the other components constant. Black lines show the median,
boxes show the upper and lower quartiles, and the vertical lines show maximum and

minimum values. Dots represent potential outlying values.
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Extended Data Figure 8 | Distribution of national protected areas and industrial
concessions across the central Congo Basin peatlands. Base map shows
belowground peat carbon (shaded grey; Fig. 3a), overlaid with protected areas at
national-level (national parks and nature/biosphere/community reserves)®°, or logging
concession®'-%2 mining concessions®%4, and palm oil®>-%" concessions. Black lines
represent national boundaries; grey lines represent sub-national administrative

boundaries.

47



Region Peatland area Peat thickness Peat carbon density Peat carbon stock
(km?) (m) (Mg C ha) (Pg C)

Republic of the Congo (ROC)

Likouala 28,636 1.9+1.0 1,815 £ 740 5.4 (4.8 -5.8)

Cuvette 17,757 1.6+0.8 1,626 + 624 29 (2.7-3.2)

Sangha 7,465 1.1+£04 1,218 £ 325 0.9 (0.8-1.0)

Plateaux 1,183 0.9+0.1 1,059 + 162 0.1 (0.1-0.1)

Total ROC 55,072 1.7+0.9 1,653 + 687 9.3(8.4-10.2)

Democratic Republic of the Congo (DRC)

Equateur 58,276 19409 1,822 + 658 10.7 (9.9 - 11.7)
Mai-Ndombe 29,825 18407 1,752 + 548 52 (4.8-57)
Tshuapa 11,628 1.9+05 1,917 +343 2.1(1.8-2.6)
Sud-Ubangi 7,557 11404 1,243 +370 1.0 (0.8-1.2)
Mongala 5,329 12404 1,259 + 360 0.6 (0.5-0.8)
Total DRC 113,201 1.8+0.8 1,740 + 604 19.6 (17.9 - 21.9)

ROC and DRC combined

Total central Congo 167,648 (159,378 1.7+0.9 1,712 + 634 29.0 (26.3 - 32.2)
Basin peatlands -175,079)

Extended Data Table 1 | Estimated peatland area, peat thickness, carbon density
and carbon stocks per administrative region. All values are regional means (+ s.d.)
of the median peat thickness and carbon density maps; or median estimates (with 95%
confidence interval in parentheses) for total peatland area and peat carbon stock. For
regional area estimates without confidence interval, the median peatland map (> 50%
probability) was used. Sub-national administrative regions are provinces (DRC) or
departments (ROC). Marginal peat predictions in other administrative regions (Kasai,
Tshopo, Kwilu, Nord-Ubangi in DRC; Cuvette-Ouest in ROC) are included in total

country estimates, but not listed separately.
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Region Peatland area Peat thickness Peat carbon density Peat carbon stock
(km?) (m) (Mg C ha™) (Pg C)

Republic of the Congo (ROC)

Total in logging / mining / 13,539 (25%) 1.2+0.6 1,299 * 451 2.0 (22%)

palm oil concessions

Total in national protected 6,402 (12%) 1.4+0.6 1,463 +478 1.0 (11%)

areas

Democratic Republic of the Congo (DRC)

Total in logging / mining / 29,712 (26%) 1.6+0.7 1,671 £ 567 5.4 (28%)
palm oil concessions

Total in national protected 8,105 (7%) 1.5+0.8 1,552 + 592 1.4 (7%)
areas

ROC and DRC combined

Total in logging / mining / 43,250 (26%) 1.5+0.7 1,551 + 560 7.4 (26%)
palm oil concessions
Total in national protected 14,511 (9%) 1.5+£0.7 1,513 + 547 2.4 (8%)

areas

Extended Data Table 2 | Estimated peatland area, peat thickness, carbon density
and carbon stocks in industrial concessions and protected areas. Estimates are
calculated for protected areas at national-level (national parks and
nature/biosphere/community reserves)®’; or for industrial logging®'-°2, mining®3°4, and
palm 0il*>-% concessions combined (ED Fig. 8). All values are means (+ s.d.) of the
median peat thickness and carbon density maps, or median estimates for total
peatland area and peat carbon stock. Percentages show the proportion of total
peatland area or peat carbon stock in ROC, DRC and combined (ED Table 1), that is

found in protected areas or industrial logging/mining/palm oil concessions.
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