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Simultaneous State and Parameter Estimation
Method for a Conventional Ozonation System

Isaac Chairez1,†, Asif Chalanga2, Alex Poznyak3, Sarah Spurgeon2 and Tatyana Poznyak4.

Abstract— This article presents a simultaneous state (via a
nonlinear form of Luenberger observer) and parameter (using a
proportional-integral least mean square form) estimator design
method for a conventional ozonation system. The suggested state
observer assumes that the only available output signal is the
concentration of the ozone gas at the output of the reactor.
The estimation of the reaction rate constants of ozonation in
the presence of contaminants uses the suggested proportional-
integral estimation method. The convergence proof of the devel-
oped state-parameter identification method was confirmed using
a Laypunov based stability analysis. This analysis characterizes
the quality of estimation considering the presence of modeled
uncertainties and external perturbations. The implementation of
the super-twisting algorithm as a robust and exact differentiator
allowed to perform the estimation of the reaction rate constants of
the ozonation, the temporal evolution of the dissolved ozone and
the evolution of contaminants concentrations. The simultaneous
state and parameter estimator design method was implemented in
real-time using phenol as a model contaminant. The numerically
simulated and real-time implementations showed that the method
provides accurate estimates of the contaminant concentration and
the reaction rate coefficient in all the evaluated cases.

Keywords: Conventional ozonation; Super-twisting algorithm;
Proportional-integral parametric identifier; Simultaneous state-
parameter estimator.

1. INTRODUCTION

The ozonation of organic compounds is a mature technology
to decompose toxic compounds from wastewaters, contam-
inated soil, or gas streams. Wastewater treatment by ozone
has been applied in the industry with remarkable results [1],
[2], [3]. Ozonation is the fastest chemical oxidation reaction
performed in reactors where this gas must be dissolved in a
liquid, solid, or another gas [4], [5]. The dissolved ozone can
react with other organic and inorganic compounds yielding
their complete decomposition or transformation into simpler
and less toxic compounds [6].

Wastewater treatment by ozone can produce purified water
streams that can be used in different human activities and
industrial processes [7], [8]. This treatment uses technological
equipment consisting of the ozone generator and sensor and
the chemical reactor system [9], [10]. However, it is not easy to
characterize the ozonation effectiveness because the evolution
of the contaminants (in many cases) cannot be obtained online.
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Moreover, the impossibility of measuring the contaminant
concentrations limits the kinetic analysis of the ozonation reac-
tion [11], [12]. The interactions between compounds through
partial or complete oxidation in the treated waters also occur.
These are extremely important for environmental engineering.
The kinetic analysis of the chemical interactions may be used
to achieve the optimal ozonation regime. The realization of
ozonation in this optimal regime is needed to justify the
applied wastewater treatment’s effectiveness (chemical and
economic).

Mathematical modeling of ozonation serves as an auxiliary
tool to realize the kinetic analysis. The ozonation models are
based on the material balance for the ozone mass transfer and
the chemical reactions of contaminants with ozone. Usually,
these models are represented by ordinary differential equations
(ODEs) assuming a perfect stirring in the chemical reactor
[13]. Otherwise, the application of models given by partial
differential equations (PDEs) is required [14]. The states of
such models include a) the ozone concentration in the head-
space of the reactor (gaseous), b) the dissolved ozone in the
liquid (water) phase, and c) the concentration of the chemical
compounds reacting with ozone.

Notice that measuring all the components participating in
the ozonation is unfeasible. The interaction of ozone and
the contaminants themselves yields a sequence of series and
parallel reactions forming several intermediates and final prod-
ucts. The successful analysis of the ozonation reaction and
its control demands complete knowledge of all the states of
the process. This need is the primary justification for the
application of state observation (usually known as software
sensors) and parameter estimation as an important combined
solution for the study of chemical processes and corresponding
effective controller design.

There are limited approaches dealing with the challenging
problem of simultaneously estimating the states and param-
eters in chemical engineering. This problem is known as
simultaneous state and parameters estimation of dynamic
systems [15]. The current concurrent parameter and state
estimation is now a mature theory. This study takes advantage
of many previous results that have proposed the application of
gradient descendant formulations with derivative and integral
components. This technique has been successfully applied
for bioreaction systems considering the limited knowledge of
microbial growth rate and the state variation [16], [17], [18].
These previous approaches used well-settled mathematical
abstractions of the systems under analysis. In particular, this
study presents a modified version of this estimator for a
class of mass balance and an integrated kinetic model of



2

ozonation for a class of batch reaction systems. The proposed
formulation takes advantage of the admissible mathematical
model of the ozonation system and derives a sequence from
estimating both states and parameters.

An alternative solution uses the concept of Differential
Neural Networks [19] may solve this problem even if the
mathematical model is not entirely known. The state and
parameter estimation procedure has a rather complex struc-
ture, including nonlinear matrix learning reinforcement laws.
Moreover, the obtained non-parametric model has no direct
physical interpretation. Here, a model generated and validated
from the material balance and chemical kinetics is used, which
brings a more precise physical interpretation to the estimated
states and parameters.

This paper aims to suggest a method for the effective on-line
simultaneous estimation of both the contaminant concentration
and the corresponding reaction rate constants with ozone. The
contaminant reconstruction is realized by a Luenberger-type
observer implementation, and the parameter identification uses
a Proportional-Integral (PI) version of the continuous Least
Square Method (LSM).

Ozonation reaction systems present several complexities
that have prevented their application on a large scale.

• There is poor information on the reaction conditions
because the contaminant concentrations cannot be mea-
sured online, or sensors are prohibitively expensive for
implementation.

• The measurable information corresponds to the ozone
concentration at the reactor’s input and output.

• There is no preliminary information about the exact
reaction rate constants of the contaminants that may par-
ticipate in the ozonation, but sometimes, feasible ranges
of the constants are available.

This study contains the following main contributions:

• The design of a joint parameter-state estimation scheme
for ozonation systems with uncertain reaction rate con-
stants. The formal convergence analysis of the simultane-
ous estimation of the state and parameters can be obtained
by applying the Lyapunov stability method.

• The development of a simultaneous state (via a nonlinear
form of Luenberger observer) and parameters (using a
proportional-integral least mean square form) estimation
method.

This paper is organized as follows: Section II contains the
description of the ozonation mathematical model for several
contaminants. Section III establishes the problem statement
for estimating the states and the reaction rate constants simul-
taneously. Section IV details the design of the estimators for
either the states and the reaction rates. Section V provides
some numerical results using the ozonation reaction model
with one (representing the phenol) and two contaminants (con-
sidering phenol and 4-chlorophenol). Section VI describes the
evaluation of the proposed estimator using real experimental
data considering phenol as the contaminant. The final section
closes the article with some concluding remarks.

2. MODEL DESCRIPTION

2.1. Ozonation reaction system

The ozonation reaction is usually performed in a semi-batch
reactor: ozone is continuously injected into the reactor with a
constant flow and concentration. The contaminant to be de-
composed is dissolved in the liquid phase (wastewater) in the
reactor. The unused ozone concentration in the reactor output
was measured by the online analyzer. Figure 1 describes the
ozonation’s system, which is formed by the oxygen tank, the
electrical generator, the glass reactor, the ozone detector, and
an electronic device used to collect the ozone concentration at
the reactor head-space.

Fig. 1. Ozonation system including the oxygen tank, the ozone generator,
the ozonation reactor and the ozone monitoring device.

2.2. Material balance in integral form

The following set of equations corresponds to the math-
ematical model of ozonation when the contaminants ci are
included. First, the general model for the ozone concentration
in the gaseous phase cg in integral form corresponds to:

t∫
0

Wg (τ) c
g
in (τ) dτ =

t∫
0

Wg (τ) c
g (τ) dτ+

Vgc
g (t) +Q(t)

cg (0) = cg0

 (1)

where cgin [mole·L−1] is the ozone concentration at the reactor
input, cgare the current ozone concentrations in the gaseous
phase [mole ·L−1], Wg is the gas flow-rate [L ·s−1], Vg is the
volume of the gas phase [L], Q is the current ozone amount
in liquid phase [mole].

Remark 1: The equation (1) can be used as it considers the
direct relationship between the ozone concentration measured
at the reactor’s output and the one dissolved in the liquid
phase. Your suggestion could be helpful to construct the close
form of the ozone estimation in Q, but this could provoke
that the output information will converge to the estimated one
Q̂ which could eliminate the identifiability property of the
suggested system.
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The dynamics of the dissolved ozone Q admits

d

dt
Q (t) = ksat(Qmax −Q (t))−Q (t)

N∑
i=1

kici (t) (2)

The first term in (2) defines the mass transfer of ozone
through the diffusion filter (gaseous to liquid phases). There
are experimental pieces of evidence that such a process is
governed by first-order kinetics with respect to the gradient
of the current ozone and maximal (Qmax [mole]) ozone
concentrations. The maximum value can be estimated using
Henry’s law (assuming that the ozone reactor runs under
controlled temperature conditions). The ozone mass transfer is
regulated with the transfer constant ksat [s−1]. Several studies
proved that dissolved ozone dynamics are proportional to the
difference between the maximum dissolved and current ones.
Among the most celebrated, the studies presented in [20], [21]
justified such relationship. These cites have been included in
the reviewed manuscript.

The ozone consumption due to the kinetic reaction with
the contaminants ci ([mole · L−1]) is characterized in the
second term of (2) which establishes the second-order reaction
between molecular ozone and the contaminants. The reaction
rate between ozone and each contaminant is characterized by
ki. The high reactivity of ozone with other organics (taking
into consideration the oxidation number of this compound)
allows considering the bimolecular model is considered valid.
This fact has been demonstrated when ozone reacts with
organics, including phenols and their derivatives. Experimental
evaluations have validated such a claim in different seminal
chemical studies such as the ones presented in [22], [23], [24],
[25].

2.3. Stoichiometric reaction between ozone and contaminants

The kinetic reaction between ozone and the contaminant is
described by a bimolecular kinetic equation:

d

dt
ci (t) = −ki

Q (t)

Vliq
ci (t) i = 1, N (3)

where ci [mole ·L−1] is the concentration of the i-th contam-
inant in the reactor, ki [L ·mole−1 · s−1] defines the reaction
rate constant between ozone and the i-th contaminant and Vliq

[L] is the liquid volume. The bi-molecular reaction model in
(3) is justified because the relative selectivity of ozone reacting
with different organic compounds.

2.4. State representation of the ozonation model

The model presented in equations (1-3) can be represented
in a more abstract form. This structure uses the state variable
theory. In an extended format, the ozonation reaction system
satisfies:

d

dt
cg (t) = V −1

g Wg (c
g
in − cg (t))−

V −1
g

[
ksat(Qmax −Q (t))−Q (t)

N∑
i=1

kici (t)

]
d

dt
Q (t) = ksat(Qmax −Q (t))−

Q (t)
N∑
i=1

kici (t)

d

dt
ci (t) = −ki

Q (t)

Vliq
ci (t) i = 1, N

y (t) = cg (t)



(4)

The model (4) is obtained from the direct differentiation
of (1), the dissolved ozone variation in (2) as well as the
contaminants dynamics presented in (3).

Remark 2: Note that this model has an equilibrium point
at the origin. At this point, all the concentrations are zero.
In this case, the asymptotic solution of the state or parameter
estimation problem is not useful. It is necessary to realize
estimation during the transient period.

The saturation constant of dissolved ozone can be estimated
by the solution of the following nonlinear regression equation
[26]

ksat =
Wg(c

g
in − cg(t∗))

Qmax
eksatt

∗

where t∗ is the time when the ozone gas concentration is
minimum (See figure 2). The maximum value of dissolved
ozone Qmax can be calculated by the following equation based
on Henry’s law

Qmax = HVliqc
g
in (5)

where H is the so-called Henry’s constant.

3. PROBLEM FORMULATION

Problem 1: Based on the output ozone concentration data
cg , estimate the variation of the contaminants’ concentrations
ci as well as the corresponding reaction rate constants ki. The
problem must be solved under the assumption that no initial
conditions of ci are available.

Notice that the only online available data is cg which can
be measured by the corresponding ozone analyzer (see Figure
1). The information collected from this sensor is noisy (see
the ozonogram in Figure 2):

The information collected in the ozone contraction at the
reactor’s output can be used considering that it indirectly
shows the ozone consumption during the ozonation. Intending
to show this fact, Figure 3 depicts the evolution of ozone con-
centration when two contaminants are ozonated (phenol and
chlorophenol) together. Notice the higher ozone consumption
compared to the one considered in Figure 2.

The experimental conditions for getting the ozone concen-
tration reported in Figure 2 are the following: Input ozone
concentration was 37.0 g ·L−1, ozone gas flow of 0.5L · s−1,
a static gas diffuser with diameter pore 0.2 µm and a distilled
water volume of 0.7 L in one liter glass reactor. These
experimental conditions were selected to remove the effect of
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Fig. 2. Ozone concentration measured at the reactor output during the
ozonation of a single contaminant.
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Fig. 3. Ozone concentration measured at the reactor output during the
ozonation of two contaminants.

contaminants’ reaction with ozone. Therefore, the estimation
of ksat can be gotten precisely.

The estimation of all contaminants’ concentrations can be
used to define the time instant when the ozonation finishes and
the treated wastewater can be considered purified. Indeed, if
the estimated concentrations are obtained online, they can be
compared to the values proposed in the local environmental
regulations. Therefore, the ozonation can be stopped if all the
contaminants’ concentrations are below their corresponding
permissible values.

4. STATE AND PARAMETER ESTIMATOR AS A SOFTWARE
SENSOR

This section describes the method designed to simultane-
ously estimate the states and parameters of the ozonation
system. The first part of this algorithm assesses the dissolved
ozone in the liquid phase. The second part introduces a
proportional-integral form to reconstruct the parameters in the
reaction equation of the contaminant.

4.1. Estimation of dissolved ozone

The estimate Q̂(t) of dissolved ozone Q(t) can be obtained
by the direct use of the material balance equation in integral

form (1):

Q̂(t) = Q̂(0) +
t∫
0

Wg (τ) (c
g (τ)− cgin (τ)) dτ

+ Vg (c
g (t)− cg (0))

 (6)

Notice that for equation (6), Q̂(0) = 0 can be fixed under
the selected experimental conditions.

4.2. Estimate of reaction rate constants and contaminant
concentrations

The method to estimate the reaction constant is realized
according to the following procedure:

d

dt
k̄i(t) = −αi(t)Ji(t)− δPi

[
k̂i(t)− k̊i

]
−

δIi

t∫
τ=0

[
k̂i(τ)− k̊i

]
dτ

k̂i(t) = Pr
{
k̄i(t)

}k+
i

0
, 0 < k̊i < k+i < +∞

d

dt
Ji(t) = (t+ ε)−1 (gi(t)− Ji(t)) , ε > 0

Ji(0) = 0, δ > 0, αi(t) > 0,
∞∫
0

αi(t)dt = ∞

gi(t) = −
[
P(t)− P̂(t)

] [
1− k̂i(t)φ(t)

]
φ(t) = V −1

liq

t∫
0

Q̂(s)ds



(7)

where k̊i is a nominal value reported in literature.
The structure in (7) is a class of PI observer aided with

projection. This projection considers the necessity of restrict-
ing the estimated reaction rate ki as a positive value and
imposing a max bound that is used later on in the proof of the
convergence to the actual values of the reaction rate constant.
The proportional part of the observer obeys the classical
gradient descendant algorithm, with the additional correction
of the integral section. Such a part helps correct the estimation
if the associated functional Ji(t) becomes insensitive to the
estimated gain variation.

The nominal values of ki were taken from previous studies
dealing with the characterization of the ozonation reaction for
similar contaminants. Notice that such values give starting
points to the method (7) which helps accelerate the estimation
of the reaction rate constants.

The functional Ji(t) operates as the correcting element of
the reaction rate constant estimation endorsed with the method
in (7). The function gi(t) plays the role of the regression term,
which takes into account the estimation error for all constants.
This design provides a class of simultaneous estimation for
all the rate constants in the ozonation system with several
contaminants. The values of δP i, δI i, and li are obtained with
a recursive method.

The estimate P̂ of P satisfies

P̂(t) =

N∑
i=1

P̂i(t), P̂i(t) = −k̂iQ̂ (t) ĉi (t) (8)
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The projection operator in the method presented in (7) satis-
fies:

Pr
{
ξ̄i
}ξ+i
0

:=

 ξ+i if ξ̄i > ξ+i
ξ̄i if ∈

[
0, ξ+i

]
0 if ξ̄i < 0

The value of P (t) := −
N∑
i=1

kiQ (t) ci (t) can be calculated

from

P(t) = ksat(Qmax − Q̂ (t))− d

dt
Q̂ (t) (9)

The realization of P(t) requires the estimation of
d

dt
Q̂ (t)

which can be obtained by the Super-Twisting algorithm (STA)
[27], [28]:

d Q̃(t)

dt
= ksat(Qmax − Q̂ (t)) + z(t)+

γ1
√
|∆(t)|sign(∆(t))

dz(t)

dt
= γ2sign(∆(t)), ∆ := Q̃− Q̂


(10)

The constants in the STA γ1 and γ2 must satisfy [27]:

γ2 > ρ
γ1 > 1.41

√
γ2 + ρ

This study uses the simplest form of the STA with constant
gains. In recent results [29], [30], more precise estimation of
the converging time has been issued as well as the way of
analyzing the effect of time and state-dependent perturbations.

Based on the character of the ozonation variables, it may
be concluded that

ρ > Qmax

[(
ksat +

N∑
i=1

kici (0)

)2

+
N∑
i=1

k2i
Qmax

Vliq
ci (0)

]
The value of P(t) can be estimated, namely P̂(t), as

P̂(t) ≃ ksat(Qmax − Q̂ (t))− d Q̃(t)

dt

The estimates of ĉi (t) in (8) can be obtained as follows:

d

dt
ĉi (t) =

P̂i(t)

Vliq
+ li

[
P(t)− P̂(t)

]
ĉi(t) = Pr {c̄i(t)}

c+i
0

where li is a positive scalar, which should be adjusted to
enforce the convergence of ĉi to ci, i = 1, ..., n. The upper-
value used in the projection operator c+i can be fixed as
c+i = ci(0), which is known in advance.

The convergence analysis of the simultaneous estimation
of the state and parameters can be obtained by applying the
Lyapunov stability method (see a similar approach in [31]).
This analysis is presented in the following section.

5. CONTRIBUTION OF THIS STUDY

This section describes the main contribution of this
study that corresponds to the novel identifier based on the
proportional-integral form using the estimates produced by the
STA.

Lets introduce the auxiliary vector z⊤ =[
z⊤1 · · · z⊤N

]
, z ∈ R4N , zi ∈ R4, z⊤i =[

∆ki l̂i Ji ∆ci
]
. The dynamics of z is given

by
d

dt
z(t) = Λ0z(t) +

(
Λ (t)− Λ0

)
z(t) + Γ(t) (11)

where Λ0 is a Hurwitz matrix of appropriate dimensions (Λ0 ∈
R4N×4N ) and

Λ (t) =


Λ1,1 (t) Λ1,2 (t) · · · Λ1,N (t)
Λ2,1 (t) Λ2,2 (t) · · · Λ2,N (t)

...
...

. . .
...

ΛN,1 (t) ΛN,2 (t) · · · ΛN,N (t)

 ,

Γ (t) =


Γ1 (t)
Γ2 (t)

...
ΓN (t)


The components of Λ (t) and Γ (t) are

Λi,i (t) =


−δPi −δIi −αi(t) 0
1 0 0 0

−ĉi (t)Q (t) 0 −a(t) −k̊iQ (t)

ĉi (t)
Q (t)

Vliq
0 0 −ki

Q (t)

Vliq



Λi,j (t) = Q (t)


0 0 0 0
0 0 0 0

−ĉj (t) 0 0 −k̊j
0 0 0 0



Γi(t) =


0
0

−
N∑
i=1

∆k̊ici (t)Q (t)

0


where ∆k̊i = k̂i − k̊i. Notice that

Λ0
i,i =


−δPi −δIi α−

i 0
1 0 0 0
0 0 a− 0

0 0 0 ki
Qmax

Vliq

 , α−
i > 0, a− < 0

Λ0
i,j = 04×4

The structure of Λ (t) justifies the following assumption:
Assumption 1: There exists a positive scalar q ∈ R+ such

that the following upper bound is valid∥∥Λ (t)− Λ0
∥∥2 ≤ q

with Λ0 a Hurwitz matrix.
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Notice that the term ∥Γ(t)∥2Π is absolutely bounded with
respect to time, that is there is a positive scalar β ∈ R+ such
that

sup
t≥0

∥Γ(t)∥2Π ≤ β (12)

with β = λmax {Π}N ·∆k̊+ ·Υ(0) ·Q2
max.

Remark 3: The projection operator k̂i(t) = Pr
{
k̄i(t)

}k+
i

0
justifies the existence of the upper bound β. Complementary,
notice that the gain method (7) is input to state stable if it is
taking into account that in the considered process, the second
time-derivative of k̊i is bounded.

The following Lemma introduces the sufficient conditions to
ensure that the origin is a practically stable equilibrium point
of (11).

Lemma 1: If there exists a positive scalar α and a positive
definite P ∈ R4N×4N such that the following algebraic Riccati
equation

PΛ0
α + Λ0⊺

α P + P̊ + πqI4N×4N = 0[
P̊ P
P πI4N×4N

]
> 0, P̊ > 0, P̊ ∈ R4N×4N

Λ0
α = Λ0 + 1

2 (1 + α) I4N

(13)

has a solution being positive definite, π a positive scalar and
I4N an identity matrix with dimensions (4N × 4N ), then

lim sup
t→∞

∥z(t)∥ ≤

√
β

α · λmin {P}
(14)

Remark 4: Notice that (14) implies that the origin is a
practical equilibrium point for (11). This means that the
suggested estimation method for ki can recover the actual
value of the reaction rate constants for the ozonation process
with a certain degree of confidence defined by the presence of
uncertainties in the modeling characterized by ∆i̊k

+.
Remark 5: The solution of (13) can be obtained by the

application of a numerical algorithm (Interior Point Method)
using software such as Yalmip and Sedumi, which can be
executed in Matlab.

6. SIMULATION RESULTS BASED ON THE MATHEMATICAL
MODEL

This section describes the application of the simultaneous
state and parameters estimator for the ozonation model, in-
cluding one and two contaminants, as well as their application
using real experimental data of one contaminant.

6.1. One contaminant case

The model presented in (4) with a single contaminant was
considered to test the estimation method proposed here. The
set of parameters used to evaluate the numerical simulation
was:Vg = 0.2L, Vliq = 0.7L, ksat = 0.5, Wg = 0.5L ·min−1,
Qmax = 1.05 · 10−5mole, k1 = 9500.0L · mole−1s−1,
cgin = 6.25 · 10−4mole · L−1, cg(0) = 0.0mole · L−1,
Q(0) = 0.0mole, c1(0) = 1.56 · 10−4mole · L−1. The
numerical simulation were undertaken in Matlab/Simulink
using integration method ODE 1 with the integration time step
set at 0.0001 s.

Figures 4-7 depict the evolution of Q̃, P̂ k̂1, ĉ1 and their
comparisons with respect to the actual values of the same
variables. The actual values were obtained from the model (4).
This comparison defined the quality of the estimates generated
by the method developed in this study.

Figure 4 shows the variation of the estimated dissolved
ozone Q̂(t) (Dotted line) and its comparison with the simu-
lated variation of Q(t) (Solid line). The horizontal dashed line
represents the maximum ozone (Qmax) that can be dissolved
in the liquid phase.
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Fig. 4. The comparison of the modeled dissolved ozone (solid line) and
the estimated by the method proposed in this study (dotted line). The Qmax

value appears as dashed line for reference.

The estimate of P (t) was obtained with the application of
the STA. This differentiation algorithm was simulated with
the parameters γ1 = 0.65, γ2 = 1.35. The auxiliary estimate
P̂ (t) tracks the actual value of P (t) after 5.0 seconds. The
estimation was theoretically solved in finite time, as the STA
method confirms (Figure 5).
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Based on finite-time recovery of P (t), estimation of the
contaminant concentration was attained after 7.0 seconds.
However, the linear nature of the parametric estimation method
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introduces an asymptotic convergence of the contaminant
estimation. Figure 6 demonstrates the comparison of the
actual contaminant variation and its estimate. Notice that both
trajectories decrease at the same rate.
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Fig. 6. The comparison of the modeled contaminant concentration c1(t)
(solid line) and the estimated by the method ĉ1(t) proposed in this study
(dotted line).

The parametric identification method proposed in (7) esti-
mates the reaction rate constant k1 after 100 seconds. This
estimation process asymptotically recovered the true value
of the reaction rate constant of ozone with the proposed
contaminant (Figure 7).
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Fig. 7. The comparison of the modeled contaminant reaction rate constant
k1(t) (solid line) and the parameter estimated by the method k̂1(t) proposed
in this study (dotted line).

6.2. Two contaminants case

The ozonation system with two contaminants was also
considered in the evaluation process. This part of the study
assumed that these two contaminants were not reacting among
them. Also, the variation of the ozonation products was not
considered. The considered parameters in the model come
from previous studies reported in the literature. In particu-
lar, the reaction rate constants correspond to phenol and 4-
chlorophenol.

The initial conditions for the model (4) were:

Q(0) = 0.0mole

c1(0) = 1.56 · 10−4mole · L−1

c2(0) = 1.11 · 10−4mole · L−1

The model (4) was simulated with the following parameters:

Vg = 0.2L, Vliq = 0.7L, ksat = 0.5,

Wg = 0.5L ·min−1

Qmax = 1.05 · 10−5mole,

k1 = 9500.0 L ·mole−1s−1

k2 = 28000.0 L ·mole−1s−1

cgin = 6.25 · 10−4mole · L−1

cg(0) = 0.0mole · L−1
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Fig. 8. The comparison of the modeled contaminants (two compounds case)
decomposition rate (solid line) and the estimated by the method proposed
in this study (dotted line) based on the on-line reconstruction by the STA
implemented as differentiator. The closer view demonstrates the first 20
seconds of simulation to highlight the faster estimation of P (t).

The estimate of P (t) in the case of ozonation of two
contaminants was obtained by applying the STA. The used
differentiation algorithm was simulated with the parameters
γ1 = 0.95, γ2 = 1.35. The auxiliary estimate P̂ (t) tracks
the actual value of P (t) after 2.5 seconds which is half the
time compared to the one contaminant case. The estimate was
theoretically solved in finite time, as the STA method confirms
(Figure 5).

The finite-time recovery of P (t) realizes the estimate of the
first contaminant concentration, which was obtained after 3.0
seconds. The parametric estimation method produces asymp-
totic convergence of the contaminant estimate, but after 370
s, the difference between the actual contaminant concentration
and its calculation is imperceptible.

Figure 9 demonstrates the comparison of the actual contam-
inant variation and its estimate. Notice that both trajectories
decrease at the same rate.



8

0 200 400 600 800 1000 1200
Time s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
c

1
(t

) 
m

g
 L

-1
×10-3

370 380 390 400 410 420
Time s

0

2

4

6

8

c
1
(t

) 
m

g
 L

-1

×10-5

Fig. 9. The comparison of the first modeled measured contaminant concen-
tration c1(t) (solid line) and the estimated by the method ĉ1(t) proposed in
this study (dotted line) for the ozonation of two different contaminants.

Figure 10 demonstrates the comparison of the actual con-
taminant variation and its estimate for the second estimate.
Notice that both trajectories decreases at the same rate.
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Fig. 10. The comparison of the second modeled contaminant concentration
c2(t) (solid line) and the estimated by the algorithm ĉ2(t) proposed in this
study (dotted line) for the ozonation of two different contaminants.

The parametric identification method proposed in (7) es-
timates the reaction rate constant k1 after 50 seconds and
k2 after 25 seconds. This estimation asymptotically recovered
the true value of the reaction rate constant of ozone with
the proposed contaminant (Figure 11). The identification of
the second constant was faster (25 seconds) for the second
contaminant (Figure 12). Notice that this identification time
difference is relevant because the second contaminant decom-
poses faster. The estimates of the reaction rate constants do not
oscillate much over their actual value. This behavior appears
because of the application of the projection method for both
the gains and the estimated concentrations.

7. ESTIMATION BASED ON EXPERIMENTAL DATA

7.1. Chemical reagents

The studied organic pollutant was phenol (Ph). This chem-
ical was purchased from Aldrich Co of analytic grade.
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Fig. 11. The comparison of first modeled contaminant reaction rate
constant k1(t) (solid line) and the parameter estimated by the method k̂1(t)
proposed in this study (dotted line) in the case of ozonation of two different
contaminants.

0 200 400 600 800 1000 1200
Time s

2

2.2

2.4

2.6

2.8

3

K
2
 m

g
 L

-1
 s

-1

×104

0 50 100 150 200
Time s

2.7

2.8

2.9

K
2
 m

g
 L

-1
 s

-1

×104

Fig. 12. The comparison of second modeled contaminant reaction rate
constant k2(t) (solid line) and the parameter estimated by the method k̂2(t)
proposed in this study (dotted line) in the case of ozonation of two different
contaminants.

7.2. Experimental conditions of ozonation

The ozonation of phenol was conducted with synthetic
solutions in distilled water at the initial concentration of 200
mg · L−1. The reactor was of semi-batch type (0.5 L).

The initial ozone concentration was 23mg·L−1. The ozone-
oxygen mixture flow was 0.5 L ·min−1. All experiments were
carried out at 20◦C with agitation by bubbling an ozone-
oxygen mixture and by a magnetic agitation (operated at
120 rpm). All ozonation experiments were conducted using
constant pH = 7. The pH variation was achieved with sulfuric
acid and sodium hydroxide (0.1 N ). All experiments’ aliquots
of 3.0 mL reaction solution were withdrawn at desired time
intervals from the reactor for sequential analyses.

Ozone was generated from dry oxygen by the ozone gener-
ator (corona discharge type) HTU500G (“AZCO” Industries
Limited – Canada). An Ozone Analyzer BMT 963 (BMT
Messtechnik, Berlin) provided the ozone detection in the gas
phase in the reactor outlet for the ozone monitoring to control
the ozonation degree, the ozone consumption and the ozone
decomposition.
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7.3. Analytic methods

Identification of the phenol concentration has been achieved
by high performance liquid chromatography (HPLC), by the
liquid chromatography (Perkin Elmer) equipped with UV-Vis
detector series 200 (190− 460 nm).

A reverse-phase column was of C-18 (Nova Pack C-18,
Waters), 300 mm in length and 3.9 mm in diameter. The
mobile phase was combined as water–acetonitrile-phosphoric
acid 50 : 50 : 0.1 for phenols.

7.4. Results

Figure 13 shows the variation of the estimated dissolved
ozone Q̂(t) (Solid line) and its comparison with the maximum
value of Q(t) (dashed line), that is Qmax, when the method
proposed in (6) was implemented using the experimental
online ozone concentration. The maximum dissolved ozone
(Qmax) mass was estimated by implementing Henry’s law.
This calculus method has been confirmed in previous studies
such as [19].
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Fig. 13. The comparison of estimated dissolved ozone (solid line) and the
Qmax value, which appears as dashed line for reference.

The estimate of P (t) was obtained applying the STA de-
scribed in (9) which can be obtained using the residual ozone
flowing out from the reactor, which is a measurable online
variable. This estimation was done considering the presence
of output noise produced by the gas ozone concentration. This
method was implemented with the parameters γ1 = 3.65,
γ2 = 11.35. This experimental auxiliary estimate P̂ (t) reaches
the value of P (t) after 35.0 seconds (Figure 14).

Based on finite-time recovery of P (t), the estimate of
the contaminant concentration was attained after 7.0 sec-
onds. However, the linear nature of the parametric estimation
method introduces asymptotic convergence of the contaminant
estimation. Figure 15 demonstrates the comparison of the
actual contaminant variation and its estimate. Notice that both
trajectories decrease at the same rate.

The parametric identification method proposed in (7) es-
timates the reaction rate constant k1 after 100 seconds. This
estimate asymptotically recovered the true value of the reaction
rate constant of ozone with the proposed contaminant (Figure
16).
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Fig. 14. The comparison of measured contaminant decomposition rate (solid
line, marker *) and the estimated by the method proposed in this study
(dotted line) based on the online reconstruction by the STA implemented as
differentiator. The closer view demonstrates the first 170 seconds of simulation
to highlight the faster estimation of P (t).
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Fig. 15. The comparison of the phenol concentration c1(t) (solid line, marker
*) and the estimated by the method ĉ1(t) proposed in this study (dotted line)
for the ozonation of the real contaminated water.

8. CONCLUSIONS

This study presents a new continuous-time method intended
to develop the simultaneous state and parameter estimation of
ozonation, based on the proportional-integral version of the
Least Mean Square method. The proposed method estimates
the reaction rate constants and concentrations of the contam-
inants reacting with ozone in the liquid phase of a chemical
reactor. The proposed method, applied for the state estimation,
implements the STA as a robust differentiator to obtain the
contaminant decomposition rates online. This information is
used in the parameter estimation procedure. The method has
been tested on two specific cases in the presence of one and
two contaminants. Also, this method has been evaluated using
experimental laboratory data for one contaminant (phenol),
assuming that only the reactors’ ozone gas concentration is
available online. The suggested method has demonstrated an
extremely high quality of the resulting state and parameter
estimation.
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Fig. 16. The comparison of reported contaminant reaction rate constant k1(t)
(solid line) and the parameter estimated by the method k̂1(t) proposed in this
study (dotted line) in the case of ozonation of phenol. The reference value
was obtained from the work presented by [19]-Chapter5.
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9. APPENDIX

The parameter identification algorithm proposed in (7) can
be presented as follows

d

dt
k̂i(t) = −αi(t)Ji(t)− δPi∆k(t)− δIi l̂i(t)

d

dt
l̂i(t) = ∆ki

(t)

The dynamics of ∆k satisfies

d

dt
∆ki(t) = −αi(t)Ji(t)− δPi∆k(t)− δIi l̂i(t)

d

dt
l̂i(t) = ∆ki

(t)

with

d

dt
Ji(t) = −a(t)Ji(t) + a(t)gi(t), a(t) = (t+ ε)−1

The function gi(t) is governed by

gi(t) = ∆P (t)
[
1−∆ki

(t)φ(t)− k̊iφ(t)
]

with

∆P (t) = −
N∑
i=1

(
k̂iĉi (t)− kici (t)

)
Q (t) .

The term ∆P can be transformed into

∆P (t) = −
N∑
i=1

(
∆ki(t)ĉi (t) + k̊i∆ci (t) + ∆k̊ici (t)

)
Q (t)

∆ci (t) = ĉi (t)− ci (t) , ∆k̊i = k̊i − ki

The term ∆ci (t) satisfies the following dynamics

d

dt
∆ci (t) = − (∆ki

(t)ĉi (t)− ki∆ci (t))
Q (t)

Vliq

Notice that the dynamics of z is governed by

d

dt
z(t) = Λ0z(t) +

(
Λ (t)− Λ0

)
z(t) + Γ(t) (15)

To prove that the origin is a practically stable equilibrium point
of (11), lets propose the Lyapunov function candidate

V (z) = z⊤Pz (16)

The full-time derivative of V (z) (evaluated over the trajecto-
ries of z) satisfies

d

dt
V (z (t)) = 2z⊤ (t)P

[
Λ0z(t)

]
2z⊤ (t)P

[(
Λ (t)− Λ0

)
z(t) + Γ(t)

]
=

z⊤ (t)
[
PΛ0 + Λ0⊺P

]
z(t)+

2z⊤ (t)P
(
Λ (t)− Λ0

)
z(t) + 2z⊤ (t)PΓ(t)

(17)

The direct application of the Young’s matrix inequality:
X⊤Y + Y ⊤X ≤ X⊤ΠX + Y ⊤Π−1Y , valid for any X ,

Y ∈ Rκ×κ and any 0 < Π, Π = Π⊤, Π ∈ Rκ×κ and
considering that Π0 = πI,

∥∥Λ (t)− Λ0
∥∥2 ≤ q, yields

2z⊤ (t)P
(
Λ (t)− Λ0

)
z(t) ≤

z⊤ (t)PΠ−1
0 Pz(t)+

z⊤(t)
(
Λ (t)− Λ0

)⊤
Π0

(
Λ (t)− Λ0

)
z(t) ≤

π−1z⊤ (t)P 2z(t) + πz⊤(t)
∥∥Λ (t)− Λ0

∥∥2 z(t) ≤
π−1z⊤ (t)P 2z(t) + πqz⊤(t)z(t) =
z⊤(t)

[
π−1P 2 + πqI4N×4N

]
z(t)

(18)

If it is considered that Π = P, then

2z⊤ (t)PΓ(t) ≤ ∥Γ(t)∥2Π + z⊤ (t)PΠ−1Pz(t) (19)

The substitution of (18) and (19) in (17) implies

d

dt
V (z (t)) ≤ ∥Γ(t)∥2Π +

z⊤ (t)
[
PΛ0 + Λ0⊤P + P + π−1P 2 + πqI4N×4N

]
z(t)

(20)
Introduce a matrix P̊ , satisfying π−1P 2 < P̊ . By the Schur
complement ([19]) this inequality holds if and only if[

P̊ P
P πI4N×4N

]
> 0 (21)

The differential equation (20) is valid if

d

dt
V (z (t)) ≤ ∥Γ(t)∥2Π +

z⊤ (t)
[
PΛ0 + Λ0⊤P + P + P̊ + πqI4N×4N

]
z(t)

(22)

The differential inclusion (22) is equivalent to

d

dt
V (z (t)) ≤ z⊤ (t)

[
PΛ0

α + Λ0⊺
α P + P̊ + πqI4N×4N

]
z(t)

−αz⊤ (t)Pz(t) + ∥Γ(t)∥2Π
(23)

The application of the upper-bound for Γ (β) on (23) leads to

d

dt
V (z (t)) ≤ −αV (z (t)) + β (24)

The application of the comparison principle and the solution
for the equality in (24) justifies that lim sup

t→∞
V (t, z (t)) ≤ β

α

which implies the inequality

lim sup
t→∞

∥z(t)∥ ≤

√
β

α · λmin {Pm}


