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Abstract

We develop a new family of marked point processes by focusing the characteristic prop-
erties of marked Hawkes processes exclusively to the space of marks, providing the freedom
to specify a different model for the occurrence times. This is possible through the decom-
position of the joint distribution of marks and times that allows to separately specify the
conditional distribution of marks given the filtration of the process and the current time. We
develop a Bayesian framework for the inference and prediction from this family of marked
point processes that can naturally accommodate process and point-specific covariate infor-
mation to drive cross-excitations, offering wide flexibility and applicability in the modelling
of real-world processes. The framework is used here for the modelling of in-game event
sequences from association football, resulting not only in inferences about previously un-
quantified characteristics of game dynamics and extraction of event-specific team abilities,
but also in predictions for the occurrence of events of interest, such as goals, corners or fouls
in a specified interval of time.

Keywords: Bayesian inference; Hamiltonian Monte Carlo; team abilities; branching struc-
ture

1 Introduction

Football is one of the most popular team sports and is an example of an invasive sport, where two
opposing teams compete for the possession of the ball with the dual objective of attacking to score
a goal and defending against attacks from the opposition. Most analyses in football are typically
done manually by studying video footage or using simple frequency analysis of match events.
Hence, there is huge scope to improve the efficiency of the data-analytic methods as well as the
quality of performance evaluation. However, the analysis of football data is mathematically and
statistically challenging due to the continuous interaction between players within and across the
two teams. As an introduction, we describe the event data from football and survey the existing
work in this area before arguing how marked point processes are well-suited to developing a
modelling foundation to achieve our goal of describing the game dynamics.
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1.1 Football event data

Over the last decade, the availability of spatio-temporal data from team sports has inspired
research into the application of statistical methods for team and player performance evaluation.
A comprehensive survey of the recent research efforts into the spatio-temporal analysis of team
sports is provided in Gudmundsson and Horton (2017). There are two primary types of spatio-
temporal data collected from team sports. Movement data consists of samples of timestamped
locations in the plane tracking the movement of all players and the ball during the game. Player
movement is captured using fixed cameras in optical tracking systems, that process the images
to obtain the trajectories. Event data streams, on the other hand, record the sequence of events
that occur during the game and are collected manually by trained analysts who watch video
feeds of the games through a special annotation software. As our work is motivated by the
availability of event data from football, we focus on reviewing research that uses event data
streams. Event data are less dense than movement data, but richer in the sense that they
contain more information about what is happening in the game. Events broadly fall into two
categories; player events such as passes and shots; and stoppage events such as fouls, end of
game etc. Every event is annotated with a timestamp, its location, its type (pass, foul, etc.),
the players involved, and team information.

A popular research topic based on event data is the network analysis of player interaction.
Models for player interaction can quantify a team’s playing style as well as the importance of
an individual player within the team. Players are identified as nodes of a network and are
connected using directed edges whose weights are proportional to the number of successful
passes between the two players. Passing networks were first applied to team sports in Passos
et al. (2011) to study a team’s collective behaviour in water polo. Grund (2012) studied the
degree centrality of passing networks in football, which quantifies the importance of nodes in the
network based on the number of edges. They showed that teams that rely heavily on key players
performed relatively worse. Duch et al. (2010) used flow centrality to assess player performance
by capturing the fraction of times that a player intervenes in those paths that result in a shot
on goal. They also take into account defensive behaviour by letting each player start a number
of paths proportional to the number of balls they recover. Clemente et al. (2015) studied the
density and heterogeneity of passing networks and showed that high heterogeneity leads to
formation of sub-communities, meaning there is a low level of cooperation between the players
of a team. Pena and Touchette (2012) looked at other centrality measures such as closeness and
eigenvector centrality as well as clustering in football passing networks.

Another use of event data is in the identification of frequently occurring sequences of passes
between a small group of players within the same team. In Borrie et al. (2002), passes are
identified by the zones in the pitch they start and end in and frequently occurring sequences
are detected by also taking into account the time intervals between passes. Wang et al. (2015)
proposed an unsupervised approach to automatically detect tactical patterns in football. They
present the Team Tactic Topic model based on Latent Dirichlet Allocation to identify tactics
from pass sequences. Interesting visualisations are provided for the most successful tactics as
well as how a team’s tactical patterns evolve over a season. Van Haaren et al. (2016) also look
at automatic discovery of patterns in attacking strategy. They use a data-driven approach to
determine a number of spatial features about the areas occupied during a continuous possession
phase of a team. The features are then used to cluster similar phases together to identify
frequently occurring event sequences within the cluster. Decroos et al. (2017) partition the
game using overlapping intervals to create subsequences of events to use as a feature to predict
a goal event in the near future. They compute similarity between subsequences using Dynamic
Time Warping, a distance measure for time-dependent sequences.

Extracting game states from event sequences to quantify the value of player actions or to
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make predictions of the game outcome is another interesting area of research. Routley and
Schulte (2015) used Markov decision processes for valuing player actions in Ice Hockey. Game
states are derived from contextual features like game score and time remaining along with the
recent history of events. The associated reward for an action in the Markov decision process
gives the value of the player action. A similar approach based on game states is taken in Decroos
et al. (2018) to value player actions in football. They train a classification model to calculate
the probability a game state will lead to a goal in the near future, where each game state is
described using over 150 features. The value of a player action is then calculated by the shift
in the predicted goal probability before and after the action. Other approaches for predicting
goal probabilities based on a current game state are by Mackay (2017) and Robberechts et al.
(2019). Approaches based on game states involve significant effort into feature engineering, and
with the use of learning algorithms like gradient boosting that limit parameter interpretations,
the methods provide, typically, little insight into the dynamics of the game.

The major focus of existing methods in team sport analysis appear to be tailored towards
individual player performance evaluation or identifying specific patterns in team play. Most
approaches take the route of summarising the event data into compact representations like
networks and game states. In this paper, we take a more holistic approach to study football as
a dynamic system and model the entire sequence of events within a game. Such a model, that
captures all event interactions, is attractive for predicting the occurrence of the rare goal scored
events, that determine the outcome of the game.

1.2 Point processes

Phenomena that are observed as a sequence of events happening over time can be represented
using point processes. While point processes can describe a random collection of points in any
general space, we limit ourselves to the case in which the points denote events that occur along
a time axis. Such point processes, having a natural order in which the points occur, are suitable
for a wide range of real-world applications and are well studied in probability theory.

As in Daley and Vere-Jones (2003, Section 6.4), processes in which points are identified
only by the occurrence times are referred to as univariate point processes. Multivariate point
processes, on the other hand, are those in which the realisation of a discrete random variable,
say m, with a finite number of categories is recorded along with the occurrence times. Marked
point processes are processes where m is allowed to be a continuous random variable. An
example application of a marked point process with continuous marks is in seismology, where
the magnitude of an earthquake is recorded in addition to the time of occurrence. In this paper,
we model event sequences observed in football using marked point processes with discrete marks
used to denote the event type.

When event sequence data are analysed using point process models, an important distinction
is between empirical models and mechanistic models as noted by Diggle (2013). Empirical
models have the solitary aim of describing the patterns in the observed data, while mechanistic
models go beyond that and attempt to capture the underlying process that generated the data.
Mechanistic models for marked point processes are typically specified using a joint conditional
intensity for the occurrence times and the marks and in general are not flexible enough to be
applied to complex real-world phenomena. The joint modelling of the components of the process
can also be challenging and it is common to make strong restrictive assumptions like separability
(González et al., 2016) to simplify the model. In this paper, we present a flexible mechanistic
modelling framework for marked point processes that are suitable for a wide range of applications
without the need for assumptions like separability.

We produce a family of marked point processes that generalises the classical Hawkes process,
a mathematical model for self-exciting processes proposed in Hawkes (1971) that can be used to
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model a sequence of arrivals of some type over time, for example, earthquakes in Ogata (1998).
Each arrival excites the process in the sense that the chance of a subsequent arrival increases
for a period of time after the initial arrival and the excitation from previous arrivals add up.
Marked Hawkes processes are typically specified using a joint conditional intensity function for
the occurrence times and the marks (see, for example, Rasmussen, 2013, expression 2.2), and
captures the magnitudes of all cross-excitations between the various event types as well as the
rate at which these excitations decay over time. Excitation leads to clustering of events in time
as the process is driven by an intensity that increases with every arrival for a short period of
time. However, in applications like the event sequences observed in football, the events tend not
to cluster in time and the marked Hawkes process model is not suitable. The joint modelling of
the times and the marks has to be decoupled to restrict the excitation property of the process
exclusively to the dimension of the marks.

Similar to the decomposition of a multivariate distribution function that motivated the
partial likelihood in Cox (1975), we factorise the joint conditional distribution for a marked
point process into probability density functions for each event time conditioned on the past
occurrences times and marks, and probability mass functions for the event marks conditioned
on the time of occurrence and the filtration of the process. Therefore, an alternative approach
to specify a marked point process model is to specify the conditional distribution functions
for the times and the marks separately. We derive the conditional distribution function for the
marks from a marked Hawkes process, which gives us then the freedom to specify the conditional
distribution for the times separately. In this way, we are able to construct marked point process
models that retain the characteristic properties of Hawkes processes, such as excitation for the
marks, while avoiding the strong clustering of event times.

We develop a framework for Bayesian inference of such flexible marked point processes, which
is realised through the Stan (Stan Development Team, 2020) software for statistical modelling.
Stan implements a variant of the Hamiltonian Monte Carlo algorithm, originally proposed by
Duane et al. (1987), to generate samples from the posterior distribution of the parameters. The
Bayesian models we consider are compared using the out-of-sample log predictive density.

We define marked point processes for the modelling of touch-ball events in football, which
along with time and event type information also carry location information. As we illustrate,
the family of marked point processes can be readily enriched to handle all times, event types and
locations. We are also able to incorporate team information in a direct way that captures the
relative abilities of the teams for each event type. We develop a method based on association
rules (Agrawal et al., 1993) to reduce the complexity introduced by the model extensions we
introduce. The rule-based approach identifies significant event interactions within sequences by
placing thresholds on particular measures of significance. We then evaluate the accuracy of the
excitation based models by comparing against two baseline models and confirm the superior
performance of the models with excitation effects.

We provide a detailed parameter description showing how the model parameters can be
used to gain valuable insights into football. The excitation component of the proposed model
captures both the magnitudes and the durations of all pairwise event interactions across different
locations. From the conversion rate parameters, we are able to confirm the well-known home
advantage effect, and quantify the relative performance of each team when playing games at
their home venue compared to away. The conversion rate parameters are also driven by team
information, via the team ability parameters which, for example, can capture the relative ability
of a team to convert one successful pass to another and retain possession of the ball. We also
discuss how the team ability parameters can be used to obtain rankings for the teams by event
type, that can be used as predictors of team performance. The team ability parameters also
capture some interesting differences in the playing styles of the teams, that are not immediately
apparent just by looking at the event data. In this way, the model along with its parameters
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Table 1: Events and their attributes from the first 20 seconds of the game between Southampton
and West Ham United on September 15, 2013. For each event, we have records of the event
time-stamp, team and player ids, event type, (x, y) co-ordinates of its location in the playing
field, and if the event type is a Pass, the event outcome (successful/unsuccessful) and the end
(x, y) co-ordinates.

second minute team id player id type x y outcome end x end y

1 0 14 29544 Pass 50.1 48.8 Successful 51.1 48.2
2 0 14 21683 Pass 51.1 48.2 Successful 39.2 47.8
4 0 14 71714 Pass 39.2 47.8 Successful 29.5 77.6
6 0 14 118244 Pass 30.8 79.6 Unsuccessful 33.5 79.7

12 0 20 12533 BallRecovery 34.9 89.9
13 0 20 12533 Pass 35.9 88.3 Successful 37.3 76.1
15 0 20 8247 Pass 34.9 77.0 Unsuccessful 44.9 85.9
16 0 14 71714 Interception 53.2 16.7
18 0 14 69375 Pass 43.1 23.1 Unsuccessful 70.9 9.7

can be used to develop a deeper understanding of the game-play by coaching staff and inform
strategic decision making. The proposed model can also be used to simulate the sequence of
events in a game to obtain real-time predictions of event probabilities. The simulator results in
predictions that can enhance, among others, the viewing experience of televised games. Finally,
like Hawkes Processes, the proposed model also allows the recovery of the hidden branching
structure of the process that quantifies the relative contributions of the background process and
previous occurrences to the triggering of a new event.

The developments in this paper can be readily applied to many other team sports like rugby,
hockey, basketball etc. As none of the methods have been tailored specifically to football or even
sports for that matter, they can also be applied to a wide range of applications that generate
event data streams.

2 Data

2.1 Description and descriptives

The data that motivated this work was provided by Stratagem Technologies Ltd, and consists
of all touch-ball events from all English Premier League games in the 2013/14 season. A touch-
ball event is an event where a player has acted on the ball by touching it with some part of
their body. We identified mistakes in the original data, with the most critical issues relating
to impossible sequences of consecutive events (e.g. a dribble a few seconds after a goal). Such
data issues have been addressed in a systematic way, using the data-cleaning workflow in the
publicly-available PhD thesis by Narayanan (see, Narayanan, 2021, Section 5.3). In total, the
data consists of over half a million touch-ball events recorded over the season along with other
attributes. A snapshot of the data is provided in Table 1. The league is contested by a total of
20 teams and follows a round-robin tournament scheduling, where each team plays every other
team at their home and away venues, which results in a total of 380 games over the season.

Each game comprises two halves that are separated by an interruption of approximately 15
minutes. In what follows, we refer to each uninterrupted game half as a game period. For each
touch-ball event, we have records of the event type, time-stamp, (x, y) co-ordinates of its location
in the playing field, team and unique player identifiers, game period, and if the touch-ball event
is a Pass, the event outcome (successful/unsuccessful) and the end (x, y) co-ordinates . Table 2
gives the frequency of each of the 22 distinct touch-ball event types recorded in the data.

Figure 1 shows the trajectory of the ball during an attacking move that led to a goal in the
18th minute of the game between Arsenal and Norwich City on October 19, 2013. The goal
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Table 2: Frequencies of the 22 distinct types of touch-ball events in the data.

event type frequency event type frequency

Pass 376924 SavedShot 4971
BallRecovery 36908 Save 4910
Clearance 25462 CornerAwarded 4100
Tackle 14581 MissedShots 4076
TakeOn 13607 OffsidePass 1582
BallTouch 13517 Claim 1181
Aerial 12871 Goal 1052
Interception 10422 Punch 380
Dispossessed 8897 ShotOnPost 187
Foul 8238 Smother 122
KeeperPickup 5208 CrossNotClaimed 81

0 5 10 15 20

t ime (s)

Figure 1: Tracing the locations of the sequence of events that led to the goal scored by Jack
Wilshere for Arsenal against Norwich City (voted the best goal of the 2013/14 season).

was scored by Jack Wilshere for Arsenal and was voted as the best goal in the English Premier
League for the 2013/14 season.

Latent game characteristics, such as the home advantage, and differences in playing styles
and formations between the teams are also reflected in the touch-ball events. For example,
Figure 2 compares the concentration of ball touches for Arsenal and Chelsea between their
home and away games in the 2013/14 season. The playing field is plotted so that the team is
always attacking to the right. It is clear that when the teams play at home the density of events
is higher towards the opponent’s goal. In fact, the point process modelling framework developed
in this paper allows us to quantify home advantage by, for example, learning the relative ability
of each team to retain possession when playing at home compared to away (see Section 6.6).

2.2 Data preparation

We combine the types and outcomes of touch-ball events into in-play and terminal composite
events. The in-play composite events are Win, Dribble, Successful Pass (Pass S), Unsuccessful
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Figure 2: Heat maps showing the density of ball-touches for Arsenal and Chelsea in their home
and away games in the 2013/14 season. In all heat maps the team is attacking to the right.

Pass (Pass U), Shot, Keeper, Save, Clear and Lose. Win denotes a player regaining possession
of the ball from the opponent. Dribble is taking the ball forward with repeated slight touches.
Passes are deemed to be successful when the ball is received by a teammate and unsuccessful
otherwise. Shots include all attempts on the opponents’ goal, including those missing the target.
The Keeper event denotes the goal keeper taking possession of the ball into their hands by
picking it up or claiming a cross. The Keeper event is unlike any other in-play event, as the goal
keeper is allowed to hold the ball without being challenged for a period of time while waiting
for opponents to clear the goal area. As a result, there is often a delay before the next event
even though the ball is technically in-play. Saves are events where the goal keeper prevents a
shot from crossing the goal line. Clear events are those where a player moves the ball away
from their goal area to safety while the Lose event is when a player loses possession of the
ball. The terminal composite events are those which result in the ball going out-of-play and are
Goal, Foul, Out Throw, Out GK, Out Corner and Offside Pass (Pass O). The terminal events
interrupt the game resulting in a delay before play resumes. Each composite event is tracked
for both the home and away teams. For this reason, we append “Home” or “Away” as a prefix
to the event label to distinguish between the events of the two teams playing the game. This
results in M = 30 distinct composite events, whose labels and observed frequencies are given in
Table 3.

For each touch-ball event, the data also contains the associated (x, y) coordinates on the
playing field. We partition the playing field into 3 zones of equal area. The zones and their
corresponding labels are shown in Figure 3. Zone 1 is the region where the home team defends
their goal, zone 3 is the region where the home team attacks, and zone 2 is the midfield region.
It is natural to expect that the control a team has on the game depends on the zone the ball is
at. For example, the home team is expected to retain possession of the ball more successfully
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Table 3: Composite event types along with their labels and observed frequencies in the data.

m mark label count

1 Home Win 10864
2 Home Dribble 3432
3 Home Pass S 152140
4 Home Pass U 42344
5 Home Shot 5127
6 Home Keeper 3273
7 Home Save 2208
8 Home Clear 11780
9 Home Lose 16534
10 Home Goal 597
11 Home Foul 4229
12 Home Out Throw 8982
13 Home Out GK 3084
14 Home Out Corner 2321
15 Home Pass O 814

m mark label count

16 Away Win 10829
17 Away Dribble 3123
18 Away Pass S 140975
19 Away Pass U 41462
20 Away Shot 4107
21 Away Keeper 3555
22 Away Save 2702
23 Away Clear 14059
24 Away Lose 16515
25 Away Goal 455
26 Away Foul 4009
27 Away Out Throw 8396
28 Away Out GK 3697
29 Away Out Corner 1779
30 Away Pass O 768

1 2 3

Home team at tacks →

Zones

Figure 3: Mapping from event location in (x, y) coordinates to zones.

in zone 1 as compared to zone 3.
Table 4 shows a snapshot of the data after its preparation, including a unique identifier for

each game period in the data.

3 Marked point processes

3.1 Conditional intensity function

Sequences of events over time are conveniently represented as realisations of a point process.
Oftentimes, the events can carry additional information, which are assumed to be realisations
of random variables, referred to as marks. The collection of the times {ti} at which the events
occur and the marks {mi} is a marked point process, whose ground process, is the process for
{ti} only.

A marked point process is typically specified through its joint conditional intensity function

λ∗(t,m) = λ∗g(t)f
∗(m | t) , (1)

where λ∗g(t) is the conditional intensity of the ground process and f∗(m | t) is the conditional
probability density or mass function of the mark m at time t. Both λ∗g(t) and f∗(m | t) in (1)
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Table 4: Snapshot of the final data prepared for modelling where each event, indexed by i =
1, ..., n, consists of the following components, the time of occurrence ti, the zone zi, and the
mark mi. The home and away team information for each game is assumed to be known and the
first event (t1, z1,m1) in each game period is considered to be deterministic and therefore, not
modelled.

i id period team id time (ti) zone (zi) mark (mi)

1 101 1 1 0 2 18
2 101 1 1 1 2 19
3 101 1 2 3 1 8
4 101 1 1 6 3 16
5 101 1 1 8 3 18
6 101 1 1 15 2 18
7 101 1 1 16 1 19
8 101 1 2 19 1 12

are understood as being conditional on Ft− , which is the filtration of the marked point process
up to but not including t.

3.2 Marked Hawkes processes

Marked Hawkes processes are point processes whose defining characteristic is that they self-
excite, meaning that each arrival increases the rate of future arrivals for a period of time. More
formally, consider a realisation of a marked point process, consisting of event times {ti} with
ti ∈ R+ and ti > ti−1, and marks mi ∈ {1, . . . ,M} (i = 1, . . . , n), where M is the number
of discrete marks. The marked Hawkes process is most intuitively specified using its mark
dependent conditional intensity function λ∗(t,m), which for an exponentially decaying intensity
is (Rasmussen, 2013, expression 2.2),

λ∗(t,m) = µδm +
∑

tj<t

εβe−β(t−tj)γmj→m . (2)

In (2), the parameter µ > 0 is a constant background intensity and δm ∈ (0, 1) is the background
mark probability for mark m with

∑M
m=1 δm = 1. The parameter ε ∈ (0, 1) is the excitation

factor, β > 0 is the exponential decay rate and γmj→m ∈ (0, 1) is the probability the excitation

from an event of mark mj triggers an event of mark m, with
∑M

m=1 γmj→m = 1 for any mj ∈
{1, . . . ,M}.

3.3 Limitations of the marked Hawkes process model

The specification in (2) describes a marked Hawkes process that is linear in the sense that the
excitations from different arrivals add up, not only increasing the probability of triggering an
event of a particular type, but also concentrating the occurrence times for a certain period
of time. For this reason, marked Hawkes processes have proven useful in a wide range of
applications, where events tend to cluster in time, such as the modelling of earthquakes (Ogata,
1998), gang violence (Mohler et al., 2011) and financial market events (Bowsher, 2007).

However, in applications like the modelling of event sequences in football, each event triggers
other events of a particular type with high probability, while it is not necessarily true that the
occurrence times cluster.

As an illustration that the observed events in football do not exhibit clustering, consider
only the collection of the times {ti} at which the events occur. A succinct method to investigate
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Figure 4: The K function estimate K̂(t) − 2t of the observed event times (black points) from
the first game of the season between Aston Villa and Arsenal. Hawkes I (green) is a Hawkes
process with parameters (µ, ε, β) = (0.4183, 0.0035, 0.0004) estimated from the observed times
using maximum likelihood. A Hawkes process with ε = 0 is the trivial case with no excitation
that reduces to a Poisson process (orange) with estimated rate µ = 0.4189. Hawkes II (pink)
has parameters (µ, ε, β) = (0.2594, 0.4, 0.01) and Hawkes III (purple) has parameters (µ, ε, β) =
(0.1068, 0.8, 0.01). Hawkes II and Hawkes III are examples of processes with moderate and
severe clustering respectively, whose µ parameters were estimated from the observed times using
maximum likelihood after fixing ε, β. The box plots of the estimates for the Hawkes and Poisson
processes were computed using 100 independent simulations of each process over the same time
interval as the observed times.

the aggregation of the points is using the non-parametric Ripley’s K-function summary (Ripley,
1977), which is the reduced second moment measure. An estimator of the K-function in the
one-dimensional case is derived in Diggle (1985) as

K̂(t) =
T

n2

n∑

i=1

∑

j 6=i
wij1(|ti − tj | ≤ t) , (3)

where (0, T ) is the time interval over which the n points are observed, 1(.) is the indicator
function, and wij is an edge correction taking values wij = 1 if |ti − tj | ≤ min(ti, T − ti) and
wij = 2, otherwise.
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Figure 5: Comparing the cumulative distribution functions (CDFs) of the inter-arrival times of
events simulated from a Poisson process (green), a Hawkes process (orange), a Gamma process
(purple) and observed event times in football (pink). Empirical CDFs were computed using
10, 000 inter-arrival times in each case.

For a homogeneous Poisson process, K(t) = 2t. If K(t) > 2t, the process is said to be
over-dispersed relative to the Poisson, and exhibits some degree of clustering. If K(t) < 2t,
the process is under-dispersed relative to the Poisson, and tends towards regular occurrences.
Figure 4 shows the K function estimate, K̂(t) − 2t for t ∈ {1, 2, . . . , 100}, of the observed
event times from the first game of the season between Aston Villa and Arsenal (n = 1279).
We also compare the estimates from those observed times with the estimates of the events
simulated from several one-dimensional Hawkes processes with conditional intensity of the form,
λ∗(t) = µ +

∑
tj<t

εβe−β(t−tj). Hawkes I (green) is the fitted Hawkes process with parameters

(µ, ε, β) = (0.4183, 0.0035, 0.0004) estimated from the observed times using maximum likelihood.
Note that the estimated ε is very close to 0, indicating no clustering. A Hawkes process with
ε = 0 is the trivial case with no excitation that reduces to a Poisson process (orange) with
estimated rate µ = 0.4189. Hawkes II (pink) has parameters (µ, ε, β) = (0.2594, 0.4, 0.01) and
Hawkes III (purple) has parameters (µ, ε, β) = (0.1068, 0.8, 0.01). Hawkes II and Hawkes III are
examples of processes with moderate and severe clustering respectively, whose µ parameters were
estimated from the observed times using maximum likelihood after fixing ε, β. The box plots
of the estimates for the Hawkes and Poisson processes were computed using 100 independent
simulations of each process over the same time interval as the observed times.

The K̂(t) − 2t values for the Hawkes II and Hawkes III processes quickly get above 0 and
increase with t demonstrating the behaviour of processes with different degrees of clustering. On
the other hand, the K̂(t)− 2t values for the fitted Hawkes process (Hawkes I) and the Poisson
process concentrate around 0, being indicative of the expected behaviour of processes where
points do not cluster. The K̂(t) − 2t values from the observed times range from -1.4 to -0.9
indicating slight under-dispersion relative to the Poisson process. In other words, the observed
times in football exhibit no clustering and in fact show evidence of being more regular than the
Poisson process.
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Another method to investigate the aggregation of points is by looking at distribution of
the inter-arrival times. Figure 5 shows the empirical distribution function of the first 10, 000
inter-arrival times from the first 7 games of the league season. We also plot the cumulative
distribution functions of a homogeneous Poisson process and a Hawkes process, whose param-
eters are estimated from the aforementioned 10, 000 events using maximum likelihood. The
fitted Hawkes process is far from the empirical distribution function, and almost identical to
the fitted Poisson process confirming that the arrival times in football do not cluster. This is
further evidence that Hawkes processes are not appropriate for modelling events such as those
observed in football, that tend not to cluster in time. Figure 5 also includes the cumulative
distribution function of a fitted Gamma process, which, as is apparent provides an excellent fit
to the observed inter-arrival times.

4 Specification of flexible marked point processes

4.1 Decoupling the modelling of times and marks

According to the decomposition of a multivariate distribution function in Cox (1975, expression
2) the likelihood of a marked point process observed in (0, T ) can always be factorised as

L(Ftn | ζ,θ) =
n∏

i=1

{
g(ti | Fti−1 ; ζ)f(mi | ti,Fti−1 ;θ)

}
{1−G(T | Ftn ; ζ)} , (4)

where g, G, and f are the conditional density and distribution function for the times, and
the probability mass function for the marks, respectively, and ζ,θ are unknown parameter
vectors that may or may not share components. The last term in (4) accounts for the fact
that the unobserved occurrence time tn+1 must be after the end of the observation interval
(0, T ). Therefore, an alternative approach to specify a marked point process is to specify the
functions g(· | Fti−1 ; ζ) and f(· | ti,Fti−1 ;θ), separately, and combine them as in (4). The
key insight in the current work is to derive the specification for the marks f(· | ti,Fti−1 ;θ)
from the joint conditional intensity function of a marked Hawkes process model, and then to
specify a probability density function for the times g(· | Fti−1 ; ζ) best suited to our application.
In this way, we can restrict the characteristic excitation property of marked Hawkes processes
exclusively to the modelling of the marks, and have the freedom to specify a different model for
the occurrence times.

By the definition of the conditional intensity function for a marked point process in (1),
f(mi | ti,Fti−1 ;θ) = λ∗(ti,mi)/

∑M
m=1 λ

∗(ti,m). Plugging in λ∗(ti,m) from (2) in the latter
expression, gives

f(mi | ti,Fti−1 ;θ) =
δmi +

∑
tj<ti

α∗e−β(ti−tj)γmj→mi
1 +

∑
tj<ti

α∗e−β(ti−tj)
, (5)

where α∗ = εβ
µ . Expression (5) makes it immediately apparent, that the parameters µ and ε of the

marked Hawkes process as specified by (2) are not always identifiable for general specifications
of g(· | Fti−1 ; ζ) in (4). Apart from a mathematical fact, this is also rather intuitive, because
µ and ε in (2) characterise the evolution of the Hawkes process in the time dimension and the
sequence of marks is not sufficient to identify them.

The specification of the marked point process likelihood is complete once a probability density
function g(· | Fti−1 ; ζ) for the event times is specified.

We should highlight here that the marked point processes from the factorisation in (4) are
generally different to the ones that result by assuming separability of the conditional intensity
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functions (see, for example, González et al., 2016, Section 6.5). A separable conditional intensity
functions has the form

λ∗(t,m) = λ∗g(t)f
∗(m) .

and implies that the conditional distribution of the mark does not depend on the occurrence
time t. Separability is a convenient assumption because it allows for the sequence of marks to be
modelled separately from the sequence of times. In contrast, the factorisation in (4) allows the
conditional distribution of the mark to depend on the time of occurrence as well as the history,
still allowing for estimating θ separately from ζ, if θ and ζ do not share components.

The proposed marked point process model also allows the recovery of the hidden branch-
ing structure of the process, a key feature of Hawkes Processes (Hawkes and Oakes, 1974). In
Section 6.8, we calculate the branching structure probabilities and quantify the relative contri-
butions of the background process and previous occurrences to the triggering of a new event.

4.2 Parameter interpretation

In (5), the mark probability of each event in the sequence is determined by a combined additive
effect from a background component and all previous occurrences. The first term δmi in the
numerator is the mark probability associated with the background component, while each term
α∗e−β(ti−tj)γmj→mi is the contribution from the excitation caused by a previous occurrence in
the sequence.

The background mark probability δm ∈ (0, 1) is the probability an event has a mark m
if the event is triggered solely by the background component. The excitation factor α∗ ≥
0 is a scaling factor applied to the contributions from the previous occurrences to the event
mark probability. Large values of α∗ indicate a stronger dependence of the process on its
history, because the contributions from previous occurrences are weighted higher relative to the
background component. The decay rate β > 0 is the exponential rate at which the excitations
from previous occurrences decay over time. The parameter γmj→mi ∈ (0, 1) is the probability
the excitation from an event of mark mj triggers an event of mark mi. In other words, γmj→mi
can be viewed as the conversion rate for the transition from an event with mark mj to an event
with mark mi.

In summary, as in marked Hawkes processes, the specification for the marks in (5) cap-
tures not only all cross-excitations between the various marks but also the rate at which these
excitations decay over time.

4.3 Covariate-driven cross excitation

The conditional distribution of marks with probability mass function (5), allows to drive the
cross-excitation of the marks using covariates. The conversion rates γmj→m can be linked to a
covariate vector x = (x1, . . . , xp)

> observed at the current time through the baseline-category
logit specification (see, for example, Agresti, 2007, Section 6.1)

log

(
γmj→m
γmj→M

)
= φmj→m + ω>mx (m = 1, . . . ,M − 1) , (6)

where ωm is an unknown p-vector of regression parameters. Then, keeping all covariates apart
from xt fixed, ωmt is the log of the ratio of odds for category m versus the baseline category
M at xt + 1 to that at xt (t = 1, . . . , p). Also, by setting all covariates xt equal to 0, φmj→mi
is the log of the ratio of odds for category m versus the baseline category M . The covariate
vector x can include a combination of process-specific covariates that are time-invariant, and
event-specific covariates. For example, in Section 5.2, we use (6) to parameterise the marked
point process in terms of the relative abilities of teams for each event type, and produce team
rankings per event-type.
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4.4 Spatio-temporal marked point processes

We can readily extend the factorisation of the likelihood in (4) to include conditional densities
for the event locations, when the latter are observed. We can write

L(Ftn | ψ) =

n∏

i=1

{
g(ti | Fti−1 ; ζ)h(zi | ti,Fti−1 ;η)f(mi | ti, zi,Fti−1 ;θ)

}
{1−G(T | Ftn ; ζ)} ,

(7)
where {zi} is the collection of random variables corresponding to the spatial component of
the process, which is characterised by the conditional probability mass or density functions
h(· | ti,Fti−1 ;η) with η being a parameter vector that may or may not share parameters with ζ
and θ, and ψ = (ζ>,η>,θ>)>. The filtration Fti now includes all times, marks and locations
up to time ti.

If the process ends at the last occurrence time tn, then the last term 1−G(T | Ftn ; ζ) in (4)
and (7) is not part of the likelihood (see, for example Lindqvist, 2006, Section 4.2). This is
the case in the modelling of touch-ball event sequences in football we consider here, where the
process ends with or immediately after the last event observed in each half of the game.

5 Bayesian modelling of in-game event sequences

5.1 Preamble

The framework for specifying flexible marked point processes of Section 4 is rather attractive
for the modelling of in-game event sequences in football and other team sports. Firstly, cross-
excitation of in-game events is a natural assumption because any event in an event sequence is
likely to be triggered by one or more of the previous events. For example, following a corner
kick, the next event is with high probability one among a shot on goal, a defensive clearance or
a claim by the keeper. Such effects can be naturally and readily captured by the parameters of
the conditional mark distribution in (5), which involves not only the magnitudes of all cross-
excitations between the various event types but also the rate at which these excitations decay
over time. Secondly, the preliminary analyses in Section 3.3 provides strong evidence that
occurrence times do not necessarily cluster, as off-the-shelf marked Hawkes processes imply.
Hence, the freedom to use a more flexible conditional distribution for the occurrence times, such
as a Gamma process, is a rather attractive prospect. Furthermore, as discussed in Section 4.3,
team information can be incorporated in the model in a direct way as covariate information to
drive the cross-excitation based on the relative abilities of the teams.

Overall, as we demonstrate later, the framework of Section 4 can be used to provide valuable
explanatory tools into the underlying dynamics of the game for the coaching staff and inform
strategic decision making. It can also produce predictions of events, such as goals, in a spec-
ified time horizon, and of game outcomes that can enhance, among other things, the viewing
experience in televised games.

5.2 Excitation-based models

Assume that the touch-ball events in S game periods are S realisations of independent spatio-
temporal point processes, with the sth realisation involving ns events. Denote by tsi, msi, and
zsi the occurrence time, mark and location of the i-th event in the sth realisation, respectively.
Each of the S independent spatio-temporal marked point processes has a likelihood as in (7)
after dropping the last term, and with conditional probability mass function for the marks as
in (5). The product of the S likelihoods is the overall likelihood based on the S game periods.
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The probability density functions for the occurrence times within each period are set to

g(tsi | Fstsi−1 ; ζ) = p(tsi − tsi−1 | msi−1,a, b)

tsi − tsi−1 | msi−1,a, b ∼ Gamma(amsi−1 , bmsi−1) , (8)

where Fstsi denotes the filtration of the sth process up to time tsi.
By this specification, the time to next event is modelled using a gamma distribution with

shape and rate parameters that are specific to the mark of the last observed event. In this way,
we wish to capture the differences in the expected time to the next event across the different
event types. For example, we expect a shorter time to the next event after an in-play event like a
Pass, compared to that of an out-of-play event like a Foul. Even within the group of out-of-play
events, we expect a shorter delay following a Throw-in as compared to a Goal event.

For a discrete set of locations {1, . . . , Z}, the conditional probability mass function for the
current location is set to

h(zsi | tsi,Fstsi−1 ;η) = η(zsi−1,msi−1)→zsi , (9)

where η(zsi−1,msi−1)→zsi is the probability of transitioning into location zsi given the location
zsi−1 and the mark msi−1 of the last observed event. Expression (9) models the sequence of
locations as a discrete first-order Markov chain (see, for example, Norris, 1997) with a transition
probability matrix η. The current state of the Markov chain is determined by the combination
of the location and the mark of the last observed event, and the probability of transitioning into
the next location depends only on the current state. The state space of the Markov chain is
given by the Cartesian product {1, . . . , Z} × {1, . . . ,M}.

We consider four alternative parameterisations for the conditional probability mass function
for the marks. The Sβ (scalar β) spatio-temporal marked point process results from (8), (9) and
a conditional mark distribution of the form (5), that is

f(msi | tsi,Fstsi−1 ;θ) =
δmsi +

∑
tsj<tsi

eα−β(tsi−tsj)γmsj→msi
1 +

∑
tsj<tsi

eα−β(tsi−tsj)
, (10)

where α = log(α∗). The Vβ (vector β) model results from (8), (9) and

f(msi | ti,Fstsi−1 ;θ) =
δmsi +

∑
tsj<tsi

eα−βmsj (tsi−tsj)γmsj→msi

1 +
∑

tsj<tsi
eα−βmsj (tsi−tsj)

, (11)

where βm is the exponential decay rate of the excitation caused by an event of mark m. Vβ
allows the decay rates to depend on the mark of the event causing the excitation. Hence, Sβ is
formally nested in Vβ and results when β = β1 = . . . = βM . The Mβ (matrix β) process results
from (8), (9) and

f(msi | tsi, zsi,Fstsi−1 ;θ) =
δmsi|zsi +

∑
tsj<tsi

e
α−βmsj→msi|zsi (tsi−tsj)γmsj→msi|zsi

∑M
m=1

[
δm|zsi +

∑
tsj<tsi

e
α−βmsj→m|zsi (tsi−tsj)γmsj→m|zsi

] , (12)

where βm→m′|z is the decay rate of the excitation caused by an event of mark m on an event
of mark m′ at location z. Specification (12) allows the decay rates to vary both with the
pair of marks involved in the excitation and across locations, and allows the background mark
probabilities δ and event conversion rates γ to vary across location. The Mβ model can be
used to account for scenarios like those where a Corner event excites a Pass event in the short
term and a Shot event in the longer term (βCorner→Pass|3 > βCorner→Shot|3). It also allows us to
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capture effects such as how a team is more likely to make more passes and retain possession
of the ball in the defensive zone, while attempting more shots on goal in the attacking zone
(γPass→Pass|1 > γPass→Pass|3 and γPass→Shot|3 > γPass→Shot|2). The final model we consider is the
MβA (matrix β with abilities) where the baseline category logits of the conversion rates in (6)
are driven by team information as

log

(
γmsj→m|z(c)

γmsj→M |z(c)

)
= φmsj→m|z + ωcm (m = 1, . . . ,M − 1; c = 1, . . . , C) . (13)

In the above expression, φm→m′|z is a location-dependent baseline conversion, and c is the team
in possession of the ball attempting the event conversion. The parameter ωcm, then, reflects the
ability of a team to complete a conversion to an event of mark m.

5.3 Prior distributions

The shape and rate parameters of the Gamma distributions for the inter-arrival times in (8) are
assigned independent exponential priors with rates a′ and b′, respectively. The probability mass
function for the locations specified in (9) models the locations as a multinomial distribution given
the current state of the Markov chain. The conjugate prior for the multinomial distribution is
the Dirichlet distribution (see, for example, Gelman et al., 2013, Section 3.4) and therefore we
assign a Dirichlet prior on the multinomial probabilities η with a common concentration rate
parameter ν. The background mark probability vector δ in the Sβ, Vβ, Mβ and MβA models
is also assigned a Dirichlet prior with concentration hyper-parameter δ′. The location-specific
mark probability vectors (δ1|1, . . . , δM |1)>, . . . , (δ1|Z , . . . , δM |Z)> in the Mβ and MβA models are
assigned independent Dirichlet priors with concentration hyper-parameter δ′′. The excitation
factor α is assigned a normal prior with mean 0 and standard deviation σα. The decay rate
parameter β in the Sβ model, the parameters β1, . . . , βM in the Vβ model, and their location-
specific counterparts in the Mβ and MβA models are assigned independent exponential priors
with a common rate β′. The parameters φm→m′|z and ωcm (m,m′ = 1, . . . ,M ; z = 1, . . . , Z; c =
1, . . . , C) in the MβA model are assigned independent Normal priors with mean 0 and standard
error σγ . The conversion rate parameters (γm→1, . . . , γm→M )> in the Sβ and Vβ models, and
their location-specific counterparts in the Mβ model are assigned independent Dirichlet priors
with a common concentration rate parameter γ′.

5.4 Posterior distributions

The time and location conditional distributions corresponding to (8) and (9) share no parameters
with each other, and no parameters with any of the conditional mark distributions for the Sβ,
Vβ, Mβ, and MβA models. Furthermore, the likelihood in (7) can be factorised into a term
depending only on the time parameters ζ, a term depending only on the location parameters
η and a term depending only on the mark parameters θ. Given that the priors for ζ, η and
θ are also independent, the derivation of, or sampling from, the posterior distributions can be
performed separately for each of those parameters.

The priors for the location parameters η are conjugate, so the posterior for η is readily
obtained. If y = {yi→j}, for j ∈ {1, . . . , Z}, are the observed counts of transitions originating
from the state i where i ∈ {1, . . . , Z} × {1, . . . ,M}, then the posterior distribution of each
row of the transition matrix ηi is a Dirichlet distribution with concentration parameters (yi1 +
ν, . . . , yiZ + ν).

Posterior sampling for the parameter vectors a, b in (8) of the conditional distributions for
the times, and the parameters θ of the conditional distributions for the marks in each of the
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Sβ, Vβ, Mβ, and MβA models is carried out using the variant of the Hamiltonian Monte Carlo
procedure (Duane et al., 1987) that is implemented in Stan (Stan Development Team, 2020).

We have also implemented posterior sampling using a Metropolis-within-Gibbs procedure,
which, though, proved to mix poorly in artificial data sets for the Sβ, Vβ, Mβ, and MβA, render-
ing it computationally infeasible. As in the case of Hawkes process, the poor mixing stems from
the presence of strong correlations between the model parameters as well as the flatness of the
likelihood function (Veen and Schoenberg, 2008). Stan, on the other hand, implements the No-
U-Turn Sampler (Hoffman and Gelman, 2014) that automatically calibrates tuning parameters
in a warm-up phase and can efficiently sample from complex posterior distributions.

5.5 Model complexity

The conditional mark distribution in the Mβ and MβA models involves a large number of pa-
rameters. There are M2Z decay rate parameters and M(M − 1)Z baseline conversion rate
parameters which makes posterior sampling a computationally challenging task. We have devel-
oped a screening procedure based on association rule learning (see, for example, Agrawal et al.,
1993) that operates on the data involved in the likelihood and eliminates parameters prior to
posterior sampling.

The screening procedure retains only those parameters that capture the most significant
event interactions and depends on two constants that need to be chosen. The first is the window
size W for the number of transient events, and any event is allowed to be triggered by only one
of the W events leading up to it. The other is the number of event pairs N considered in each
of the three zones and sets a threshold on the number of significant event interactions that are
identified. Full details on the association rule based screening procedure are given in Section S2
of the Supporting Materials.

5.6 Model evaluation

Let X(train) be the set of the training data on which the likelihood is based on, consisting of
n(train) events, and let ψ(1), . . . ,ψ(R) be R samples from the posterior distribution. Denote by
X(test) the set of held-out test data, consisting of n(test) events.

One method to evaluate the predictive accuracy of each model is to use the log point-wise
predictive density (Vehtari et al., 2017) computed on the test data, using the posterior samples

l̂pd =
∑

(t,z,m)∈X(test)

log

(
1

R

R∑

r=1

L(t, z,m | Ft− , ζ(r),η(r),θ(r))
)
, (14)

where L(t, z,m | Ft− , ζ(r),η(r),θ(r)) is the likelihood of (t, z,m) given the filtration Ft− at the

posterior sample ζ(r),η(r),θ(r). Large values of l̂pd indicate better predictive accuracy.
Apart from Sβ, Vβ, Mβ, and MβA, we also evaluate the predictive accuracy of two simpler

baseline models that do not include Hawkes-like excitation effects. The first baseline model,
termed FOMC model, is based on the factorisation of the likelihood of marked spatio-temporal
processes in expression (7) with models for the times and locations as in (8) and (9), respectively,
but with the conditional probability mass function for the marks being a first-order Markov chain

f(mi | ti, zi,Fti−1 ;θ) = θ(zi,mi−1)→mi . (15)

In this specification, θ(z,m)→m′ is the probability of the event mark m′ given that last observed
event has location z and mark m. The second baseline model, termed MSTHP, is the marked
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Table 5: Zone-wise frequencies for each event type in the training data.

Home
mark zone

m label 1 2 3

1 Home Win 236 257 41
2 Home Dribble 17 96 96
3 Home Pass S 1699 4633 1658
4 Home Pass U 541 825 725
5 Home Shot 0 0 292
6 Home Keeper 155 0 0
7 Home Save 106 0 0
8 Home Clear 557 141 32
9 Home Lose 122 287 368

10 Home Goal 0 0 22
11 Home Foul 62 126 64
12 Home Out Throw 97 184 163
13 Home Out GK 149 0 0
14 Home Out Corner 0 0 112
15 Home Pass O 7 19 20

Away
mark zone

m label 1 2 3

16 Away Win 25 204 301
17 Away Dribble 76 65 19
18 Away Pass S 1427 4390 2030
19 Away Pass U 542 811 702
20 Away Shot 193 2 0
21 Away Keeper 0 0 192
22 Away Save 0 0 149
23 Away Clear 27 124 660
24 Away Lose 323 349 142

25 Away Goal 20 0 0
26 Away Foul 46 112 69
27 Away Out Throw 143 173 110
28 Away Out GK 0 0 220
29 Away Out Corner 76 0 0
30 Away Pass O 13 11 5

Table 6: Posterior summaries and convergence diagnostics from 2000 posterior samples for
selected parameters from the MβA model after screening with (W,N) = (5, 100).

parameter mean sd R̂ N (eff)

β3→3|1 0.52 0.04 1.00 1309.81

β27→8|1 1.97 0.86 1.00 1953.81

β24→1|2 1.51 0.09 1.00 2042.84

β3→4|2 0.65 0.03 1.01 913.52

β3→5|3 0.63 0.04 1.01 1933.43

β3→10|3 0.81 0.24 1.01 882.31

φ3→3|1 1.70 0.50 1.01 792.46

φ27→8|1 -0.74 0.87 1.00 2159.96

φ24→1|2 3.29 0.37 1.02 539.25

parameter mean sd R̂ N (eff)

φ3→4|2 1.81 0.41 1.01 540.41

φ3→5|3 1.38 0.35 1.01 576.16

φ3→10|3 -1.31 0.59 1.01 1098.83

δ3|1 0.56 0.03 1.00 1805.80

δ3|2 0.24 0.08 1.00 1356.85

δ3|3 0.03 0.01 1.00 2207.39

α 6.30 0.09 1.01 866.96
ω9,3 0.59 0.26 1.03 334.15
ω10,3 0.67 0.25 1.01 341.24

spatio-temporal homogeneous Poisson process (Daley and Vere-Jones 2003, Section 7.3), which
has likelihood

L(P )(q | ρ) =
M∏

m=1

Z∏

z=1

ρqmzmz exp {−Tρmz} , (16)

where ρmz is the Poisson rate parameter and qmz is the number of event occurrences for mark
m at location z over a total observation time T in the data.

The FOMC and MSTHP models have conjugate prior distributions and therefore their pos-
teriors are readily obtained. Details on those prior distributions and the derivation of their
posterior distributions are given in Section S1 of the Supporting Materials.

6 Explanatory modelling

6.1 Training

Samples from the posterior distributions for the parameters of the Sβ, Vβ, Mβ, and MβA models
of Section 5.2, and of the FOMC and MSTHP baseline models of Section 5.6 are obtained using
all event sequences from the first 20 games of the league season, played between 17/08/2013
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and 26/08/2013, which constitute X(train). The training data involves S = 40 game periods
involving of 27, 660 events. Each of the 20 teams participating in the league plays in two of the
20 games, one at their home and one at their away venue. As is also described in Section 2.1,
there are M = 30 marks and Z = 3 zones. Table 5 gives the zone-wise event frequencies across
marks in the training data used for modelling, reflecting the large variability in the frequencies
both across marks and zones.

For the Mβ and MβA models, the association rule learning screening procedure of Section 5.5
is employed for all combinations of W ∈ {5, 10} and N ∈ {50, 100} to eliminate some of the
model parameters and reduce the model complexity before posterior sampling.

The hyper-parameters for the prior distributions specified in Section 5.3 are as follows.
The hyper-parameters a′ and b′ for the exponential priors on the parameters of the Gamma
distributions in (8) are both set to 0.01. The Dirichlet prior on the background mark probabilities
δ has concentration hyper-parameter δ′ = 1. The exponential prior on the decay rates β
has a rate hyper-parameter β′ = 0.1. The Normal priors on the excitation factor α and the
baseline-category logit model parameters φ and ω have hyper-parameters σα, σγ = 10. The
location-specific background mark probability vectors in the Mβ and MβA models are assigned
independent Dirichlet priors with concentration hyper-parameter δ′′ = 1.

The ability parameters in the baseline category logit specification for the conversion rates
of the MβA are not directly identifiable. In order to make them so, we set the abilities ωcm for
West Ham United to 0 (m = 1, . . . , 30). Then, ωcm > 0 indicates that for team c, a previous
event is more likely to trigger an event of mark m when compared to the reference team.

Samples from the posterior distributions are obtained by running four parallel chains using
the Hamiltonian Monte Carlo procedures implemented in Stan. The Stan templates we used are
all provided in the Supporting Materials. Each chain is initialised with different starting values
and run for a total of 500 iterations post the warm-up phase. Table 6 gives posterior summaries
along with convergence diagnostics for some of the parameters of the MβA model with W = 5
and N = 100; the corresponding chain-wise trace plots are provided in the Supporting Materials.

The convergence of the algorithm is assessed using the potential scale reduction factor R̂ pro-
posed by Gelman et al. (1992), which is the ratio of the average variance within each chain to the
variance of the aggregated samples across chains. If the chains have converged to the stationary
distribution, the expected value of R̂ is 1. All parameters have R̂ < 1.1, which, as recommended
in Gelman et al. (1992), is evidence for convergence. Table 6 also gives the effective sample size
(see, for example, Gelman et al., 2013, Section 11.5) for the samples for each of the posterior
marginals, which indicate that the sampler returned samples with acceptable autocorrelation.
For some parameters the effective sample size is larger than the sample size due to negative
autocorrelations. This, as pointed out in Vehtari et al. (2021), is a consequence of the HMC
algorithm used in Stan being an antithetic Markov chain which has negative autocorrelations on
odd lags. The impact of the prior distributions in Section 5.3 on the posterior samples is minimal
as seen, for a selection of parameters, in Figure 6 indicating that the posterior distributions of
the parameters have concentrated after accounting for the likelihood.

6.2 Model evaluation

The Sβ, Vβ, Mβ, and MβA models are compared with each other and with the FOMC and
MSTHP baseline models of Section 5.6 in terms of their log point-wise predictive density (14)
computed on test data. The test data X(test) includes all events from the 5 games immediately
following the games in the training data, played between 31/08/2013 and 01/09/2013. The test
data involves S = 10 game periods involving of 27, 660 events.

Table 7 gives the log predictive densities l̂pd, summed over all the events in the 10 game
periods in the test data. Table 7 also provides the number of parameters in each model as a
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Figure 6: Visualising the impact of prior specifications by overlaying the posterior and prior
densities for selected model parameters for the MβA model with (W,N) = (5, 100).

measure of their complexity. The three top performing models are the Mβ model after screening
with (W,N) = (5, 100), followed by Mβ model after screening with (W,N) = (10, 100), and
MβA with (W,N) = (5, 100). Notably, the Mβ model after screening with (W,N) = (5, 100)
performs the best among the list of fitted models, significantly outperforming also models of
similar complexity, such as the Sβ, Vβ and FOMC models. The slightly poorer performance of
the MβA model with (W,N) = (5, 100) is most probably due to the fact that, in the training
data, each team plays just one game at their home and one at their away venue. Nevertheless,
in order to illustrate the full explanatory potential of the modelling framework in Section 4, we
focus on inferences based on the posterior samples from the MβA model.

6.3 Background mark probabilities

Table 8 gives the posterior means of the background probabilities δm|z for all marks m ∈
{1, . . . , 30} and all locations z ∈ {1, 2, 3}. The background mark probabilities for the home
and away team events in zone 1 are almost equal to those in zone 3 for the away and home team
events, respectively. This is as expected because the attacking zone for the home team is the
defensive zone for the away team and vice-versa.

The similar probabilities for the home and away background mark probabilities could in-
dicate that the background process of the game is not influenced by home advantage. To
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Table 7: Cumulative log posterior densities l̂pd over 10 game periods in the test data for all
fitted models along with the number of estimated parameters d(par) in each model. For the Mβ
models, W is the number of transient events and N is the number of significant event pairs
identified in the rule-based framework for reducing model complexity.

model abbreviation d(par) l̂pd

Homogeneous Poisson process (Baseline) MSTHP 90 -35469.50
Matrix β (W,N) = (10, 50) Mβ2 538 -22288.64
Matrix β (W,N) = (5, 50) Mβ1 538 -22152.08
First order Markov chain (Baseline) FOMC 870 -21898.31
Scalar β Sβ 902 -21838.04
Vector β Vβ 915 -21829.81
Matrix β with abilities (W,N) = (5, 100) MβA 1539 -21599.81
Matrix β (W,N) = (10, 100) Mβ4 988 -21496.56
Matrix β (W,N) = (5, 100) Mβ3 988 -21342.57

confirm this, we fit another MβA model after constraining all the corresponding home and
away background mark probabilities to be equal, for example, δHome Pass S|1 = δAway Pass S|3,
δHome Foul|3 = δAway Foul|1, δHome Dribble|2 = δAway Dribble|2 and so on. The constrained MβA model
has 45 fewer parameters to be estimated as compared to the full MβA model.

The formal method to test our hypothesis is to calculate the Bayes factor, defined as the
ratio of the marginal likelihood of the constrained MβA model to the marginal likelihood of
the full MβA model. Then a Bayes factor greater than 1 would indicate that there is no
evidence in favour of the full MβA model and therefore, the background mark probabilities
do not capture home advantage. However, as a consequence of both MβA models being high-
dimensional (∼ 1500 parameters), calculating their marginal likelihoods proved computationally
infeasible.

As an alternative, for the constrained MβA model, we calculate its out-of-sample log predic-
tive density on the same test data as carried out for all the other fitted models in Section 6.2.
In fact, the constrained MβA model (l̂pd = −21589.28) turns out with better predictive perfor-

mance than the full MβA model (l̂pd = −21599.81), supporting our claim that the background
process of the game is not influenced by home advantage.

We also observe that the successful Pass events account for the majority of the background
probability mass, while events like Shots and Goals have nearly zero probability. This sug-
gests that the Shot and Goal events are highly unlikely to originate solely from the background
component, but are instead triggered by excitations from previous events.

6.4 Excitation factor

The excitation factor α in expression (12) is a scaling factor applied to the contributions from
the previous occurrences to the event mark probability. In (12), the background component has
a weight of 1, while previous occurrences are weighted by exp(α).

The 95% highest posterior density interval for exp(α) is (451.35, 642.54), providing evidence
that the contributions from previous occurrences carry substantially higher weight relative to
the background component. In other words, this indicates that event sequences in football have
a significant dependence on their history.
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Table 8: Posterior means and standard deviations (in parenthesis) of the zone dependent back-
ground mark probabilities δm|z for z ∈ {1, 2, 3} from the MβA model. The dots (·) denote means
and standard deviations less than 0.005.

mark label 1 2 3

Home Win . . .

Home Dribble . 0.01
(0.01)

.

Home Pass S 0.56
(0.03)

0.24
(0.08)

0.03
(0.01)

Home Pass U 0.06
(0.01)

0.04
(0.02)

0.03
(0.01)

Home Shot . . .

Home Keeper 0.04
(0.01)

. .

Home Save . . .

Home Clear 0.05
(0.02)

. .

Home Lose . 0.04
(0.02)

.

Home Goal . . .

Home Foul 0.03
(0.01)

0.09
(0.04)

0.02
(0.01)

Home Out Throw . . .

Home Out GK . . .

Home Out Corner . . .

Home Pass O . 0.08
(0.02)

.

mark label 1 2 3

Away Win . . .

Away Dribble . 0.02
(0.02)

.

Away Pass S 0.03
(0.01)

0.11
(0.05)

0.58
(0.03)

Away Pass U 0.02
(0.01)

0.07
(0.04)

0.05
(0.01)

Away Shot . . .

Away Keeper . . 0.05
(0.01)

Away Save . . .

Away Clear . . .

Away Lose 0.02
(0.01)

0.07
(0.03)

0.06
(0.01)

Away Goal . . .

Away Foul 0.02
(0.01)

0.06
(0.03)

.

Away Out Throw . . .

Away Out GK . . .

Away Out Corner . . .

Away Pass O . 0.05
(0.02)

.

6.5 Decay rates

As mentioned in Section 4.2 the decay rate βm→m′|z in expression (12) is the exponential decay
rate of the excitation caused by an event of mark m on an event of mark m′ at location z.
By allowing the decay rates to depend on the pair of marks involved in the excitation, we
had hoped to account for scenarios like a Corner event exciting a Pass S event in the short
term and a Shot event in the longer term. Indeed, the 95% highest posterior density interval
for βHome Corner→Home Pass S|3 is (1.34, 2.36) and βHome Corner→Home Shot|3 is (0.16, 0.44) illustrating
that the Corner→ Shot excitation decays at a much slower rate compared to the Corner→ Pass S
excitation.

6.6 Conversion rates

The parameter γm→m′|z in expression (12) is the probability the excitation from an event of
mark m triggers an event of mark m′ at location z.

Table 9 gives the posterior means and standard deviations of γm→m′|z in the midfield re-
gion (z = 2) for Manchester United. The probabilities for the Home Win → Home Pass S,
Home Dribble → Home Pass S and Home Pass S → Home Pass S conversions are higher com-
pared to their away team counterparts, indicating that Manchester United is better in retaining
possession of the ball when playing at home compared to away.

Figure 7 provides a ridge-line plot of the log odds ratio for home versus away ability of a
team to convert a Win → Pass S (Figure 7a) and Pass S → Pass S (Figure 7b). The teams
are listed in decreasing order of the means of their respective posterior log odds ratios which
are indicated by vertical lines. The percentage values by each plot, indicate the fraction of the
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Table 9: Posterior means and standard deviations (in parenthesis) of the event conversion prob-
abilities γmj→mi|zi corresponding to the location z = 2 from the MβA model for Manchester
united. The γm→m′|z’s are computed by setting the team identifier c = 11, (corresponding to
Manchester United), for both the home as well as the away events. The highlighted cells (in
bold) illustrate the superior ability of Manchester United when playing at home compared to
away. The dots (·) denote means and standard deviations less than 0.005.
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Home Win . . 0.41
(0.1)

0.03
(0.02)

. . . . 0.01
(0.01)

. . . . . . 0.01
(0.02)

. . 0.03
(0.02)

. . . 0.02
(0.02)

. . . 0.44
(0.11)

. . .

Home Dribble . . 0.72
(0.14)

0.07
(0.05)

. . . . 0.05
(0.03)

. . . . . . 0.07
(0.09)

. . . . . . . . . . . . . 0.08
(0.05)

Home Pass S . . 0.8
(0.06)

0.08
(0.01)

. . . . . . . . . . . . . 0.03
(0.04)

. . . . . . . . 0.02
(0.03)

. . .

Home Pass U 0.02
(0.02)

. 0.02
(0.02)

0.01
(0.01)

. . . 0.02
(0.02)

. . . 0.02
(0.02)

. . . 0.17
(0.04)

. 0.22
(0.03)

0.07
(0.01)

. . . 0.15
(0.03)

. . . 0.23
(0.05)

. . .

Home Shot . . 0.49
(0.24)

. . . . . . . . . . . . . . 0.31
(0.21)

. . . . . . . . . . . 0.2
(0.12)

Home Keeper . . 0.4
(0.23)

0.15
(0.14)

. . . . . . . . . . . . . . 0.15
(0.15)

. . . 0.17
(0.16)

. . . . . . 0.13
(0.07)

Home Save . . 0.4
(0.23)

. . . . . . . . . . . . . . 0.4
(0.23)

. . . . . . . . . . . 0.2
(0.12)

Home Clear . . 0.04
(0.03)

0.02
(0.01)

. . . . . . . 0.04
(0.03)

. . . 0.02
(0.01)

. 0.13
(0.03)

0.04
(0.02)

. . . . 0.02
(0.02)

. . 0.64
(0.09)

. . .

Home Lose 0.02
(0.02)

. 0.02
(0.02)

0.01
(0.01)

. . . 0.02
(0.02)

. . . 0.02
(0.02)

. . . 0.59
(0.08)

. 0.07
(0.02)

. . . . . 0.1
(0.03)

. . 0.1
(0.04)

. . .

Home Goal . . . . . . . . . . . . . . . . . 0.55
(0.22)

. . . . . . . . . . . 0.45
(0.22)

Home Foul . . 0.48
(0.15)

0.24
(0.11)

. . . . . . . . . . . . . . 0.09
(0.09)

. . . . . . . . . . 0.19
(0.1)

Home Out Throw . . 0.86
(0.05)

0.09
(0.03)

. . . . . . . . . . . . . . . . . . . . . . . . . .

Home Out GK . . . 0.06
(0.05)

. . . . 0.07
(0.09)

. 0.04
(0.05)

0.25
(0.2)

. . . . . . 0.14
(0.13)

. . . 0.09
(0.06)

0.07
(0.08)

. . 0.2
(0.18)

. . 0.07
(0.03)

Home Out Corner . . 0.7
(0.18)

. . . . . . . . . . . . . . . . . . . . . . . . . . 0.3
(0.18)

Home Pass O . . . . . . . . . . . . . . . . . 0.4
(0.19)

0.25
(0.15)

. . . . . . . . . . 0.35
(0.16)

Away Win 0.05
(0.04)

. . 0.01
(0.01)

. . . 0.02
(0.02)

0.03
(0.02)

. . 0.59
(0.1)

. . . . . 0.22
(0.07)

0.02
(0.01)

. . . . . . . . . . 0.03
(0.01)

Away Dribble 0.31
(0.24)

. . . . . . . . . . . . . . . . 0.49
(0.23)

0.06
(0.05)

. . . . 0.03
(0.03)

. . . . . 0.11
(0.06)

Away Pass S 0.03
(0.04)

. 0.06
(0.09)

0.02
(0.02)

. . . 0.02
(0.03)

0.02
(0.03)

. . 0.06
(0.09)

. . . . . 0.68
(0.11)

0.06
(0.01)

. . . . . . . . . . .

Away Pass U 0.25
(0.05)

. 0.2
(0.03)

0.07
(0.01)

. . . 0.14
(0.03)

. . . 0.28
(0.05)

. . . . . . . . . . . . . . . . . .

Away Shot . . 0.44
(0.22)

. . . . . . . . . . . . . . 0.36
(0.21)

. . . . . . . . . . . 0.2
(0.12)

Away Keeper . . . 0.16
(0.15)

. . . 0.19
(0.16)

. . . . . . . . . 0.42
(0.22)

0.11
(0.11)

. . . . . . . . . . 0.13
(0.07)

Away Save . . 0.47
(0.22)

. . . . . . . . . . . . . . 0.31
(0.2)

. . . . . . . . . . . 0.22
(0.13)

Away Clear 0.02
(0.01)

. 0.15
(0.04)

0.05
(0.02)

. . . 0.02
(0.01)

. . . 0.69
(0.07)

. . . . . 0.03
(0.02)

. . . . . . . . 0.01
(0.01)

. . .

Away Lose 0.69
(0.06)

. 0.05
(0.01)

. . . . . 0.08
(0.02)

. . 0.1
(0.03)

. . . . . . . . . . . . . . . . . .

Away Goal . . 0.73
(0.17)

. . . . . . . . . . . . . . . . . . . . . . . . . . 0.27
(0.17)

Away Foul . . . 0.13
(0.12)

. . . . . . . . . . . . . 0.5
(0.15)

0.18
(0.09)

. . . . . . . . . . 0.18
(0.1)

Away Out Throw 0.02
(0.02)

. 0.02
(0.02)

. . . . 0.01
(0.01)

. . . 0.01
(0.02)

. . . . . 0.86
(0.06)

0.05
(0.02)

. . . . . . . . . . .

Away Out GK . . . 0.09
(0.08)

. . . 0.14
(0.08)

0.13
(0.12)

. . 0.19
(0.14)

. . . . . . 0.11
(0.08)

. . . . 0.1
(0.09)

. 0.06
(0.06)

0.1
(0.09)

. . 0.08
(0.03)

Away Out Corner . . . . . . . . . . . . . . . . . 0.6
(0.2)

. . . . . . . . . . . 0.4
(0.2)

Away Pass O . . 0.74
(0.15)

0.1
(0.08)

. . . . . . . . . . . . . . . . . . . . . . . . . 0.16
(0.11)

distribution greater than 0. All but two teams in (Figure 7a) and five teams in (Figure 7b) have
greater than 50% of their distribution greater than 0, confirming that the vast majority of teams
possess a higher ability to retain possession while playing at home.

In this way, we not only confirm the well-known home advantage effect, but also quantify
team performance for games played at home as well as away.

6.7 Team abilities

Figure 8 provides a ridge-line plot of the posterior distribution of the parameters ωc,Home Pass S

and ωc,Away Pass S. The teams are listed in the decreasing order of the means of their respec-
tive posterior distributions which are indicated by vertical lines. We observe that Manchester
United, the team with the highest ability to retain possession in home games (Figure 8a), drop
significantly down in the rankings for the away games (Figure 8b). This is evidence that when
Manchester United plays away they seem to deviate from the possession-based strategy they
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Figure 7: Posterior distribution of φHome Win→Home Pass S|2 + ωc,Home Pass S -
φAway Win→Away Pass S|2 - ωc,Away Pass S in (a) and φHome Pass S→Home Pass S|2 + ωc,Home Pass S -
φAway Pass S→Away Pass S|2 - ωc,Away Pass S in (b), from the baseline logit specification for incor-
porating team abilities in (13). Interpreted as the relative ability of a team to convert a Win
to a Successful Pass when playing at home compared to away in (a) and similarly from one
Successful Pass to another Successful Pass in (b). Teams are ranked in the decreasing order of
the means of their respective posterior distributions shown by the overlaid vertical lines.

seem to adopt in the home games.
Figure 9a provides a ridge-line plot of the posterior distribution of the cumulative ability

of a team to attempt a shot on goal. A higher ωc,Home Shot, for example, indicates that for the
team c, an event like Home Pass S is more likely to trigger a Home Shot. We do not expect the
cumulative abilities ωc,Home Shot + ωc,Away Shot of the dominant teams to be high, as they might
prefer to make additional passes to create better goal scoring opportunities. A weaker team,
on the other hand, typically has fewer opportunities to attack and therefore, is more likely to
attempt a shot on goal when possible. Indeed, this is what we observe in Figure 9, where we
compare the team rankings based on their cumulative ability ωc,Home Shot +ωc,Away Shot with the
number of shots per pass completed in the attacking third (S/P column in Figure 9b) in the
training data. The comparison between Cardiff City and Norwich City is an interesting example
of two teams that appear to be similar with 18 and 19 shots on goal attempted, respectively, in
their two games in the training data. However, the two teams are at the opposite ends of the
ranking based on their cumulative ability ωc,Home Shot+ωc,Away Shot, capturing the clear difference
between their attacking styles.

Table 10a shows the team rankings based on the cumulative ability to trigger five different
event types. For example, the Pass column ranks teams in the decreasing order of their posterior
means of ωc,Home Pass S+ωc,Away Pass S. The teams are ordered in Table 10a by the rankings based
on their cumulative passing ability. Despite training on just the first 20 out of 380 games of the
2013/14 season, the rankings based on the passing ability is a good indicator of the positions
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Figure 8: Posterior distribution of the parameters ωc,Home Pass S in (a) and ωc,Away Pass S in (b),
from the baseline logit specification for incorporating team abilities in expression (13). Teams
are ranked in the decreasing order of the means of their respective posterior distributions shown
by the overlaid vertical lines.

the teams finished in the final league table of the 2013/14 season in Table 10b.

6.8 Event genealogy

The branching structure usi indicates whether the ith event in sth sequence is an “immigrant”
(usi = 0) or an “offspring” of a previous event with index j (usi = j). Given an observed event
sequence Fstsns , the conditional branching structure probabilities P(usi | Fstsi) based on the
model specification in expression (12) are

P(usi = 0 | Fstsi) =
δmsi|zsi

δmsi|zsi +
∑

tsk<tsi
eα−βmsk→msi|zsi (tsi−tsk)γmsk→msi|zsi

,

P(usi = j | Fstsi) =





e
α−βmsj→msi|zsi (tsi−tsj)γmsj→msi|zsi

δmsi+
∑
tsk<tsi

e
α−βmsk→msi|zsi (tsi−tsk)γmsk→msi|zsi

for tsj < tsi

0 for tsj ≥ tsi
. (17)

The branching structure probabilities in (17) quantify the relative contributions of the back-
ground process and previous occurrences in the mark probability of the ith event in the sth
sequence. Figure 10 shows the posterior means of the branching structure probabilities for all
events in the first four minutes of the game between Chelsea and Hull City on 18/08/2013. To
illustrate the flexibility of the model to account for dependence between events over arbitrary
durations of time, we highlight the event Home Shot showing a higher probability of being an
offspring of the event Home Out Corner than being an offspring of the more recent Home Pass S
event.
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Team Shots Passes S/P

Cardiff City 18 115 0.16
Sunderland 28 195 0.14
Tottenham Hotspur 37 261 0.14
Aston Villa 20 153 0.13
Newcastle United 22 180 0.12
Crystal Palace 18 148 0.12
Stoke City 24 199 0.12
Everton 40 342 0.12
Chelsea 29 248 0.12
Fulham 19 163 0.12
West Ham United 22 194 0.11
West Bromwich Albion 18 159 0.11
Swansea City 23 214 0.11
Arsenal 30 280 0.11
Southampton 23 223 0.10
Liverpool 28 292 0.10
Manchester United 22 238 0.09
Manchester City 30 330 0.09
Norwich City 19 227 0.08
Hull City 13 191 0.07

(b)

Figure 9: (a) Posterior distribution of ωc,Home Shot +ωc,Away Shot, the cumulative ability of a team
c, relative to West Ham (baseline), to attempt a shot on goal. (b) The number of shots, passes
completed in the attacking third and shots per pass completed in the attacking third (S/P) for
each team in the training data.

Table 10: (a) Team rankings based on the cumulative ability to trigger a particular event type.
For example, the column Pass ranks teams in the decreasing order of their posterior means of
ωc,Home Pass S+ωc,Away Pass S. The teams are ordered in (a) by the rankings based on their passing
ability, which is a good indicator of the final position in the league table of the 2013/14 season
in (b).

(a)

Team Pass Shot Goal Win Save

Manchester City 1 11 1 15 11
Chelsea 2 5 11 20 4
Arsenal 3 9 3 5 7
Southampton 4 10 8 7 19
Manchester United 5 13 4 2 18
Everton 6 6 17 11 14
Liverpool 7 18 12 9 5
Hull City 8 19 15 1 10
Tottenham Hotspur 9 2 14 3 6
Fulham 10 14 7 14 3
Stoke City 11 7 9 12 8
Newcastle United 12 8 19 16 17
Sunderland 13 1 13 8 2
Swansea City 14 17 18 17 12
Cardiff City 15 3 2 19 15
Norwich City 16 20 10 4 20
Crystal Palace 17 16 16 13 16
West Bromwich Albion 18 15 20 10 1
Aston Villa 19 12 5 6 13
West Ham United 20 4 6 18 9

(b)

League Position Team

1 Manchester City
2 Liverpool
3 Chelsea
4 Arsenal
5 Everton
6 Tottenham Hotspur
7 Manchester United
8 Southampton
9 Stoke City

10 Newcastle United
11 Crystal Palace
12 Swansea City
13 West Ham United
14 Sunderland
15 Aston Villa
16 Hull City
17 West Bromwich Albion
18 Norwich City
19 Fulham
20 Cardiff City
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Figure 10: Posterior means of branching structure probabilities for events in the first 4 minutes of
the game between Chelsea and Hull City on 18/08/2013. The highlighted event Home Shot has
a higher probability of being an offspring of the event Home Out Corner than being an offspring
of the more recent Home Pass S event.
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Figure 11: Forecasting the probability of observing at least one Home Shot event in 30-second
intervals during the game between Arsenal and Tottenham Hotspur (01/09/2013) in the test
data. Intervals with observed Home Shot events are highlighted using dotted lines. MA 10 is a
10-step moving average model used as a benchmark for comparison.

7 Model-based predictions

Finally, we illustrate how the mechanistic modelling framework presented in this paper can be
used to simulate event sequences in football and obtain predictions of event probabilities in real-
time. We split the game between Arsenal and Tottenham Hotspur (01/09/2013) in the test data
into 30-second intervals. For each interval, given the history of events up to but not including
the interval, we simulate events over the next 30 seconds Q = 100 times for each of the R = 500
posterior samples from the MβA model with the tuning parameter setting (W = 5, N = 100).

In Figure 11, we plot the proportion of all simulations within each interval where at least one
Home Shot event was simulated, and use dotted lines to denote the intervals where a Home Shot
event was actually observed. We also include a 10-step moving average model (MA 10) as a
benchmark for comparison. We excluded the first 5 minutes of the game to ensure that we have
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Figure 12: Validating the model performance against three moving average models for the task
of whether a shot will be observed in each 30-second interval over the first 20 games in the
test set. MA 5 is a 5-step moving average model and so on. The ROC curve evaluates the
performance of a classification model over all classification thresholds. The area under the curve
(AUC) values in the legend clearly confirm the superior performance of the model.

predictions from both the models being compared. A quick inspection reveals that in 11 of the
15 intervals in which a Home Shot is observed, the model predicts a shot probability greater
than the 10-step moving average model.

In Figure 12, we formally validate the performance of the model against three moving av-
erage models for the classification task of whether a shot will be observed in an interval. For
this purpose, we use data from the first 20 games in the test set, where we excluded the first
15 intervals of each game to ensure that we have predictions from all the four models being
compared. To validate the models, we had a total of 1959 intervals out of which 202 intervals
had at least one Home Shot event. The area under the Receiver Operating Characteristic (ROC)
curve is a performance measure that evaluates the performance of a classification model over all
classification thresholds. The area under the curve (AUC) values are given in the legend and
clearly confirm the superior performance of the model.

8 Discussion and concluding remarks

Building on the decomposition of a multivariate distribution function, we showed how the joint
modelling in classical point process models like Hawkes processes, can be decoupled. The in-
troduced flexible modelling framework can, for example, retain the characteristic property of
excitation in Hawkes processes in the model for the marks while avoiding the clustering of event
times. A comprehensive Bayesian approach for the modelling of flexible marked spatio-temporal
point processes was developed including an approach to evaluate the predictive accuracy of the
fitted Bayesian models using the out-of-sample log predictive density.

We presented a case study showing how the modelling framework developed in this paper
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can be tailored to separately model the components of the events in football, namely, the times,
the locations and the event types. We were also able to incorporate team information into
the model in a direct way that captured the relative abilities of the teams for each event type.
We developed a method based on association rules to reduce the increased model complexity
introduced by model extensions. The rule-based approach identified significant event interactions
within sequences by placing thresholds on measures of significance. We then evaluated the
accuracy of the excitation based models by comparing against two baseline models and confirmed
the superior performance of the models with excitation effects.

We provided a detailed parameter description showing how the model parameters can be used
to gain valuable insight into football. The excitation framework of the best performing model
captured both the magnitudes and the durations of all pairwise event interactions across different
locations. From the conversion rate parameters, we were able to quantify the well-known home
advantage effect. We also discussed how the team ability parameters can be used to obtain
rankings for the teams by event type, that can be used as predictors for team performance. The
team ability parameters also captured some interesting differences in the playing styles of the
teams, that were not immediately apparent just by looking at the data. In this way, the model
along with its parameters can be used to develop a deeper understanding of the game-play by
the coaching staff and inform strategic decision making. The proposed model can also be used to
simulate the sequence of events in a game to obtain real-time predictions of event probabilities.
We believe these predictions would enhance, among other aspects, the viewing experience of
televised games.

The dataset we used consists of events from a single English Premier League season, which
has a total of 380 games. However, as described in Section 6.1, we only used the first 20 games
of the season as training data for the modelling exercise, over which every team in the league
plays exactly one game each at Home and Away venues. This represents the minimum number
of games required to ensure identifiability of all model parameters, specifically the team abilities.
Even though the volume of data was kept to the minimum for computational reasons, our results
illustrate that the model can provide valuable insights with limited data. So, the methodology
developed in this paper can be readily applied to other team sports like rugby, hockey, basketball,
American football etc where there may be fewer events per game or fewer games in a season.

Multiple seasons can be modelled together as if it were just one season using the modelling
framework we propose, as long as the game rules, and hence, the definition of the events being
considered does not change. Another aspect of the tournament to note is the relegation and
promotion of teams within the league, which results in some teams not playing the same number
of games over multiple seasons. A limitation of the proposed model is that the game periods
are exchangeable, because the likelihood is invariant to the order in which the game periods and
the games occur. It would be more natural to allow for the team ability parameters in (6) to
be time-varying, especially over multiple seasons during which team players and managers are
likely to change. Due to computational reasons we were not able to utilise most of the data even
within a single season and current work focuses on overcoming this computational barrier using
variational inference (Blei et al., 2017).

As none of the methods have been tailored specifically to football or even sports for that
matter, they can be applied to a wide range of applications that generate event data streams.
Specifically, the conversion rate parameters can be used to capture the triggering structure
between different event types, for example, the probability of large earthquakes triggering smaller
aftershocks. Also, the team ability parameters can be used for other multi-agent environments,
for example, accidents by car type, countries in the analyses of financial events, individuals in
identity systems, and so on.
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9 Supporting materials

The raw data that motivated this work has been provided by Stratagem Technologies Ltd and
consists of all touch-ball events for the 2013/14 season of the English Premier League. The raw
data cannot be disclosed as the authors do not have the license to do so. The GitHub repository
https://github.com/ForeStats/flexible-msttp-football provides all the computer code
used for the data pre-processing and the Stan templates used to carry out the analyses presented
in this paper. We also provide guidance on how the code can be used to apply our methods
to similar data sets, like the publicly-available 2020/21 FA Women’s Super League Data pro-
vided by StatsBomb Inc. at https://github.com/statsbomb/open-data. Section S1 of the
Supporting Materials document provides details on the prior distributions and the derivation
of their posterior distributions for the FOMC and MSTHP models. Section S2 gives details
on the association rule based screening procedure used to identify the most significant event
interactions. We also provide the chain-wise trace plots for some of the parameters of the MβA
model with W = 5 and N = 100.
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S1 Derivation of posterior distributions using conjugate priors

S1.1 Markov chain model for the locations

The probability mass function for the locations specified in expression (9) of the main text,
models the locations as a multinomial distribution given the current state (defined by the location
and the mark of the last observed event). Similar to the model for the inter-arrival times, the
model for the locations is another component of the complete model specification in expression
(7) of the main text. We are able to perform inference for this model separately as it does not
share any parameters with the other components. Each row of the transition probability matrix
η, corresponding to a single state, is a set of multinomial parameters, one for each location, that
add up to 1.

Let y = {yi→j}, for j ∈ {1, . . . , Z}, be the observed counts of transitions originating from
the state i where i ∈ {1, . . . , Z} × {1, . . . ,M}. Table S1 gives the observed transition counts
from the first 5 states in the training data. Out of a total of 90 states, 23 are never observed in
the dataset, for example, it is nearly impossible for a Home Shot event to occur in the defensive
third (zone = 1) of the home team.

The likelihood of yi given the multinomial probabilities ηi is

p(yi | ηi) ∝
Z∏

j=1

η
yi→j

i→j ,

where
∑Z

j=1 ηi→j = 1. The conjugate prior for the multinomial distribution is the Dirichlet
distribution (see, for example, Gelman et al., 2013, Section 3.4),

p(ηi | νi) ∝
Z∏

j=1

η
νi→j−1
i→j ,
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Table S1: Observed transition counts yi→j from the first 5 states to zones in the training data.

state i next zone j

zone mark label 1 2 3

1 Home Win 195 38 1
1 Home Dribble 12 5 0
1 Home Pass S 845 797 51
1 Home Pass U 75 304 160
1 Home Shot 0 0 0

Table S2: Posterior means of the multinomial transition probabilities ηi→j from the first 5 states.

state i next zone j

zone mark label 1 2 3

1 Home Win 0.83 0.16 0.01
1 Home Dribble 0.65 0.30 0.05
1 Home Pass S 0.50 0.47 0.03
1 Home Pass U 0.14 0.56 0.30
1 Home Shot 0.33 0.33 0.33

where νi > 0 are the hyperparameters. The posterior distribution of ηi is therefore a Dirichlet
with parameters νi+yi. To have a non-informative prior we set the hyperparameters νi = ν = 1
and the resulting posterior means of the parameters ηi→j are given in Table S2.

S1.2 Baseline homogeneous Poisson process model

The likelihood for the homogeneous Poisson model for marked spatio-temporal data as specified
in Section 5.6 of the main text is

L(P )(q | ρ) =
M∏

m=1

Z∏

z=1

ρqmz
mz exp {−Tρmz} ,

where ρmz is the Poisson rate parameter and qmz is the number of event occurrences for mark
m at location z over a total observation time T in the data. Table 5 of the main text gives
the observed counts Nm,z in the training data. The conjugate prior for the Poisson process
likelihood is a Gamma distribution

p(ρ | κ, τ) ∝
M∏

m=1

Z∏

z=1

ρκ−1
m,z exp (−τ ρm,z) ,

where κ > 0 and τ > 0 are the hyperparameters for the shape and rate of the Gamma distribution
respectively. Therefore, the posterior distribution of r is a Gamma distribution

κ′ = κ+Nm,z τ ′ = τ + T ,

where κ′ and τ ′ are the updated hyperparameters. We set the values, κ = 1 and τ = 0 that
correspond to a non-informative prior.

The resulting posterior means of the Poisson rates ρm,z, for the first 5 marks in each zone,
are given in Table S3. We use the rgamma function from the R package stats, which implements
the method proposed by Ahrens and Dieter (1982), for simulating from a Gamma distribution.
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Table S3: Posterior means of the homogeneous Poisson rates ρm,z, for the first 5 marks.

mark zone

m label 1 2 3

1 Home Win 0.0035 0.0038 0.0006
2 Home Dribble 0.0003 0.0014 0.0014
3 Home Pass S 0.0251 0.0683 0.0244
4 Home Pass U 0.0080 0.0122 0.0107
5 Home Shot 0.0000 0.0000 0.0043

Table S4: Transition counts ci→j from the first 5 states to the first 5 marks in the training data.
We abbreviate the prefix Home to H in the mark labels.

state i label of next mark j

mark label zone H Win H Dribble H Pass S H Pass U H Shot

H Win 1 0 0 80 25 0
H Win 2 0 8 138 18 0
H Win 3 0 4 28 11 4
H Dribble 1 1 1 8 3 0
H Dribble 2 0 5 39 11 0

S1.3 Baseline Markov chain model for the marks

The probability mass function for the marks specified in expression (15) of the main text, models
the marks as a multinomial distribution given the current state (defined by the current location
and the mark of the last observed event). Each row of the transition probability matrix θ,
corresponding to a single state, is a set of multinomial parameters, one for each mark, that add
up to 1.

Similar to the model for locations in Section S1.1, let c = {ci→j}, for j ∈ {1, . . . ,M}, be
the count of observations of the transitions from the state i where i ∈ {1, . . . ,M} × {1, . . . , Z}.
Table S4 gives the observed counts of transitions from the first 5 states in the training data.

The likelihood of c given the multinomial parameters θ is

p(ci | θi) ∝
M∏

j=1

θ
ci→j

i→j ,

where the sum of the probabilities,
∑M

j=1 θi→j = 1. The conjugate prior for the multinomial
distribution is the Dirichlet distribution,

p(θi | ui) ∝
M∏

j=1

θ
ui→j−1
i→j ,

where ui > 0 are the hyperparameters. The posterior distribution of θi is therefore a Dirichlet
with parameters ui + ci. We set ui to 1 and the resulting posterior means of the parameters
θi→j corresponding to the first 5 states are given in Table S5.

S2 Dealing with model complexity

The conditional mark distribution in the Mβ and MβA models involves a large number of pa-
rameters. There are M2Z decay rate parameters and M(M − 1)Z baseline conversion rate
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Table S5: Posterior means of the multinomial parameters θi→j corresponding to the first 5 states.
We abbreviate the prefix Home to H in the mark labels.

state i label of next mark j

mark label zone H Win H Dribble H Pass S H Pass U H Shot

H Win 1 0.01 0.01 0.74 0.24 0.01
H Win 2 0.01 0.05 0.82 0.11 0.01
H Win 3 0.02 0.10 0.56 0.23 0.10
H Dribble 1 0.11 0.11 0.50 0.22 0.06
H Dribble 2 0.02 0.10 0.67 0.20 0.02

parameters which makes posterior sampling a computationally challenging task. We have devel-
oped a screening procedure that operates on the data involved in the likelihood and eliminates
parameters prior to posterior sampling.

In the Mβ model, the decay rate parameters β and conversion rate parameters γ capture
the duration and magnitude of the excitation effects between all pairs of event types. However,
it is reasonable to assume that the matrices β and γ are sparse, because the excitation effects
between all event pairs are not equally significant. To be precise, we expect most elements of the
β matrix to be infinite, meaning the corresponding excitations decay almost instantaneously. For
the γ matrix, we expect most its values to be zero, meaning the corresponding event conversions
have probability zero. For example, a successful Pass event by one team cannot significantly
excite a Pass event for the opposite team, as this would make the commonplace occurrence of
a string of passes by a single team very unlikely. If we are able to identify the most significant
pairs of event interactions, we can thereby limit the number of elements within the matrices β
and γ that we need to estimate.

S2.1 Association rule learning

Association rule learning is a method for discovering strong relationships between variables in
large databases (see, for example, Agrawal et al., 1993). For example, the association rule Bread
⇒ Butter identified from a supermarket sales database would indicate that if a customer buys
bread, they are also likely to buy butter. The objective of association rule learning is to identify
rules that are interesting based on some measure of significance.

S2.2 Definition for event sequences

Inspired by the original definition in Agrawal et al. (1993, Section 2), we define the problem of
association rule learning in the context of event sequences as

Definition S2.1.

• Let A = {1, . . . ,M} be the set of M distinct event types.

• Let B = {bsn}, where bsn ∈ A for s ∈ {1, . . . , S} and n ∈ {1, . . . , Ns}, be the training data
consisting of S event sequences with Ns number of observed events in the sequence s.

• Construct a database of subsequences D = {d1, . . . , dC}, where C =
∑S

1 Ns, such that each
event b in B has a corresponding subsequence of length W +1 in D, made up of b and the
W events preceding b.

• Each subsequence in D is denoted by di = {xi1, . . . , xiW , yi}, where xij , yi ∈ B for i ∈
{1, . . . , C} and j ∈ {1, . . . ,W}. We call {xi1, . . . , xiW } as the transient events of the
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Table S6: Support P (x∩ y) for selected event pairs in the training data, where the rows denote
the transient event x and columns are the terminal event y.

Home Win Home Dribble Home Pass S Home Pass U

Home Win 0.0015 0.0027 0.0663 0.0124
Home Dribble 0.0006 0.0008 0.0158 0.0030
Home Pass S 0.0111 0.0099 0.5925 0.0962
Home Pass U 0.0163 0.0026 0.1036 0.0289

subsequence before the terminal event yi. Depending on W , the elements of the subsequence
corresponding to the initial events of a sequence can be empty, because they have shorter
histories.

• Given a set of event types A and a database of subsequences D, a rule is defined as an
implication of the form: x ⇒ y, where x, y ∈ A. The association rule has the interpretation
that the event type x is likely to be a transient event in subsequences terminating with event
type y.

In other words, the rule x ⇒ y, would indicate that the event type x excites the occurrence
chance of an event with type y.

S2.3 Measures of significance

To identify interesting association rules, we place constraints on two measures of significance
(Brin et al., 1997), namely support and lift.

S2.3.1 Support

The support of x with respect to a rule x ⇒ y and a database D is defined as the proportion of
subsequences d in the database which contain x as a transient event,

P (x) =
|{d ∈ D;x ∈ trans(d)}|

|D| ,

where | · | denotes the cardinality of a set and trans(d) is the set of transient events in the
subsequence d. Similarly, the support of y with respect to a rule x ⇒ y is defined as the
proportion of subsequences d which terminate with y,

P (y) =
|{d ∈ D; y ∈ term(d)}|

|D| ,

where term(d) is the terminal event in the subsequence d.
The support of a rule x ⇒ y is defined as, the proportion of subsequences d which contain x

as a transient event and terminate in y,

P (x ∩ y) =
|{d ∈ D;x ∈ trans(d); y ∈ term(d)}|

|D| .

Table S6 gives the support P (x ∩ y) for selected event pairs in the training data.
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Table S7: lift(x ⇒ y) for selected event pairs in the training data, where the rows denote the
transient event x and columns are the terminal event y.

Home Win Home Dribble Home Pass S Home Pass U

Home Win 0.4141 2.2669 0.9793 0.9766
Home Dribble 0.7176 2.7990 0.9588 0.9698
Home Pass S 0.3845 1.0141 1.0879 0.9450
Home Pass U 2.3031 1.0860 0.7782 1.1609

S2.3.2 Lift

The lift of a rule x ⇒ y is defined as

lift(x ⇒ y) =
P (x ∩ y)

P (x) · P (y)
.

If the lift of a rule equals 1, it would indicate that the occurrence of y is independent of that
of x. If the rule has lift > 1, then the event x excites the occurrence chance of y and lift < 1
indicates x inhibits the occurrence of y. Table S7 gives the lift(x ⇒ y) for selected event pairs
in the training data.

We implement the following steps to place constraints on the lift and support measures and
identify significant dependence between pairs of events.

• Create a database of subsequences as defined in Definition S2.1, for W = 5 and W = 10,
where W is the number of transient events in each subsequence.

• For each W , calculate lift for all event pairs and retain only those pairs that have lift > 1.

• Set a threshold on the support P (x ∩ y) > ϵ, such that when ϵ = ϵ1 exactly N = 50 event
pairs remain, and when ϵ = ϵ2, N = 100 event pairs remain.

In this way, we select the specific elements of the matrices β and γ, corresponding to the identified
significant event pairs, for parameter estimation. The elements of the matrices corresponding
to the discarded event pairs are fixed, to the value 106 in the case of the decay rates β, and
10−6 for the conversion rates γ. A large value for the decay rate causes the excitation to die out
almost instantaneously, and a very small value for the conversion rate makes the event conversion
extremely unlikely. The results of evaluating four separate models, that are fitted based on the
specific choices of the tuning parameters given above for the length of subsequence window W
and the number of identified event pairs N , are discussed in Section 6.2 of the main text.
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Figure S1: Chain-wise trace plots for some of the parameters of the MβA model with W = 5
and N = 100.
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