
Machine Learning for Soft Robot Sensing and
Control: A Tutorial Study

Huijiang Wang1, Thomas George Thuruthel1, Kieran Gilday1, Arsen Abdulali1 and Fumiya Iida1

Abstract—Developing feedback controllers for robots with
embedded sensors is challenging and typically requires expert
knowledge. As machine learning (ML) advances, the devel-
opment of learning-based controllers has become more and
more accessible, even to non-experts. This work presents the
development of a tutorial to educate non-roboticists about ML-
based sensing and control in cyber-physical systems using a soft
robotic device. We demonstrated this by creating a recurrent
neural network-based closed-loop force controller for a soft finger
with embedded soft sensors. Our hypothesis is validated in a 2.5-
hour workshop session for students with no prior knowledge of
robot control. This work serves as a tutorial for participants
aiming to experience and perform a general benchmark for soft
robot control tasks, with little or even no expertise in robotics.

I. INTRODUCTION

Soft robots are becoming prevalent in developing safe,
flexible and robust robotic systems [1], [2]. Soft robotic
devices with embedded soft sensors is revolutionizing the
field of health monitoring, industrial manipulation and human-
machine interaction (HRI) due to its highly compliant and
omni-directional features [3], [4]. However, modelling soft
sensors is a challenging problem because of its visco-elastic
properties that result in high non-linearity, hysteresis and
delayed response [5], [6].

The design, fabrication, and modelling of soft robotic de-
vices and sensors is a recent field with numerous challenges,
especially because of its multidisciplinary nature [7]. The
integration of soft sensors and control strategies in a soft-
bodied robot necessitates advanced expertise in multidisci-
plinary researches, ranging from material science, robotics,
and artificial intelligence. This multidisciplinary nature can
help foster in-depth collaborations, but can also act as a
deterrent for non-experts to join the field. Soft material engi-
neering, for example, necessitates researchers with a material
science background. However, young researchers with a purely
material-based background may know little about robotics and
vice versa. Simulation-based and hands-on tutorials are one
of the ways to provide training and education to researchers
coming from different backgrounds [8]–[11].

This paper presents the development of a tutorial on
learning-based control of soft robots with embedded sensors
and its subsequent validation through a workshop tutorial.
The tutorial aims to act as an educational toolkit for non-
roboticists and students to gain knowledge on the field of soft
robotic sensing and control, particularly using learning-based
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Fig. 1. Soft robotic platform used for the tutorial. (a) The anthropomorphic
soft finger; (b) The soft finger interacting with the ground-truth FSR sensor
for learning; (c) Design of the soft sensor based on pressure variations inside
the fingertip cavities.

approaches. The tutorials include a simulation model as well as
an experimental setup. The tutorial’s objective is to construct
a learning-based state estimator to provide closed-loop force
control for a soft finger with embedded soft sensors. Both
the simulated and real-robot platforms will be used to test
the control strategy. We hypothesize that combining both the
physical experimental setup and its data-driven replication can
improve non-experts’ robotics knowledge and expertise. Our
hypothesis is validated by a physical workshop with statistics
from participants survey. During the workshop, the proposed
tutorial has been followed by 20 participants with a wide
background. The tutorial teaches the participants how to gen-
erate training data, tune the parameters for both the machine
learning model and the controller to obtain an accurate one-
axis force tracking controller. Based on the feedback of the
survey, we observe that the tutorial has indeed helped the
participants to improve their expertise in the field and conclude
that the tutorial can serve as an effective tool for soft robotics
education and training.

II. MATERIALS AND METHODS

The demonstrator of the tutorial includes a robotic plat-
form and learning-based controller. The experimental setup
consists of the robotic arm (UR5, Universal Robots) enabling



control of the position and orientation of the wrist, as well
as the soft finger equipped with tactile sensors measuring
the contact pressure. The learning-based controller transforms
multi-dimensional tactile signals to actual contact forces in
meaningful physical units.

A. Sensorized Finger

The anthropomorphic finger, as shown in Figure 1(a), con-
sists of 3D printed skeleton with tendons and silicone-casted
artificial skin (Ecoflex 00-30, Smooth-On Inc.). The charac-
teristic of the silicone layer resembles the natural dynamics of
the human flesh, which in turn, stabilizes the interaction by
absorbing the impact energy with the environment.

To measure the contact forces of the interaction, four air
chambers were cast at the tip of the anthropomorphic finger
and connected to NXP MPXH6300AC6U pressure sensors via
elastic hoses. The force exerted against the exterior surface is
measured using a FSR sensor. Figure 2(a) demonstrates the
finger-object contact and the process of finger deformation.
Meanwhile, the pressure in the embedded cavity/chambers
changes according to the local deformation at the contact
point. Despite the high non-linearity of a soft fingertip, Figure
2(b) demonstrates the pressure signals of the contact, as well
as corresponding force readings collected by the FSR sensor.
A recurrent neural network such as Long Short Term Memory
(LSTM) allows to development of an accurate and robust state
estimation model of the time-variant embedded soft sensors
[12]. Furthermore, the orientation of the fingertip with respect
to the contact surface can be inferred from the pressure signals,
as the pressure distribution in chambers changes due to its
pose.

The pressure signals are amplified and converted to digital
ones using a four-channel ADC board with programmable gain
(ADS1115). The amplified digital signal is then passed to the
microcontroller (Arduino Nano) through the I2C communica-
tion channel. Likewise, the FSR sensor was directly connected
to the same microcontroller to measure an analog signal from
the FSR sensor.

B. Learning-based Control Framework

The Learning-based controller consists of two components.
The former component is a LSTM-based model that converts
the noisy pressure signals with a possible sensor drift into
contact forces. The latter one is a PID controller that adjusts
the vertical translation of the robotic wrist to maintain a certain
level of the contact force. Therefore, the complete procedure
comprises of three steps, i.e., sampling the training data,
training LSTM model, and tuning a closed-loop controller.

Prior to the fine-tuning the controller’s parameters, 20
batches of data are obtained by making the finger randomly
press the FSR surface, during which both force and pressure
information are collected. To sense and perceive the external
environment, it is necessary to comprehend the relationship
between force and tactile information on the fingertip. A
mapping tool that models the time-variant non-linearity of
soft tissue during its impulsive contact with objects would

Fig. 2. Raw response of the soft sensors to contact (a) Before and after the
contact; (b) Tactile signals (top) and the corresponding force (bottom).

Fig. 3. Schematic of the learning-based closed-loop force control architecture.

fulfill the perception modelling. As one type of RNN, the
Long Short-Term Memory network (LSTM) is renowned for
its high performance in dealing with the vanishing gradient
problem in traditional RNNs and the ability in learning long-
term dependencies [13]. The collected data is fed to the
LSTM network to model the relation between the sensory
observations and force. Finally, a closed-loop proportional
controller has been developed to regulate the force exerted onto
the surface. By defining a the target force and removing the
FSR sensor, the model enables approximation of contact force,
which imitates the proprioception. Using real-time tactile data
from the fingertip, the UR5 arm can dynamically adjust its
vertical position. The overall design of the learning-based
controller is depicted in Figure 3, where f ∗(t) represents
the reference group of force and p∗i (t) is the corresponding



pressure signal. The overall control function is as follows:

u(t) = Kpe(t)+Ki

∫
e(t)dt +Kd

d
dt

e(t) (1)

where

e(t) =
4

∑
i=1

[λi(p∗i (t)− pi(t))] (2)

The PID coefficients are denoted by Kp, Ti and Td , re-
spectively. For the tutorial participants are required to tune
these parameters to achieve an accurate and robust control
of the finger, including minimizing static error and realizing
rapid system response, during which time they can understand
how each parameter affects robot performance. The weight of
pressure perception load on each embedded sensor is specified
by the coefficients λi that subject to ∑

4
i=1 λi = 1.

III. SIMULATION STUDY

The machine learning based closed-loop control strategy is
validated in simulation prior to its physical implementation. By
exploiting a state-of-the-art multi-body dynamics simulation
platform, a data-driven soft robot finger with embedded strain
sensors is established to execute a sensing and perception
experiment. The learning objectives of the simulation tutorial
aims to help the participants to:

• Model soft elements and sensors on an anthropomorphic
finger.

• Perform state estimation using regression techniques in-
cluding linear, machine learning and deep learning based
approaches.

• Realize the control of end-effector contact dynamics
using feedback control strategy.

A. Modelling of Finger and Sensor

The finger is geometrically built as four elements that
represent the finger bones. The ligaments are modelled as three
revolute joints that enable the relative angular displacement
between each pair of elements. The actuation of the wrist-
driven finger is defined by the motion control of one prismatic
primitive that allows the movement of the whole finger in the
z-axis (see Figure 4). The embedded sensing is performed in a
data-driven manner. Nine strain sensors, using the Wheatstone
Bridge configuration for measuring resistance, are embedded
on the fingertip for sensing and perception.

In accordance with the the three phases in physical ex-
perimentation, the objective of the machine learning in the
virtual prototype is to create a state estimator to relate the
strain measurements from the gauges embedded in the finger
to contact force between the finger and the platform. Primarily,
the data-collection stage of the state estimator has been per-
formed using a data-driven approach, during which the finger
is actuated to move up and down in the z-axis with a random
walk function as:

z(k+1) = z(k)+ vr ∗∆t (3)

Fig. 4. Simulated prototype of the underactuated finger with strain sensor in
Matlab Simscape.

where the random velocity is a normally distributed with
variance σz:

vr ∼ N(0,σ2
z ) (4)

Fig. 5. Strain sensor data vs. ground-truth force in simulation.

In simulation, we perform the sensing and perception of soft
sensorized finger and examine the sensor responses created
in the multi-body dynamics simulation. Figure 5 illustrates
how the strain sensor data is varying versus the ground-truth
force samples in simulation, from which it can be seen that 3
channels of strain sensors out of 9 are significantly related to
the force variation.

B. Correlation Analysis

In order to have an in-depth understanding of how the tactile
sensing data is correlated with the ground truth force, the
correlation between the sensor responses and tip force has
been analyzed. Figure 6(a) depicts how the normal force on
the surface changes with 9 different strain sensors. It can be
seen that the force is highly related to sensor 3, 6 and 9,
with absolute correlation coefficients over 0.98. The entire
correlation matrix between 9 sensors and force is illustrated
by the heatmap in Figure 6(b), from which it can be concluded



that there is a positive correlation between force and sensor 3
but negative correlation with sensor 6 and 9. This is consistent
with the results shown in Figure 5 and 6(a).

Fig. 6. Correlation analysis between raw strain sensor data and force sensor
for the simulated system. Drift in the sensor data is evident through repeated
cycles.

C. Force-tracking Performance

A regression model based on an LSTM network has been
utilized to build a state estimation model that relates the strain
sensor readings to the contact force. The machine learning
model trains the collected data from the data-driven framework
and predicts the force exerted onto the surface. Then, a closed-
loop architecture based on PID control has been established
to achieve the control of the wrist-driven end-effector (i.e.,
u(t), z-axis motion of finger). Finally, the data-driven sen-
sorized finger is employed to perform a force tracking task.
A square wave function is set as the benchmark signal and
the participants are supposed to tune the controller parameters
to achieve an accurate and rapid tracking of desired force
with the consideration of static steady error and overshoot.

Figure 7 illustrates the force-tracking performance with a
tuned machine learning model and closed-loop controller.

Fig. 7. Force tracking performance with the simulated soft robot using
embedded strain sensors.

IV. WORKSHOP AND PARTICIPANTS SURVEY

A. Workshop Implementation

The hypothesis has been validated through the workshop
titled "Machine learning for modelling and control of Soft
Robots" on the 1st International Winter School on Smart
Materials for Soft Robots (12-17 December 2021, Cambridge,
UK). The tutorial was distributed among 4 groups of 20
participants from varying background. After the workshop, we
performed a survey study on each participant about how they
rated the tutorial, and from the 20 participants we received 18
feedback forms. Table I lists the statistics of the background
of participants involved in the workshop.

TABLE I
BACKGROUND STATISTICS OF THE PARTICIPANTS.

Statistics
Gender Male (77.8%) Female (22.2%)

Age 22-31 years old
Expertise Robotics (55.6%) Material (44.4%)

Qualification Postgraduate (100%)
Institute 10 universities from 12 countries

The workshop using the proposed tutorial consisted of three
stages (see Figure 8). Before the practical implementation,
all participants were given a lecture about the general design
principle and theory of the machine learning algorithm for
tactile sensing and control, together with safety rules and
manipulation guidance. After that, participants were asked to
perform the modelling and control of the soft finger in simula-
tion. This is to leave the participants a preliminary impression
on how tactile sensing and control can be performed in a
virtual system without having to worry about setting up the
hardware platform.

The final phase is the physical experimentation on the soft
robot. Participants were asked to tune parameters of both



Fig. 8. Workflow of the workshop.

the machine learning model and PID controller. Tuning the
hyperparameters of machine learning algorithms help partici-
pants to understand how each of these parameters affects the
performance of the mapping between the sensory data and
force, while configuring the controller helps to extend their
knowledge and skills towards developing a classic control
strategy. The immersive learning and practice not only help
the participants, especially for those non-experts in robotics,
to rapidly develop the basic skills in robot design, fabrication
and control, which are necessary for design intelligent robotic
systems, but also understand how Artificial Intelligence (AI) is
powerful in dealing with abundant multi-dimensional sensory
data in robot sensing and perception. Finally, a competition
targeted to optimal force tracking was held among the groups.
Figure 9 illustrated the training progress of the machine
learning model and the prediction of force versus ground truth
force of the prize-winning group. From which it can be seen
that the LSTM-based machine learning framework realizes a
precise state estimation of the sensorized finger with the mean
error < 0.1N.

B. Survey Study

In order to study the effectiveness of the tutorial for re-
searchers with little or even no experience in robotics, a survey
was held. Based on the feedback, we quantitatively studied the
value of the conducted tutorial.

The participants were asked to prescribe their rating of the
simulation study and the experimental study. In particular,
they were asked to rate the tutorial in a 1-7 scale. Figure
10(a) depicts the grading statistics from 18 participants for
the simulation based part and the real-robot based counterpart
in the tutorial. Let G denote the array of marks prescribed by
all participants, with Gi denoting the score evaluated by the
ith participant and Gmax and Gmin denoting the highest and

Fig. 9. Learning performance of state estimation task. (a) LSTM training
progress; (b) LSTM prediction performance on the validation set after training.

lowest scores, respectively. A satisfaction index SI is defined
as:

SI =
∑

n
i=1 Gi −n ·Gmin

n(Gmax −Gmin)
∗100% (5)

where n denotes the number of participants. Therefore, it
can be calculated that the satisfaction index for the two com-
ponents in the tutorials are SIsim = 49.1% and SIreal = 56.5%.
This means that neither the simulation nor the experimental
tutorial passes the cut-off scores (60%). In contrast, 83.3% of
the participants agreed that the combination of both extends
their general knowledge and improve their skills in robotics
(right pie-chart in Figure 10(b)). Furthermore, 72.2% of the
trainee showed great interests in applying the concepts learned
in the tutorial for their future researches.

Based on the simulation study as a prior, the participants
built an early understanding of the general concept of the soft
robot sensing and control using learned models. After that,
they were asked to transfer and implement the skills learned
from simulation to a real-robot platform. The combination of
both simulation and physical experimentation give participants
insights into real-world problems, and find the potential so-
lutions to these problems. The complementary experiments
would also serve as an educational benchmark tutorial for
participants to learn how skills and optimizations implemented
in simulation can be transferred to a real hardware set with
minimized reality gap (i.e., sim2real transfer [14]).



Fig. 10. Participants feedback analysis. (a) Histogram of participants’ rating
towards the simulated and real-robot tutorials. (b) Pie-charts about trainees
willingness to apply the learned knowledge in future researches (left) and if
the complementary experiments extend their skills (right).

V. DISCUSSION & CONCLUSION

This paper presents an educational tutorial for using ma-
chine learning for soft robot sensing and control. The tutorial
consists of both a simulated part and its full-replication in a
physical experimental setup. An anthropomorphic finger with
embedded tactile sensors is used as the experimental platform.
A machine learning approach based on RNN is used as the
state estimator for closing the force control loop. The tutorial
aims to help young scientists, especially those from non-
robotics background, to improve their knowledge in the rising
field of soft robotics.

The tutorial is validated through a 2.5-hour workshop ses-
sion. With the proposed tutorial, the participants are able to (1)
understand how machine learning helps to build a model-free
approach to process tactile information (2) develop intuition
behind the tuning of various control and training parameters
(3) cultivate team-working skills with in-depth collaboration
with researchers from multiple disciplines (4) understand the
challenges in sim2real transfer and (5) develop a closed-loop
force controller for a general soft robot with embedded soft
sensors. Over 80% of the participants had indicated their skills
in robotics have been improved after the workshop.
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