UCL Energy Institute

"Seeing red, feeling hot? – The impact of illumination on thermal comfort"

Gesche M. Huebner

Stephanie Gauthier, Christoph Witzel, Wing-San Chan, David Shipworth

> ICAP14-ABS2706 July, 13th, 2014

The Hue-Heat-Hypothesis – "You feel what you see"

 Light with wavelengths at the red end of spectrum / of a low colour temperature make people feel warmer

دفع

0000

 Light with wavelengths at the blue end of spectrum / of high colour temperature cooler

Importance of studying the HHH

- 20 hours per day spent indoors often under artificial illumination
- Non-domestic buildings¹ (commercial offices, hotels, shops, schools, hospitals, etc): 18% of total CO₂ emissions
 - 46% for space heating
 - 11% for cooling & ventilation
- Domestic buildings²: 26% of total CO₂ emissions
 - 60% for space heating

Tool for energy savings!?

¹_http://www.carbontrust.com/media/77252/ctc765_building_the_future__today.pdf

² https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/201167/uk_housing_fact_file_2012.pdf

The HHH – Previous research

Support	No support
Itten (1961): individuals in a blue-green painted room started feeling cold at 15 °C, in the red one only at 11.1 – 12.2 °C.	Mogensen (1926): participants rated shapes as colder when they were covered with red or purple material
Clarke (1975): employees felt too hot in a cafeteria with orange walls at about 24 °C but not with light-blue painted walls.	Greene & Bell (1, 8)). no effect of differential w coloured walls on perceived ten perature.
Fanger et al. (1977): subjects adjuged ambient temperatures to he 0.4.C nigher under extreme blue nucrescent light than in extreme red light.	Bennet & Ray (1972): thermal comfort judgements did not differ when participants wore blue, red, or clear googles.
Candas and Dufour (2005): 48 subjects preferred a colour temperature of 5000 K to that of 2700 when spending two hours in "slightly warm environments" (~5 points on a scale from 0 to 100).	Pedersen, Johnson, & West (1978): Temperature estimates were not affected by a room being painted and decorated in red- orange-yellow hues versus blue-green hues.

• • •

Our approach

- Aim: To test the HHH under conditions that allow control of
 - Light
 - Temperature
 - Relative humidity
 - Air velocity
 - Clothing level
 - (Metabolic rate)

 Vary in systematic fashion between conditions (and measure correctly)

- Impact factors on thermal comfort (in addition to air temperature)
- Keep constant between conditions and subjects

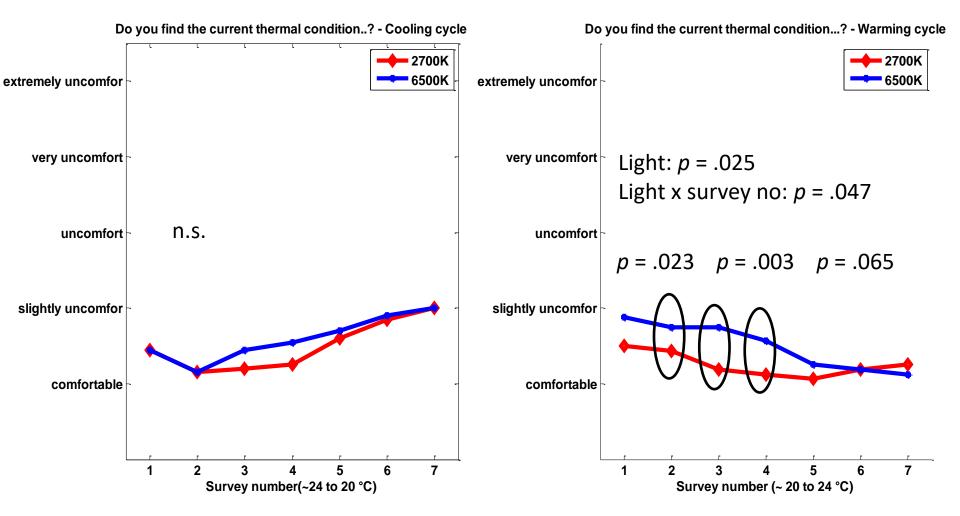
Experimental Design

Subjects

- N = 32
- Recruited via the subject pool of the Psychology department
- Mean age = 24.18 years (SD = 4.01)
- Instructed to wear one specific level of clothing
- Background survey: age, gender, weight, height

Procedure

- Participants arrive
 - Sedentary period
 - Aim: create similar adaptation to temperature
 / similar metabolic rate
- In climate chamber (60 minutes)
 - Every 10 minutes fill in thermal comfort survey (=dependent variable)
 - Temperatures (within-subject)
 - Cooling cycle: decrease gradually from 24 to 20 °C
 - Warming cycle: increase gradually from 20 to 24 °C
 - Between-subject independent variable:
 Colour temperature of 2700 K versus 6500 K


Analysis

- Repeated-measures ANOVA
 - with within-subject factor "survey no"
 - between-subject factor "lighting" and "gender"
 - Light x survey_no interaction
 - Covariates: BMI, average temperature over session
- For Q4: logistic regression for repeated measures

Hypothesis: Comfort **higher** under warm light than cold light (at the lower temperatures).

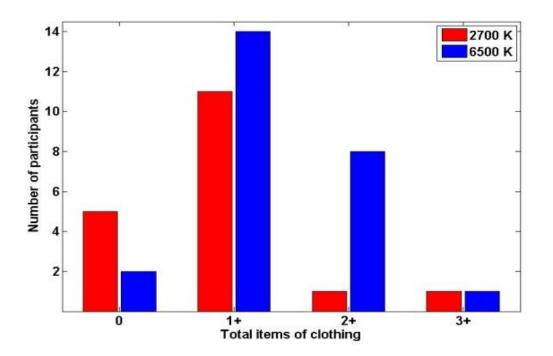
Q2

Results

Question	Cooling cycle	Warming cycle
How are you feeling in this moment?	Main effect of light: Warmer under warm light	Interaction effect: At low temperatures colder under cold light.
Do you find the current thermal condition [comfortable – extremely uncomfortable]?	n.s.	Main effect of light Interaction effect: At low temperatures, less comfortable under cold light
How would you prefer to feel?	n.s.	Main effect of light
Would you accept thermal environment?	Main effect of light Interaction effect: At low temperatures less acceptable under cold light	Main effect of light
Do you find this environment [easy – difficult] to bear?	Interaction effect: At low temperatures less bearable under cold light	Main effect of light

Lukewarm results

- Statistical significance?
 - Only for certain questions
 - Not consistent for warming and cooling cycle
 - Only for specific temperature "corridors"
- Bad measurement instrument?
 - Number of people who do not show any modulation of comfort or "jump around"
 - Surveys not designed for dynamic conditions


New study: Observation

- Same procedure as above
 - Cooling cycle only
 - N = 32 participants (16 under each light)
 - No comfort surveys
 - Participants instructed to bring a long-sleeve T-Shirt and a jumper to session, plus blanket provided
- Observation study: Changes in clothing
- Hypotheses:
 - More item of clothing put on under cold light than warm light.
 - Items of clothing put on earlier under cold light than warm light.

Observation: Results

People put significantly more clothing on under cold light than warm light.

No significant temporal difference (only trend).

Outlook

- Evidence for some effect of light on thermal comfort
- But: needs more testing
 - In 'real world'
 - Better operationalization of 'thermal comfort'



Thanks!

Questions?

