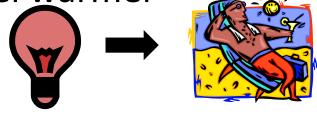


Saving energy through changing light: The impact of illumination on thermal comfort

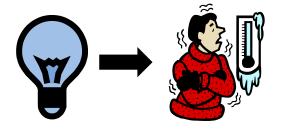
Gesche M. Huebner

David Shipworth , Stephanie Gauthier, Wing-San Chan, Christoph Witzel

Session 9C BEHAVE 2014



TITLE STYLE



The Hue-Heat-Hypothesis – "You feel what you see"

 Light with wavelengths predominantly at the red end of spectrum / of a low colour temperature make people feel warmer

• Light with wavelengths predominantly at the blue end of spectrum / of high colour temperature cooler

Importance of studying the HHH

- 20 hours per day spent indoors often under artificial illumination
- Buildings (domestic¹ & non-domestic²) responsible for 44% of total CO₂ emissions
 - More than half for space heating
 - Increasingly more also for cooling & ventilation

Can we use light (which is on, anyway) to reduce the need for heating and cooling!?

¹ https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/201167/uk_housing_fact_file_2012.pdf ²http://www.carbontrust.com/media/77252/ctc765_building_the_future__today.pdf

Our approach

- Aim: To test the HHH under conditions that allow control of
 - Light
 - Temperature
 - Relative humidity
 - Air velocity
 - Clothing level
 - (Metabolic rate)

 Vary in systematic fashion between conditions

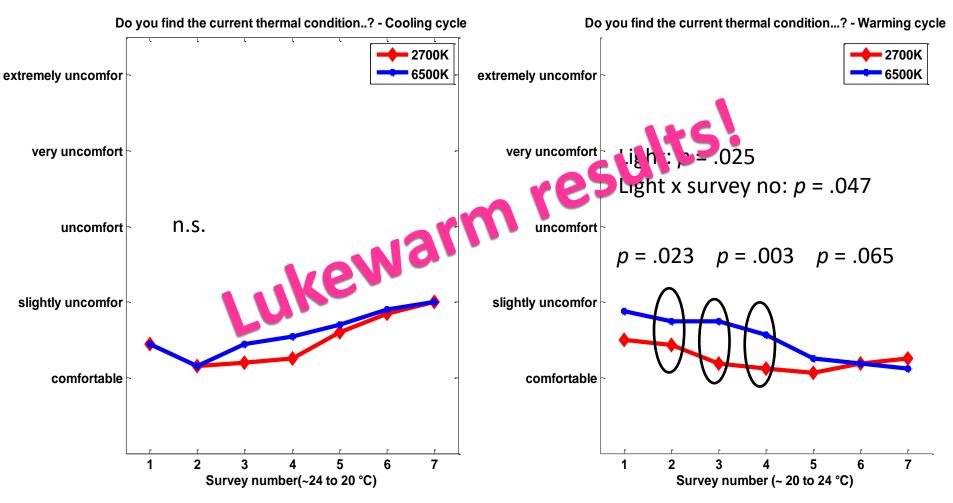
> Keep constant between conditions and subjects

Experimental Design

Study 1

- N = 32 students
- Dependent variable: Self-reported thermal comfort
 - Measured every 10 minutes with standard surveys
- Independent variable(s):
 - Between-subject factor: Light setting of 2700 K ('warm' light) vs. 6500 K ('cold' light)
 - Within-subject factor: Ambient temperature decreasing / increasing between 24 and 20 °C over 60 minutes

Hypothesis:


Comfort higher under warm light than cold light

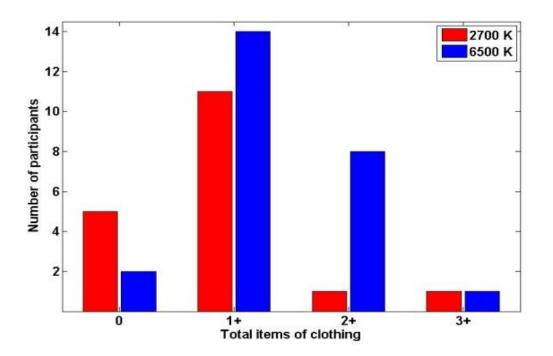
(at the lower temperatures).

UCL Energy Institute

Q2

Repeated-measures ANOVA with within-subject factor 'survey number', between-subject factors of 'lighting' and 'gender', 'light' by 'survey number' interaction, Covariates: BMI

Study 2: Observation


- N = 32 students
- Participants instructed to bring a long-sleeve T-Shirt and a jumper to session, plus blanket provided
- Dependent variable:
 - Change in clothing level
- Independent variable:
 - Between-subject: Light setting of 2700 K ('warm' light) vs.
 6500 K ('cold' light)

Hypotheses:

More item of clothing put on under cold light than warm light. Items of clothing put on **earlier** under cold light than warm light.

Observation: Results

People put significantly more clothing on under cold light than warm light.

No significant temporal difference (only trend).

Outlook

- Some evidence for effect of light on thermal comfort.
 - Energy saving?
 - Power reduction?
- But: needs more testing
 - In 'real world'
 - Better operationalization of 'thermal comfort'
 - Temporal stability?

Thanks!

Questions?

