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Summary
Background Large lung nodules (≥15 mm) have the highest risk of malignancy, and may exhibit important differ-
ences in phenotypic or clinical characteristics to their smaller counterparts. Existing risk models do not stratify large
nodules well. We aimed to develop and validate an integrated segmentation and classification pipeline, incorporating
deep-learning and traditional radiomics, to classify large lung nodules according to cancer risk.

Methods 502 patients from five U.K. centres were recruited to the large-nodule arm of the retrospective LIBRA study
between July 2020 and April 2022. 838 CT scans were used for model development, split into training and test sets
(70% and 30% respectively). An nnUNet model was trained to automate lung nodule segmentation. A radiomics
signature was developed to classify nodules according to malignancy risk. Performance of the radiomics model,
termed the large-nodule radiomics predictive vector (LN-RPV), was compared to three radiologists and the Brock
and Herder scores.

Findings 499 patients had technically evaluable scans (mean age 69 ± 11, 257 men, 242 women). In the test set of 252
scans, the nnUNet achieved a DICE score of 0.86, and the LN-RPV achieved an AUC of 0.83 (95% CI 0.77–0.88) for
malignancy classification. Performance was higher than the median radiologist (AUC 0.75 [95% CI 0.70–0.81],
DeLong p = 0.03). LN-RPV was robust to auto-segmentation (ICC 0.94). For baseline solid nodules in the test set
(117 patients), LN-RPV had an AUC of 0.87 (95% CI 0.80–0.93) compared to 0.67 (95% CI 0.55–0.76, DeLong
p = 0.002) for the Brock score and 0.83 (95% CI 0.75–0.90, DeLong p = 0.4) for the Herder score. In the
international external test set (n = 151), LN-RPV maintained an AUC of 0.75 (95% CI 0.63–0.85). 18 out of 22
(82%) malignant nodules in the Herder 10–70% category in the test set were identified as high risk by the
decision-support tool, and may have been referred for earlier intervention.

Interpretation The model accurately segments and classifies large lung nodules, and may improve upon existing
clinical models.
*Corresponding author. The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK.
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Research in context

Evidence before this study
The current guidelines for investigating lung nodules rely on
clinical risk models, such as the Brock and Herder scores, and
most nodules above 15 mm will trigger the 10% threshold for
investigation. Many large nodules fall into the 10–70% Herder
category, wherein the British Thoracic Society Guidelines
suggest a broad range of options, from surveillance to
surgery, and methods to improve stratification are needed. In
the many years since the Herder model was developed, few
studies have investigated how it could integrate with non-
invasive radiomics models to improve early cancer diagnosis
rates, and no existing studies have looked at large
(15–30 mm) nodules only.

Added value of this study
This study developed a radiomics-based cancer prediction
model in 15–30 mm lung nodules, which are not stratified
well by existing guidelines. The developed model, termed the
large-nodule radiomics predictive vector, achieved higher

cancer prediction accuracy than the Brock score, and by
integrating with the Herder model, would have led to early
intervention in 82% of the malignant nodules with Herder
scores of 10–70%. Because the model requires fewer variables
than the Brock and Herder scores, it could potentially
streamline the risk-classification process for clinicians in the
future, particularly where PET scanning is not available or will
be delayed. The use of a highly-accurate deep learning
segmentation pipeline means that the model is not
dependent on human nodule segmentation.

Implications of all the available evidence
The large nodule radiomics model improves upon or extends
existing clinical models, and integrates with the British
Thoracic Society guidelines to provide net-benefit in terms of
early cancer intervention. Although prospective evaluation is
needed, this tool may aid clinician decision making with
regards to large lung nodules in the future.
Introduction
Incidental lung nodules are a common finding on CT
scans. Most are benign, but some represent early-
stage cancers and provide an opportunity for early
lung cancer diagnosis.1 Correctly stratifying nodules is
challenging, because triaging a high-risk nodule as
low-risk could lead to delayed cancer diagnosis, but
over-investigating low-risk nodules may expose pa-
tients to undue complications. Therefore many
guidelines have been developed to support manage-
ment decisions, which incorporate nodule size as a
key risk-factor.2–7 The American College of Radiology
Lung-RADS screening criteria place solid nodules
≥15 mm into the highest risk category (4B), recom-
mending consideration of biopsy.7 A 15 mm threshold
is supported by data from a study of 2821 nodules,
which found that clinical risk factors for malignancy
differed above and below this cut-off in multivariable
regression.8 Nevertheless, the malignancy rate in
≥15 mm/Lung-RADS 4B nodules is still variable
(23.5% - 36.3%), and additional non-invasive bio-
markers may help to identify those most at risk.9,10

In the United Kingdom (U.K.), the British Thoracic
Society (BTS) guidelines are used to investigate inci-
dental nodules.3 These guidelines use a Brock score
threshold of ≥10% to trigger further investigation of
solid nodules, which would be met by a 50-year-old
woman with a 15 mm nodule and no other risk factors,
and may therefore not stratify large (15–30 mm) nodules
well.11 The BTS algorithm also incorporates the Herder
score, which utilises PET-data.12 The original Herder
model was developed 17 years ago in a small patient
cohort, but remains a central component of nodule
multidisciplinary meetings across the U.K.3 Patients
within the 10–70% Herder category have a broad range
of possible clinical actions, and methods to better
stratify this group are needed. Although Herder has
been validated in modern datasets, it remains to be seen
how machine-learning based approaches could enhance
the model to improve patient stratification.13
www.thelancet.com Vol 86 December, 2022
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The requirement for additional decision-support is
particularly important following the COVID-19
pandemic, which caused disruption to diagnostic ser-
vices.14 This may be especially relevant in the U.K.,
where PET availability lags behind other European
countries, and may not be routinely available at all
centres.15 Finally, because Brock and Herder both
require a large number of clinical variables, they can be
time consuming to calculate, and non-invasive methods
with fewer data points could streamline the decision-
making process for clinicians.

Many radiomics models for nodule classification
have been developed in recent years.16–22 Baldwin et al.
validated a lung nodule convolutional neural network
(LN-CNN) in 1187 patients with 5–15 mm nodules,
achieving an AUC of 89.6%.21 A broad range of different
size criteria have been utilised, including mixed
(5–30 mm) and small nodule only (5–15 mm) cohorts,
but no studies have explored the utility of radiomics in
large (≥15 mm) nodules, where malignancy risk is
highest but still variable.9 Given that the aetiology and
risk may differ, and that models perform best on data
resembling the training cohort, we hypothesise that a
15–30 mm nodule model may be able to integrate with
the Herder score to improve early diagnosis.

Through the Lung Imaging Biobank for Radiomics
and AI research (LIBRA), we aimed to develop a pipeline
for multi-centre radiomics research capturing real-
world, heterogeneous data, and to create a radiomics
algorithm to accurately classify large lung nodules ac-
cording to cancer risk. Finally, we sought to develop a
decision-support tool to reduce delayed cancer diagnosis
rates in the broad 10–70% Herder risk group.
Fig. 1: Study recruitment diagram. The numbers of scans are shown
in parentheses. Three patients could not be analysed for technical
reasons, leading to a final subset of 499 patients and 838 scans.
Abbreviations: NUH, Nottingham University Hospital; RBH, The Royal
Brompton Hospital; RMH, The Royal Marsden Hospital; UCLH, Uni-
versity College London Hospitals; LIDC, Lung-image database con-
sortium; RG, Non-small cell lung cancer Radiogenomics study.
Methods
Ethics
Health Regulatory Authority (HRA) and research
ethics committee (REC) approval were obtained for
the Lung Imaging Biobank for Radiomics and AI
(LIBRA) retrospective cohort study (IRAS ID:
274775, REC reference 20/NI/0088, Clinical-
Trials.gov: NCT04270799). Patient consent was not
required. Patients were recruited between 1st July
2020 and 1st April 2022 by the clinical teams at
participating centres (Fig. 1).

Study sample
Inclusion criteria:
• Age >18
• Baseline CT reporting 15–30 mm pulmonary nodules.
• Ground truth: Benign: either scan data showing sta-
bility for 2 years (based on diameter) or one year
(based on volumetry), or resolving. Sub-solid nodules
required stability for 4 years. Malignant: biopsy-
proven.
www.thelancet.com Vol 86 December, 2022
Exclusion criteria:
• Absence of analysable scans.
• Slice thickness >2.5 mm.
• Ground truth unknown.

Up to three CT scans (baseline, interim and the final
follow-up) were included for each patient. The final
diagnosis at the last scan defined the ground truth for all
other scans for each patient. Only a single nodule per
scan was included.

Patients were identified for the external test set from
the LIDC-IDRI, LUNGx and NSCLC radiogenomics public
data sets.23–25 Because of the small number of eligible pa-
tients in the LUNGx and LIDC data sets, up to two nodules
per patient were included, leading to a total of 151 nodules
in 147 patients. Clinicodemographic data for the external
test set are shown in Supplementary Table S1.

Data anonymisation and storage
CT scans were link-anonymised at local centres using
DICOM Browser or centre-specific methods where
required. Anonymised DICOM images and demographic
data were uploaded to the LIBRA XNAT server.
Radiologist benchmarking
The 252 test-set scans were reviewed by three clinical
radiologists: two were post-FRCR with over 5 years of
experience (MC, EA) and one was pre-FRCR with 3
years of experience (AL). The readers were blinded to
clinical data including the malignancy status, but were
able to see the entire CT scan including the background
lung parenchyma. Scans were rated using a 5-point
scale: 1 – benign, 2 – probably benign, 3 – indetermi-
nate, 4 – probably malignant and 5 – malignant.
3
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Receiver-Operator Characteristic (ROC) curves were
then constructed to calculate AUCs.
Image pre-processing
DICOM images were converted to nifti format using
dcm2niix (https://github.com/rordenlab/dcm2niix).
Manual segmentation was performed by a post-FRCR
clinical oncologist with 7 years’ experience (BH) using
ITK-Snap.

Images and segmentations were resampled to
1 × 1 × 2 mm voxel dimensions using cubic spline and
nearest neighbour interpolation respectively. Intensity
values were capped at −2000 to +2000.
Radiomics model development
Data were randomly split into training and test sets
(70% and 30% respectively) using the sample.split R
function, maintaining equal proportions of malignant
nodules. The split was grouped by study ID to prevent
data leakage when multiple scans were present for a
given patient.

Radiomic features were extracted using TexLab 2.0,
developed in MATLAB 2015b (Mathworks Inc., Nathick,
Massachusetts, USA) using 25HU intensity bins.
TexLab initially extracts 666 features, including high-
order wavelet transformations. To improve study inter-
pretability, we removed wavelet features prior to model
development. The 82 remaining features were scaled
using Z-standardisation (X− X/SD). Univariable logistic
regression was performed for each feature against the
cancer status, and those with p values < 0.05 (Wald test)
after Benjamini–Hochberg (B–H) correction were
selected for the LASSO logistic regression model.
Ten-fold cross-validation was used to select the largest
value of lambda giving a cross-validated error within one
standard error of the minimum (lambda.1se). The
weighted sum of features with non-zero coefficients
yielded the large-nodule radiomics predictive vector
(LN-RPV).

ROC-curveswere constructed using the cutpointr package
(https://cran.r-project.org/web/packages/cutpointr/).
Optimal cutpoints were selected to maximise the
Youden index (sensitivity + specificity −1) for malig-
nancy prediction.

K-means clustering was used to divide the training-
set into low and high-risk subgroups based on the
RPV (Supplementary Fig. S1). The same criteria were
applied to the test set.
Fig. 2: Radiomics decision-support tool. The large-nodule radio-
mics-predictive vector (LN-RPV) is used to prompt earlier interven-
tion in patients with intermediate (10–70%) Herder scores but a
high-risk radiomics score.
Auto-segmentation
Scans and masks were cropped to the maximal 3D
segmentation dimensions. For auto-segmentation, we
used the nnUNet, a self-calibrating network that auto-
mates hyperparameter optimisation and 5-fold cross-
validation.26 Each fold was trained for 1000 epochs
before hyperparameter selection. Training and test set
performance were evaluated using the DICE score.
Clinical modelling
Variables required for Brock and Herder calculation
were obtained from patient records. For the purpose of
Herder calculation, patients with no recorded PET data
were taken to be PET negative.

Univariable logistic regression was performed to
select predictive clinical features (Wald test p < 0.001
after B–H correction). Categorical variables were con-
verted to dummy variables prior to training, with the
most common level becoming the reference standard.
Multivariable logistic regression models were developed
incorporating the LN-RPV and statistically significant
clinical features.

For comparison of the radiomics model with the
Brock and Herder scores, we used a subset of the 252
test set scans pertaining to only baseline CT images
containing solid nodules (n = 117), which match the
‘initial approach to solid pulmonary nodules’ algorithm
of the BTS guidelines.

To assess the impact of the LN-RPV, we devised a
decision-support tool to assess how the model could
reduce missed diagnoses or delayed treatment associ-
ated with the 10–70% Herder score category (Fig. 2).
Decision support impact was modelled for solid nodules
in the test set (n = 174).
Statistical analysis
Analyses were performed in R Studio (v1.3.1073) and
Python (v3.7.3). Due to the exploratory nature of this
work, the target recruitment size was based on expert
www.thelancet.com Vol 86 December, 2022
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consensus only. All p values were two sided, and a cut-
off of 0.05 was used for statistical significance. 95%
confidence intervals for AUC values were obtained via
bootstrapping with 1000 iterations. DeLong’s test was
used to compare model ROC curves. As the distribution
of the LN-RPV was non-normal, we used the Kruskal–
Wallis test to look for interactions between scan
vendor and LN-RPV. Intra-class correlation co-efficients
(ICCs) were analysed using the icc R function with the
following parameters: Model: two-way, type: agreement,
and unit: single.
Role of funders
This project represents independent research funded
by: 1) Royal Marsden Partners Cancer Alliance, 2) the
Royal Marsden Cancer Charity, 3) the National Institute
for Health Research (NIHR) Biomedical Research
Centre at the Royal Marsden NHS Foundation Trust
and The Institute of Cancer Research, London, 4) the
National Institute for Health Research (NIHR)
Biomedical Research Centre at Imperial College, Lon-
don, 5) Cancer Research U.K. (C309/A31316). The
funders had no role in study design, data collection, data
analysis or manuscript writing.
Results
Patient and scan characteristics
Overall, we recruited 502 patients, of whom 499 had
evaluable scans. Of the 499, the mean age was 68.94 (±
SD 10.73), with 257 male and 242 female patients.
Table 1 shows the distribution of clinicodemographic
features amongst the training and test sets at the scan
level.

The overall proportion of benign vs malignant nod-
ules was 37.5 vs 62.5% respectively. The data set
included a mixture of solid (70.6%), subsolid (22.8%)
and ground-glass opacities (6.6%), with proportions well
balanced amongst the training and test sets. CT scans
were acquired from five institutions and four scan
vendors (GE Medical System, Philips, Siemens and
Toshiba). 464 (55%) scans were non-contrast, and a
large mixture of soft and sharp reconstruction kernels
were included (Table 2).
Radiologist Performance Benchmarking
In the test set, the three readers achieved AUCs of
0.75 (95% CI 0.70–0.81), 0.74 (95% CI 0.67–0.79) and
0.77 (95% CI 0.71–0.82) for lung nodule malignancy
classification (Fig. 3a). The performance metrics for
the radiologist with the median AUC (R1) were:
accuracy 65% (95% CI 59–71%), sensitivity 0.50,
specificity 0.91, PPV 0.91, NPV 0.52 and F1 0.64.
Metrics for all three radiologists are provided in
Supplementary Table S2.
www.thelancet.com Vol 86 December, 2022
LN-RPV performance
The cross-validated LASSO model retained two fea-
tures with non-zero coefficients (Fig. 4a). The regres-
sion formula to generate the LN-RPV was thus:
SNS_s2v*-0.5143257 + GLCM_Correl* 0.1840902.

The LN-RPV AUC was 0.76 (95% CI 0.73–0.80) in
the training set and 0.83 (95% CI 0.77–0.88) in the test
set. The threshold which yielded the maximum Youden
index in the training set was −0.1991184. Using this
threshold, the model achieved an accuracy of 76% (95%
CI 0.70–0.81), sensitivity and specificities of 90% and
53% respectively, and an F1 score of 0.83 in the test set
(Fig. 4b).

We tested the LN-RPV against axial diameter or
volume alone. For diameter, training and test set AUCs
were 0.58 (95% CI 0.53–0.63) and 0.56 (95% CI
0.49–0.63) respectively. For volume, training and test set
AUCs were 0.70 (95% CI 0.66–0.75) and 0.76 (95% CI
0.70–0.82) respectively. LN-RPV performance was sta-
tistically significantly higher than the median radiologist
(p = 0.03), diameter (p < 0.001) and 3D volume
(p = 0.001) using DeLong’s test.
Clinical modelling
A total of 14 clinical variables were assessed by uni-
variable regression against cancer status (Table 3). 6 of
these features were highly significant (p < 0.001, Wald
test) after correction for multiple testing, and were
selected for the multivariable model: Brock score,
Herder score, a history of lung disease, a history of
extra-thoracic malignancy, nodule density and PET
avidity. Because of the potential issue of collinearity
between the Brock, Herder and PET status, we calcu-
lated the Variance Inflation Factor (VIF) for each
feature. The VIF value was 2.12 for the Brock score. The
values for the Herder score, moderate and intense PET
avidity were 31, 25 and 19, suggesting a high level of
collinearity between Herder and PET status. Therefore,
PET status was removed from the model.

The results of the multivariable analysis including
clinical features and the LN-RPV are shown in Table 4.
The Brock score was non-significant (p 0.63, Wald test).
The highest feature weights were LN-RPV (0.25), sub-
solid density (0.23) and ground glass density (0.21).
Both LN-RPV and the Herder score had p
values < 0.001, but the Herder had a low weight of
0.004. In the test set, the combined clinical-radiomics
model did not perform better than the LN-RPV model
alone (AUC 0.82, 95% CI 0.76–0.87, DeLong p = 0.56).
We also developed fusion models incorporating both the
Herder score and radiomics features (Supplementary
Figs. S3 and S4). Early and late fusion models were
not statistically significantly better than the Herder score
alone.

The performance of the LN-RPV was compared
against two commonly used clinical risk scores, Brock
5
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and Herder, for baseline solid nodules in the test set
(n = 117, Fig. 5). In this cohort, the LN-RPV AUC was
0.87 (95% CI 0.80–0.93) compared to 0.67 (95% CI
0.55–0.76, DeLong p = 0.002) for the Brock score and
0.83 (95% CI 0.75–0.90, DeLong p = 0.40) for the
Herder score.
Auto-segmentation performance
Example test set nnUNet nodule segmentation masks
are shown in Supplementary Fig. S2. The model ach-
ieved a DICE score of 0.86 (SE 0.005). To evaluate the
effect of the nnUNet auto-segmentation on the LN-RPV,
features were extracted using manual and automated
segmentation methods for comparison in the test set
Characteristic Training

Age (mean, SD) 69.02 (10.47)

Gender (n, %)

Male 280 (47.8)

Female 306 (52.2)

Nodule size (mean, SD) 20.35 (4.56)

Nodule density (n, %)

Solid 418 (71.3)

Sub-solid 126 (21.5)

GGO 42 (7.2)

Spiculation (n, %)

Yes 120 (20.5)

No 466 (79.5)

Malignancy (n, %)

Yes 366 (62.5)

No 220 (37.5)

PET avidity (n, %)

Absent 35 (6.0)

Faint 116 (19.8)

Moderate 146 (24.9)

Intense 95 (16.2)

Not recorded 194 (33.1)

Smoking (n, %)

Never 94 (16.0)

Ex/Current 403 (68.8)

Unknown 89 (15.2)

Lung disease (n, %)

Yes 323 (55.1)

No 263 (44.9)

Previous lung ca (n, %)

Yes 25 (4.3)

No 561 (95.7)

FH of lung ca (n, %)

Yes 7 (1.2)

No 579 (98.8)

Previous non-lung ca (n, %)

Yes 131 (22.4)

No 455 (77.6)

Abbreviations: SD, Standard Deviation, GGO, ground-glass opacity, ca,cancer.

Table 1: Patient clinicodemographic features (presented at the scan level).
(Fig. 6). There was high correlation between the manual
and automated LN-RPV (r = 0.95), with an ICC of 0.94,
suggesting very high concordance between the seg-
mentation methods.
Radiomics feature robustness
There was no statistically significant interaction between
scan vendor and LN-RPV (p = 0.46, Kruskal–Wallis test).
Clinical decision-support
There were 38 solid test set nodules with a herder score
<10%. The cross-tabulation of LN-RPV and Herder risk
groups is shown for solid nodules in the test set with
Test Overall

69.23 (9.65) 69.08 (10.23)

131 (52.0) 411 (49.0)

121 (48.0) 427 (51.0)

20.87 (4.99) 20.51 (4.70)

174 (69.0) 592 (70.6)

65 (25.8) 191 (22.8)

13 (5.2) 55 (6.6)

80 (31.7) 200 (23.9)

172 (68.3) 638 (76.1)

158 (62.7) 524 (62.5)

94 (37.3) 314 (37.5)

18 (7.1) 53 (6.3)

33 (13.1) 149 (17.8)

63 (25.0) 209 (24.9)

60 (23.8) 155 (18.5)

78 (37.0) 272 (32.5)

22 (8.7) 116 (13.8)

181 (71.8) 584 (69.7)

49 (9.5) 138 (16.5)

146 (57.9) 469 (56.0)

106 (42.1) 369 (44.0)

7 (2.8) 32 (3.8)

245 (97.2) 806 (96.2)

3 (1.2) 10 (1.2)

249 (98.8) 828 (98.8)

60 (23.8) 191 (22.8)

192 (76.2) 647 (77.2)

www.thelancet.com Vol 86 December, 2022
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Kernel Frequency

GE medical systems

STANDARD 52

LUNG 30

CHST 24

SOFT 10

BONEPLUS 17

ULTRA 1

DETAIL 1

Philips

B 38

C 4

E 1

L 19

YA-C 21

Siemens

l30-70/2-3 79

B20-50f/s 160

B60-65f/s 38

B70-80f 271

D30f 1

Toshiba

FC03-13 31

FC30-52 29

FC83-86 11

Table 2: Scan vendor and reconstruction kernels (n = 838).

Articles
Herder scores ≥10% (n = 136) in Table 5. Of the 39
nodules with a Herder score of 10–70%, there were 22
malignant nodules (56%). 18 (82%) of these malignant
nodules had a high LN-RPV, and would have been
upgraded to early intervention using the decision-
support tool.
Fig. 3: Radiologist Performance Benchmarking (n = 252). a) Malignancy
AUCs were: R1: 0.75 (95% CI 0.70–0.81), R2: 0.74 (95% CI 0.67–0.79) and
metrics for the radiologist with the median AUC (R1) after selecting th
malignant). The radiologist achieved an accuracy of 65% (95% CI 59–71%
value; NPV, Negative predictive value; CI, Confidence interval.

www.thelancet.com Vol 86 December, 2022
External validation
In the external test set, the LN-RPV achieved an AUC of
0.75 (95% CI 0.63–0.85) with an accuracy of 77% (95%
CI 70–84%), sensitivity 84%, specificity 39%, PPV 89%,
NPV 31% and F1 of 0.86. The nnUNet auto-
segmentation model retained high-performance in
external data (DICE 0.87).
Discussion
Through the LIBRA study we have established a non-
commercial, national pipeline for AI-based lung cancer
early diagnosis research, incorporating heterogenous
data from multiple institutions and scan vendors. Using
this data, we developed the LN-RPV, an artificial-
intelligence algorithm targeted specifically at large
lung nodules, where many patients fall into a middle
Herder category of 10–70% with variable management
options. The LN-RPV performed better than the median
radiologist and can be integrated with the BTS guide-
lines to reduce the risk of delayed cancer treatment.

Previous studies have reported that the Brock score
has good predictive utility outside of the screening
setting, which was not replicated in our incidental large
nodule cohort.27 For solid nodules in the test set, we
found that the Brock score was only moderately
discriminative (AUC 0.67). This may support the hy-
pothesis that it does not perform as well for large nod-
ules, though the original model was intended for
screening populations. The Herder score had better
performance (AUC 0.83), but did not outperform the
LN-RPV (AUC 0.87), which would have led to earlier
intervention in 82% of the malignant nodules with
Herder scores of 10–70%. As the BTS algorithm and
Herder score are used widely across the UK for nodule
-prediction ROC curves for the three radiologists in the test set. The
R3: 0.77 (95% CI 0.71–0.82). b) Malignancy prediction performance

e optimum cut-point to maximise the Youden index (4 – Probably
). Abbreviations: AUC, Area under the curve; PPV, Positive predictive
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Fig. 4: The Large-Nodule Radiomics Predictive Vector (LN-RPV). a) The LASSO regularisation plot, lambda plot and the regression weights for
the two selected features are shown. b) ROC-AUC curves for malignancy prediction were used to select cut-offs based on the training-set
Youden index. In the test set, the model achieved an AUC of 0.83 (95% CI 0.77–0.88) and an accuracy of 76% (95% CI 70–81%). Abbrevi-
ations: AUC, Area under the curve; PPV, Positive predictive value; NPV, Negative predictive value, CI, Confidence interval.

Articles

8

stratification, our model has the potential to improve
early cancer diagnosis and treatment by highlighting
which patients are high-risk and recommending they be
fast-tracked to intervention. As the LN-RPV consists of
Variable Beta P OR (95% CI)

Brock 0.03 <0.001 1.03 (1.02–1.04)

Herder 0.03 <0.001 1.03 (1.02–1.03)

Lung disease −0.68 <0.001 0.51 (0.36–0.71)

Extra-thoracic cancer 1.10 <0.001 3.00 (1.88–4.79)

PET avidity 1.46 <0.001 4.30 (3.01–6.14)

Subsolid or GGO density 1.45 <0.001 4.25 (2.7–6.66)

Age 0.02 0.02 1.02 (1.00–1.04)

Nodule count −0.46 0.02 0.63 (0.45–0.89)

Smoking status 0.38 0.02 1.46 (1.08–1.98)

Spiculation 0.57 0.02 1.77 (1.14–2.75)

Previous lung cancer 0.91 0.09 2.49 (0.92–6.72)

Gender 0.24 0.18 1.27 (0.91–1.77)

Upper lobe 0.11 0.55 1.12 (0.80–1.57)

FH of lung cancer 0.04 0.94 1.04 (0.36–3.00)

6 features had p values < 0.001 (Wald test) and were selected for the
multivariable model. Abbreviations: OR: Odds ratio; CI: confidence interval;
GGO: ground-glass opacity; FH: Family history.

Table 3: Univariable logistic regression results for clinical features
against cancer status in the training set (n = 586, arranged by
adjusted P value).
only two features, compared to the 7 values input for
Herder, it could potentially streamline or automate the
process of nodule risk calculation (albeit with the caveat
that it requires an image-analysis pipeline). Moreover,
for centres without routine access to PET, or where PET
scanning will be delayed, the LN-RPV could give an
earlier indication of malignancy probability. We also
note the wide variability in Herder score AUCs in the
literature, which likely reflects the qualitative nature of
PET reporting, and may suggest Herder performance is
Variable Beta OR (95% CI) P value

LN-RPV 0.25 1.28 (1.21–1.35) <0.001

Herder 0.004 1.00 (1.00–1.01) <0.001

Density – subsolid 0.23 1.26 (1.16–1.37) <0.001

Density – GGO 0.21 1.24 (1.09–1.40) <0.001

Extra-thoracic cancer 0.08 1.09 (1.01–1.18) 0.03

Absent lung disease 0.06 1.06 (1.00–1.13) 0.09

Brock −0.001 1.00 (1.00–1.00) 0.63

The Brock score and absent lung disease lost significance in multivariable
testing. LN-RPV, subsolid and GGO density had the highest beta coefficients.
Abbreviations: GGO, Ground-glass opacity; OR, Odds ratio; CI, Confidence
interval.

Table 4: Multivariable logistic regression model incorporating LN-RPV
and clinical features in the training set (n = 586, arranged by p value).
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Fig. 5: Performance comparison between the LN-RPV and the Brock and Herder Scores for baseline solid nodules in the test set (117
patients). Performance metrics are reported using training set cut-offs to maximise the Youden index. For accuracy, 95% CIs are given in
parentheses. Abbreviations: AUC, Area under the curve; PPV, Positive predictive value; NPV, Negative predictive value; CI, Confidence interval.
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less reliable outside of expert centres.13,28 Through
incorporation with the nnUNet model, we have mini-
mised the model’s dependency on manual segmenta-
tion, which may allow easier integration into clinical
workstreams in the future.

The first feature comprising the LN-RPV is the
nodule surface-to-volume ratio, defined as the sur-
face area divided by the total volume (SNS_s2v). The
second feature is the gray-level co-occurrence matrix
(GLCM) correlation (GLCM_Correl). GLCMs describe
counts of co-occurring voxel gray-level intensities at
Fig. 6: Reproducibility of the LN-RPV using auto-segmentation. a) Scat
LN-RPV values (r = 0.95). b) Intra-class correlation co-efficients for each
values are reported for the null hypothesis that there is no-correlation b
coefficient.

www.thelancet.com Vol 86 December, 2022
given angles within the image, and the correlation
metric assesses the linear dependency of gray-level
values to their voxels within the GLCM. GLCM
features have been used to classify benign and
malignant lesions in other disease groups, including
breast cancer.29 In non-small cell lung cancer
(NSCLC), GLCM features are associated with the
degree of tumour immune-infiltration, PDL1
expression and patient survival.30 Taken together, we
hypothesise that the LN-RPV reflects the degree of
nodule diffuseness and intra-tumoural heterogeneity,
terplot showing high correlation between the manual and automated
radiomics feature comprising the LN-RPV, and the LN-RPV alone. P
etween the two methods. Abbreviation: ICC, Intra-class correlation

9
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Herder Score LN-RPV

Low High

10–70% 19 (15/4) 20 (2/18)
>70% 16 (11/5) 81 (12/69)

LN-RPV risk groups were designated as low or high based on K-Means clustering
groups. The number of actual benign and malignant nodules are presented as
(benign/malignant) for each combination of Herder and model risk groups.

Table 5: Comparison of LN-RPV and Herder categories for solid
nodules in the test set with Herder scores ≥10% (n = 136).
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and could relate to spatial differences in tumour
hypoxia or immune infiltration.30,31

In recent years, many lung nodule radiomics studies
have been published, spanning a range of nodule
sizes.32–36 Liu et al. developed a pre-operative radiomics
nomogram using 875 patients with ≤30 mm nodules
from a single centre, with a validation AUC of 0.81.37

The final feature set consisted of 20 features, four of
which were shape or first order related, with the
remainder consisting of GLCM, GLRLM, NGTDM and
wavelet transformation features. The surface area to
volume ratio was not amongst their feature set, meaning
it could be a discriminating feature specific to large
nodules. However, our second selected feature,
GLCM_Correlation, is common between both models,
and could be an important predictor of malignancy. We
believe the advantage of our two-feature model, which
does not include wavelet transformations, is that it is
more readily interpretable and reproducible.

Although the LN-RPV retained good performance in
the external test set (accuracy 76%), this data was ob-
tained from public imaging databases which may not
closely match the setting in which the algorithm is
intended to be used. Therefore additional external
testing with large, representative datasets is required
before generalisable clinical use. Prospective evaluation
in a real-world nodule MDT is the next step to verify its
clinical utility.

Aside from the external test set, there are some other
limitations to consider. Firstly, the model does not
incorporate changes in radiomics features over time,
which is an area for future development. Secondly,
though we have developed an auto-segmentation
pipeline, a truly integrated solution whereby all pre-
processing, segmentation and extraction steps are uni-
fied into a single program has not yet been developed.
Thirdly, a limitation of the clinical decision-support
scenario is that imputation of the PET as negative
when missing could underestimate Herder score per-
formance. And finally, we note that the LN-RPV was not
statistically significantly better than the Herder score
using DeLong’s test. However, it has been noted by
Vickers et al. that the DeLong test is conservative, and
that a single test, namely multivariable regression
incorporating established variables and the novel
predictor, is sufficient to draw conclusions about a new
model’s utility.38 As the LN-RPV retained significance in
multivariable testing, and identified cancers within the
established Herder category of 10–70%, we believe that
meaningful conclusions can be drawn about its utility in
the context of established clinical models.

In summary, the LIBRA study has provided a na-
tional pipeline for multi-centre lung nodule AI research,
which has been used to develop a large nodule classifi-
cation algorithm for lung cancer diagnosis. Our model
appears to perform better than clinical radiologists and
the Brock score, and comparably to the Herder score.
The modelled decision-support scenarios suggest it
could lead to earlier-intervention for malignant nodules
in the 10–70% Herder category, which could potentially
save lives through early intervention in the future.
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