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Abstract——This paper studies resource allocation policies for
energy harvesting (EH) multi-user multiple input single output
(MU- MISO) communication systems. The multi-antenna EH
base station (BS) is equipped with a limited-capacity battery.
Though employing the multi-antenna at the BS provides the
channel diversity, this leads to the co-channel interference which
makes the resource allocation problem hard to solve. For this
challenging scenario, we first consider off-line policies based
on full channel state information (CSI) and energy arrival
information (EAI) to obtain the best performance for any feasible
resource allocation policies. We propose an iterative algorithm
using generalized linear fractional programming to obtain an op-
timal policy. To achieve a low-complexity sub-optimal policy, we
propose another iterative algorithm using the successive convex
approximation. Based on the off-line policies, we develop on-line
policies in which only statistical CSI and EAI are available. The
complexity of the proposed policies is derived. Finally, simulation
results evaluate the performance of the proposed approaches and
show that the proposed polices outperform the benchmark.

Index Terms—Energy harvesting base station, on-line and off-
line policies, generalized linear fractional programming, the block
coordinate descent technique.

I. INTRODUCTION

Recent cellular technologies such as 5G and 6G consume
a significant amount of energy because of multiple antennas
and their corresponding radio frequency (RF) chains [1], [2].
Hence, energy-efficient designs are necessary to successfully
deploy these technologies. There has been a proliferation of
works in the literature that studied hardware-based approaches
to address this issue such as few-RF chain implementations
[3], few-bit digital to analog converters (DAC)s solutions [4],
and antenna selection [5]. However, these methods reduce
performance metrics. Recently, EH approaches have received
considerable attention in order to design systems that operate
autonomously without access to the power grid as efficient
methods for reducing the energy consumption costs of the
future generations of communication systems [6]–[15]. In EH
systems, the transmitters can harvest energy from ambient
energy sources such as solar, wind, and thermoelectric sources
[16]. Since these energy sources vary with time, the harvested
energy will also vary over the time. For a limited storage
capacity, the EH process and resource allocation techniques
have to be considered carefully to optimally consume the
harvested energy and improve the energy efficiency.
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Optimization problems for multiple access, broadcast, and
relay channels are studied in [6], [7], and [8], respectively. In
[9], to minimize the transmission time duration, the authors
proposed an optimal scheduling policy for a battery with an
infinite capacity. However, according to the fact that only
finite energy storage capacity is available in practice, the
authors in [10] extended [9] for an EH battery with a limited
size capacity. The authors of [11] obtained an optimal power
allocation policy in the presence of battery leakage issue. In
[12], the authors provided optimal power allocation policies,
for the single-user case, under the assumption of full and
statistical channel state information (CSI) and energy arrival
information (EAI) at the BS, which were called off-line and
on-line policies, respectively. In the single user case, the
authors in [13], studied power allocation policies for an EH
node with processing costs. For orthogonal frequency-division
multiplexing (OFDM) signaling, the authors in [14], proposed
off-line and on-line power allocation policies using the binary
user scheduling technique. In [17], the authors proposed the
on-line and off-line policies based on a learning theoretic
method. In [18], on-line power allocation techniques for
device-to-device (D2D) communication systems is developed.

Traditionally, in EH multi-user communication systems, for
simplicity time-division multiple access (TDMA) scheme is
typically assumed. Then, using the Lagrangian theorem and
Karush–Kuhn–Tucker (KKT) conditions [19], the power allo-
cation policies were obtained. Nevertheless, TDMA operation
is known to be wasteful in terms of both time and frequency
resources, and is rather unrealistic in some practical scenarios
[20]. In such communication systems, the users need to wait
for the BS to communicate with them, leading to a substantial
access delay especially when number of users is large. Multi-
antenna systems can be considered as a promising solution for
the multi-user communication systems since it can effectively
improve data transmission [21]. Joint power scheduling and
antenna selection using zero-forcing (ZF) technique for the
multi-antenna EH systems in the presence of the smart grid
was studied in [15] in order to provide communication services
for the multi-user scenario.

However, there are still several important issues in the
research on the EH multi-antenna systems, which must be
addressed. First, energy and communication resource alloca-
tions are highly coupled and they are required to be jointly
optimized, which is a non-convex problem and hence it is
difficult to solve. Second, it is crucial to optimally consume the
limited renewable energy sources to provide reliable quality of
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Fig. 1: A BS with Nt antennas equipped with an EH battery, communicating with M users at the i-th time slot.

service (QoS) guarantees for the users. The previous works in
the literature are mainly based on the orthogonal resource allo-
cation in both the single-antenna and multi-antenna scenarios,
which can not obtain the optimal resource allocations.

Accordingly, this paper considers resource allocation poli-
cies for EH multi-user multiple input single output (MU-
MISO) communication systems where the multi-antenna BS
is equipped with an onboard battery with a limited energy
capacity as shown in Fig. 1. In this context, we employ the
energy casualty constraint which states that the harvested en-
ergy can not be consumed prior to being collected. Moreover,
each user in the system has a QoS requirement in the form
of a guaranteed minimum data rate. Based on this model,
two scenarios are considered. First, full CSI and EAI are
assumed to be available at the BS, and off-line resource
allocation policies are investigated in order to obtain the best
performance for any feasible resource allocation policies. In
the second scenario, only statistical CSI and EAI are assumed
to be known at the BS, and on-line policies are studied.

For clarity, the main contributions of this paper are summa-
rized as follows

• We first focus on the problem of EH MU-MISO systems.
Due to the presence of multiple users interference, the
throughput maximization is challenging and hard to solve.

• We propose an iterative algorithm using generalized lin-
ear fractional programming (GLFP) [22] to obtain an off-
line optimal policy. The convergence of the algorithm
is proved. It is worth mentioning that the performance
obtained by the off-line polices represents the upper
bounds for any feasible resource allocation policies as
full CSI and EAI is assumed to be available at the BS.

• We propose another iterative algorithm based on the
successive convex approximation and block coordinate
decent techniques to obtain an off-line low-complexity
sub-optimal policy. We then prove that the proposed
algorithm is guaranteed to converge.

• We study on-line policies in which the BS only knows

statistical CSI and EAI, which can be used for practical
application. Based on the derived off-line policies, the
proposed on-line optimization problems are solved. The
novelty of our proposed on-line policies is that they can
straightforwardly apply to any CSI and EAI distributions
as the first moment of CSI and EAI probability density
functions (PDF)s are required.

• We investigate the computational complexity of the pro-
posed policies.

• The numerical experiments are performed to investigate
the efficiency of the proposed policies and show their
superiority to the benchmark.

Similar to [23], one can estimate the CSI of each time slot
by splitting the transmission time for channel estimation and
serving the users. In addition, perfect EAI for solar panels is
also can be obtained as the size of the solar panel and the
temperature of the environment is known in advance, then
the harvested energy can be estimated at the BS with a good
confidence interval [24]. In this paper, however, we do not
restrict our study to a single scenario and assume perfect CSI
and EAI for achieving the best performance for any feasible
resource allocation. Indeed, this scenario helps to compare
the performance of any resource allocation technique with
the optimal one. Then, by using the statistical information
regarding CSI and EAI, which can be obtained by a long-
term measurement, we develop on-line policies which can be
exploited in practice.

We show that our proposed policies achieve better per-
formance than the ZF precoding in terms of the average
throughput. This is because of the fact that our proposed
policies directly obtain the optimal beamforming vectors.
We also show that the performance of the proposed on-line
scenario with the imperfect CSI and EAI is comparable with
the off-line scenarios, which highlights the practical aspects
of the proposed policies. In addition, the low complexity sub-
optimal solutions achieve almost similar performance as the
optimal policies. We also demonstrate that the performance of
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Fig. 2: An illustration of channel level changes and energy arrivals.

the resource allocation can be improved by employing an EH
battery with a larger size.

The paper is organized as follows: The system model and
problem formulation are presented in Section II. Section III
is devoted to the off-line optimal and low-complexity sub-
optimal policies. The on-line optimal and low-complexity
sub-optimal policies are studied in Section IV. The overall
computational costs of the proposed policies are derived in
Section V. Section VI is allocated to numerical experiments.
Finally, the paper is concluded in Section VII.

Throughout the paper, scalars, vectors, and matrices are
denoted by lowercase, lowercase boldface, and uppercase
boldface letters, respectively. The operators (·)T , (·)H , and
E{·} represent the transpose of a vector, the hermitian of a
vector, and the expectation of a random process, respectively.
The absolute value and norm two of a vector is denoted by
| · | and ∥ · ∥, respectively. We use the symbol ∅ to show an
empty set. The interior point of the set ω is denoted by intω.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a down-link EH MU-MISO system with Nt
antennas equipped with a limited size battery with the max-
imum capacity Emax that serves M single antenna users, as
shown in Fig. 1. Let M = {1, · · · ,M} be the set of the
users. In Fig. 2, we demonstrate an example of the channel
changes and energy arrival rates over the transmission time. As
shown in this figure, we assume that the transmission interval
is [0, T ) and the energy arrival, TE , follows a Poisson process
with rate λE and energy values, E[i] for i ∈ {1, · · · , TE},
are uniformly distributed in the interval [Emin[i], Emax[i]], i.e.,
E[i] ∽ U(Emin[i], Emax[i]) for i ∈ {1, · · · , TE}. Hence, the
times of energy arrivals are {tE [1], · · · , tE [TE ]} in values of
{E[1], · · · , E[TE ]}. The available energy in the battery at the
time 0 is E[0]. An illustration of these parameters are shown
in Fig. 2. Inline with [13], [14], [17], we use a full duplex
battery which can be charged and discharged at the same time.
Similarly, the number of changes in the channel states, TC , are
modeled as a Poisson process with rate λC , which results in
the set {tC [1], · · · , tC [TC ]} for the channel changes during the
transmission interval. As shown in Fig. 2, block fading channel
is assumed in this paper, where the channel fading level is

constant during each block (0 < t ≤ tC [1]) and it changes after
each time interval independently (tC [1] < t ≤ tC [2]). Thus,
the time of channels in channel states for each event is related
to the coherence time of the channel. For ease of notation, as
shown in Fig. 2, we assume that all users experience the same
coherence time. Our model can be generalized to different
coherence times for all users at the cost of more complex
parameters. Let us define a change of the channel for users
or energy arrivals as an event and the time duration between
two consecutive events as a time slot. Using the number of
energy arrivals and channel changes, we have K = TC + TE
events happen over the transmission interval. Regarding the
fact that merging two independent Poisson processes with rates
λ1 and λ2, respectively, is still a Poisson process with the
rate λ1 + λ2, number of events is a Poisson process with rate
λE+λC . Consequently, the time slots can be written as ℓ[i] =
t[i]−t[i−1], ∀i ∈ K = {1, 2, · · · ,K+1} which constructs the
vector ℓ ∈ R(K+1)×1. Note that the last time slot is associated
with the last event and the end of the transmission interval.
For ease of notation, we define tE = [tE [1], · · · , tE [TE ]]T ,
E = [E[1], · · · , E[TE ]]

T , and tC = [tC [1], · · · , tC [TC ]]T .
As shown in Fig. 1, hm[i] ∈ CNt×1 is the complex channel
state vector for the m-th user at the i-th time slot. We adapt
the resource allocation policy K + 1 times at the BS over
[0, T ). Note that Poisson process with uniform value can cover
other practical energy arrival models such as Bernoulli and i.i.d
studied in [18].

Using a linear transmission scheme, where the BS sends
M independent data streams at each time slot, the achievable
throughput for the m-th user at the i-th time slot can be
expressed as

Rm[i] = B log2
(
1 + γm[i]

)
, (1)

where B is the bandwidth and γm[i] is the signal-to-
interference-plus-noise ratio (SINR) which can be written as

γm[i] =
|hHm[i]wm[i]|2∑M

j ̸=m |hHm[i]wj [i]|2 + σ2
, (2)

where σ2 = N0B is the power of additive white Gaus-
sian noise (AWGN) in which N0 is its spectral density and
wm[i] ∈ CNt×1 is the precoding vector for the m-th user at
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the i−th time slot. The term
∑M
j ̸=m |hHm[i]wj [i]|2 represents

the co-channel interference of other users at the m-th user
and the i-th time slot. Since the harvested energy can not be
consumed prior to being harvested, any feasible transmission
policy should satisfy the following constraints [10]

k∑
i=1

(
M∑
m=1

∥wm[i]∥2
)
ℓ[i] ≤

k∑
i=1

Ein[i], k ∈ K, (3)

where Ein[1] = E[0], Ein[i] = E[·] if the i-th event is an en-
ergy arrival and Ein = 0 if the event is a change of the channel
level, constructing the vector Ein = [Ein[1], · · · , Ein[K +
1]]T (see Fig. 2). These constraints are known as energy
casualty. On the other hand, all the harvested energy should be
utilized for communication purposes to avoid battery overflows
which can be expressed by the following constraints [10]

k∑
i=1

(
M∑
m=1

∥wm[i]∥2
)
ℓ[i] ≥

k∑
i=1

Ein[i]− Emax, k ∈ K.

(4)

Our target is to maximize the average throughput over the
transmission time subject to the energy and user scheduling
constraints while guaranteeing a minimum rate as a QoS re-
quirement of the users. Accordingly, the optimization problem
for this case can be formulated as

max
w1[i],·,wM [i]

for i={1,··· ,K+1}

1

(K + 1)M

K+1∑
i=1

M∑
m=1

Rm[i]

s.t. (3), (4),

Rm[i] ≥ Rq, ∀ m, i, (5a)

where Rq is the minimum data requested by the users. Con-
straint (5a) is for the QoS requirements. Solving problem (5) is
challenging because of the non-convex objective value and the
entanglement of the beamforming vectors in both numerator
and denominator of the SINR fraction in (5a). However,
in Section III, we provide optimal and low-complexity sub-
optimal policies for this problem, respectively.

III. OFF-LINE POLICIES BASED ON FULL CSI AND EAI
In this section, we propose off-line optimal and low-

complexity sub-optimal policies that full CSI and EAI are
assumed to be known at the BS.

A. Off-Line Optimal Policy

In this subsection, we first recast problem (5) in the form
of GLFP using the mathematical preliminaries provided in
Appendix A in order to propose our off-line optimal policy.
Following [22], an GLFP can be written as below

max
x

Φ

(
f1(x)[1]

g1(x)[1]
, · · · , fM (x)[K + 1]

gM (x)[K + 1]

)
, s.t x ∈ ψ, (6)

where ψ is a nonempty polytope, fm(x)[i], gm(x)[i] : RN →
R for m ∈ M, i ∈ K are linear functions, and Φ :
RM(K+1)

+ → R is an increasing function.
By defining fm[i] :=

∑M
j=1 |hHm[i]wj [i]|2+σ2 and gm[i] =∑M

j ̸=m |hHm[i]wj [i]|2 + σ2 and the fact that the logarithm is

Algorithm 1: The optimal solution of OP1.
1: Set ϵ1 > 0, t1 = 1 as the error tolerance level and

the iteration step, respectively.
2: Initialize the polyblock P with the vertex z1 by

setting its elements as
zm[i] = maxm,i

fm[i]
gm[i] = 1 + ∥hm[i]∥2

σ2 , for
i ∈ K,m ∈M.

3: Repeat
4: Find the projection vector of the vertex zt1 on the

the set ω using Algorithm 2.
5: Construct M(K + 1) new vertices by replacing zt1

with {z̄1,t1 , · · · , z̄M(K+1),t1},
z̄j,t = zt1 − (zt1j − πωj (zt1))ej .

6: Remove the improper vertices using the technique
provided after Proposition 2.

7: Obtain zt1+1 that maximizes the objective value of

OP1 over the set D as z∗
t1 = argmax

{
Φ(z) =

1
K+1

∏K+1
i=1

∏M
m=1 zm[i]

∣∣∣∣z ∈ D}. Set zt1+1 = z⋆t1

and t1 = t1 + 1.
8: Until ∥zt1−πω(zt1 )∥

∥zt1∥ ≤ ϵ1
Result: The optimal beamforming vectors

w⋆
m[i] = wt1

m[i], ∀i,m.

an one-to-one and increasing function, we can write problem
(5) as

max
w1[i],·,wM [i]

for i={1,··· ,K+1}

1

(K + 1)M

K+1∏
i=1

M∏
m=1

fm[i]

gm[i]
,

s.t. (3), (4), and (5a). (7)

Let us assume that the feasible set of problem (5) contains
ψ = ω ∩ X in which ω is a normal set constructed by
(3) and X is an inverse normal set built by (4) and (5a).
Note that normal and inverse normal sets are defined in
Appendix A. Moreover, the objective value can be written
as Φ(z) = 1

K+1

∏K+1
i=1

∏M
m=1 zm[i] which is a product of

linear fractional functions, hence it is an increasing function.
Accordingly, we can conclude that the optimization problem
belongs to the class of GLFP and write

OP1 : max
z

1

K + 1

K+1∏
i=1

M∏
m=1

zm[i], s.t. z ∈ D, (8)

in which D =

{
z
∣∣0 ≤ zm[i] ≤ fm[i]

gm[i] ,wm[i] ∈ ψ,∀i,m
}

where is a set constructed by an infinite number of boxes with

the vertex set
{
r
∣∣rm[i] = fm[i]

gm[i] ,wm[i] ∈ ψ,∀i,m
}

. Each

element of r can be uniquely determined by the beamforming
vectors in ψ. The functions fm[i] and gm[i] are positive and
independent because of the term σ2. Let us denote z⋆ ∈
RM(K+1)×1 as the optimal solution of the above problem.
Since the objective value of OP1 is an increasing function,
z⋆ obtains at the upper bound of z, i.e., z⋆m[i] =

f⋆
m[i]
g⋆m[i]
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i ∈ K,m ∈ M, where f⋆m[i] and g⋆m[i] are associated with
the optimal beamforming vectors.

As it is proven in Appendix A, the maximum of an
increasing function over an intersection of normal and inverse
normal sets occurs at the upper boundary set of the normal
set. The optimal solution z⋆ is obtained at the boundary of ω,
i.e., δ+ω. Consequently, we can shrink the polyblock with the
vertex set contained the set ψ as shown in Figs. 8 (b, c, d) in
Appendix A.

Now, we present a novel algorithm using GLFP [22] to
achieve an optimal policy for OP1. Let us first assume that
there are no battery overflow constraints and QoS requirements
for the users. The algorithm is summarized as follows.

As the first step of the algorithm, we construct a polyblock
P with the vertex set T where each element can be written
as zm[i] = max fm[i]

gm[i] = 1+ ∥hm[i]∥2

σ2 ,∀i ∈ K,m ∈M, which
contains the feasible set of OP1 without battery overflow
constraints and QoS requirements, i.e., ω. By using Proposition
1, the maximum of the objective value of OP1 is obtained at
one of the proper vertices of T , assuming z1. If z1 belongs
to the feasible set ω, then z⋆1 = z1, otherwise, we start
shrinking the polyblock. Regarding Proposition 2, we are able
to build the smaller polyblock P1 that excludes z1 and still
contains the feasible set ω. We can construct this smaller
polyblock by replacing z1 with M(K + 1) new vertices,
zj = z − (zj − πωj (z1))ej , where ej is j-th standard vector
of RM(k+1), zj and πωj (z1) are j-th element of the vectors
z and πω(z1), respectively. It is worth noting that some of
the vertices are improper which can be removed using the
technique provided after Proposition 2 (see Fig. 8 (c)). Then,
we solve the optimization problem in seven line of Algorithm
1 to obtain the solution z⋆t1 , where t1 is the iteration step
of Algorithm 1. We can iteratively repeat this procedure to
obtain the optimal solution of OP1. Indeed, we can construct
a sequence of polyblock such that ω ⊂ · · · ⊂ P1 ⊂ P .
It is obvious that the objective value of OP1 in each step
of the procedure satisfies Φ(z⋆1) ≥ Φ(z⋆2) ≥ · · · ≥ Φ(z⋆).
The algorithm is stopped when ∥zt1−πω(zt1 )∥

∥zt1∥ ≤ ϵ1 where
ϵ1 > 0 is a small constant that shows the error tolerance. The
algorithm can be enhanced by considering battery overflow
constraints and QoS requirements for the users as z⋆t1 is
selected from a smaller set. Note that this has no contradiction
with the optimality or convergence of the proposed algorithm
because the optimal solution is still obtained at the boundary
set of ψ as proven in Section A (see Figs. 8 (b, c, d)). The
details of the algorithm are summarized in Algorithm 1.

Implementing the third step of Algorithm 1 is challenging as
δ+ω is not explicitly determined. More precisely, for solving
πω(z) = λz, we need to solve the following optimization
problem

λt1 = max{α|αzt1 ∈ ω}

= max{α|α ≤ min
i∈K,m∈M

fm[i]

zt1m[i]gm[i]
,wm[i] ∈ ψ,∀i,m}

= max
wm[i]∈ψ,∀i,m

min
i∈K,m∈M

fm[i]

zt1m[i]gm[i]
, (9)

Algorithm 2: The projection of zt1 on the set ω.
1: Initialize wm[i], ∀i,m randomly, and set t2 = 1 as

the iteration step.
2: Repeat
3: For given beamforming vectors, solve
λt2 = mini∈K,m∈M

fm[i]

z
t1
m [i]gm[i]

4: For given λt2 , solve
maxwm[i]∈ψ,∀i,mmini∈K,m∈M(fm[i]−
λt2zm[i]gm[i]). Set t2 = t2 + 1.

6: Until maxwm[i]∈ψ,∀i,mmini∈K,m∈M
(
fm[i]−

λt2zm[i]gm[i]
)
≤ 0

Result: The projection of zt1 on the set ω.

where is a max-min problem which can be considered in the
class of GLFP. We employ the Dinkelbach-type technique
with a little change to solve this problem. More precisely,
in the first step of the technique, we randomly initialize
the beamforming vectors and set t2 = 1 as the iteration
step. Then, for given beamforming vectors, we solve λt2 =
mini∈K,m∈M

fm[i]

z
t1
m [i]gm[i]

. By using the obtained λt2 , we solve
maxwm[i]∈ψ,∀i,mmin(fm[i] − λt2zm[i]gm[i]). The algorithm
is stopped when maxwm[i]∈ψ,∀i,mmini∈K,m∈M

(
fm[i] −

λt2zm[i]gm[i]
)
≤ 0 which ensures that the resulting resource

allocation lies on the set δ+ω. The details of the algorithm
are shown in Algorithm 2 which can be solved by numerical
solver such as CVX [25]. The convergence of Algorithm 2 can
be straightforwardly proven using [26, Theorem 8.7] which is
based on the Q-super linear convergence technique.

Theorem 1: Algorithm 1 is convergent to the global optimal
solution of OP1.

Proof : See Appendix B for the proof.

It is worth noting that the above approach obtains the
optimal policy as Algorithm 2 ensures that the solution of
resource allocation lies on the feasible set of OP1.

B. Off-Line Low-Complexity Sub-Optimal Policy

In this subsection, we provide an off-line low-complexity
sub-optimal policy for problem (5). The approach is based
on the successive convex approximation and block coordi-
nate descent techniques. We first show that the non-convex
objective function and QoS requirements of problem (5) can
be approximated by convex functions using their first-order
Taylor expansions. Then, using the block coordinate descent
technique, we propose an algorithm to tighten the obtained
solution. Let us first define Wm[i] = wH

m[i]wm[i],Hm[i] =
hHm[i]hm[i]. Then, by assuming rank(Wm[i]) = 1,∀i,m, we

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2022.3215997

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on November 10,2022 at 15:55:46 UTC from IEEE Xplore.  Restrictions apply. 



6

can rewrite problem (5) as below

max
Wm[i],
∀i,m

1

(K + 1)M

K+1∑
i=1

M∑
m=1

[
log2

( M∑
j=1

tr(Hm[i]Wj [i]) + σ2

)

−G

]
s.t. (3), (4),

log2

( M∑
j=1

tr(Hm[i]Wj [i]) + σ2

)
−G ≥ Rq,∀ m, i,

(10a)
rank(Wm[i]) = 1, ∀i,m, (10b)

where G := log2

(∑M
j ̸=m tr(Hm[i]Wj [i]) + σ2

)
.

Note that the objective value and constraint (10a) of problem
(10) are still non-convex because they are the difference of
two convex functions. However, we use the successive convex
approximation approach to obtain a locally optimal solution
for problem (10). In particular, by using the first-order Taylor
expansion for any arbitrary convex function f(t) at the local
point t̃, there exists a lower bound on f(t) as below [19]
f(t) ≥ f(t̃) +∇tf(t̃)

T (t − t̃). Consequently, G at the local
point W̃m[i] can be bounded by

G ≥ log2

( M∑
j ̸=m

tr(Hm[i]W̃j [i]) + σ2

)

+

M∑
j ̸=m

tr

(
Hm[i](Wj [i]− W̃j [i])

(
∑
r ̸=m tr(Hm[i]W̃r[i]) + σ2) ln 2

)
, (11)

where is a summation of convex and linear functions, hence
convex. By dropping the rank constraints, we can recast
problem (10) as

OP2 : max
Wm[i],
R[i],∀i,m

1

(K + 1)M

K+1∑
i=1

M∑
m=1

[
log2

( M∑
j=1

tr(Hm[i]Wj [i]) + σ2

)

− log2

( M∑
j ̸=m

tr(Hm[i]W̃j [i]) + σ2

)

−
M∑
j ̸=m

tr

(
Hm[i](Wj [i]− W̃j [i])

(
∑
r ̸=m tr(Hm[i]W̃r[i]) + σ2) ln 2

)]
,

s.t. (3), (4),

log2

( M∑
j=1

tr(Hm[i]Wj [i]) + σ2

)

− log2

( M∑
j ̸=m

tr(Hm[i]W̃j [i]) + σ2

)

−
M∑
j ̸=m

tr

(
Hm[i](Wj [i]− W̃j [i])

(
∑
r ̸=m tr(Hm[i]W̃r[i]) + σ2) ln 2

)
≥ Rq,

R[i] ≥
M∑
j=1

Wj [i],∀ m, i. (12a)

Algorithm 3: The block coordinate descent technique
for the low-complexity sub-optimal policy of OP2.

1: Initialize W 1
m[i],∀i,m, and set t3 = 1 and ϵ3 ≪ 1

as the iteration step and error tolerance, respectively.
2: Repeat
3: For given W t3

m [i], solve (12) and store the optimal
solution of Ŵm[i] in W t3+1

m [i], i.e.,
W t3+1

m [i]←− Ŵm[i]. Set t3 = t3 + 1.
5: Until ∥W t3

m [i]−W t3−1
m [i]∥

∥W t3−1
m [i]∥

≤ ϵ3,∀i,m
Result: The final beamforming matrices

W ⋆
m[i] = W t3

m [i]. If the solution is not the
rank-one, one use the procedure explained in
Section III-B.

The feasible set of problem (12) serves as a subset for the
feasible set of problem (10) because of the lower bounds
derived in (11) and using the first-order Taylor expansion.
Consequently, the objective value of problem (12) is always
less than its counterpart in problem (10).

Now, we deal with the non-convex rank constraints in (10b).
We relaxed the rank constraints of problem (10) and expressed
problem OP2, which is convex, hence it can be efficiently
solved using CVX. Let W ⋆

m[i] and R⋆[i] be the optimal
solution of OP2. If rank(W ⋆

m[i]) = 1, the solution is tight,
otherwise, one might need to construct the rank-one solution
of OP2 using the Gaussian randomization technique proposed
in [27]. However, in the following, we show that one always
can find a rank-one solution for OP2.

Let us first construct a new solution Ŵm[i] such that

ŵm[i] = (hHm[i]W ⋆
m[i]hm[i])−

1
2W ⋆

m[i]hm[i],

Ŵm[i] = ŵm[i]ŵH
m[i]. (13)

Now, we show that Ŵm[i] is the optimal solution for OP2.
To do this, for any vector v, we have

vH(W ⋆
m[i]− Ŵm[i])

= vHW ⋆
m[i]v − (hHm[i]W ⋆

m[i]hm[i])−1|vHW ⋆
m[i]hm[i]|2.

(14)

Regarding the Cauchy-Schwarz inequality, one can write

|vHW ⋆
m[i]hm[i]|2 = |vHw⋆

m[i]wH
m[i]v|2

≤ |vHwH
m[i]|2|hHm[i]wH

m[i]|2

= (vHW ⋆
m[i]v)(hHm[i]W ⋆

m[i]hm[i]).
(15)

Hence,

vH(W ⋆
m[i]− Ŵm[i]) ≥ 0,∀m. (16)

Consequently, W ⋆
m[i]− Ŵm[i] ⪰ 0 and R̂[i] ⪰

∑M
j=1 W

⋆
j [i].

Now, it is required to show that the objective value of OP2

does not change with this new solution. To do so, by using
(13), we can write

tr(Hm[i]Ŵm[i]) = hHm[i]Ŵm[i]hm[i]

= hHm[i]ŵm[i]ŵH
m[i]hm[i]

= hHm[i]W ⋆
m[i]hm[i], ∀m, (17)
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then, the first and third terms of the objective value of OP2

can be written as

log2

( M∑
j=1

tr(Hm[i]Ŵj [i]) + σ2

)

= log2

( M∑
j=1

tr(Hm[i]W ⋆
j [i]) + σ2

)
,

M∑
j ̸=m

tr

(
Hm[i](Ŵj [i]− W̃j [i])

(
∑
r ̸=m tr(Hm[i]W̃r[i]) + σ2) ln 2

)

=

M∑
j ̸=m

tr

(
Hm[i](W ⋆

j [i]− W̃j [i])

(
∑
r ̸=m tr(Hm[i]W̃r[i]) + σ2) ln 2

)
, (18)

which means that the objective value remains the same.

Here, the lower bounds employed in problem (12) are
then tightened using the block coordinate descent technique
summarized in Algorithm 3. The convergence of Algorithm 3
is presented in the following theorem.

Theorem 2: Algorithm 3 is convergent.

Proof : See Appendix C for the proof.

Numerical evaluations in Section VI also reveal that pro-
posed Algorithm 3 converges quickly.

IV. ON-LINE POLICIES BASED ON STATISTICAL CSI AND
EAI

In this section, motivated by the off-line policies, we pro-
pose on-line optimal and low-complexity sub-optimal policies,
where only statistical CSI and EAI are available at the BS.
In practice, the instantaneous channel states in frequency
division duplex and time division duplex can be calculated by
feedback and channel reciprocity, respectively [14]. Moreover,
information regarding the current energy arrivals are known at
the BS only after being collected. Consequently, the BS is not
aware of future channel states and energy arrivals. In case of
imperfect CSI and EAI, however, it is possible to adopt our
approach for the average CSI and EAI, which are available by
a long term measurement. To do so, we can first obtain the
number of the events using statistical information regarding
the energy CSI and EAI. As number of events is Poisson
process with rate λC + λE , the expected number of events
in the interval (0, T ] is K̄ = (λC + λE)T . Consequently, the
expected length of each time slot can be written as L̄ = T

K̄
.

Moreover, the expected energy value for i-th time slot is
Ē[i] = Emin[i]+Emax[i]

2 . Then, by assuming that the BS is
currently working at the i0-th time slot, we can write the
optimization problem for the i0-th and future time slots as

max
w1[i],·,wM [i]

for i={1,··· ,K+1}

1

(K̄ + 1)M

M∑
m=1

K̄+1∑
i=i0

R̄m[i]

s.t.
k∑

i=i0

(
M∑
m=1

∥wm[i]∥2
)
L̄ ≤

k∑
i=i0

Ē[i], (19a)

k∑
i=i0

(
M∑
m=1

∥wm[i]∥2
)
L̄ ≥

k∑
i=i0

Ē[i]− Emax,

(19b)
R̄m[i] ≥ Rq, ∀ m, i ∈ {i0, · · · , K̄ + 1},

(19c)

where R̄m[i] = B log2
(
1 + γ̄m[i]

)
and γ̄m[i] =

|h̄H
m[i]wm[i]|2∑M

j ̸=m |h̄H
m[i]wj [i]|2+σ2 , in which h̄m[i] is the expected value

of channel at the i−th time slot for the m−th user. The
objective value of problem (19) maximizes the achievable
system throughput for the current time slot i0 and future time
slots i0 + 1 ≤ i ≤ K̄ + 1. Constraints (19a) and (19b)
ensure energy casualty and battery overflow constraints for
the current and future time slots, respectively. Constraint (19c)
bounds the expected achievable data rate in current and future
time slots. The objective value of problem (19) and constraint
(19c) are non-convex, thus solving the optimization problem
in (19) introduces non-convexity. Nevertheless, inspired by the
derived off-line policies, in the following, we propose on-line
policies.

A. On-Line Optimal Policy

In this subsection, we develop an on-line optimal policy
for the optimization problem in (19). To utilize the GLFP
approach, we rewrite problem (19) as below

max
w1[i],·,wM [i]

for i={i0,··· ,K+1}

1

K̄ + 1

K̄+1∏
i=i0

M∏
m=1

fm[i]

gm[i]
, (20)

s.t. (19a), (19b), and (19c), (21)

where fm[i] :=
∑M
j=1 |h̄Hm[i]wj [i]|2 + σ2 and gm[i] =∑M

j=1 |h̄Hm[i]wj [i]|2 + σ2. Note that ψ = ω ∩X such that the
feasible set ω is constructed by constraint (19a). In addition,
the feasible set X is constructed by constraints and (19b) and
(19c). Similar to the off-line optimal policy, we can write

OP3 : max
z

1

(K̄ + 1)M

K̄+1∏
i=i0

M∏
m=1

zm[i], s.t. z ∈ ψ, (22)

where D =

{
z
∣∣0 ≤ zm[i] ≤ fm[i]

gm[i] ,wm[i] ∈

ψ,∀i ∈ {i0, · · · , K̄},m
}

with the vertex set
{
r
∣∣rm[i] =

fm[i]
gm[i] ,wm[i] ∈ ψ,∀i ∈ {i0, · · · , K̄},m

}
. Following Subsec-

tion III-A, we implement Algorithm 1 for optimization prob-
lem OP3 and obtain the on-line optimal policy. In Section VI,
we experimentally compare the performance of the proposed
off-line and on-line optimal policies.
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TABLE I: The total computational complexity of the proposed policies.

Policies: The total computational complexity:

The off-line optimal policy t1(MNtK)2 + t1t2O((MNtK)3.6).

The off-line low-complexity sub-optimal policy t3O
(
(MNtK)3.6

)
.

The on-line optimal policy t̄1(MNtK̄)2 + t̄1 t̄2O((MNtK̄)3.6).

The on-line low-complexity sub-optimal policy t̄3O
(
(MNtK̄)3.6

)
.

B. On-Line Low-Complexity Sub-Optimal Policy

Here, we study an on-line low-complexity sub-optimal
policy which is based on the successive optimization and
block coordinate descent techniques. By defining H̄m[i] =
h̄Hm[i]h̄m[i] and dropping the rank constraints for the beam-
forming matrices, we can rewrite problem (19) as below

OP4 :

max
Wm[i],
R[i]∀i,m

1

(K̄ + 1)M

K̄+1∑
i=i0

M∑
m=1

[
log2

( M∑
j=1

tr(H̄m[i]Wj [i]) + σ2

)

− log2

( M∑
j ̸=m

tr(H̄m[i]W̃j [i]) + σ2

)

−
M∑
j ̸=m

tr

(
H̄m[i](Wj [i]− W̃j [i])

(
∑
r ̸=m H̄m[i]W̃r[i]) + σ2) ln 2

)]
,

s.t. (19a) and (19b),

log2

( M∑
j=1

tr(H̄m[i]Wj [i]) + σ2

)

− log2

( M∑
j ̸=m

tr(H̄m[i]W̃j [i]) + σ2

)

−
M∑
j ̸=m

tr

(
H̄m[i](Wj [i]− W̃j [i])

(
∑
r ̸=m tr(H̄m[i]W̃r[i]) + σ2) ln 2

)
≥ Rq,

R[i] ⪰
M∑
j=1

Wj [i],∀ m, i ∈ {i0, · · · , K̄ + 1}, (23a)

at the local point W̃m[i], ∀i,m. OP4 is convex and can be
solved efficiently via CVX. We then apply Algorithm 3 in
Subsection III-B to achieve the on-line low-complexity sub-
optimal policy for OP4. We investigate the performance of
the proposed for the off-line and on-line low-complexity sub-
optimal policies in Section VI.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

The aim of this section is to investigate the total computa-
tional costs of the proposed resource allocation policies. It is
worth mentioning that in Algorithm 1, some of the vertices are
improper, which we are not able to determine in advance, thus
we assume that none of them is improper and obtain the upper

bound on the computational complexity for the off-line and
on-line optimal policies. On the other hand, all approaches are
based on convex optimizations which we need to implement
them with numerical convex solvers such as CVX. The interior
point method with the Newton step typically employed to solve
the convex optimization imposes a complexity on the order of
O
(
(E+F )1.6E2

)
operations, where E and F are the number

of variables and constraints in the optimization problem [19].
To determine the computational complexity of the off-

line optimal policy, let us first define t1, t2 as the numbers
of iterations until the convergence of Algorithms 1 and 2,
respectively. In the second step of Algorithm 1, MNt(K+1)
multiplications, MNt(K + 1) divisions, and MNt(K + 1)
summations are needed, hence the computational complexity
is 3MNt(K+1). In the fourth step, we need to run Algorithm
2 to find πω(zt). In the third step of Algorithm 2, we need to
calculate MNt(K+1) multiplications and MNt(K+1) divi-
sions, thus the complexity is 2MNt(K+1). In the fourth step
of Algorithm 2, an optimization problem with MNt(K + 1)
variables and M(K + 1) + 2K + 1 constraints are necessary
to implement, therefore the computational complexity follows
O
(
((MNt + M)(K + 1) + 2K + 1)1.6(MNt(K + 1))2

)
.

Consequently, the overall complexity of Algorithm 2 until
convergence is approximately t2O

(
(MNtK)3.6

)
. One sub-

traction and multiplication are needed to construct each vertex
in the fifth step of Algorithm 1, therefore, the complexity
is 2MNt(K + 1). The sixth step of Algorithm 1 implies
MNt(K+1) multiplications for each vertex and MNt(K+1)
comparisons, then the complexity is (MNt(K + 1))2 +
MNt(K + 1). Overall, the computational complexity of the
off-line optimal policy until convergence is approximately

t1(MNtK)2 + t1t2O((MNtK)3.6). (24)

As for each iteration of Algorithm 1 we need to map a vertex
on the feasible set, implementing Algorithm 2, the dominant
term of the computational complexity of Algorithm 1 belongs
to this part.

For the low-complexity sub-optimal off-line policy, we need
to implement Algorithm 3. For each step of Algorithm 3, the
optimization problem in (12) is solved with (MNt+1)(K+1)
variables (M+1)(K+1)+2K+1 constraints. By defining t3
as the number of iterations until the convergence of Algorithm
3, the overall computational complexity of the low-complexity
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Fig. 3: The convergence behavior of the proposed policies for
Emax = 1 J, E[0] = 1 J, Emax = 1 J, λC = 1 1/s and λE = 1
J/s, and Nt =M = 3.

sub-optimal off-line policy approximately follows

t3O
(
(MNtK)3.6

)
. (25)

From the complexity derivations, it is obvious that obtaining
the low-complexity sub-optimal policy, Algorithm 3, is faster
than the optimal solution, Algorithm 1. We show this exper-
imentally in Section VI. Note that we ignore the complexity
of building the rank-one solution if it is necessary.

The last but not the least, the computational complexity of
the on-line optimal and low-complexity sub-optimal policies
can be approximately written as

t̄1(MNtK̄)2 + t̄1t̄2O((MNtK̄)3.6). (26)

and

t̄3O
(
(MNtK̄)3.6

)
, (27)

by setting i0 = 1 in (19), respectively, where t̄1, t̄2, and t̄3
are the number of iteration in Algorithms 1, 2, and 3.

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed
approaches via Monte Carlo simulations. We assume that the
bandwidth and noise power spectral density are B = 1 MHz
and N0 = 10−13 W/Hz, respectively [14]. In addition, we
use a Rayleigh channel model with complex normal variables
with mean and variance µc = 5 × 10−5 and σ2

c = 10−10,
respectively [15]. The number of BS antennas will be specified
in each simulation. We set ϵ1 = ϵ3 = 10−4 in the proposed
algorithms. Without loss of generality, we assume that T =
[0, 5), Rq = 0.5 Mbits/s/Hz, Emax = Emax[i] and Emin[i] = 0
for all i [14]. We compare the performance of the proposed
polices with the off-line and on-line ZF precoding [15] as a
benchmark. To have a fair comparison, we use use the same
CSI and EAI for all the methods.

A. Convergence Behavior of the Proposed Policies

In this subsection, we study the convergence behavior of
the proposed policies. To do so, we assume that λC = 1

1/s, λE = 1 J/s and Emax = 1 J. We set Nt = M = 3
E[0] = 1 J and Emax = 1 J. Also, full CSI and EAI are
available at the BS for obtaining off-line policies. We consider
tE = [0.29, 1.4, 2.18, 3.57, 4.22]T s tC = [2.8, 4.48]T s. Thus,
ℓ = [0.29, 1.11, 0.78, 0.62, 0.77, 0.65, 0.26, 0.52]T s. Energies
arrive in amounts E = [0.14, 0.52, 0.49, 0.93, 0.84]T J. Hence,
Ein = [1, 0, 0.14, 0.52, 0.49, 0, 0.93, 0.84, 0]T J. Note that in
order to provide fair comparison between the on-line and
off-line policies, we set i0 = 1 in (19). Fig. 3 shows the
average throughput versus the number of iterations for the
proposed policies. From this figure, one can note that both
optimal and low-complexity sub-optimal policies converge
to almost same average throughput, which outperforms the
ZF precoding. Algorithm 3 converges quickly while more
iterations are needed in order to implement Algorithm 1 for the
optimal policy. It is observed from this figure that the off-line
optimal policies serve as an upper bound for other polices. In
addition, the optimal policies can achieve better performance
than low-complexity sub-optimal policies.

B. The Effects of Battery Overflow Constraints

In this subsection, we investigate the effects of battery
size in (4) on the average system throughput. Intuitively, it
is beneficial to have a battery with large size to store more
harvested energy. Therefore, it is expected by implementing
the proposed optimization in (5) with a large battery size,
better performance can be achieved.

For this simulation, we assume that Nt =M = 3, energies
arrive at every second in amounts E = [1, 1, 1, 1]T J and
the channel gains change at every second. The available
energy in the battery at 0 is assumed to be E[0] = 1
J. Hence, Ein = [1, 1, 1, 1, 1]T J and ℓ = [1, 1, 1, 1, 1]T .
For better illustration, we only implement the off-line low-
complexity sub-optimal policy in this simulation. Assuming 4
events happen during the transmission interval, we adapt our
proposed resource allocation policy 5 times.

In Fig. 4, we plot the average throughput for the off-
line low-complexity policy when the size of the battery is
changed. The consumed energy by the system in each time
slot is plotted in black lines at the middle of each time slot
in Figs. 4 (a) and (b). In addition, the blue line shows the
upper bound for the consumed energy by the system as its
associated with the energy casualty constraints in (3). Also,
the battery overflow constraints in (4) are depicted by the
red line. Figs. 4 (a) and (b) are corresponding to the case
when Emax = 1, 0.25 J, respectively. Indeed, these constraints
provide a situation in which most of the arrival energies used
for communication purposes. From Fig. 4 (c), it is observed
that better performance in terms of the average throughput up
to 0.14 Mbits/s/Hz is obtained when a battery with size 1 J is
implemented.

C. The Average System Throughput Versus the Rate of Energy
Arrivals

We examine the average throughput versus the rate of
energy arrivals during the transmission interval with Emax = 1
J, E[0] = 1 J, Nt = M = 3, λE = 1 J/s, λC = 1 1/s
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Fig. 4: Figs. 4 (a) and (b) show the consumed energy for Emax = 1 J and Emax = 0.25 J, respectively, for the off-line
low-complexity sub-optimal policy. Fig. 4 (c) compares the average throughput for these battery sizes.
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Fig. 5: The average system throughput versus the average
recharge rate over 100 trials for Emax = 1 J, E[0] = 1 J,
λC = 1 1/s, and Nt =M = 3.

as depicted in Fig. 5. Each point of simulations is obtained
through 100 trials. We observe that the average throughout
for all proposed policies is an increasing function of energy
arrivals rate. The off-line scenario outperforms the on-line
scenario as full CSI and EAI are assumed to be available at
the BS. It is also observed that the optimal solution obtains
better performance than the low-complexity sub-optimal pol-
icy. In addition, the proposed policies which directly solve the
beamforming problem outperform the ZF precoding.

D. The Average Throughput Versus the Power of AWGN

In this subsection, we examine the performance of the
proposed approaches in terms of the average throughput versus
the power of AWGN as shown in Fig. 6. Each point of
simulation is achieved through 100 trials. For this simulation,
we set λC = 1 1/s, λE = 1 J/s, Nt = M = 3, Emax = 1
J, E[0] = 1 J, Emax = 1 J. It is observed from Figs. 6 (a)
and (b) that by increasing the power of AWGN, the average
throughput for the proposed policies decreases. In addition,
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Fig. 6: A comparison among the proposed policies in terms of
the average throughput versus the power of AWGN over 100
trials for λC = 1 1/s, λE = 1 J/s, Nt =M = 3, Emax = 1 J,
E[0] = 1 J, and Emax = 1 J.

the performance achieved by the proposed off-line policies
is better than the on-line policies. In addition, the proposed
policies outperform the ZF precoding.

E. Computational Complexity

In this subsection, we investigate the computational costs of
the off-line optimal and low-complexity sub-optimal policies.
We used an Intel Core i7− 6700, 2.6GHz CPU computer for
performing the simulations. As it is proved in Section V, the
computational complexity of off-line policies is a function of
the number of users, events, and antennas. By setting Nt =M ,
in Fig. 7, we compare the average execution time of the pro-
posed policies with the ZF technique through 100 trials versus
number of events for different number of users. It is observed
from Fig. 7 that implementing Algorithm 1 which is used
to obtain the off-line optimal policies takes more time than
Algorithm 3 which achieves the off-line low-complexity sub-
optimal policies. The ZF precoding is faster than the proposed
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Fig. 7: A comparison among the proposed off-line optimal and
low-complexity sub-optimal policies with the ZF precoding in
terms of the average execution time over 100 trials.

policies because the beamforming vectors are predetermined,
however, the performance of this approach highly depends on
prior information regarding CSI. Indeed, when perfect CSI is
not available, the potential ZF beamformers can no eliminate
interference among the users, which makes the problem hard
to solve. The performance obtained in terms of the throughput
for the optimal and low-complexity sub-optimal solutions is
comparable as shown in Figs. 2 and 6 and outperform the ZF
technique. On the other hand, the complexity analysis in Table
I and Fig. 7 demonstrate that the complexity of sub-optimal
solution is less than the optimal ones up to 80 seconds. Indeed,
there is a trade off between the complexity and accuracy of
the optimal and sub-optimal policies. As we mentioned earlier,
the solution of the optimal policy lies on the feasible set of the
problem, however, the solution of the sub-optimal policy is a
linear approximation of the optimal one which depends on ϵ3
in Algorithm 3. Therefore, if the accuracy is highly important,
the optimal policy can be exploited but with more complexity.
For a better illustration, we do not plot the complexity of on-
line policies because the complexity of the on-line policy is
in the order of off-line policies by setting i0 = 1 in ((19), the
only difference is in number of events as we derived in Table
I.

From the previous results, we can notice that the proposed
policies can obtain better performance than the ZF precoding
in terms of throughput for all the parameter settings. To
provide a fair comparison, the execution time of the proposed
policies is also compared with the ZF precoding. Note that
the computational complexity of the proposed policies are
functions of the number of users, antennas, and time slots.
Therefore, changing these parameters can change the perfor-
mance. However, since these parameters in many communica-
tion problems are fixed in practice and the main goal of this
paper is to show the effects of energy balancing constraints
on resource allocation policies, we fixed the number of users
and antennas for all the simulations.

VII. CONCLUSION AND RESEARCH DIRECTION

In this paper, we study resource allocation policies in EH
communication systems. We exploit the multi-antenna BS to
take advantage of the channel diversity, however, this results in
a non-convex optimization for the resource allocation because
of the co-channel interference among users. To obtain the off-
line optimal policy, we propose an iterative algorithm based on
GLFP. We also present another iterative algorithm to achieve
the off-line low-complexity sub-optimal policy. The on-line
policies are studied, which only need the statistical CSI and
EAI. The total computational complexity for the proposed
approaches is derived. The simulation evaluations are provided
to support our theoretic results.

Since the proposed policies solve non-convex resource al-
location problems, we would like to suggest use our proposed
techniques for more complicated non-convex problems such
as EH dual-functional radar communication (DFRC) systems
where a single platform accommodates both the radar and
communication tasks simultaneously [28]. There is still lack
of optimal and sub-optimal solutions for these access points
because of non-convex constraints at both radar and commu-
nication sides.

APPENDIX A
MATHEMATICAL PRELIMINARIES FOR GLFP

In this section, the necessary mathematical backgrounds for
the GLFP technique [22] are provided in order to facilitate our
algorithm’s design for the optimal solution of problem (5).

Definition 1: For any two vectors, y,y′ ∈ Rm, we say y
dominates y′, if y′ ≤ y, i.e., y′i ≤ yi,∀i ∈ {1, · · · ,m}. For
instance, in Fig. 8 (a), z1 dominates z3.

Definition 2: The hyper rectangle [0, z] = {x|0 ≤ x ≤ z}
is called a box for given z ∈ Rm+ . Fig. 8 (a) shows three
examples z1, z2, and z3 denoted by the black dashed lines.

Definition 3: For any set T ⊂ Rm+ , the union of the boxes
constructed by T , i.e., [0, z] such that z ∈ T , is referred to a
polyblock with the vertex set T . For the example of Fig 8 (a)
the vertex set of z1, z2 is denoted by the red dashed area.

Definition 4: A vertex z ∈ T is called a proper vertex, if
there exists no vertex in T dominates z, i.e., for any z′ ̸= z ∈
T , z′ ≥ z. In Fig. 8 (a), the vertex T = {z1, z2} is a proper
vertex.

Definition 5: We call a set ω ⊂ Rm normal, if for any
y ∈ ω, the box [0,y] ⊂ ω. In Fig. 8 (a), the black dashed
area constructed by z3 is an example of a normal set. Note
that the intersection of infinite normal sets is normal.

Fig. 8 (a) demonstrates an example of polyblock P con-
structed by the boxes [0, z1], [0, z2], and [0, z3]. By using Def-
inition 4, one can find that the vertex set of P is T = {z1, z2}.
The polyblock is a normal set because for any z ∈ P , the box
[0, z] ∈ P .

Definition 6: y ∈ Rm+ that lies on the upper boundary set
of the normal set ω ⊂ Rm+ , if αy ∈ ω,∀α < 1 and αy /∈
ω,∀α > 1. The upper boundary set of ω is denoted by δ+ω.
In Fig. 8 (a), the upper boundary of the normal set constructed
by z3 is shown by black dashed line.
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Fig. 8: Fig. 8 (a) shows polyblock P constructed by the boxes [0, z1], [0, z2], and [0, z3] with the vertex set T = {z1, z2}
in red dashed line. Figs. 8 (b, c, d) depict shrinking the ployblock over the set ψ = ω ∩ X , where ω and X are normal and
inverse normal sets, respectively.

Definition 7: For any normal set ω ⊂ Rm+ and non-empty
point z ∈ Rm+ \ 0, the upper boundary of ω, i.e., δ+ω, is
met by a half-line from 0 to z at a unique point πω(z), if
πω(z) = λz, λ = sup{α ≥ 0| αz ∈ ω}. Indeed, πω(z)
is the projection of z on the set ω. Note that πω(z) ≥ z,
i.e., λ ≥ 1, if and only if z ∈ ω. In Fig. 8, Πω(z2) is the
projection of z2 on ω.
For the remaining terms,

Proposition 1: Consider Φ(z) : Rm+ → R as an increasing
function, the maximum of Φ(z) over the polyblock P with
the vertex set T is achieved at one of the proper vertices of
P . The maximum of Φ(z) over the normal set ω is obtained
on the upper boundary set of ω.
Proof : Assuming that z⋆ as the global maximum of Φ(z) over
the polyblock P . If z⋆ is not a proper vertex of P , there exists
ẑ in T such that z⋆ ≤ ẑ, regarding the fact that Φ(z) is an
increasing function, we have Φ(z⋆) ≤ Φ(ẑ). Therefore, ẑ is
a maximizer, which contradicts to z⋆ as the global maximum
of Φ(z). Similarly, if z⋆ ∈ ω is a maximizer of Φ(z) on ω,
then πω(z⋆) ≥ z⋆, consequently z⋆ ∈ δ+ω. This concludes
the proof.

Proposition 2: Let us assume that ω as a normal closed
set and P ∈ Rm+ a polyblock with the proper vertex set T
contained ω. Suppose that ẑ ∈ T \ ω, πω(ẑ) = ŷ, and T ′ a
subset obtained from T such that T ′ ⊂ {z ∈ T |z ≥ ŷ}, let
T ⋆ be a subset constructed from T by replacing z ∈ T ′ with
{z1⋆, · · · , zm⋆} such that zj⋆ = z − (zj − πωj (z))ej , where
ej is j-th standard vector of Rm+ and πωj (z) is the j-th element
of πω(z), then the polyblock P ⋆ defined by the vertex set T ⋆
is smaller than T and still contains ω, i.e., ω ⊂ P ⋆ ⊂ P \{ẑ}.

The proof of Proposition 2 is omitted because of space limi-
tation, the details of the proof can be found in [22, Proposition
3]. Some of the elements in Proposition 2 might not be proper,
however, they can be eliminated by the following technique.
Consider the pair (z, z⋆) such that z ∈ T and z⋆ ∈ T ⋆. If
z⋆ ≤ z, then remove z⋆. We show this procedure in Figs. 8
(b, c, d).

Definition 8: A set X is called reverse normal set if y′ ≥ y
for y ∈ X implies y′ ∈ X . For example, in Fig. 8, the green
area is a inverse normal set.

Proposition 3: Let us consider Φ(z) : Rm+ → R as an
increasing function, the maximum Φ(z) over ψ = ω ∩ X ,
where ω and X are normal and inverse normal closed sets,
respectively, if it exists, is obtained at δ+ψ.
Proof : If ψ ̸= ∅, because interior points of the set ω is not
empty, then we have ψ \{0} ≠ ∅. Since Φ(z) is an increasing
function, if there exists a maximizer z⋆ for Φ(z) over ψ, it
should not be equal to zero, i.e, z⋆ ̸= 0. By using Definition 7,
it is known that δ+ω is met at the half-line from 0 through z,
let us consider y = πω(z). Based on z ∈ ω, we have z ≤ y,
thus y ∈ X as z ∈ X . This implies that y ∈ δ+ψ. Moreover,
Φ(z) is an increasing function, thus, Φ(y) ≥ Φ(z) because
of y ≥ z. This concludes that y is a maximizer of Φ(z) over
the set ψ.

APPENDIX B
PROOF OF THEOREM 1

A sequence {zj}, ∀j = {1, 2 · · · } is generated by Al-
gorithm 1 where each element can be obtained by the op-
timization problem in seven line of Algorithm 1. One can
always find a sub-sequence {ztn} such that zt1 = z1 −
(z1i0 − πωi0(z1))e

i0 , ztn+1
= ztn − (ztnin − πωin(ztn))e

in ,
where 1 < t1 < t2 < · · · < tn < · · · and ztnin denotes
the in-th element of zn. Note that ztn+1 differs from ztn
only in the index in. A series of projections of z1 is used
to obtain the sequence {ztn} which might not be adjacent
as projections of other vertices also occur. Regarding the fact
that πω(ztn) ≤ ztn , one can show that z1 ≥ zt1 ≥ · · · ≥
ztn ≥ · · · ≥ 2R̄

q
. Therefore, limn→∞ ∥ztn+1 − ztn∥2 = 0. It

is known from above that ztn+1 and zt differ only at in-th
element, thus, we have ∥ztn+1

− ztn∥2 = ztn+1in − ztnin =
ztn+1in − πωin(z

t) → 0, for n → ∞. On the other hand, we
have πω(ztn) = λtnztn , thus, limn→∞ λtn → 1, leading to
limn→∞ ztn → πω(ztn), where implies that the sub-sequence
{ztn} converges to the upper boundary of the set ψ. Thus, it
is a maximizer and the global optimal solution of problem P1.
The convergence of the sub-sequence of {ztn} concludes the
convergence of Algorithm 1 to the optimal solution because
Algorithm 1 is stopped when the optimal solution of problem
P1 is obtained.
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APPENDIX C
PROOF OF THEOREM 2

Let us denote t3 and O(pt3) as the iteration step and objec-
tive value of problem (12) at the t3-th iteration, respectively.
Problem (12) is optimally solved in the third step of each
iteration, thus, we have O(pt3) ≤ O(pt3+1), where shows
that the objective value of problem (12) is non-decreasing and
upper bounded by a finite value. Consequently, Algorithm 3
is convergent. Numerical evaluations in Section VI also reveal
that proposed Algorithm 3 converges quickly.
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